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Abstract. For finite range lattice gases with a finite spin space, it is shown that the
Dobrushin-Shlosman mixing condition is equivalent to the existence of a logarith-
mic Sobolev inequality for the associated (unique) Gibbs state. In addition, im-
plications of these considerations for the ergodic properties of the corresponding
Glauber dynamics are examined.

1. Preliminaries

We begin by introducing the setting in which and some of the notation with which
we will be working throughout.

The Lattice. The lattice Γ underlying our model will be the ^/-dimensional square
lattice ΊLd for some fixed deZ + , and, for j e Γ, we will use the norm | k | = max 1 ^ t ̂  d

|k'|. Given A c Γ, we will use /If = Γ\A to denote the complement of A, \A\ to
denote the cardinality oϊΛ, and j + A to denote the translate {j + k:ke/l}of/lby
jeΓ. Furthermore, for each i ? e R + , we take the R-boundary dRA to be the set

{keyl(J: |k — j | ^ R for some ]eA] .

We will often use the notation A (ζ Γ to mean that \A \ < oo, and $ will stand for the
set of all non-empty A(gΓ. A monotone sequence 5 0 = { y i M : π e N } ^ g will be
called a countable exhaustion if An /* Γ.

The Spin Space. The single spin space for our model will be a finite set Q with the
topology of all subsets, corresponding Borel field J ' Q , and normalized uniform
measure v0 on (Q,^Q). Given a real-valued function / on Q, we define the
differential df of / by

a/=/-v0/,
where we have introduced the notation μφ (to be used throughout) as one of the
various expressions for the integral of a μ-integrable function φ with respect to
a measure μ.

* During the period of this research, both authors were partially supported by NSF grant DMS
8913328
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The Configuration Space. Given any non-empty subset A of Γ, we give QΛ the
product topology and use 38 QΛ to denote the associated Borel field. In particular,
our configuration space will be the space Ω = QΓ, and, for each 0 Φ A ^ Γ,
ωeΩ\-^ωΛeQΛ will denote the natural projection mapping from Ω onto QΛ, $FA

and 2ΪΛ(Ω) will denote the σ-algebra of sets of the form {ωeΩ:ωΛeA} with
Ae&QΛ and the space of bounded, 3FA-measurable functions φ: Ω -> R, and CΛ(Ω)
will stand for the continuous elements of *&Λ(Ω). When yd = {k}, we will use ω k, in
place of ω^; and when Λ = Γ, we will drop the subscript entirely. Thus, for
example, 2I(ί2) and C(Ω) are, respectively, the space of bounded, J*Ω-measurable
functions and the subspace of continuous elements of 9I(Ω). Also, we will say that
φeyi(Ω) is local and will write φe$I 0 (Ω) if φe'ΆΛ for some / l e g (notice that,
because Q is finite, all elements of 2ίo(Ώ) are necessarily continuous); and, for any
φ: Ω -> R, || <p ||u will be used to denote its uniform (i.e. the "sup") norm, and the
standard notion of convergence of functions in C(Ω) will be the one induced by
|| llu On the other hand, the standard notion of convergence for measures will be
that of weak convergence. Thus, for example, if 0 Φ A c Γ and {μn} J° is a sequence
from yilίiQ^ (i.e., the set of Borel probability measures on QΛ) then we say that μn

converges to μ and will write μn => μ if μnφ -> μφ for every continuous φ: 2"1 -* R
Also, given μeaR^Ω) and 0 Φ /I c Γ, we use μΛ^^i(QΛ) to denote the marginal
distribution of ωeΩ\->ωΛeQΛ under μ. That is, if φe%Λ and φ^ is the Borel
measurable function on QΛ determined by φ(ω) = φΛ(ωΛ), then μ^ is the element
of y)iι(QΛ) for which μ^φyi = μφ. In keeping with our use of μ/ to denote the
integral of a function / with respect to a measure μ, we will use

to denote the covariance of two functions/and g from L2(μ).
Finally, for each k e Γ , we define the shift transformation θk:Ω->Ω so that
(θkω)] = ωk + j for every ωeί2 and every j e Γ .

The Standard Gradient Operation. In order to describe a discrete gradient operator
on Ω, it will be convenient to introduce additional notation. In the first place, given
0 Φ A c Γ, we define

so that χΛ yΛl is the element ωeί2 determined by

ωΛ = xΛ and ωΛ^ = yΛ^

and, for/: Ω -* R and yA^ eQA^ we define/( | yAl) on g^4 and fΛ{ | y^C) on Ω by

and

Secondly, for ω 6 £2, we write /^ ( | ω) instead offΛ ( | ωΛ j) and, when Λi = {k} we
will use fk( \ω) in place of/rk}( \co). Since both

(x y l ,y y l t)6g > 1 x(2 y l i i-^x^ ^ ^ Ω and (η,ω)eΩ2\-+ηΛ ωΛteΩ

are continuous maps, all the preceding constructions preserve both continuity and
measurability.
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For/e'21 and non-empty A c p, we define the gradient ( VΛf) with respect to the
coordinates in the set A by setting

(VΛf(ω))k = (dfk( \ω))(ωk) f o r k e d .

In keeping with our earlier conventions, we take V= VΓ and Vk = V{ky Also,

\VΛf\
2(ω) = Σ |F/kHω)

keΛ

Finally, we also introduce the semi-norm

111/111= Σ IIF*/(ω)Le[0,oo]
keΓ

and define C1(Ω) to be the space of continuous functions/for which | | |/| | |<oo.

The Standard Logarithmic Sobolev Inequality. For any non-empty A c r and
μ e 90?! (Ω\ we define the (standard) logarithmic Sobolev constant c(μ; A) ofμ on A to
be the smallest c e [0, oo ] with the property that

SLS μ/ 2 log | / | ^cμ |Γ i l / | 2 +| | / | | 22 ( μ ) log | | / | | L 2 ( μ ) , feWΛ.

When c(μ; A)<oo, we say that μ admits a standard logarithmic Sobolev inequality
on A, in which case, SLS with c = c(μ; A) is the standard logarithmic Sobolev
inequality for μ on A; and when A = Γ, we drop all reference to A in the notation.
Thus, c(μ) = c(μ; Γ).

Local Specifications and Gibbs States. A local specification is a family & = {Eχ}Λe%
which consists of transition probability functions

satisfying EΛfe^ίΛ^(Ω) for all fe91 and the consistency condition

EΛ1 = EΛ' ° EΛ whenever A c A' ,

where we have introduced the notation ί^ to denote the operator E

SÎ jj(Ω) given by EΛφ(ω) = E%φ. When (£ admits aiiKeR with the property that

Ω 3 ω i—• E™ (/) is J^Λ/1 -measurable for every / e %Λ and A e % ,

we say that (£ is a local specification wiί/z rαπ^β R; and when

°βk) = (EΛf)°θk for all /ε8ϊ(Ω), keΓ, and Ae% ,
we say that G is a shift-invariant local specification. Given a local specification ©, we
will say that μeWl^Ω) is a GΛfc sίαίβ for (£ and will write μG©(^) if, for every
Λeg, ωeί2ι-^ E% e(iβl1(Ω) is a regular conditional probability distribution of
μ given g^p. That is, μe©((£) if and only if it satisfies the Dobrushin-Lanford-
Ruelle condition

DLR μ(EΛf) = μ(f) for all A e g and fe Vί(Ω)

Clearly (5(β) is convex. Moreover, if C(Ω) is invariant under EΛ for each A eft,
then it is an easy matter to show that ©((£) is non-empty and compact. In
particular, this will be the case when (£ has finite range.
In this paper, our local specification will come from a shift invariant, finite range
Gibbs potential Φ = {Φχ}χe^- That is,
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(1) for each X e%9ΦxeCx(Ω);
(2) for each keΓ and Xeft, Φk+X = Φx°θ

k;
(3) there is an R e N (the range of Φ) such that Φx = 0 whenever X e g and the

diameter of X is greater than JR;

and E™ is determined from Φ by

E%φ = — — J φ(xΛ I ω)e ~ UAχΛ^ω) v$ {dxΛ) ,
ZΛ(ω) QΛ

where

UΛ(xΛ\ω) = Σ Φχ(χΛ*ωΛt) ϊov(xΛ,ω)eQΛxΩ,

XnΛ Φ0

and ZΛ(ω) is chosen so that E™ is a probability measure. Obviously, the condition
(3) above guarantees that the corresponding local specification (£ has range R, and
therefore we know that (5(Φ) = (5((£) is a non-empty, compact, and convex.

Dobrushin-Shlosman Conditions. Let Φ be a shift-invariant, finite range Gibbs
potential, and let (£ be the corresponding local specification. By the preceding
remarks, we know that ®(Φ) is necessarily non-empty, compact, and convex. In
order to provide a criterion which guarantees uniqueness, Dobrushin and Shlos-
man introduced what we will call the Dobrushin-Shlosman uniqueness condition,
namely: there exists a F e g and a matrix {αj k : j e Yand kφ Y} c [0, oo) such that,
for each /e9I(Ω):

\\dkEγf- Eγdkf\\u g Σ αi,k llδj/ll. with

DSU(Y) j e y

Σ Σ αj,k = yl^l for some

In fact, what Dobrushin and Shlosman showed (cf. [Dob & S, 1]) is that DSU(Y)
implies the existence of a constant M e (0, oo) with the property that, for each S e 5,
one can find a constant Cs e [0, oo) for which

osck (EΛf) = sup
rvπTj (ί|,ω)efi2(k)

for all %sA 3 S,/e9I s, and

where Ω2(k) Ξ {(^, ω ) e Ω 2 : ^ = cθj for all j + k} and d(S, A[) denotes the distance
from S to the complement of A. Since it is obvious that DSU is more than enough
to guarantee that, for each choice o f / e 9l(Ω) and (5(Φ), %BAnsΓ and

it is clear that DSU, and therefore DSU(Y), implies that (5(Φ) contains precisely
one element μφ. Further, the condition DSU(Y) is stable under perturbations in
the sense that it holds for all sufficiently small perturbations of Φ as soon as it holds
for Φ itself. On the other hand, it does not imply that the Gibbs state μφ depends in
an analytic fashion on the perturbation parameter. For this reason, the same
authors introduced (cf. [Dob&S, 2]) a stronger condition, referred to in our
articles [SZ, 1] and [SZ, 2] as the Dobrushin-Shlosman mixing condition, in which
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DSU(Y) ife replaced by:

\\dkExf- Exdkf\\u ^ Σ αi,k llδj/llα for all g a X c= Yand kφX ,

DSM(Y) j e X

where Σ Σ α j k = y| Γ| for some ye (0,1).

Obviously, DSM(Y) implies DSU(Y) and therefore the uniqueness of the Gibbs
state μφ. Moreover, as Dobrushin and Shlosman show in [Dob&S, 2], DSM(Y)
admits a long list equivalent formulations. For our purposes, the most important of
these equivalent formulations (cf. Corollary 2.2 below) is the following strengthen-
ing of DSU:

osc k (^/) S CsHI/HI e~Md^S) for all %3Λ => S,/e3ϊ s(β),

D S M andkedRΛ.

Since DSM obviously implies DSU, it certainly implies the uniqueness of Gibbs
states. In fact, as Dobrushin and Shlosman showed, it implies analytic dependence.
To be precise, if Φ and Ψ are a pair of shift-invariant, finite range Gibbs potentials
and if DSM holds for the local specification associated with Φ, then there is a δ > 0
such that DSM holds for the local specification corresponding to each of Gibbs
potentials Φ + tΨ, \t\ < δ, and the mapping te( — <5, δ) i—• μφ+tΨ e SJΪ^Ω) is real-
analytic in the sense that

te(-δ,

is real-analytic for each

Stochastic Dynamics. Let Φ be a shift-invariant, finite range Gibbs potential and
(g = {EΛ}Λe$ the corresponding local specification. In the course of this article, we
will be dealing with several stochastic dynamics which are all connected to Φ by the
property that each is reversible with respect to every μe (5(Φ). In order to describe
these dynamics, we begin by saying how their generators act on 2t o (^) To this end,
let g 9 Γa 0 be given set, and, for each k e Γ, A e 5, and ω e Ω, define the operator
g>γ,Λtω. <U(β) _•<&(&) by

&ϊtΛtωφ(η) = LEΛn{k + Y)φ] (ηΛ

m0JΛ^) - φΛ(ri\co) where EΦφ = φ .

Next, for ω e Ω and A eft, set

keΓ

Because ^ ? y ' y l ' ω is a bounded, Markov generator, the operators

^ ^ ] (1.1)

are well-defined for each t e (0, oo) and form a Markov semigroup on 2I(Ω). In fact,
it is clear that ^ ( Ώ ) is invariant under {P?'Λ'ω: ίe(0, oo)}. Furthermore, because

- J φ(ξ) [JS?y ^ ] (ξ)E%(dξ) = <?γ>Λ>ω(φ, φ) where

Ξ \ Σ ί ( ί (^('Z) - <P(ξ)) (Ψ(1) - ΨW) Eζ

Λnik + X) (dη)) E<Z{dξ), (1.2)
Z keΛ Ω\Ω J
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it is an easy matter to see that

(1.3)

for all te (0, oo) and φ9 φeWiΩ). In particular, by taking φ = 1 in (1.3), one sees
that E™ is {PftΛ'ω: ίe(0, oo)}-invariant, and elementary considerations enable one
to check that it is the only such measure.

So far we have described dynamics involving only finitely many sites, whereas
our main interest is in dynamics which involve the spins at all sites of Γ. Thus, once
again, let g a 7 B 0 be given, and define ^eγ :Sao{Ω)^SΆo(Ω) by

J?γφ= Σ &i<P where [J?kV]fa) = [Ek + yφ]fa) - φfa).
keΓ

Although ££ γ is no longer bounded, it is nonetheless well-known (e.g., see Theorem
3.9 in [L]) that our assumptions about Φ are more than enough to guarantee that
there exists precisely one Markov semigroup {PY:te(0, oo)} on 2X(Ω) with the
property that

t

Pjφ - φ = \PΎ

so^φds, φeSΆ0{Ω) and f e(0, oo) . (1.4)
o

In fact, {Pγ: t e(0, oo)} preserves both C(Ω) and CX(Ω)\ and so, after extending Ϊ£Ύ

to C1(Ω) by continuity, one can show from (1.4) that

ί

Pjφ-φ = \£eγopγ

sφds, φeCι{Ω) and ίe(0, oo) .
o

Furthermore, because of uniqueness, one can easily see that for any exhaustion of

[PY φ ] {η) u n i f o r m l y in ( ί j η) 6 ( 0 ? Γ ] χ β

for each T > 0 and φ e C(Ω). In particular, if μ e ©(Φ), then after taking A = Λn in
(1.3), integrating with respect to μ, and passing to the limit as τ?->oo, we find that

S φ(ξ)LPΪΦl(ξ)μ(dξ) = iΦ(ξ)ίPΪφl(ξ)μ(dξ)9 ίe(0, oo) and με®(Φ) (1.5)

first for continuous φ and φ and then for all φ, φe^i(Ω). Conversely, if μ is an
element of SOί^β) for which the detailed balance condition

DB

holds, then one finds first that

μ(φ£?γφ)= -£γ

μ(φ,φ), where

< ( A)
keΓ

ί (Φ(ί) - Φ(ω))Wfa) ~ ^(ω))£k

ω

+y(^)μ(^ω) , (1.6)

for all <p9 φeyio(Ω) and thence that μe(5(Φ). In particular, since (1.5) certainly
implies DB, we now known that, for any

(1.5) <̂> μe®(Φ) o D B .
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Finally, We remark that if μe(5(Φ), then, because Pj is a Markov operator and
(1.5) implies that μ is Pj-invariant, Pj admits a unique extension as a contraction
operator on Lp(μ) for each pe[l , oo), and another application of (1.3) shows that

the extension Pjμ to L2(μ) is a self-adjoint contraction. Thus, for each μe(S(Φ),
{P?μ: ίe(0, oo)} is a strongly continuous semigroup of self-adjoint, Markov (i.e.,
non-negativity preserving) contractions on L2(μ), and (cf. (1.6)) £Ύ

μ is the associated
Dirichlet form.

Hypercontractivity. In general, the //-contraction property just mentioned is the
best one can hope for when dealing with reversible Markov semigroups on a state
space which is infinite dimensional. However, in special circumstances, it is possible
for such a semigroup to be mildly smoothing. To be precise, we will say that the
v-stationary, Markov semigroup {Tt: ίe(0, oo)} is hypercontractive with respect to
the measure v if there is a ce(0, oo) with the property that

H7;/IIL«(V) ^ II/IILP(V) for all (ί,p,ί)e(0, oo)x(l, oo)2

H —
satisfying p ^ q ^ 1 + (p — ί)ec .

When v is a probability measure which is {Tt: te(0, oo)}-reversing and £ is the
associated Dirichlet form, then L. Gross's integration lemma (cf. [G] or, for the
general case, Corollary 6.1.17 in [DS]) says that H is equivalent to the logarithmic
Sobolev inequality

v(/2log/) S c£(f,f) + | |/ | |£2 ( v )log | | / | | L 2 ( V )

LS
for all positive functions/.

The smallest c for which LS holds is called the logarithmic Sobolev constant for the
semigroup {Tt: ίe(0, oo)} relative to v. An interesting and important aspect of
a logarithmic Sobolev inequality LS is that, in addition to being a coercivity
statement, it contains an ergodicity statement. In particular, as was noted by B.
Simon (cf. Corollary 6.1.17 in [DS]), LS implies the spectral gap estimate

SG \v{ff) S *(fj) or, equivalents \\TJ- v/||L2(v) ^ e^v(ff)i .

Conversely (cf. Theorem 6.1.22 in [DS]),

v(/2 log I/I) g a£(ff) + β | | / | | £ 2 ( v ) + | |/ | |^ ( v )log | | / | | L 2 ( v ) plus v(//) ^ yβ(fj)

=> v(/2 log I/I) ^ (α + (β + 2)y) £{ff) + | |/ | | l2 ( v )log | | / |L 2 ( v ) . (1.7)

With the preceding preliminaries in place, we can at last summarize the main
conclusions which we will draw in this article.

1.8 Theorem. Let (£ be the local specification corresponding to a shift-invariant,
finite range Gibbs potential Φ, and use {Pt:te(0, oo)} to denote the associated
Markov semigroup determined by (1.4) when Y = {0}, and, for μ e ®(Φ), let £μ be the
Dirichlet form given by (1.6) when Y = {0}.

a) //DSU(Y) holds for some Γ e g with Oe 7, then {cf (1.4))

for ίG(0, oo) andfeC\Ω) . (1.9)
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In particular, ®(Φ) contains precisely one element μ and

mμ = inf{^(//): μ(fj) = 1} > 0 (1.10)

or, equivalently,

mμ=-limsup{\\Ptf-μf\\L2{μ):\\f\\LHμ) = l}>0. (1.11)
ί-> 00

b) //DSM(Y) holds for some Ye% with Oe Y, then (cf. (1.1))

\\\PΪ Λ ωf\\\ ^ lll/llk~ ( 1~ v ) | y", te(0, oo) for allΛe%, feWΛ(Ω), and ωeΩ.

(1.12)

/n particular, DSM(Y) noί only implies DSU(Y) and therefore that (5(Φ) contains
only one element, but also it implies DSM for some Me(0, oo). Conversely, DSM for
some M 6 (0, oo) implies DSM(Y)/or all sufficiently large Ye%.

c) For each ωeΩ and Ae%, let c(ω, A) be the standard logarithmic constant (cf.
SLS) c(E™)for E™. Then the following conditions are equivalent to each other:

(i) (£ satisfies DSM for some Me(0, oo)

(ii) inf {<r { 0 } ' Λ ' ω (φ,φ): Λ e g , ω e Ω , and E%{φ, φ) = 1} > 0

(iii) sup{c(ω,yl): / l e g and ω e Ω } < o o

(iv) Γftere is a ce(0, oo) swc/z ί/zαί
() ( 3 ) = 1 + (p -

for every Λe%, ωeΩ, pe(l, oo), te(O, oo) andf

(v) 77ιere βxisί ε > 0 αnJ K<oo such that
\\P{0U>ωf-μfL^K\\\f\\\e-£t, ίe(0,oo)
for every Λe%, ωeΩ, andfeCι{Ω) . (1.13)

Moreover, if any one of these holds and μ is the unique element o/(5(Φ), then c(μ) < oo
and, for each θe(O, 1), ί/zere is a Kθe(0, oo) swc/i that

\\Ptφ ~ μφL ^ Ke\\\ φ\\\e~^\ ίe(0, oo) and φeC\Ω), (1.14)

mμ > 0 is ί/zβ number defined in a)

7.75 Remark. As we will see in the following section, the contents of a) and b) are,
more or less, a re-iteration of results obtained by Aizenman and Holley in [A&H]
combined with results in [SZ, 2]. As for the equivalences in (1.13), we have already
shown in [SZ, 2] that the analogous assertions hold in the context of continuous
spin systems (i.e., when Q is replaced by a differentiable manifold and the dynamical
system is an interacting diffusion). However, we found that the argument which we
used in [SZ, 1] to check that i) implies iii) relies too heavily on Leibnitz's rule to be
transferred to the context of discrete spin systems, and so we have been forced to
adopt here an argument which derives from the one used in [Z, 1] and [Z, 2] and
bears a close relation to ones employed recently by Maes and Shlosman in [MS];
and it turns out that this new argument is somewhat simpler than the one given in
[SZ, 1]. In particular, although we were unable to transfer the argument given in
[SZ, 1] to the discrete spin context, it is an easy matter to transfer the reasoning
used here to the continuous spin context in [SZ, 1].
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1.16 Remark. The equivalence ii) o iii) inc) brings up an interesting and, so far
as we know, unresolved question. Namely, although (as we pointed out in our
discussion of hypercontractivity) LS always implies SG, it is not at all clear under
what circumstances one can go the other direction. Indeed, the only examples (cf.
[KS]) when we know for sure that the logarithmic Sobolev constant fails to be
equal to half the reciprocal of the spectral gap are, in some sense, degenerate. Thus,
there is a possibility that ii) o iii) is a special case of a much more general
phenomenon. In particular, is it possible that SG always implies LS in the context
of compact, connected Riemannian manifolds?

1.17 Remark. In a good deal of the earlier literature on the Glauber dynamics
associated with interacting systems of discrete spins, the authors have worked with
a slightly different choice of the dynamics. In particular, these authors have often
worked with the dynamics corresponding to an operator of the form

JSP = Σ
keΓ

ck(ω) Vk9 where ck(ω) = exp Γ Σ Ux(ω)] bk(ω), (1.18)

where, for each k e Γ , the bk is a positive function which does not depend on ω k .
However, because of the estimate in (2.4), it will be clear that all the estimates which
we will derive here apply equally well to the semigroups corresponding to the
operators in (1.18) so long as the fok's in (1.18) are uniformly positive.

2. The Proof of Parts a) and b) of Theorem 1.8

We begin with an argument which goes back to W. Sullivan [Sul] and has since
then been adapted to various situations in [HS] and [A&H]. However, the proof
which we give below has some new features which we believe clarify what is
happening.

2.1 Theorem. The condition DSU(Y) and DSM(Y) imply (1.9) and (1.12),
respectively.

Proof. Let Γ e g with OeY be given, and, depending on whether DSU(Y) or
DSM(Y) holds, let A = Γ or, respectively, ωeΩ and Ae% be chosen and fixed.
Next, for j e Γ, define

and, recalling that Eφ is the identity, set

i£φ = Σ ^\ Ψ> where if j φ = Ej φ — φ

for φeC1(Ω). It is then a relatively easy matter (e.g., see Theorem 3.9 in [L]) to
check that there is a unique Markov semigroup {Pt: t > 0} on C(Ω) with the
property that

t

Ptφ - φ = \Pso^φds, ίe(0, oo) and φeMoiΩ) .
o
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In fact, CX(Ω) is {Pt: t > 0}-invariant, and, when Λe g, VίΛ(Ω) is also {Pt: ί > 0}-
invariant. Thus, one has that

~ Λ / = if ° P J and IIIPJIII ^ e«
f Ill/IIK ίe(0, ex)) an

at

for some /c e (0, oo).
Now let k e A be given, note that

dkg>.φ=-dkφ when kej -f- 7 ,

and conclude that

d , _ ,,

where

and
Y

In particular, if(k) determines a unique Markov semigroup {Pr

(k): ί > 0} on
such that

- φ = j p W o ί f W φ i , ί 6 (0 , oo) and
o

and so, for each ίe(0, oo),

| [ e ' y ' s P ί k _ ) s ( δ k P s / ) ] = e"Ί sPίkJ s°KkoP s/, se(0,£),
as

from which it is an easy step to

Finally, assuming that feSΆ0(Ω) n ̂ iΛ{Ω\ summing the preceding over keΛ, and,
depending on which hypothesis has been made, applying DSU(Y) or DSM(Y), we
arrive at

e|r|ΊIIΛ/HI^ Ill/Ill + y l^ l ί ^ | γ | Ί I IΛ/ l l l ^ ,
0

from which the required estimate is an immediate consequence. D

2.2 Corollary. DSU(Y) {and therefore also DSM(Y)) implies that ®(Φ) contains
precisely one element μ. In addition, DSM(Y) implies DSM.

Proof. From (1.9), it is an easy matter to see that, for any feC1(Ω)9

lim sup |P t

y/(£)-Λy/fa)l = 0.
ί-» oo ξ,ηeΩ

Hence, if α, βeyJlγiΩ) are a pair of {Pf\ t > 0}-invariant measures, then

^f-βf=U(Ptf(O-PΪf(η))Φξ)β(dη)^0 asί^αo;

and because every element of ®(Φ) is {Pj: t > 0}-invariant, this proves that there
is only one such element.
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In ordέr to prove that DSM(Y) implies DSM, we apply Lemma 1.8 of [SZ, 2]
to the semigroups {P?'Λ'ω: t > 0} for two different ω's and thereby conclude that
DSM follows immediately from (1.12). D

In oder to complete the proof of part a) in Theorem 1.8, we will use a simple
comparison lemma which will also serve us well in the sequel.

2.3 Lemma. There is a KG(0, oo) such that, for any Ye g, ωeΩ, and Λe%, (cf. (1.2))

e-«Wgγ-Λ-ω(fJ)£EX\VΛf\
2 ^IQlW-^^^-^ifJ) . (2.4)

In particular, for each μe(5(Φ), (cf. (1.6) and the statement of Theorem 1.8)

Proof Because of the detailed balance condition DB, it is clear that (2.5) follows
from (2.4). Similarly, if we show that there is a τce(0, oo) such that, for each X e g
andkeX,

Ex(f- Exf)
2 £ e«W Σ Eχ(d J)2 and

Ex(dkf)
2 ^ lei1*1"1 e*WEx(f- Exf)

2 , (2.6)

then (2.4) will follow with this choice of K plus 1. But, by elementary comparison of
the measures E% \QX with vj, we see that (2.6) reduces to proving that

2 S \X\ Σ v o(5j/) 2 and v?(δ k /) 2 S I G I ^ 1 " 1 vUf~ v?/) 2 (2.7)

for dλ\fe<Άχ(Ω). Finally, to prove the first assertion in (2.7), let { j l 5 . . . , \\X\) be an
enumeration of the elements of X, set Xo = 0, Xm = { j l 5 . . . ,jm} for 1 ^ m ^ |X | ,
and X'm = X\Xm for 0 ^ m ^ \X\, and note that

^V Σ
Z m = l

On the other hand, to prove the second part of (2.7), note that

^ ~f(η))2 vo(dξk)vξ(dη)

1 7 p , v \

= ~j J (f(ξ)-fW) 2vξ(dξ)\
2 \{ξ:ξχ\w = ηXsW} /

vfίZ-vί/)2. D
2.8 Corollary. DSU(Y) impfes (1.10) (and therefore (1.11)). Moreover, DSM(Y)
implies that

i n f { ^ ' ^ ' ω (φ, φ): Λe%, ωeΩ, and E%{φ9 φ)} > 0 . (2.9)

Proof From (1.9) and elementary spectral theory, we know that

i n f « (φ, φ): μ(φ, φ) = 1} ^ (1 - y) \ Y\ .
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Thus, by the left-hand inequality in (2.5), we see that mμ ̂  (1 — y)\ 7 | ^ ~ κ | y | .
Similarly, (1.12) and the left-hand inequality in (2.4) lead to (2.9). D

3. Proof of Part c) of Theorem 1.8

We have already seen in Corollary 2.8 that i)=>ϋ) in part c) of Theorem 1.8. In
addition, the implication iii) => iv) is nothing by Gross's integration lemma, and
the implications iv) => v) as well as v) => i) and v) => (1.14) are proved in exactly the
same way as the corresponding implications in [SZ, 2] (cf. Lemma 2.9 and Lemma
1.8 in that article). Hence, all that remains is to prove that ii)=>i) and that i) &
ii) =>iii); and the first of these is contained in the following.

3.1 Lemma. Set

\ φ \ \ = Σ l l ^ l l u (3.2)

and let ε > 0 be given. Then there exists an M = M(ε, JR, || Φ||)e(0, oo) such that for
any Ae$ and ωeΩ satisfying

£W>Λ>ω(φ, φ)^ε whenever E%(φ, φ) = 1 ,

any non-empty subsets X and Y ofΆ, and any f£^Xx{Ω) and ge$ϊ y(Ω), one has

ύ Ill/Ill \\\g\\\e-Md{X>Y). (3.3)

In particular, there is a C = C(R, M)e(0, oo) with the property that, for each kφΛ,
H l c i , andfG<Άx(Ω) (cf. DSU)

sup{\E\f-E%f\:(η,ω)sΩ2(k)}^Ce-Md^\\\f\\\. (3.4)

Proof Let n be the largest element of N with the property that d(X, Y) ̂  2nR, set
Λ1 = {]eΛ:d(lX)^nR}, and take Λ2 = Λ\Λ1. Next, take pt = pW Λ'<°,
pi = p{0},Λi,ω9 a n d p2 = p{0},^2,ω β y L e m m a I g j n [ S Z ? ̂  w e k n Q W t h a t ? for

and

\\PAf)-Plf\\»ύen{Ct)\\\f\l

and \\Pt{g)-Pϊg\Uύen{Ct)\M\, (3.5)

where Ce(0, oo) depends only on R and | |Φ | | and

= 0 m\ \n

Starting from (3.5) and the fact that E" is {Pt: ίe(0, oo)}-invariant, we obtain:

= Eω

Λ(PAf9)) ύ EMfPfg) + MCt)HI/0111

^ E Z { P t f P t g ) + e . ( C i ) ( 11/11.IllffIII + Ill/Ill I I 0 I I . + l l l / f f l l l )

e.(Cί)(ll/ll.
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Hence, because

\\Ptf- £2/HL>(E 3) ύ e-*< | | / - E S / I L ^ . )

and, without loss of generality, we may assume that/(ω) = g(ω) = 0 and therefore
that | | / | | u ^ HI/HI and | | # | | u ^ \\\g\\\, we conclude that

\\\f\\\ \\\g\\\ ,

which, by taking t proportional to n, leads to

Eϊ(f9g)£e-δ»\\\f\\\\\\g\\\

for a choice of δ > 0 which depends only on C. Thus, we can take M = δ/2R.
Finally, let kφΛ and set Γ = {}EΛ: | j - k | ^ R}. If 7 = 0 , then there is

nothing more to do. On the other hand, if Y Φ 0, then for any (ω9η)e Ω2(k) there is
a positive ge^Xγ{Ω\ with |||^||| bounded independent of Λ, k, and (ω, f/), such that
£ i / = Eω(fg) for all/e2I(Ω). Hence, (3.3) implies that

\Eω

Λf- E\f\ = \E»{f9g)\ < \\\g\\\e-Md^γ)\\\f\\\ for a l l / e 9 l * ( Ω )

and clearly (3.4) follows from this. D

In view of the remarks preceding Lemma 3.1, the proof of part c) of Theorem
1.8 will be complete once we show that i) and ii) together imply iii). Thus, from now
on, we will be assuming both that DSM holds and that there is an ε > 0 such that

δW'A*ω(φ9 φ)^εEω(φ, φ) for all / teg , ωeΩ, and <pe9I(Ω) . (3.6)

We begin with the observation that, without any changes, the argument used in
Lemma 3.5 of [SZ, 1] applies equally well here and proves that one has, for each
A e 5 and 0 Φ X ^ Λ9 a. standard logarithmic Sobolev inequality with (cf. (3.2))

c ( £ 2 ; * ) = c 0 e 4 m ι | Φ | 1 , ωeΩ, (3.7)

where c0 is the standard logarithmic Sobolev constant for the measure v0 on Q.
That is, c 0 is the smallest c with the property that

+ v 0 φ 2 l o g ( v 0 φ 2 p

for all φ: Q -> IR. (That c0 < oo is, perhaps, most easily seen as an application of the
criterion given in (1.7).)

3.8 Remark. We next have to describe a procedure which will allow us to make
effective use of the mixing guaranteed by DSM; and, in order to avoid confusion
arising from overly complicated notation, we will restrict our attention to the proof
that DSM implies that the standard logarithmic Sobolev constant c(μ) for the
unique μe©(Φ) can be estimated in terms of the dimension d, the range R, the
quantity || Φ \\ in (3.2), and the positive number M in DSM. We will then leave it to
the reader to check for himself that our argument applies equally well to the Gibbs
potential on QΛ given by

Indeed, the only concern that one might have comes from the loss of shift-
invariance. On the other hand, it is not hard to dispel any such concern by simply
checking that the only use of shift-invariance which we have made has been to
simplify the statement of our hypotheses.
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Unfortunately, we must begin with the introduction of some more notation. In
the first place, let {e,}2/"1 be the enumeration of {0, \}d in which r = YJi=1eϊ2d~i.
Next, let L be a fixed (to be specified later) element of Έ + , and set

Γr = (L + 2R)er + (2(L + 2R))Zd, Yk = k + [0, 2(L + R)Y n Γ, and

A= U Yk
keΓr

Although the sets Ar are infinite, because the blocks out of which each Ar is built are
separated from one another by a distance greater than the range of interaction, it is
an easy matter to check that the transition probability function

β) (3.9)Π k
ke/Y

satisfies

Et(Exf) = E%f, for all ωeΩ,/e9l(β), and 0 Φ X s Ar,

and is therefore a regular conditional probability distribution of any μ e ®(Φ) given
^Λri- In particular, this means that

μ(EΛJ) = μf forall/e«l(Ω)andμe(5(Φ), (3.10)

where we have adopted the notation EΛr to denote the Markov operator deter-
mined by the transition probability in (3.9). Moreover, because it is a product
measure, a fundamental property of logarithmic Sobolev inequalities (cf. [G])
together with the estimate coming from (3.7) Lemma says that

^ r ^ 2 d - 1}<OO . (3.11)

In order to get beyond the conclusion reached in (3.11), we introduce the
Markov operators Πn: 9I(JΩ) -• 2I(Ω) defined inductively so that Πo is the identity
map and, for n e TL +,

Πn + 1 = EΛn ° Πn where An = Λriΐn = r mod 2d .

As is easy to check, for each /leg,

Πn: ίί^(Ω) -+ WΛκjdnκ4 where K = 2L + 3R + 1 .

In addition, by repeated application of (3.10), we know that

μ(ΠJ) = μf for all neN9fe1l(Ω)9 and μeffi(Φ).

Moreover, if/is a positive element of 2ίo(Ώ) and we set/π = (Πnf
2)Ί, then, by (3.10)

and (3.11), we have that

μ(/Λi log/.-!) = μ{EΛn_x{fn-i

from which we obtain

log/) g cL "X μ(| ^ ^ ( T J , / 2 ) ^ 2 ) + μ(Πnf
2log(Πnf

2)η (3.12)
m = 0

for all n e Z + and positive /e2I0(Ω).
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It is now possible to explain the strategy which underlies our proof. Namely, we
will show that, as a consequence of the exponential mixing provided by DSM, the
L can be chosen so that there exists a Ce(0, OO) and Λe[0, 1) with the property
that, for all

μ(\V(Πnf
2^\2)^Cλnμ(\Vf\2), neZ + , (3.13)

where μ is the unique element of (S(Φ). Notice that, in conjunction with (3.12) and
the fact that mμ > 0, (3.13) is all that we need. Indeed, given a positive feSΆ0(Ω), it
not only shows that

2,Πnf
2)^ — μ(\V(Πnf

2)\2)^0 a s n ^ ω ,

but also that

£ μ(\VΛm+ί(Πmf2r>\2)ύ-^—.μ(\Vf\2);
m=0 I - λ

CcL
and therefore, after letting n-+co in (3.12), one finds that c(μ) ̂

1 — A

The main step in the proof of (3.13) is taken with the aid of the following
somewhat tedious computation.

3.14 Lemma. For / Ieg, define ρΛ : Ω
2h->(0, oo) by (cf. (1.2))

) z

ZΛ(ω)

Next, for \φΛ and yeQ, set

where ω y is the element ofΩ which coincides with ω on Γ\ {j} and has)th coordinate
equal to y. Finally, for 0 Φ X ^ A, define

= sup{\Eξ

x(RA/i(.\y)) - E'x(RAtl(-\y))\: yeQ and (ξ,η)eΩ2 with ξΛ[ = ηΛ[) .

Then, for any positive feςϋ0{Ω) with the property that, for each ωeΩ,fΛ( \ω)e
MΛ\x(Ω), one has that (cf. (3.6))

(3.15)

Proof. Note that

J [(£*/»)* - (EΛf
2(ω'y)ή vo(dy)

Q

Q(EΛf
2(ω)r* + (EΛf

2(ω y))->
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U/, ω) = ί *T/Γ, vo(dy) and JΛ(f, ω) =

with

AA(f,ω9y)= J

and

D^ (/, ω9y) = (£ y l /
2 (ω)) 1 + (EΛf

2(ω y))Ί .

By Schwarz's inequality, the triangle inequality, and the fact that RΛ/] ^ e 2 | | φ",
we see that

Jp^(x^|ω );)[X1(x^|ω)-χi(x^|ω };)]
2v^(dx^)

x l J
\QΛ

and therefore, since p{i} ( | ω) ^ e 2 l |φ", that

hif, co) ^ e l | φ | l [£,i | fj/l2](ωp + e

Turning to the estimate of JΛ (f, ω), note that

. (3.16)

\BΛ(f,ω,y)\ = ί

Ω

where, in the final line, we have used the fact that/^ ( | ω) e ^ίΛ\X (Ω). Next, again by
Schwarz,

Eω

Λ{\f2 - (E^f)2\) ^ 2(E^f2)h^(f9 fY ύ 2DA(f9 ω, y)ί

whereas

itϊ( ,y)-l)\ = \EMRAJ-\y))-EΛ(RΛti(.\y))\

J lEη

x(RAtϊ(;y)) - Eξ

x(RΛ,>( ,ym EA(dξ)
Ω
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Hence, we'have arrived at

which, in conjunction with (3.6), completes the proof of (3.16). D

The form in which we will apply Lemma 3.14 is given in the following.

3.17 Lemma. There is a K = K(ε9 \\Φ\\, M9R)e(09 oo) (cf. (3.6) and DSM) such
that, for all n e N , ]φAn9 and positive fe(Ά0(Ω)9

e~2M<> £ μ\V XΠnf
2γ

| j - i | ^ 2 L + 3 K

(3.18)

for every p e N. In particular,

rff Σ 2y\2. p.i9)

Proof First observe that, by construction, there is a unique 1 e Γn such that j e dR Y\.
Next, let/be a positive element of 9I0(Ώ), choose Ae% so that iφA ^ Γn and

ΠJ2 = EΛoEγf
2, where Y = Yx and A = [j Yk ,

keA

and set g = (Πnf
2)K Because 9i(Λ9Λ9}) = 0, (3.15) applied to g (with X = 0)

leads to

μ\ ^(i7π + 1 / 2 p | 2 ^ 8^4HφH μ\ Vi(EYg
2)*\2 . (3.20)

Next, set X = {ie Y: |i - j | < p) and h = (Exg
2)\ Then, again by (3.15), but this

time applied to h (with A = Y\ we see that

l V}h\2 + W'^Y, X,))2μ(Eγ(ff)) . (3.21)

At the same time,

μ\ Fj/z|2 ^ %e^μ\Vig\
2 + Sε^e^^μl Vxg\2 ,

and

ieY\X

Finally, since

\dRX\ £ R(p + R)*-1 and 9l(Y9 X, j) ^ g " φ " - ^ ,

it is an easy matter to combine ii), (3.20), (3.21), and the preceding to arrive at (3.18).
Moreover, (3.19) follows easily from (3.18) with p = 0. D

Proof of 3.13. As an application of (3.19) we see that, for any

μ\ V(Πn + 1f
2)±\2 ^ K(2L + 3R)dμ\ V{ΠJ2y\2 .

Thus, in order to prove (3.13), it suffices for us to show that L can be chosen so that

\ . (3.22)
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To this end, set p = T7+7, and let j φ Λ2d- x be given. Then there is an 1 ^ / ^ 2d — 1

ί L)
such that < i: |i — j | ^ — > ^ Λ - i After repeated application of (3.1), we obtain

μ\ Vi(Π2df
2f>\2 S K2d~ι Σ μ\ V{

K

3/?)2d

where, in the passage to the last line, we have first used the fact that Fί(77z f
2)1 = 0

for all \i — ]\^lp^L and then applied (3.19). Hence, after summing over
}φΛ2d-l9 we arrive at

^ [f+p^yzL, + 3K)) exp j- \ι\ vj \ ,

from which (3.22) is an easy step. D

As we said in the discussion containing (3.13), once we know that i) and ii) imply

(3.13) for some λe [0,1), the proof that i) & ii) => iii) is easy. Hence, we are done.
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