
Commun. Math. Phys. 147, 625-633 (1992) Communications in

Mathematical
Physics

© Springer-Verlag 1992

Complex Quantum Groups
and Their Quantum Enveloping Algebras

Bernhard Drabant1, Michael Schlieker2, Wolfgang Weich2, and Bruno Zumino3

1 Max-Planck-Institut fur Physik, Werner-Heisenberg-Institut, Fohringer Ring 6,
W-8000 Mϋnchen 40, Federal Republic of Germany
2 Sektion Physik der Universitat Munchen, Lehrstuhl Professor Wess, Theresienstrasse 37,
W-8000 Mϋnchen 2, Federal Republic of Germany
3 Department of Physics, University of California, Berkeley, California, CA 94720, USA

Received November 7, 1991; in revised form March 6, 1992

Abstract. We construct complexified versions of the quantum groups associated with
the Lie algebras of type An-\, Bn, Cn, and Dn. Following the ideas of Faddeev,
Reshetikhin and Takhtajan we obtain the Hopf algebras of regular functionals Ujg
on these complexified quantum groups. In the special example A\ we derive the
g-deformed enveloping algebra Uq(sl(2,C)). In the limit q —> 1 the undeformed
U(sl(2, C)) is recovered.

1. Introduction

For quantum groups associated with the Lie algebras g of type An_i, Bn, Cn, and
Dn there exist well defined correlations between the quantum group itself and the
corresponding g-deformed universal enveloping algebra Uq(g) [Dri, FRT]. Coming
from the quantum group, one can construct the algebra of regular functionals which
is shown to be the algebra Uq(g) for a certain completion. Though the g-deformed
Lorentz group already exists in at least two versions [CSSW, PW], there is not yet
such a straightforward procedure like in the case of compact Lie groups to derive
the corresponding quantized universal enveloping algebra. However this g-deformed
algebra is the very object of interest since it should be fundamental for the construction
of a g-deformed relativistic field theory.

In this paper we present the quantized universal enveloping algebra Uq(sl(2, C)) of
the g-deformed Lorentz group Slq(2, C). In Sect. (2) we construct complex quantum
groups for the Lie algebras An-\, Bn, C n , and Dn. These are complexifications of
the original quantum groups. The algebraic relations can be written in a generalized
^XT-formulation and the usual determinant or metric relations. Following the ideas
of [FRT] this fact is used in Sect. (3) to build up the algebra of regular functionals on
the complex quantum groups1. The approach in this paper is purely algebraic without

1 The same universal enveloping algebra corresponding to the complex quantum group is constructed
by analyzing the algebra of the fundamental bicovariant bicomodule [CW]
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considering the C*-structure which has been investigated in [Pod, PW]. In Sect. (4)
we derive as a special example the algebra Uq(sl(2, C))2. We investigate the limit
q -> 1 in Sect. (5) and recover U(sl(2, Q ) .

2. Complexified Quantum Groups

In the approach of [FRT] the quantum group is a Hopf algebra with comultiplication Φ,
counit e and antipode K [Abe], generated by the matrix elements tι

3 (i, j = 1, . . . , JV;
N = n for Λn-i and N = 2n + 1 for B n , N = 2n for C n , D n ) with the relations

/*,**' := A^Vt " t^t^R^st = 0 (2.1)

and

= ^ Γ Γ ί-^e* 1 -^^'*, tlnknεh.Jn = 1 for Λn-i

= {C-ι)iktι

kClst
sj = δ)l for S n , Cn, Dn .

where etfl...ίn = (-1)7 1"1 ε ^ " ^ = {-q)l{σ\ [n]q\ is the usual ^-factorial [CSWW]
and Cij is the usual metric [FRT]. The jR-matrices for the respective quantum groups
are taken from [FRT] with q > 0 real.

To find the complexified versions of these quantum groups one has to introduce
the complex conjugates t*ιj of the generators tιj as additional generators with the
complex conjugate versions of the relations (2.1) and (2.2) above [CSWW]. With the
definition:

P jf (2.3)

we get

I{>£ := {R-ψkιi
k

si
lt - ̂ vtj

w(R-lrwst = 0, (2.4)

...• tι«knεh...ln = 1 for An.,

= δμ for Bn, Cn, Dn .

One still has to define commutation relations between the generators t%j and their
complex conjugates:

J f i t « := Rij

klΐ
k

st
lι - t\PwR

υ

q

w

st = 0. (2.6)

With this choice of commutation relations one can identify the function algebra over
the unitary group as the quotient iιj = tιj. There is a second possibility interchanging
the role of tlj and ftj in (2.6) which is equivalent to the first.

Summarizing we are considering the following quantum group:

^^J^J^il.lXil.S)). (2.7)

2 This algebra also has been investigated in [SWZ, OSWZ] by an alternative approach
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Proposition 1. The algebra ^4 becomes a *-Hopf algebra with comultiplication Φ,
counit e and antipode K which are defined on the generators through

Φtfj) = t\ ® tkj ,

ί i y ε ^ k n - ^ ••-^^,.^ for v .
C-WfcCy for Bn,Cn,Dn

and
φif'j) = t*\ <8> t*kj ,

e(t*S ) = ή , (2.9)

It is convenient to introduce an i^TT-formulation for this complexified quantum
group. Set (/) := (i, z), / := (z, ί) = (z, i), (i, ϊ = 1, . . . , N) and define the 27V x 27V-
matrix,

Correspondingly one defines the ^-matrix,

0 0 0 \

0 OLlkq 0

0 a2R~ι 0 0
(2.11)

0 0 0 a3R~ ,

with α 4 e C.

Then the relations (2.1), (2.4), and (2.6) can be written in compact form as

^ KL-ί RJ- S = J- vJ- w^q RS , (2.12)

and ^ ς fulfills the Yang-Baxter-Equation:

(E <g> ^ ρ ) ( ^ (8) E) (E Θ ^ q ) = (Mq Θ E) (E Θ ^ ς ) ( ^ g <8> E) (2.13)

with E5 = 6Tj.

There are three further possibilities for the choice of the βBq-matrix which we
disregard here, since one of them yields equivalent results and the others do not
admit a simple involution on the algebra of regular functionals.

3. The Algebra of Regular Functionals

The dual space ^ * of the Hopf algebra j& is an algebra with the convolution product.
One can introduce an antimultiplication involution "t" on ^ * : For / G ̂ ?* one sets

Vα e^4:f(a) := / ( ^ ( α * ) ) . (3.1 )

In the following we are working mostly with the multiplicative involution " - " :

/ : = /t o Λ"1. (3.2)
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It is also possible to consider an involution where κ~ι is replaced by K in (3.1)
and (3.2). Since «((«(α*))*) = κ~ι((κ~ι(a*))*) = a Vα E ̂  the multiplicative
involutions coincide for both cases. This is also true for the antimultiplicative ones
for q —> 1. We now construct the algebra of regular functionals on JS. We define
functionals L±τ j e ^β* through their action on the generators of ^ :

and their comultiplication

Vα,6 G ̂ : L ± J j ( α 6 ) - L±][

κ(a)L±κ jφ). (3.4)

This definition is compatible with the algebra relations in *A and it holds

Proposition 2.

2 / ^ = 2 ^ = 0 Vi,j,

^ L K L ^ V L ^ V = L± JΛi± JB^fA w , (3.5)
foJI τ+K τ-L τ-I τ+J fc>BA

y&q LKL yL w = L AL B^q WV

The equations (2.2) and (2.5) partly determine the coefficients aι in Eq. (2.11):

Proposition 3. For An-\ one has

(α o )" n = ( α i Γ n = (a2)
n = (a3)

n = q. (3.6)

In the cases of Bn, Cn, Dn, one gets

(α 0) 2 = (αi)2 = (α 2 ) 2 = (α 3) 2 - 1. (3.7)

Definition. The algebra Ujg of regular functionals on ̂  is the unital algebra gener-
ated by {L± 7 j}.

Proposition 4. The algebra Uj$ becomes a bialgebra with comultiplication A: U& —>
U& 0 Ujg and counit ε: U& —> C through the definitions

A{L±Ij):=L±I

κ®L±κj,
( 3 8 )

6W ί/ẑ  generators ofUjg.

Consider now the map 5 : ^ * —> ^ * defined by

5 : ^ OAC. (3.9)

With this definition we get the following

Proposition 5.

UΛ (3.10)
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and

for Bn,Cn,Dn,

(3.11)

for Bn,Cn,Dn.

it Consequently the algebra U.% becomes a Hopf algebra with antipode S := SρM

And it holds
L±I

JS(L±I

κ) = δI

κe. (3.12)

Proposition 6. The involution on the generators of Ujg is

ϊ ϊ 7 7 = L±/

J- (3.13)

if _
αo ' <̂ 3 = 1 (3.14)

Έi OL\ = 1. (3.15)

With the involution " t " E/̂g becomes a *-Hopf algebra. Nevertheless the coefficients
OLi are not yet completely fixed. For further calculations we introduce the so-called
root-of-unity-homomorphisms eΓ)S which are elements of ^ * and are defined multi-
plicatively on the generators of J ^ as follows:

e r |β(D := 1,
er,s(tab) •— e 'κι'r' - δ% , (3.16)

I 77 f o r j \ i
where r , s G Z , θ : = n ~ _

I 2 for Bn,Cn,Dn

One can easily check the following

Proposition 7. 1. e r > s w « well defined algebra homomorphism,
2. eo,o = ( e r , s )

θ = e,

4. [e r,β,/] = 0 V/ G ^ * ,

5. ê ΓJ = e s, r .

Using the special form of the Mq -matrix and the form of the matrices Rq for
An_i, S n , C n , or Z?n, we get

Proposition 8. 1. L+ιj is upper-triangular, L+ιj is lower-triangular.

2. L+\ L+ι = L+lι L+% = ehu where a0 a2 = a{ a3 = e2M/Θ.

3. L-l-j = L-*j e r >_ r, where a0 α f 1 = (α 2 ces"1)* = e 2 π i r / θ .

4.

5. L + 1 ! . . . L+N

N = L + I i . . . • L+*n = efor An-U Cn, Dn and

( L + 1 . . . . . . L+N

Nf = (L+T

τ . . . • L+*nf = e for Bn.
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4. The Hopf Algebra Uq(sl(2,C))

To illustrate the above developed formalism we now investigate the easiest example,
that is the Hopf algebra Uq(sl(2,C)) with the additional choice α 0 = &i- The other
possibility, ao = — a\, would provide the additional algebra homomorphism ei?i in
Ujg. We do not consider this case in this paper. As a consequence of these restrictions
we get ao a2 = ao (ot\)~ι = 1 and thus the equations in Proposition 8 only contain
e0 Q = e. Therefore in the case A\ we only have to consider the unit e and the
generators

r+1 r+1 r+2 r-1 r-1 r-2 r-2 /r+1 \-l /Λ n
L> 1 , L 2 I L \ , L \ , L 2 , - L , \ , L 2 , ( L l ) ί4-1)

For further considerations we define the element

Zl-L-V^GC/j. (4.2)

Proposition 9. 1. {Z\n | n e N0} is a linearly independent set in Λ>*.
2. Δn = 0/<9r monomials t9H92 with min(gug2) < n.

Property 2 of Proposition 9 allows us to handle power series in ̂ ? * of the form

n = 1 (4.3)

n = l

where α n , /3n are arbitrary complex numbers. Because of this fact, property 1 of
Proposition 9 and (3.12) we obtain

/ oo \

Proposition 10. L~\ is invertible and ( L ^ i ) " 1 = L~2

2 ί e + Σ (-q)~nΔn J is an
element of a certain minimal extension ofUjg. \ n=i /

Consequently there remain six essential generators since L~2

2 can now be ex-
pressed through A and ( I r 1 ! ) " 1 . Using (3.5) and (3.12) we get the following algebra
relations:

[L-ι

2,L-\] = 0 [L-ι

uL+\] = 0, [L+ι

2,L~ι

2] = [L~2

 u L+1-λ] = 0,

[L~2

uL
+ι

2] = (q- q~ι) {(L+ 10"1 L"1

 x - (L-\y\e + q~ιΔ)L+\} ,

[L-\ L+2-{] = (q- q~ι) {L~\L+\ - {L+\)(L-\y\e + q~xΔ)} ,

+ 1 + 2 1 + 1

1 ) 2 - ( L + 1

1 Γ 2 } , (4.4)

L " 1 ! ^ ^ - qL+l

2L~\ = (q~ι - q)L~ι

2L
+\ .

In the next step we make an ansatz similar to [FRT] with Hi, Xf\ i = 1,2. We set

L+\ = exp(Λ/2ffi), L~\= cxV(h/2H2), L+\ = -{q - q~l)X; ,

L+1

ϊ = (q-q-1)X+, L-\ = {q-q-χ)Xϊ, L~λ

2 =-(q - q~l)X+,

where q = eh.
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The equations (4.4) and (4.5) yield the following algebra relations:

[Hi, H2] = [X±, X Π = [X+, X2"] = 0, [Hi, X±] = ±2Xf ,

[Hi, X±] = T2XΪ , [H2, X?] = - 2Xf ,

[H2, X±] = 2Xf - 4X? exp(τft/2(ίίΓ

1 ± H2)),

g2)) -

( ς ) p ( τ V ( i ±

Coming from Hit Xf one can argue that this algebra is a certain completion of UM
and a *-Hopf algebra with coproduct Δ,

Δ(Xf) = Xf O exp(-h/2Hi) + exp(h/2Hι) ® Xf ,

2

+) = Xj4" Θ expi-h/2H2) (e - ς" 2 ^) + exp(h/2H2) ® X+ ,

= X2" ® exp(/ι/2i/2) + expi-h/2H2) (e - ( f 2 ^) ® X2~ ,

^ t f Π ^ i ϊ i Θ e + eβiίΓi, (4.7)

2 °°
r ( D k p ^ A ^ e + e

fc=i K

1 2 ^ ~ e ® e) f c ,

antipode 5

5(X±) = - eχp(-h/2Hι)X

± ± exp(±/ι/2i/2),

2 °° i
S(H2) = τ Σ τ (-l)fe~1(exp(-/i/2JT2)(e - q~2^) - e)k ,

(4.8)

k=\
and counit ε

ε(ffi) = ε{H2) = 0, ε(Xf) = ε(X±) = 0, (4.9)

where @ := g(g - g~1)2X?

f-χ2-.
As a formal power series in h the generators Hi and iJ 2 are well defined and

unique [Ogi].

5. The Limit q -^ 1

We investigate the limit q —>• 1 for the algebra relations (4.6). A short computation
yields

[HUH2] = [Xί,X2*] = [X2

+,X2-] - 0,

[Hλ, X^] =

X+, X-] = HU

, Xf] = l/2(£fi - ir2), t^Γ, XU = l/2(Hι + ff2).
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To recover the usual U(sl(2, C))-structure, we transform the Lie algebra (5.1) linearly

# i := l/2(tf! - H2), Hi := 1/2{HX + H2), * + := X2~ ,

X[ : = (Λ[ — Λ 2 ) , A 2 : = (A; — X2 ) , -Λ2 : = X2 •

With (5.1) and (5.2) we get the relations

[Hi,X±] = ±2X±, [Xf,X-} = Hi, [HuH2] = 0,

[HUX}1 = [Hi,Xf] = 0 , [Xf,Xf] = [**,*?] = 0

and the involution

fϊ\ = H2 , (Xf)t = Xf . (5.4)

Considering comultiplication and antipode in this limit one recovers the universal

enveloping algebra of 5/(2, C).

6. Concluding Remarks

Apart from our work there are three further papers which deal with the same ob-

ject [SWZ, OSWZ, CW] and, closely related, with the g-deformed Poincare algebra

[LNRT]. In [SWZ, OSWZ] a g-deformed version of the Lorentz algebra is derived

via linear representations of the algebra on the complex spinor quantum plane. This

yields a 7-generator algebra with additional parameter [SWZ]. This algebra can be

found in the enveloping algebra of a 6-generator formulation of Uq(sl(2, C)) [OSWZ].

Using the algebra Uj% a differential calculus is developed in [CW] (see footnote in

Sect. (1)). This algebra of differential operators is another formulation of the algebra

Uq(8l(2,Q).
Another approach uses the (/-generalization of the adjoint representation of Lie

groups to derive the analogous of the linear functionals in [Wor, CSWW, Jur] which

correspond to the left invariant vector fields on the Lie group in the limit q —> 1. This

is now under investigation [CDSWZ].
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