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Abstract. The local singularities for a class of random measures, obtained by
random iterated multiplications, are investigated using the thermodynamic formal-
ism. This analysis can be interpreted as a rigorous study of the phase transition of
a system with random interactions.

1. Introduction

The notion of singularity of a measure was introduced in [6] in connection with
potential theory. A typical singularity can be defined when it is associated to the
capacity of the measure. It was recently realized that this analysis can be further
developed for the invariant measure of some dynamical systems [2]. In this special
situation, one can use expansive (respectively contractive) properties of the map-
ping to compare the singularities of a measure at different scales. Using the
thermodynamic formalism, it was possible to obtain non-trivial results on the local
singularities of a measure. This information is usually recorded in the so-called/(α)
functions which can be defined as follows. Let μ be a Borel measure on Rd. For any
point M in Rd we define two numbers α+ and α_ by

\og\μ(Bε(M))\ . \og\μ(Bε(M))\
α+(M) = limsup and α_(M) = liminf ,

ε ^ 0 Jlogε ε ^ 0 dlogε

where Bε(M) is the ball centered at M of radius ε. The numbers α+ (M) and α_ (M)
describe the local singularity of the measure μ at M. For simple ergodic dynamical
systems the two functions α + and α_ are equal and constant //-almost surely (see
[12] for a more general situation). It was however realised in [8] that there is some
interesting information in the sets where α + and α_ take a value α different from the
typical one. If one defines the level sets B^r by
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one gets a family of complicated sets, and it is natural to ask for the Hausdorff
dimension of these sets. The values of these Hausdorff dimensions considered as
functions of a give the so called /(α) curves when the sets B^ have the same
Hausdorff dimensions. Under suitable hypothesis, this function/(α) is the Legendre
transform of a pressure function P(β) which is the main object studied in the
present paper.

More recently, in the context of measure valued processes, the singularities of
(random) measures are extensively studied as a function of time [17].

We shall consider in the present paper the problem of the local singularity for
a class of random measures obtained as limits of martingales. This situation
emerged in a discontinuous model for turbulence introduced by Mandelbrot [15]
in terms of random iterated multiplications - known as Multiplicative Chaos - and
analysed in detail by Kahane and Peyriere [10], and Guivarc'h [7] (see also [9]
and [4] for recent results).

This particular class of measures is interesting because it raises some questions
similar to those arising in statistical mechanics of spin systems with random
interactions. The main analogy is connected with the thermodynamic formalism
used to analyse the function /+ (α). Although it is not claimed that the model we
consider provides a faithful mathematical formalism for the spin glass problem it
enlightens some of the difficulties encountered there. For some recent rigorous
results in this direction see also [1, 13].

In Sect. 2 we introduce the model of Multiplicative Chaos as a problem of
statistical mechanics. As we shall see this model undergoes a phase transition. We
analyse the high temperature phase in Sect. 3. We show the existence and the
self-averaging property of the free energy and we characterise the unique random
state. The low temperature region is studied in Sect. 4. In particular, we derive an
explicit formula for the free energy. We intend to study the structure of the low
temperature state(s) in our next paper.

2. The Model

We now define the model to be studied [7, 10, 15]. Let c be an integer bigger than
1 and W a real bounded random variable defined on the probability space
(Ώ, #", P), with mean 1 and such that l/WΊs a.s. bounded (we exclude of course the
case where ϊ^is a constant almost surely). Let ^ p b e the countable oadic partition
of the interval [0, 1] of order p, i.e.

To each element / of Q) = {J™=i@p, w e a s s ° c i a t e the random variable WI having
common distribution with W. We shall assume that if /, Je&, I n J = 0, Wj and
Wj are independent. On the σ-field generated by Q)n, we define a sequence of
random measures μn at the "inverse temperature" β as follows. If/ is an atom oϊ@n,
we set

μβ,n(I) = c~nβf\ Σ W$λ(JnI)cn

9
s=l JE9S

where / denotes the Lebesgue measure (notice that in the above sum only one term
is non-zero). The sequence of μβ,n is measurable with respect to the σ-field #~s

generated by the random variables W
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For βι>0, the corresponding partition functions Zn(β) (which are random
variables) are given by

zn{β) = c-^ Σ Π Σ

The finite volume pressure Pn(β) is defined as usual by

Using the analogy with the statistical mechanics we also define the finite
volume random states v̂  n to be the probability measures on the σ-field generated

We are interested in the thermodynamic (infinite volume) limit n —• oo of the
above quantities.

In relation with the setting of the classical statistical mechanics, we can express
the definition of the random measure μβ,n{I) in terms of the random kernels
Nn(x, A) defined for every point xe[0, 1] and every Borel set A by

Nn(x,A) = WUInA(x); Ie®n

and such that

i) x f—» Nx(x, A) is a Borel function for every A;
ii) A h-+ Nx(x, A) is countably additive Vxe[0, 1].

Using this definition, the corresponding measure μβ,n{A) is given by

It is worth noticing that contrary to the discrete potential theory these kernels are
random and they depend on n.

The measure μΛn for the special case β = 1 was first studied by Kahane and
Peyriere [10] as an example of the Multiplicative Chaos. More precisely, they
showed that under some weaker assumptions on the random variable W the
sequence of measures μ l sΠ converges a.s. in the weak topology to a random
measure μ. Moreover, the measure μ is concentrated on Borel sets having
Hausdorff dimension given by 1 — E(WlogcW) (where £(•) means the expecta-
tion) and the support of μ is the whole interval [0, 1]. The random variables

Ie9n

define a positive (i.e. ^ 0) integrable martingale which converges a.s. to the random
limit Z 1 > o p with E(Z 1 > 0 0) ^ 1.

A generalisation of this result was given in [11], and can be rephrased as
follows. For any integer q, we define an operator Kq on the set of bounded positive
measures M of [0, 1] by

(Kqλ)(A)= Σ WtλilnA).
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It is easy to verify that on the σ-field generated by Q)p, we have

where Jfp = Kp - K1. Jfp is an operator which maps the set Jt of bounded
positive measures into random measures. It was shown in [11] that the random
variables c/fvλ converge weakly a.s. to the random measure

The total mass of this limit measure is given by the random variable Z l j 0 0 . In
general, the limit μ is not absolutely continuous w.r.t. the measure λ. By zero-one
law, the probability for this is either zero or one. If Jfλ = 0 a.s., we say that Jf is
degenerate on λ. On the other hand, if the martingale J ^ i converges in Lι(Ω\ we
say that Jf is fully acting on λ; we define Jf as the Multiplicative Chaos operator.
This is summarised in the following [11].

Theorem 2.1. Given JΓP as above, there exists a Borel set A such that

and λ can be decomposed uniquely into a sum of two mutually singular measures
λ = λι + λ2 such that Jf acts fully on λ1 and is degenerated on λ2. The operator Ejf
mapping λ into λx is a projection.

The above result remains unchanged if instead of the Lebesgue measure λ we
consider any positive Radon measure.

These very remarkable results are reminiscent of statistical mechanics ones. In
particular, one would like to interpret the measure μ as a Gibbs state at inverse
temperature one. One of the differences is that μ is not a probability measure. Note
however, that it is normalised in the average.

On the other hand, the thermodynamic formalism used for the study of local
singularities of a measure in [2] has similarities with our problem. Namely, if we
define the partition function for a measure σ by

Ψn(β)= Σ σ(I)β>
Ie2n

it is known [5] that if the free energy G(β) defined by

βG(β)= lim -n-1\ogΨn(β)
«-• oo

exists and is C 1 , the function/(α) is given by the Legendre transform of G(β). Some
interesting situations can occur if G is not everywhere C 1 . Roughly speaking, they
correspond to phase transitions.

If we wish to use the thermodynamic formalism in the case of multiplicative
chaos, the natural generalisation should be to define a measure μβin(I) by

μP,n(I) = μi,nV)β

and the corresponding partition function by Zn(β) = Σι&& A M C O
Notice however, that Zn(β) differs from the partition function Zn(β) of our

model by the multiplicative constant cn(1~β\ We shall, from now on, assume that
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V/7 > 1, E(WP) < cp~ι. It follows from [10] that the random variable Z l j 0 0 has
moments of all orders.

It is worth noticing that the correct characterisation of the statistical mechanics
is given with a measure defined by an appropriate limiting procedure. We define
the multimeasure μβ^ as the weak a.s. limit of the sequence of the random variables
ββtP for p —• oo. The partition function is given by

zft(β) = Σ /W)

We will nevertheless use the partition function Zn(β) (or Zn(β)) because from the
next result it follows that the two partitions Z*(β) and Zn(β) give rise to the same
pressure.

Proposition 2.2. If one of the limits l i m ^ ^ n~λ \ogcZ*(β) or l i m ^ ^ n~ι\ogcZn(β)
exists almost surely or in the mean, then the other one also exists and is equal to it.

Before proving the proposition let us remark that for Ie@n, the limit μβ^(l) can
be decomposed as

μβ,ao(I) = ββ,n{l)Ϋl,β,oo ,

where the random variable YIiP%x> = (Γ / j l ) 0 0 )^, measurable with respect to the tail
σ-field, equals (limp^o0YjJe^n+ μ l j P ( J n I))β. As we will see later, this decomposi-
tion of the limit measure yields to a natural interpretation of the variables YIfιfO0 as
boundary conditions. Moreover, the advantage of this reformulation is that the
terms Ϋ^β,^ have a trivial dependence on the temperature.

The study of the variable YIΛjOO is also encountered in some problems related
to infinite particle systems. In particular, Durett and Liggett [4] studied in detail
a simplified version of the smoothing process called smoothing transformation. This
transformation is defined as follows. Let W1,. . . , Wk be k fixed non-negative
random variables with Prob(J^ > 0) > 0 and arbitrary joint distributions, and
Jί the class of all probability measures on [0, oo). If Xu . . . , Xk are independent
random variables with common distribution v, and independent of {Wu . . . , Wk\
the smoothing transformation S on Jί is defined by letting Sv be the distribution of
WγXγ + + WkXk. Furthermore, S can be viewed as a nonlinear transforma-
tion on the class of Laplace transforms of the elements of Jί.

To prove the proposition we need the following

Lemma 2.3. Mq > 0, the random variable l/Γ/,i>00 belongs to L1.

Proof. If we define the non-increasing function

φ{t) = Eexp{-tYItlt(C)

we have that

dt

Assuming now for a positive p, that W > p a.s. Using the recursion relation
φ(t) = Eφ(tW/c)c, it is easy to prove that there exists a constant r > 0 such that
φ(t) <; exp(— rtp) Vί Ξ> 1 and therefore

dt



334 P. Collet and F. Koukiou

Prpof of the Proposition 2.2. Using the decomposition of the limit for μ^ M (/), the
partition function Z*(jS) can be written as

Z*(j8)= Σ flβ,n(I)Ϋi,β,^

If Vs > 0 and Mn e N, we consider the events (measurable with respect to ^ )

, , c = U {yi,L*>>enε} and £π, e = | J e ™}
Ie 9n

from Chebycev's inequality we have for 0 < p < oo,

Ϋ Prob(£π, ε) ^

We shall first prove the inequality

^ l imsupn" 1 log cZn(β) a.s.

Noting that we will have the inequalities

exp(- nεβ)Zn(β) ύ Z*(β) g cxp(nεβ)Zn(β) ,

once we show that Prob((limsup Λn%ε)
c n (limsup£n ! ε)

c) = 1. To get this assertion,
let us first observe that from the preceding Lemma 2.3 and Theorem 2 of [10] we
have the existence of all moments of the random variable ΫIt 1 < 0 0 . Now, provided
that log c < εp and applying the Borel-Cantelli lemma the assertion follows. To
complete the proof let us remark that the equalities for the expectations are
a consequence of Fatou's lemma. D

3. High Temperature Behaviour

ΐn the following we study the high temperature region of the model introduced in
the previous section. We define an inverse critical temperature βc, and we prove
that for β < βc (high temperature), the free energy exists in the thermodynamic limit
and has the so called self-averaging property. Moreover, we prove the unicity of the
random state vβ, and calculate its Hausdorfϊ dimension.

For βc given by

-E{Wβc logc W)= 1 +logcE{Wβc),

the high temperature region is defined by β < βc.
We begin by defining the sequence of random variables

x.(β)=ZίiP)

EZ*(β)'

One can easily see that for β — ί, the above variables define a non-negative
JVmartingale satisfying EXn{\) = 1. Moreover, Xn{\) converges a.s. to the ran-
dom variable Xx satisfying EXX = 1 and one can prove by a standard argument
on the tail σ-field that P r o b ^ = 0) = 0.
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Let us'moreover consider the following sequence of random variables which is
easily seen to define a ^-martingale

Before presenting our results we recall that an integrable martingale converging
in /^(Ώ), is called regular [16].

Lemma 3.1. For 0 < β < βc, the martingale Vn(β) defined above is regular. More-
over Jor every n, Vn{β) = E{V^{β)\^n) a.s.

Proof. According to Doob's martingale convergence theorem [3], and since
E(Vn(β)) = 1, the martingale Vn(β) converges a.s. to an integrable random variable

ôo (β) We then only need to prove that Vn(β) is a uniformly integrable martingale.
Using Theorem 1 of [10], it is enough to prove that EVκ(β) > 0. The idea is to
consider the supermartingale V^/2(β) for which the bound

(c-
E{Wβ) BcE{W>

can be deduced from the proof of the theorem 1 in [10]. Since EVn(β) = 1 by
definition, the variables Vj,l2{β) are uniformly integrable i.e.

n

D
As a consequence of the previous lemma and the definition of the critical

temperature βc we obtain the

Corollary 3.2. For β < βc, the sequence of random variables Xn(β) converges almost
surely and in L1 to a positive integrable random variable Xaΰ(β).

Proof We first note that EYItβiO0 < oo. Moreover, for every n, E(YIiβtOΰ\^r

n-1)
= EΫIyβiO0 and this implies

E(Xn(β)\^n-l) = E(Vn(β)\&n-l)= K-l ,

proving that the martingale Vn(β) is a modification of the sequence of random
variables Xn(β) and hence the result follows. D

We have the

Theorem 3.3. For β < βc, the limit limM_^^ n~1 logc Xn(β) exists almost surely and in
the mean and it is equal to zero.

Proof From the previous corollary and using Jensen's inequality, we have

£(log Vn(β)) - log£(f / > 1 > 0 0 ) + £(log f / f l < 0 0 ) g E(\ogXn(β)) ύ 0 .

The assertion now is proved using Lemma 2.3 and Corollary 3.2 and remarking
that 0 ^ £(log Vn{β)) ^ E(log Vm) > - oo. D

Lemma 3.4. For β < βc the limit
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exists and defines an analytic and strictly convex function of β given by
\ogcE{Wβ) - β + \.

Proof From the definition of the partition function Zn(β), one can easily see that
E(Zn(β)) is equal to cβ{n'1)E(Wβ)n. Now, using Holder's inequality we have that
logc E( Wβ) is a strictly convex function on R. On the set {β: log c£( Wβ) < oo}, the
Lebesgue dominated convergence theorem implies the analyticity of logc E(Wβ).

D

For the pressure we can now prove the

Theorem 3.5. For 0 < β < ft, the limit

P{β)= limn-'logcZUβ)
n-* oo

exists almost surely. Moreover, P(β) = logcE(Wβ) — β + 1.

Proof The a.s. convergence of the random variable Xn{β) to a nonzero limit,
guarantees the a.s. positivity of X^(β) and therefore the a.s. existence of
logcX00(β). Hence, l i m ^ ^ n~1\ogcXn(β) = 0 and the previous lemma, imply the
existence of the pressure and its equality to logcE(Wβ) — β + 1. •

In the physics terminology, the above result shows the self-averaging property
of the free energy at high temperature (i.e. the quenched

n o o

and the annealed
\ιmn-γ\ogcEZ*{β)

n~* oo

limits agree):

Proposition 3.6. For 0 < β < ft, the free energy given by — βF(β) — P{β% is
almost surely equal to the annealed mean.

We can now discuss the above result in terms of boundary conditions. One can
define as boundary condition any family of random measures bn whose restrictions
to each interval / on the π-order partition is given in a similar way as for the
measure μίUn. The variables ΫItβf x and cnbn(l) are mutually independent and have
the same distribution. From this definition, two other random measures can be
considered as typical boundary conditions; the fixed point YIt lt ^ of the smoothing
transformation defined in Sect. 2 and the constant 1. For these boundary condi-
tions, we have the

Theorem 3.7. For every temperature β, the free energy F(β) is independent of the
typical boundary conditions defined as above.

We cannot claim, for the moment, that the previous theorem holds in the case of
more general boundary conditions. However, we conjecture that this is the case.

We can now investigate the thermodynamic limit of the random states defined
in Sect. 2. We have the following

Theorem 3.8. For 0 < β < βc, the sequence of random probability measures vβtn( )

= Z*(β)~1μβ^(') converges almost surely to a random probability measure vβ on

the Borel field o/[0, 1], as n -> oc.
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Proof. It suffices to study vβifl over an arbitrary c-adic interval J of the kth

generation with n > k. Now, defining Xβtn(J) = c"£(μ i 3 ? o o)"1μ i5 ) O O(J) the random
probability of J is given by

Both the numerator and the denominator of the r.h.s. converge a.s. Moreover, by
Corollary 3.2 we have that X^iβ) > 0 if β < βc.

One can see that the probabilities vβ are projective limits verifying the compati-
bility conditions. Kolmogorov's extension theorem implies the existence of
a unique limit on the Borel field of [0, 1]. D

In this way, we have established the analogue of the Gibbs measures; one can
see the limits vβ as the Gibbs measures associated to the Lebesgue measure. On the
other hand, in the language of statistical mechanics the above results are indepen-
dent of the boundary conditions. It is however not known if we can formulate DLR
equations for the present model. Indeed, here we have studied laws on finite
partitions instead of local specifications considered in the DLR formulation. This is
rather natural for the version of the model we use: one can see our model as a long
range interaction one. Hence, our problem is more intrinsic than the DLR one,
where we have a liberty in the choice of boundary conditions. However, as we shall
see, even without this liberty we have a phase transition.

In Multiplicative Chaos language, for 0 < β < βC9 the operator j f acts fully on
the Lebesgue measure of the interval /. Or, in an equivalent way, the measure vβ is
JΓ-regular. This regularity condition [10] allows to calculate the HausdorfT dimen-
sion DH of vβ:

DH(β) = 1 - β-^—E{Wβ\ogc W)

Note however, that the support of vβ is the whole interval [0, 1].
The limit of Z*(β) can also be regarded as a singular (with respect to the

Lebesgue) measure for β Φ 0. A natural question related to the behaviour of this
singularity is whether the partition function becomes more or less singular as the
temperature grows. Another question, relevant for the random states, is about the
manner the partition function spreads its mass over its support (as a function of
temperature). As we shall see in the following section, the partition function is
singular at the critical temperature. On the other hand, one can see the definition of
the critical temperature given at the beginning of this section as a condition
involving entropy. This relation between the singularity of a measure and the
entropy is a rather general phenomenon encountered in the study of the asymptotic
behaviour of the measure valued processes. In a subsequent work we generalise the
Multiplicative Chaos to a measure valued process and discuss this relation [14].

4. Low Temperature Behaviour

In this section we give a description of the low temperature (β ^ βc) behaviour of
the model. We start by proving that the pressure exists, in the thermodynamic limit
and give an explicit formula.
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Lemma 4.1. For β ^ βc, the martingale Vn(β) defined in the previous section con-
verges a.s. to zero for n —> oo.

Proof. We have that for β ^ βc,

( Wβ Wβ

E\E(Wβ)lθgE(Wβ)

It follows from Theorem 1 in [10] that EVr

00 = 0, therefore the positive martingale
Vn(β) cannot be regular. D

From this we have the

Corollary 4.2. For β §; βc the sequence of random variables Xn(β) converges a.s. to
a degenerate limit X(X)(β) and we have that Probpf^ = 0) = 1.

In order to calculate the pressure, we need some precise estimates on the rate at
which the partition function Z*(/?) is tending to 0. To do this, we express the
partition function as follows. Consider a locally finite rooted tree ^ with
c branches at each vertex, and associate at each edge the random "weight"
W = Wβ/cβ. The total weight Sb(β) for a branch b of length \b | = n, is given by the
roduct of the weights over the n edges. The partition function can now be written as

znβ) = Σ Sb(β)
ber,\b\ = n

With the preceding in mind, we will ask about the behaviour of the variables
Sb(β) for β > βc. In particular, we will use Chernoff-type estimates for the probabil-
ities of the large deviations of Sb(β).

Let Pn(β) be the sequence of random functions defined by

We only consider β > 0 although some of the results are also valid for β < 0.
We have the following

Lemma 4.3. Uniformly in n and in the randomness, the functions P%(β) are Lipschitz
in β.

Proof Let β1 and β2 be two positive numbers. From our hypothesis, it is easy to
verify that there is a number αe]0, 1[ such that for be^ \b\ = n,

an\β2-β. I S h { β i ) g Sb{βi) g sb(β2)a-n^-βi I .

Therefore, for any realisation of the randomness we have

and the result follows. D

As a consequence we have the following two corollaries.

Corollary 4.4. The functions EP*(β) are uniformly Lipschitz.

Corollary 4.5. For a fixed value of the randomness, any accumulation point of the
sequence P*(β) is a Lipschitz and convex function of β. The same is true for any
accumulation point of the sequence EP*(β).
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Proof. We' first have the trivial uniform bound

^ -βloga.

The existence of finite and Lipschitz accumulation points follow from the Ascoli-
Arzela theorem, and the convexity follows from the existence of the limit on
subsequences. A similar argument can be applied to the sequence EP*(β). D

Remark. At this point it is not even clear that the accumulation points can be
extended to measurable functions of the randomness. This property will be a conse-
quence of our final result.

Let P*{β) be one of the previous accumulation points with fixed randomness.
We are going to prove now a general result on its behaviour as a function of/?. This
result will be true almost surely with respect to the randomness.

Proposition 4.6. Let β > βx > 0. Almost surely, for any accumulation point ofP*(β)
(with fixed randomness), we have

P*(β) g P*{β1) + (j- - l

Proof. Let for be5^and \b\ = n,

)c-nM> Sb(β1)
βllllc- Ί"fι

Sb(β) =
ESb{βiYlβί '

Let α = βγjβ < 1. From the definition of Sb, we have immediately

It follows from Chebycev's inequality that

?xob{Sb(β) > n21*) = Prob(Sb(βr >n2)^~.

For the measurable set An defined by

we have

n
Then, we have on An

_ _ _ 2(1 - α) _ 2(1 - α) _

ofc(/ίj = bb(μ) όb{p) ^ ^ α ^blPJ = w α bb(Pi) •

Therefore,
2(1-α)

Z* ( β) ^ Z*(β )n ^ βίJXfβiΛniβ/βi-l) s,n(β/βι+βι-β-l)

and remarking that Prob(liminf,4J = 1 by Borel Cantelli lemma, the result
follows. D
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Corollary 4.7. The same inequality is true for any accumulation point of EP*(β).

Proof. This follows immediately from the above result since the functions P*
are uniformly bounded above and below. D

We now apply this result for β1 = βc.

Theorem 4.8. Almost surely for β > βc,

P*(β) = ξ-log E(W^) + β(~ - l) logc .
Pc \Pc }

Proof Consider an accumulation point P*{β) of a sequence P*(β) with fixed
randomness chosen in the set liminf,4n, where An is the sequence defined in
Proposition 4.6. From Lemma 4.3 P*(β) is a Lipschitz and convex function.
Moreover, if β ^ βc, we can assume that

where Pτ(β) = \ogE(Wβ) + (1 - j8)logc. The function Pτ(β) is convex and differ-
entίable for β > βc. Since P*(β) is also convex, its graph must not be below the
tangent to Pτ at β = βc. Therefore we must have

From the definition of βc, we have

which implies

= ^logE(W»') + (^-β)logc.
Pc \Pc )

On the other hand, using Proposition 4.6 we have

P*(j8) ^ logE(^<) + (1 - iSc)logc + (~ -IP Λ \ 1 _ _ T7/ TJ//5C

~ + βc-β-\)logc

logE(W)
He

and the result follows. D

We can now estimate the pressure.
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Corollary 4.9. For β > βc,

>~-logcE(W^) + (^-
-αo βc \βc

almost surely. The same result is valid for the expectation.

Proof. If follows from Theorem 4.8 that almost surely all the accumulation points
are equal to the same constant. •

For the free energy we have

Proposition 4.10. For β > βC9 the free energy F(β) equals - (l/βc) logc E(Wβc)
- (l/βc) + 1 almost surely.

It should be mentioned at this point that one can interpret as order parameter
the probability of the event {XoJ/?) = 0} related to the limiting behaviour of the
partition function. We have shown that for β < βc, ProbiX^iβ) = 0) = 0 and at
low temperature Prob(Xoo(j3) = 0) = l So, one can characterise the phase
transition of our model by this order parameter, but our study of the critical
behaviour is more complete. This remark is natural if one wishes to relate our
model to critical branching processes, since the total mass of the measure is
changed.

We have computed the free energy of the system for all positive temperatures.
We can now draw some conclusions on the dimension spectrum of the measure.
Since the free energy is C\ we conclude that every singularity exponent α belonging
to the interval [αc, 1] occurs on a set of Hausdorff dimension/(α), where

and/(α) is the Legendre transform oϊF(β). Since the phase transition is not of first
order (F is C1), we also conclude that the singularities of order α < ac cannot occur
at least on sets of positive Hausdorff dimension. Note also that /(αc) = acβc

- F{βc) = 0. See also [10].
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