Deformation Estimates for the Berezin-Toeplitz Quantization

L. A. Coburn ${ }^{\star}$
Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14214, USA

Received January 29, 1992

Abstract

Deformation estimates for the Berezin-Toeplitz quantization of \mathbb{C}^{n} are obtained. These estimates justify the description of $\mathrm{CCR}+\mathscr{K}$ as a first-order quantum deformation of $\mathrm{AP}+C_{0}$, where CCR is the usual C^{*}-algebra of (boson) canonical commutation relations, \mathscr{K} is the full algebra of compact operators, AP is the algebra of almost-periodic functions and C_{0} is the algebra of continuous functions which vanish at infinity.

1. Introduction

We consider the family of Gaussian probability measures

$$
d \mu_{r}(z)=\left(\frac{r}{\pi}\right)^{n} e^{-r|z|^{2}} d v(z), \quad r>0
$$

for $z=\left(z_{1}, \ldots, z_{n}\right)$ in complex Euclidean space \mathbb{C}^{n}, $d v(z)$ ordinary Lebesgue measure, $|z|^{2}=\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}$. The space of entire $d \mu_{r}$-square-integrable functions is denoted by $H^{2}\left(d \mu_{r}\right) \equiv H^{2}\left(\mathbb{C}^{n}, d \mu_{r}\right)$. For g in $L^{2}\left(d \mu_{r}\right)$, the Berezin-Toeplitz operator $T_{g}^{(r)}$ is defined on a dense linear subspace of $H^{2}\left(d \mu_{r}\right)$ by

$$
\left(T_{g}^{(r)} h\right)(z)=\int g(w) h(w) e^{r z \cdot w} d \mu_{r}(w)
$$

Here $z \cdot w \equiv z_{1} \bar{w}_{1}+\ldots+z_{n} \bar{w}_{n}$ and $e^{r z \cdot w}$ is the Bergman reproducing kernel for $H^{2}\left(d \mu_{r}\right)$ so that, for $g h$ in $L^{2}\left(d \mu_{r}\right), T_{g}^{(r)} h$ is in $H^{2}\left(d \mu_{r}\right)$.

The map $g \rightarrow T_{g}^{(r)}$ has been considered by Berezin [Be] and others [Ba, G, Ho] as a "quantization" in which r plays the role of the reciprocal of Planck's constant.

[^0]In this guise, with $[A, B]=A B-B A$, the "canonical commutation relations" are given by

$$
\left[T_{\bar{z}_{j}}^{(r)}, T_{z_{k}}^{(r)}\right]=\frac{1}{r} \delta_{j k} I
$$

where

$$
\delta_{j k}= \begin{cases}1 & j=k \\ 0 & j \neq k\end{cases}
$$

while

$$
\left[T_{\bar{z}_{j}}^{(r)}, T_{\bar{z}_{k}}^{(r)}\right]=0, \quad\left[T_{z_{j}}^{(r)}, T_{z_{k}}^{(r)}\right]=0
$$

There is an isometry $B_{r}: L^{2}\left(\mathbb{R}^{n}, d v\right) \rightarrow H^{2}\left(\mathbb{C}^{n}, d \mu_{r}\right)$, due to Bargmann [Ba], so that for sufficiently smooth g,

$$
B_{r}^{-1} T_{g}^{(r)} B_{r}
$$

is a Weyl pseudo-differential operator [$\mathrm{F}, \mathrm{H}, \mathrm{Sh}$].
Here, we establish a first-order composition calculus for $T_{f}^{(r)}, T_{g}^{(r)}$ analogous to results of $[\mathrm{H}, \mathrm{Sh}]$ for the Weyl calculus. To obtain such a calculus, it does not seem possible to simple apply conjugation by B_{r} to the results of $[\mathrm{H}, \mathrm{Sh}]$ or the related results of [S]. Instead, we proceed by a combination of direct calculation and an asymptotic analysis analogous to that of [KL].

Our results are, in particular, sufficient to justify the description of $\operatorname{CCR}\left(\mathbb{C}^{n}\right)+\mathscr{K}$ as a first-order quantum-deformation of $A P\left(\mathbb{C}^{n}\right)+C_{0}\left(\mathbb{C}^{n}\right)$. Here, $\operatorname{CCR}\left(\mathbb{C}^{n}\right)$ is the standard simple C^{*}-algebra generated by the canonical commutation relations $\left[\mathrm{BR}, \mathrm{BC}_{1}\right], \mathscr{K}$ is the full algebra of compact operators on a separable infinitedimensional Hilbert space, $A P\left(\mathbb{C}^{n}\right)$ is the supremum norm closed algebra of almost periodic functions, and $C_{0}\left(\mathbb{C}^{n}\right)$ is the supremum norm closure of the compactly supported continuous functions.

Our main result can be simply stated. We write $\operatorname{TP}\left(\mathbb{C}^{n}\right)$ for the algebra of trigonometric polynomials on $\mathbb{C}^{n}=\mathbb{R}^{2 n}$. This algebra is generated by the characters $\chi_{a}(w) \equiv \exp \{i \operatorname{Im} w \cdot a\}$, for a in \mathbb{C}^{n}. We let $C_{c}^{m}\left(\mathbb{C}^{n}\right)$ be the algebra of m times continuously differentiable functions with compact support. We have
Main Theorem. For f, g in $\mathrm{TP}+C_{c}^{2 n+6}, r>0$,

$$
\left.\| T_{f}^{(r)} T_{g}^{(r)}-T_{f g}^{(r)}+\frac{1}{r} T_{j}^{(r)} \partial_{j} f\right)\left(\bar{\partial}_{j} g\right) \|_{(r)} \leq C(f, g) r^{-2}
$$

holds for $C(f, g)$ independent of r.

2. Preliminary Results

We make use of the maps

$$
t_{a}(z)=z-a, \quad \gamma_{a}(z)=a-z
$$

These maps determine unitary operators on $H^{2}\left(d \mu_{r}\right)$ and $L^{2}\left(d \mu_{r}\right)$ given by

$$
\begin{aligned}
& \left(U_{a}^{(r)} f\right)(z)=k_{a}^{(r)}(z) f(z-a) \\
& \left(V_{a}^{(r)} f\right)(z)=k_{a}^{(r)}(z) f(a-z)
\end{aligned}
$$

where

$$
k_{a}^{(r)}(z)=e^{r z \cdot a-r|a|^{2} / 2}
$$

is the normalized reproducing kernel for $H^{2}\left(d \mu_{r}\right)$. Note that

$$
\left(V_{a}^{(r)}\right)^{2}=I
$$

and

$$
V_{a}^{(r)} T_{g}^{(r)} V_{a}^{(r)}=T_{g \circ \gamma_{a}}^{(r)}
$$

We will need
Lemma 1. For g bounded and uniformly continuous on \mathbb{C}^{n} and $\varepsilon>0$ given, there is an $R=R(\varepsilon)$, independent of w, so that

$$
\int|g(w)-g(w-z)| d \mu_{r}(z)<\varepsilon
$$

whenever $r>R(\varepsilon)$.
Proof. Note that

$$
\int_{|z| \geq \delta} d \mu_{r}(z) \leq n e^{-r \delta^{2} / n}
$$

By uniform continuity, there is a $\delta=\delta(\varepsilon)$ so that $\left|g\left(z_{1}\right)-g\left(z_{2}\right)\right|<\frac{\varepsilon}{2}$ whenever $\left|z_{1}-z_{2}\right|<\delta$. For this δ, write

$$
\begin{aligned}
\int|g(w)-g(w-z)| d \mu_{r}(z)= & \int_{|z|<\delta}|g(w)-g(w-z)| d \mu_{r}(z) \\
& +\int_{|z| \geq \delta}|g(w)-g(w-z)| d \mu_{r}(z) \\
& <\frac{\varepsilon}{2} \int_{|z|<\delta} d \mu_{r}(z)+2\|g\|_{\infty} \int_{|z| \geq \delta} d \mu_{r}(z) \\
& <\frac{\varepsilon}{2}+2 n\|g\|_{\infty} e^{-r \delta^{2} / n}
\end{aligned}
$$

Thus, choosing

$$
R(\varepsilon)=-\frac{n}{\delta^{2}} \ln \left[\frac{\varepsilon}{4 n\|g\|_{\infty}}\right]
$$

completes the proof.
We can now prove, similarly to [KL] for the disc, that
Theorem 1. For g bounded and uniformly continuous on \mathbb{C}^{n}, we have

$$
\lim _{r \rightarrow \infty}\left\|T_{g}^{(r)}\right\|_{(r)}=\|g\|_{\infty}
$$

Proof. Write

$$
g(w)=<T_{g \circ \gamma_{w}}^{(r)} 1,1>_{(r)}+\int[g(w)-g(w-z)] d \mu_{r}(z)
$$

Thus,

$$
|g(w)| \leq\left\|T_{g \circ \gamma_{w}}^{(r)}\right\|_{(r)}+\int|g(w)-g(w-z)| d \mu_{r}(z)
$$

Using $V_{w}^{(r)} T_{g}^{(r)} V_{w}^{(r)}=T_{g \circ \gamma_{w}}^{(r)}$, we have

$$
|g(w)| \leq\left\|T_{g}^{(r)}\right\|_{(r)}+\int|g(w)-g(w-z)| d \mu_{r}(z)
$$

and, by Lemma 1,

$$
|g(w)|<\left\|T_{g}^{(r)}\right\|_{(r)}+\varepsilon
$$

for $r>R(\varepsilon)$. It follows that $\|g\|_{\infty}-\varepsilon \leq\left\|T_{g}^{(r)}\right\|_{(r)}$. Since $\left\|T_{g}^{(r)}\right\|_{(r)} \leq\|g\|_{\infty}$ is trivial and ε is arbitrary, the proof is complete.

We consider some differential identities which will be needed later. For f sufficiently smooth on \mathbb{C}^{n}, we write

$$
\partial_{1}^{k_{1}} \ldots \partial_{n}^{k_{n}} \bar{\partial}_{1}^{l_{1}} \ldots \bar{\partial}_{n}^{l_{n}} f
$$

where $\partial_{j} \equiv \frac{\partial}{\partial z_{j}}, \bar{\partial}_{j} \equiv \frac{\partial}{\partial \bar{z}_{j}} ; k_{j}, l_{j}$ are non-negative integers. For φ in $H^{2}\left(d \mu_{r}\right)$, we recall that

$$
\left(U_{-w}^{(r)} \varphi\right)(a)=\varphi(a+w) k_{-w}^{(r)}(a)
$$

We have
Lemma 2. For φ in $H^{2}\left(d \mu_{r}\right)$,

$$
\partial_{1}^{m_{1}} \ldots \partial_{n}^{m_{n}}\left(U_{-w}^{(r)} \varphi\right)(0)=e^{r|w|^{2} / 2} \partial_{1}^{m_{1}} \ldots \partial_{n}^{m_{n}}\left\{\varphi(w) e^{-r|w|^{2}}\right\}
$$

Proof. Direct calculation.
Lemma 3. For φ in $H^{2}\left(d \mu_{r}\right)$ and $m=m_{1}+\ldots+m_{n}$,

$$
\partial_{1}^{m_{1}} \ldots \partial_{n}^{m_{n}} \varphi(0)=r^{m} \int \varphi(w) \bar{w}_{1}^{m_{1}} \ldots \bar{w}_{n}^{m_{n}} d \mu_{r}(w)
$$

Proof. Write

$$
\varphi(a)=\int \varphi(w) e^{r a \cdot w} d \mu_{r}(w)
$$

and check that differentiation "under the integral" is permissible.
Lemma 4. $\int|a|^{2 k} d \mu_{r}(a)=b(k, n) r^{-k}$.
Proof. Easy calculation.

In what follows, we will write BC^{m} for the set of functions which are bounded and continuous, with all derivatives bounded and continuous up to order m. Clearly, C_{c}^{m} is contained in BC^{m}. For g in $\mathrm{BC}^{m+1}\left(\mathbb{C}^{n}\right)$, we will consider the Taylor series

$$
\begin{aligned}
g(a+w)= & g(w)+\left(\partial_{1} g\right)(w) a_{1}+\ldots+\left(\partial_{n} g\right)(w) a_{n} \\
& +\left(\bar{\partial}_{1} g\right)(w) \bar{a}_{1}+\ldots+\left(\bar{\partial}_{n} g\right)(w) \bar{a}_{n}+\ldots \\
& +\frac{1}{m!}\left(\bar{\partial}_{n}^{m} g\right)(w) \bar{a}_{n}^{m}+g_{m+1}(a, w)
\end{aligned}
$$

where

$$
g_{m+1}(a, w)=\sum c\left(k_{1}, \ldots, l_{n}\right)\left(\partial_{1}^{k_{1}} \ldots \partial_{n}^{k_{n}} \bar{\partial}_{1}^{l_{1}} \ldots \bar{\partial}_{n}^{l_{n}} g\right)\left(w^{*}\right) a_{1}^{k_{1}} \ldots a_{n}^{k_{n}} \bar{a}_{1}^{l_{1}} \ldots \bar{a}_{n}^{l_{n}}
$$

for $k_{1}+\ldots+k_{n}+l_{1}+\ldots+l_{n}=m+1$. For g in BC^{m+1}, the remainder term $g_{m+1}(a, w)$ can be estimated by using
Lemma 5. We have

$$
\left|g_{m+1}(a, w)\right| \leq \sum c\left(k_{1}, \ldots, l_{n}\right)\left\|\partial_{1}^{k_{1}} \ldots \bar{\partial}_{n}^{l_{n}} g\right\|_{\infty}|a|^{m+1}
$$

Proof. Immediate.
We can now establish the main analytic preliminary result.
Theorem 2. Let f be in $C_{c}^{n+3}\left(\mathbb{C}^{n}\right)$ with g in $\mathrm{BC}^{2 n+6}\left(\mathbb{C}^{n}\right)$. Then we have a constant $C(f, g)$ so that

$$
\left\|T_{f}^{(r)} T_{g}^{(r)}-T_{f g}^{(r)}+\frac{1}{r} T_{\sum_{j}^{(r)}\left(\partial_{j} f\right)\left(\bar{\partial}_{j} g\right)}\right\|_{(r)} \leq C(f, g) r^{-2}
$$

for all $r>0$.
Proof. Borrowing from [KL], we write for φ, ψ in $H^{2}\left(d \mu_{r}\right)$,

$$
\begin{aligned}
\left\langle T_{f} T_{g} \varphi, \psi\right\rangle_{(r)} & =\int f(w) \overline{\psi(w)} d \mu_{r}(w) \int e^{r w \cdot z} g(z) \varphi(z) d \mu_{r}(z) \\
& =\int f(w) \overline{\psi(w)} d \mu_{r}(w) \int e^{r w \cdot(a+w)} g(a+w) \varphi(a+w) d \mu_{r}(a+w) \\
& =\int f(w) \overline{\psi(w)} e^{r|w|^{2} / 2} d \mu_{r}(w) \int g(a+w)\left(U_{-w}^{(r)} \varphi\right)(a) d \mu_{r}(a)
\end{aligned}
$$

Next, write

$$
g(a+w)=\left\{g(a+w)-g_{m+1}(a, w)\right\}+g_{m+1}(a, w)
$$

Using Lemmas 4 and 5, we check that for $m=n+3$,

$$
\begin{aligned}
& \left|\int f(w) \overline{\psi(w)} e^{r|w|^{2} / 2} d \mu_{r}(w) \int g_{m+1}(a, w)\left(U_{-w}^{(r)} \varphi\right)(a) d \mu_{r}(a)\right| \\
& \quad \leq\|\varphi\|_{(r)}\|\psi\|_{(r)} C(g) \pi^{-n} b(m+1, n)^{1 / 2}\left\{\int|f(w)|^{2} d v(w)\right\}^{1 / 2} r^{-2}
\end{aligned}
$$

Thus, for $m=n+3$, it remains to consider the expression

$$
\int f(w) \overline{\psi(w)} e^{r|w|^{2} / 2} d \mu_{r}(w) \int\left\{g(a+w)-g_{m+1}(a, w)\right\}\left(U_{-w}^{(r)} \varphi\right)(a) d \mu_{r}(a)
$$

For $k=k_{1}+\ldots+k_{n}, l=l_{1}+\ldots+l_{n}$, and $k+l \leq m$ the typical term in the expansion of

$$
\int\left\{g(a+w)-g_{m+1}(a, w)\right\}\left(U_{-w}^{(r)} \varphi\right)(a) d \mu_{r}(a)
$$

has the form
(††) $\quad a\left(k_{1}, \ldots, l_{n}\right)\left(\partial_{1}^{k_{1}} \ldots \bar{\partial}_{n}^{l_{n}} g\right)(w) \int \bar{a}_{1}^{l_{1}} \ldots \bar{a}_{n}^{l_{n}} a_{1}^{k_{1}} \ldots a_{n}^{k_{n}}\left(U_{-w}^{(r)} \varphi\right)(a) d \mu_{r}(a)$.
Applying Lemmas 2 and 3, we see that $(\dagger \dagger)=0$ unless

$$
l_{j} \geq k_{j}
$$

for all j. In this case, ($\dagger \dagger$) is a sum of terms

$$
r^{-l} a^{\prime}\left(k_{1}, \ldots, l_{n}\right) e^{r|w|^{2} / 2}\left(\partial_{1}^{k_{1}} \ldots \bar{\partial}_{n}^{l_{n}} g\right)(w) \partial_{1}^{t_{1}} \ldots \partial_{n}^{t_{n}}\left\{\varphi(w) e^{-r|w|^{2}}\right\}
$$

with $l_{j} \geq t_{j}$.
It follows that (\dagger) is a linear combination, with coefficients independent of r, of terms

$$
\begin{align*}
& r^{-l} \int f(w) \overline{\psi(w)}\left(\partial_{1}^{k_{1}} \ldots \partial_{n}^{k_{n}} \bar{\partial}_{1}^{l_{1}} \ldots \bar{\partial}_{n}^{l_{n}} g\right)(w) \\
& \quad \times \partial_{1}^{t_{1}} \ldots \partial_{n}^{t_{n}}\left\{\varphi(w) e^{-r|w|^{2}}\right\}\left(\frac{r}{\pi}\right)^{n} d v(w)
\end{align*}
$$

where

$$
l_{j} \geq k_{j}, \quad l_{j} \geq t_{j}, \quad m \geq l+k
$$

Iterated application of Gauss' Theorem ("integration by parts") shows that ($\dagger \dagger \dagger$) is a linear combination, with coefficients independent of r, of terms

$$
r^{-l} \int\left(\partial_{1}^{u_{1}} \ldots \partial_{n}^{u_{n}} f\right)(w)\left(\partial_{1}^{k_{1}+s_{1}} \ldots \partial_{n}^{k_{n}+s_{n}} \bar{\partial}_{1}^{l_{1}} \ldots \bar{\partial}_{n}^{l_{n}} g\right)(w) \varphi(w) \overline{\psi(w)} d \mu_{r}(w)
$$

where

$$
t_{j} \geq u_{j}, \quad t_{j} \geq s_{j}
$$

Thus, for $l>1$, we have explicit estimates.
It remains to consider the cases $l=0, l=1$. Going back to (\dagger), $(\dagger \dagger$), we see that the only $l=0$ term is

$$
\begin{aligned}
& \int f(w) \overline{\psi(w)} e^{r|w|^{2} / 2} d \mu_{r}(w) \int g(w)\left(U_{-w}^{(r)} \varphi\right)(a) d \mu_{r}(a) \\
& \quad=\int f(w) g(w) \overline{\psi(w)} \varphi(w) d \mu_{r}(w) \\
& \quad=\left\langle T_{f g}^{(r)} \varphi, \psi\right\rangle_{(r)}
\end{aligned}
$$

For $l=1$, we can have, for some j with $1 \leq j \leq n$,

$$
\begin{cases}l_{j}=1, l_{j^{\prime}}=0 & j^{\prime} \neq j \\ k_{j}=1, k_{j^{\prime}}=0 & j^{\prime} \neq j\end{cases}
$$

or

$$
\begin{cases}l_{j}=1, l_{y^{\prime}}=0 & j^{\prime} \neq j \\ k_{j}=0, k_{\jmath^{\prime}}=0 & j^{\prime} \neq j\end{cases}
$$

In either case, $a\left(k_{1}, \ldots, l_{n}\right)=1$ in $(\dagger \dagger)$. Direct calculation now shows that the sum of the $l=1$ terms is

$$
-r^{-1} \int \varphi(w) \overline{\psi(w)}\left\{\sum_{j}\left(\partial_{\jmath} f\right)\left(\bar{\partial}_{\jmath} g\right)\right\} d \mu_{r}(w)
$$

This completes the proof!

3. Main Results

For each a in \mathbb{C}^{n}, we have the character

$$
\chi_{a}(w)=\exp \{i \operatorname{Im} w \cdot a\}
$$

The algebra $\operatorname{TP}\left(\mathbb{C}^{n}\right)$ consists of finite linear combinations of characters. The supremum norm closure of $\operatorname{TP}\left(\mathbb{C}^{n}\right)$ is exactly $\operatorname{AP}\left(\mathbb{C}^{n}\right)$. We also consider the algebra $\mathrm{TP}+C_{c}^{2 n+6}$. Clearly,

$$
\mathrm{TP}+C_{c}^{2 n+6} \subset B C^{2 n+6}
$$

Lemma 6. For g in $\mathrm{TP}+C_{c}^{2 n+6}$, the representation

$$
g=t+u
$$

with t in TP and u in $C_{c}^{2 n+6}$ is unique.
Proof. On TP $+C_{c}^{2 n+6}$, we consider the functional

$$
m(g)=\operatorname{Lim}_{T \rightarrow \infty}(2 T)^{-2 n} \int_{-T}^{T} \ldots \int_{-T}^{T} g\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right) d x_{1} d y_{1} \ldots d y_{n}
$$

where $z_{j}=x_{j}+i y_{j}, x_{j}, y_{j}$ real. It is easy to check that

$$
m(u)=0
$$

while, for

$$
t=\sum_{k=1}^{r} c_{k} \chi_{a_{k}}, m\left\{g \bar{\chi}_{a_{k}}\right\}=c_{k} .
$$

Uniqueness follows.

Remark. It follows from the proof of Lemma 6 that

$$
\left|c_{k}\right| \leq\|g\|_{\infty}
$$

We can now complete the proof of the main theorem.
Theorem 3. For f, g in $\mathrm{TP}+C_{c}^{2 n+6}$ there is a constant $C(f, g)$ so that for all $r>0$,

$$
\begin{equation*}
\left\|T_{f}^{(r)} T_{g}^{(r)}-T_{f g}^{(r)}+\frac{1}{r} T_{\sum\left(\partial_{\jmath} f\right)\left(\bar{\partial}_{\jmath} g\right)}^{(r)}\right\|_{(r)} \leq C(f, g) r^{-2} \tag{*}
\end{equation*}
$$

Proof. For $f=t_{1}+u_{1}, g=t_{2}+u_{2}$ with t_{j} in TP and u_{j} in $C_{c}^{2 n+6}$, it will suffice to check that each of the pairs $\left(t_{1}, t_{2}\right),\left(t_{1}, u_{2}\right),\left(u_{1}, t_{2}\right),\left(u_{1}, u_{2}\right)$ satisfy $\left({ }^{*}\right)$.

The pairs $\left(u_{1}, t_{2}\right),\left(u_{1}, u_{2}\right)$ are handled using Theorem 2. For $\left(t_{1}, u_{2}\right)$, we note that $T_{F}^{*}=T_{\bar{F}}$ and $\bar{\partial}_{j} \bar{F}=\overline{\partial_{j} F}$ for F in $B C^{2 n+6}$ so that

$$
\begin{aligned}
& \left(T_{t_{1}}^{(r)} T_{u_{2}}^{(r)}-T_{t_{1} u_{2}}^{(r)}+\frac{1}{r} T_{\left.\sum\left(\partial_{j} t_{1}\right) \bar{\partial}_{j} u_{2}\right)}^{(r)}\right)^{*} \\
& \quad=T_{\bar{u}_{2}}^{(r)} T_{\bar{t}_{1}}^{(r)}-T_{\bar{u}_{2} \bar{t}_{1}}^{(r)}+\frac{1}{r} T_{\sum\left(\partial_{j} \bar{u}_{2}\right)\left(\bar{\partial}_{j} \bar{t}_{1}\right)}^{(r)} .
\end{aligned}
$$

Since $\left\|A^{*}\right\|_{(r)}=\|A\|_{(r)}$ and ($\left.\bar{u}_{2}, \overline{1}_{1}\right)$ has been handled using Theorem 2, $\left(^{*}\right)$ holds automatically for $\left(t_{1}, u_{2}\right)$.

The proof is now reduced to checking $\left(^{*}\right)$ for $\left(t_{1}, t_{2}\right)$. By linearity, this is, in turn, reduced to checking $\left(^{*}\right)$ in the case $\left(\chi_{a}, \chi_{b}\right)$. Direct calculation shows that

$$
\begin{aligned}
T_{\chi a}^{(r)} T_{\chi b}^{(r)} & =\exp \{b \cdot a / 4 r\} T_{\chi_{a+b}}^{(r)}, \\
\left\|T_{\chi a}^{(r)}\right\|_{(r)} & =\exp \left\{-|a|^{2} / 8 r\right\}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \left\|T_{\chi a}^{(r)} T_{\chi_{b}}^{(r)}-T_{\chi a \chi_{b}}^{(r)}+\frac{1}{r} T_{\sum_{j}^{(r)}\left(\partial_{\jmath} \chi_{a}\right)\left(\bar{\partial}_{\jmath} \chi_{b}\right)}\right\|_{(r)} \\
& \quad=\left|e^{b \cdot a / 4 r}-1-\frac{b \cdot a}{4 r}\right| \exp \left\{-|a+b|^{2} / 8 r\right\}
\end{aligned}
$$

and routine calculation now establishes (${ }^{*}$).

4. Remarks

Direct calculation shows that

$$
W_{a}^{(r)}=\exp \left\{|a|^{2} / 8 r\right\} T_{\chi a}^{(r)}
$$

is unitary, with

$$
W_{a}^{(r)} W_{b}^{(r)}=\exp \{i \operatorname{Im} b \cdot a / 4 r\} W_{a+b}^{(r)}
$$

It follows that the C^{*}-algebra generated by the $\left\{T_{\chi}^{(r)}: a \in \mathbb{C}^{n}\right\}$ is just the canonical commutation relation algebra $\mathrm{CCR}_{r}\left(\mathbb{C}^{n}\right)$ with respect to the symplectic form

$$
\sigma(a, b)=\operatorname{Im} a \cdot b / 2 r
$$

[BR, p. 20]. It is now easy to check that all the $\mathrm{CCR}_{r}\left(\mathbb{C}^{n}\right)$ for fixed n are ${ }^{*}$-isomorphic via the obvious spatial dilations. Following an argument in $\left[\mathrm{BC}_{2}\right]$, it is also easy to check that the C^{*}-algebra generated by the $\left\{T_{f}^{(r)}: f \in C_{c}^{2 n+6}\left(\mathbb{C}^{n}\right)\right\}$ is exactly the full algebra \mathscr{K}_{r} of compact operators on $H^{2}\left(\mathbb{C}^{n}, d \mu_{r}\right)$.

Using the fact that $\mathrm{CCR}_{r}\left(\mathbb{C}^{n}\right)$ is simple, we note that the sum

$$
\mathrm{CCR}_{r}\left(\mathbb{C}^{n}\right)+\mathscr{K}_{r}
$$

is closed, and, therefore, is a C^{*}-algebra. Combining this with the observations above, we have
Remark. The C^{*}-algebra generated by the

$$
\left\{T_{f}^{(r)}: f \in \mathrm{TP}+C_{c}^{2 n+6}\right\}
$$

is just $\mathrm{CCR}_{r}\left(\mathbb{C}^{n}\right)+\mathscr{K}_{r}$ and these algebras are ${ }^{*}$-isomorphic for all $r>0$.
We also note that, using the Poisson bracket on \mathbb{C}^{n}

$$
\{f, g\}=i \sum_{j=1}^{n}\left(\partial_{j} f\right)\left(\bar{\partial}_{j} g\right)-i \sum_{j=1}^{n}\left(\bar{\partial}_{\jmath} f\right)\left(\partial_{\jmath} g\right)
$$

we have, for $[A, B]=A B-B A$,
Corollary to Theorem 3. For f, g in $\mathrm{TP}+C_{c}^{2 n+6}$,

$$
\begin{equation*}
\left\|\left[T_{f}^{(r)}, T_{g}^{(r)}\right]-\frac{i}{r} T_{\{f, g\}}^{(r)}\right\|_{(r)} \leq 2 C(f, g) r^{-2} \tag{**}
\end{equation*}
$$

Considering the above results and the correponding results of [KL] for the hyperbolic disc, it is plausible that, in a very general framework involving Toeplitz operators on Bergman spaces, the appropriate generalization of $\left({ }^{* *}\right)$ holds.

References

[Ba] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187-214 (1961)
[Be] Berezin, F.A.: Quantization. Math. USSR Izv. 8, 1109-1163 (1974)
$\left[\mathrm{BC}_{1}\right]$ Berger, C.A., Coburn, L.A.: Toeplitz operators and quantum mechanics. J. Funct. Anal. 68, 273-299 (1986)
$\left[\mathrm{BC}_{2}\right]$ Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal-Bargmann space. Trans. AMS 301, 813-829 (1987)
[BR] Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. II. Berlin Heidelberg New York: Springer 1981
[F] Folland, G.B.: Harmonic analysis in Phase space. Annals of Math. Studies, Princeton, N.J.: Princeton Univ. Press 1989
[G] Guillemin, V.: Toeplitz operators in n-dimensions. Int. Eq. Op. Theory 7, 145-205 (1984)
[H] Hörmander, L.: The analysis of linear partial differential operators. IV. Berlin, Heidelberg, New York: Springer 1985
[Ho] Howe, R.: Quantum mechanics and partial differential equations. J. Funct. Anal. 38, 188-254 (1980)
[KL] Klimek, S., Lesniewski, A.: Quantum Riemann surfaces. I. The unit disc. (preprint 7/91)
[S] Sheu, A.J.: Quantization of Poisson $S U(2)$ and its Poisson homogeneous space - the 2-sphere. Commun. Math. Phys. 135, 217-232 (1991)
[Sh] Shubin, M.A.: Pseudodifferential operators and spectral theory. Berlin, Heidelberg, New York: Springer 1987

Communicated by A. Jaffe

[^0]: * Research supported by grants of the NSF and the Institut Mittag-Leffler of the Royal Academy of Sweden

