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Abstract. We consider the zero-temperature behavior of a disordered array of
quantum rotators given by the finite-volume Hamiltonian:

- h(x) o?
fa== 272 dp0r <x’yz>eA cos(@(x) = ¢(»),

where x, yeZ4, {,) denotes nearest neighbors in Z%; J >0 and h = {h(x) > 0,
xeZ"} are independent identically distributed random variables with common
distribution du(h), satisfying | h™°du(h) < oo for some 6 > 0. We prove that for any
m > 0 it is possible to choose J(m) sufficiently small such that, if 0 < J < J(m), for
almost every choice of h and every xeZ? the ground state correlation function
satisfies

{cos(@(x) = (3)) £ Cyp e "7

for all ye Z with Cy j, y< 0.

1. Introduction

Ferromagnetically coupled quantum rotators have been used in the physics litera-
ture to describe the effect of quantum fluctuations in granular superconductors [1].
In this paper we discuss the typical properties of a disordered array of such rotators
with random moments of inertia. Apart from its intrinsic physical interest the study
of this model is a natural step in the program initiated in [2] and [ 3] of understand-
ing the effect of randomness in quantum spin systems. In [2], Klein and Perez
studied the ground state of the one-dimensional quantum x—y model in the
presence of a random transverse field: exponential decay of the correlation
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functions for any amount of disorder was shown to be a consequence of expo-
nential localization for one-dimensional random Schrodinger operators. In [3]
Campanino, Klein and Perez considered the d-dimensional Ising model in the
presence of a random transverse field. A path space representation was used to map
the original quantum model into a limit of a classical ferromagnetic Ising model in
(d + 1)-dimensions with d-dimensional disorder. This allowed the control of the
Griffiths’ type of singularities through the use of correlation inequalities and
a multiscale analysis of the type used in the theory of localization for random
Schrodinger operators [4, 5]. Their results were: exponential decay of correlation
functions for high-disorder and any d = 1 and long-range order in the low disorder
regime for d = 2. For d = 1 long range order at low disorder was established by
Aizenman, Klein and Newman [13].

The ideas and techniques of this paper share much in common with those
involved in [3], namely an approximate path space is used mapping the system into
a limit of (d + 1)-dimensional ferromagnetic classical rotators with d-dimensional
disorder, allowing the use of correlation inequalities. The novel feature is the
presence of a continuous symmetry which allows, through the use of McBryan-—
Spencer bounds, an easier control of the Griffiths” singularities. Our multi-scale
analysis follows the strategy of von Dreifus and Spencer [4], with the role of the
resolvent identity replaced by the Simon-Lieb-Rivasseau inequality [10] and the
role of Wegner’s estimate replaced by McBryan-Spencer bounds.

2. The Model and Results

In a finite volume A = Z“ the Hamiltonian is given by

h(x) 02
M= L ey (B, S0 o) -

xeA
acting on the Hilbert space #y = Q. oy Hy, #x = L*[—n, +7], xeZ’ The
N2

operator — 007 is taken with periodic boundary condition so that its spectrum
is {nZ,n,eZ}. The second sum in (2.1) is taken over all pairs of nearest neighbor
sites {x, y> in A. The coupling between the rotators is ferromagnetic, ie., J > 0.
The inverse of the moments of inertia of the rotators, h = {h(x) > 0, xe Z*}, are
taken to be independent identically distributed random variables with common
distribution du(h). We shall allow h(x) to take arbitrarily small, but positive values,
with the condition that for some 6 > 0,

1
R

il

1
[z duh) < oo (2.2)

We shall denote by P and E the underlying expectation and probability measure
induced by du. The parameter & defined by (2.2) measures the amount of disorder in
the system.

The operator H, has a unique ground state Q,, with a normalized wave
function Q4(p) > 0 for all ¢ = {@(x), xe A}, p(x)e[ —n, +n]. This follows from
the fact that H, has discrete spectrum and generates a positivity improving
semigroup (Sect. 3).
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Moreover the correlation functions:

{cos(p(x) — @(¥) >4 = (4, cos(p(x) — ¢(¥))2,) (2.3)

are monotonically increasing in A and J > 0 and monotonically decreasing in each
h(x), xeZ4. This follows from correlation inequalities derived in the path space
representation (see Sect. 3).

The Hamiltonian (2.1) in the deterministic homogeneous situation h(x) = h, for
all xeZ* has been used to describe quantum fluctuations in superconducting
arrays [1]. In its ground state for d = 2, it exhibits a phase transition with long

J . .
range order for o = 7 > a.(d). This follows from the path space representation

developed in Sect. 3 and standard techniques [6]. In d =1, the system has
a Kosterlitz-Thouless phase transition (see [14] for a similar gauge field model)
with polynomial decay of correlation functions for o > o.(1). Mean field bounds

1
(see Sect. 5) also guarantee the existence of d.(d), o.(d) = d.(d) = v such that if

o < &.(d) the correlation functions decay exponentially.
In order to state our results we introduce the imaginary time correlation
function

(Q,, el0() g —lt =slH,, — ifﬂ(.\*)QA)

@ e ) 24

GA((X9 t)a (.V> S)) =

Monotonicity in /4 (obtained from the path-space representation) ensures the
existence of

G((x, 1), (. 5)) = lim G4((x, ). (y,9)) »

A-Z!

in terms of which we state our main result.

It is important to notice that if for some &>0 we have o(x)= ﬁ
> (1 + ¢)a.(d) for all xeZ* with probability one, then the system will have long
range order (d = 2) or polynomial decay of correlations (d = 1), with probability
one. This is a consequence of monotonicity of G((x, t), (3, s)) in each a(x), xe Z*,
and the corresponding result in the homogeneous deterministic case. Conversely if
for some ¢ > 0, a(x) < (1 — &)a.(d), for all xe Z¢ with probability one, correlation
functions will decay exponentially with probability one.

From the above it follows that non-trivial behavior is expected only when both
o(x) > a.(d) and a(x) < d.(d) may occur with non-zero probability.

Theorem 2.1. Letd =1,2,...,q > (1 4+ 3/0)d + 1. Then for any m > 0 there exists
J(m) such that, for any 0 < J < J(m) and almost every choice of h and every xeZ°,
we have

G((x, 0, (y,5) < Cx,h,Je —mi(x—y. [t —s/")., , (2.5)
where | (x, u)|, = max(|x], |u]) and Cy y ; < 0.

It is important to notice the less than exponential decay in the time direction
compared with the exponential decay in the space direction. This is a consequence
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of the Griffiths’ singularities, i.c., the fact that with probability one there exists

o . J
arbitrarily large regions A such that a(x) = m > o,(d) for all xe A. For these
X
regions the energy gap between the ground state Q, and the first excited state gets
arbitrarily small.

Remark. Our methods can actually prove a stronger result. We can admit random
couplings {J, ,»: {x, y> € Z*} and relax our hypothesis on the probability distri-
bution of h(x). More precisely, let

h(x) 0*
Hy=-Y =2 —J
4 xed 2 a(D(X)z <x,)Z>:€A

where J > 0, h = {h(x) > 0,x€Z’} and J = {J ,, > 0, {x, y) € Z*} are indepen-
dent sets of independent identically distributed random variables with

E([log(1 + 1/h(x))1°) < o0 and E([log(1 + J¢x ,5)]1°) < o0,

where ¢ > 2d. In this case Theorem 2.1 still holds, with the conclusion being true of
almost every choice of h and J, and (2.5) replaced by

G((x, 1), (1,5) < Cypge —m|(x — y [log(l + |t —s])]*|

Jx,yy cos(@(x) — @(y)) ,

for some g > 1.
The modifications required in the proof are similar to the arguments in
Klein [17].

3. The Approximation by Classical Rotators

2

. 1d* . .
Let us denote by h, the self-adjoint operator e in L?[—n, +7] with
@

periodic boundary condition. Our starting point is the formula

— (@ — @' + 2mm)?

x (3.1)

K@, 0")=e ™, ¢) =
2t meZ

for the kernel of e 7™, ¢ > 0.
Using (3.1) and the Trotter product formula we obtain the representation

(QAa F(@(M)s R QD(Xn))QA) = hm <F(§0(X1, 0)’ (P(x2> O)a ceey (p(xna 0))>.(/{l) 5 (32)
where (->% denotes the expectation for the classical plane rotator in

z zZ /. . . .1 e e .
Ax—c Z*x— |ie., with lattice spacing — in the “time d1rect10n> with the
n n n

so-called Villain approximation taken in the “time” direction i.e., the Gibbs weight

V7
of a configuration ¢ = {(p(x, t),xeA, te—n—m l:—g g]} given by

J n
—Hft’/;(fﬂ) _ €Z<‘ Py ~cos(p(x, t) — @(y, t)ze “1 (@(x, 1) — @ (x, t + 1/n) + 27mm(x, 1))?

(3.3)
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BB

\ Z )
where m = <m(x,t);xeA, te| —=,+ = |n— ) and the summations are over
n

272
B B |
tel: 2,—1—2 ;x, ye.

This approximation enables us to use Ginibre’s correlation inequalities [9]
taking into account the ferromagnetic nature of the model. This is made possible by
the use of the remark [8] that

Ykez expl:— g(go - + an)z:l

Folo — ') = 3
Y kez CXP — E(znk)2
=limcm) [ dO,... [ db,exp{nflcos(p —0;)+  +cos(,—¢')]}
n— o [—=m,+nr] [—n,+n]
(3.4)

with suitably chosen c¢(n) > 0. Formula (2.4) allows the substitution of the Villain
couplings by standard rotator (cosine) couplings for which Ginibre’s inequalities

apply.
The derivation of (3.2) starts with the fact that the operator

h 0?
HP = — h(x) 3 (3.5)
xeA 2 a(p(x)
has a unique ground state, given by the function
Qﬁio)((P) = (27.[)|/I|/2 (3.6)
, . h(x) 5
its spectrum being erATlx,ler . Moreover the operator H, generates

a positivity improving semigroup (this is true for HY from formula (2.1) and
remains true for H 4 since Vy(p) = — J Y (yyyeq cos(p(x) — @(y)) is a multiplica-
tion operator). Moreover, the spectrum of H 4 is discrete, since H) has compact
resolvent and V), is bounded (e.g., [11, p. 113]). It follows from the Perron—
Frobenius theory [11] that H 4 has a unique ground state and Q,(¢) is a positive
function. In particular

(Qa(), 2P(9) > 0. 3.7)
It then follows for any bounded operator 4 in J#,:

B - B
(@), e"2Hs e Ha0lY)

A>, =(Q,, AQ,) = li
(A4 = (84 1) m QD ¢~ PH.QO)

p— oo

Using Trotter’s product formula we obtain [6]:
CF(@a))a = (Q4, Fl94)Q4) = lim lim (F(g4,0)>%s (3.9)

B0 n—> w0
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; Z
where ¢, = {p(x), xed}, AcA; pq, = {go(x, 1), xe A, tev}. Here ()%, de-
n

notes the expectation in the classical rotator given by (3.3) and restricted to the

V/ . - .
region A x ([ 4 B} m~> with free boundary conditions. Using Ginibre’s in-
n

“122
cqualities (and the free boundary conditions) we get the monotonicity in the
volume:

Foa))Pp = Floa))Py fAcA, BB (3.10)
We may thus interchange the limits in (3.9):
CF(@a)ya=lim (F(@a0)0% (3.11)

In particular we can take the thermodynamical limit

(F(pa)) = lim (Flpq))s = lim (F(p4))™ forany A<Z*. (3.12)

A7 n= %

Correlation functions involving time can also be obtained. For instance

im (24, F(pa)e™ " iGlep)Q,) = lim (F(@a,)Glpp )™ . (3.13)

A n— o

4. An Estimate of the Energy Gap

The existence of a continuous symmetry plays an important role in the estimate of
the energy gap E{ between the ground state 2, and the excited states in the
invariant subspace generated by {e ™ ™Q, xeA}.

Such an estimate would give us a priori bounds on the decay of finite volume
correlation functions, since it follows immediately from (2.4) that

Gallx, 1), (35)) S e st (@.1)
Let us introduce the total angular momentum operator
1 0
ARG
The Hamiltonian can then be decomposed (e.g., [16, p. 77]) in the form of
H,=1;'L;+ H", 4.2)

where the first term is the “center of mass” Hamiltonian and the “relative”
Hamiltonian H'; involves only the relative coordinates {¢(x) — ¢(y); x, ye A}, and

1

hix)

A
xeA

If we did not have periodic boundary conditions on HY’, our Hilbert space
would be written as a tensor product with the two terms in (4.2) acting on different
factors. It would then follow that L,Q, = 0 and

Lye *0Q, =e 0L, — o = —e “0Q,.
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Thus
Lﬁe - lw(X)QA —e~ lw(X)QA

Therefore we would have

%)
i 4.3)

E(A“élilzw,

where h{4) = min,. 4h(x). It would then follow from (4.1) that

— hide —s|

Gallx, 0, (ps) Se Ml e (44)

The above argument is not correct since the periodic boundary conditions do
not allow us to write our Hilbert space as a tensor product where each term in (4.2)
acts on a different factor. But if all the h(x) are rational numbers, this can be done in
a bigger space where we can prove (4.3). The result then follows for arbitrary h(x)
by a perturbation argument.

This estimate should be compared with the estimate

(4) 141
EP~ ] (@ A 1> > (h;'" A 1>

xed

obtained for the Ising model in the presence of a random transverse field [3].
We actually need more than (4.4), we need a uniform bound on the correlation
functions of the classical rotators given by (3.3). This is given by

Lemma 4.1. Let
GPp((x, 1), (3, ) = Celloten =0l

Wt — s

GPy((x, 1), (pos) S e lli=sl <o ™) (4.5)

Then

for all B and n.

Proof. We use a technique of McBryan and Spencer [7].
Let «(t) be a C®-function on R. We perform the imaginary shift
@(x, 1) = @(x, 1) + io(t)

on the integration variables appearing in the numerator of the expression for the
correlation functions to obtain:
(7(s) — (s + 1/n))?
Cellox 0 =olnnlym < o ~ [0 =] 4n IR AT TP

) 1 (a(s) — au(s + 1/n))?
<e” [o(0) —2()] + n (Y, 1/h(x) Z.‘EZHW

We then choose

1 02\
a=§1<—ﬁ> [60 — 4.1,
erAm
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2\ -1
where < — ﬁ) is the inverse of the second difference operator (lattice Laplacian)

n

, . L,
in the lattice —, i.e.,
n

(5ol o(+2) o)

02\ ! 1 V4
<——> (V,S)=§’V—S| forr,seg.

ot ),

given by

It follows that it —s|
1

Cetlotn —onol|m < o Liaiin

proving the lemma.

5. Mean Field Bounds

An important feature of the classical path space model are the Simon-Lieb-
Rivasseau [10] inequalities. Let us state them in a form that is suitable for our

purposes.
Let

Q=Ax —é,é mz CZ"xé, WeQ.
22 n n

We shall denote by dy, W the “vertical” interior boundary of W ie.,

Oy W={(z,weW: 3@z, u¢W,|z —z'| =1},
and by dy W, the horizontal boundary of W, ie.,

aHWz{(z,u)e W:(z,u+%> or <z,u—%>¢ W}.

Z
With the notation X = (x,t), Y = (y,s), Z = (z, u)e Z¢ x e have:

J
GYX,Y)S Y GYX.2)GPZ, V)+> Y GRX,Z)G"Z.,Y), (51)
ZeigW nNzeo,w
{Z.Z")

where the second summation is taken over all (Z, Z'> = {(z, u), (z’, u) ) horizontal
nearest neighbor pairs with Z'¢ W.
Remark. In its original form Simon-Lieb—Rivasseau’s inequality reads simply

GYX, V)< Y GW(X,2)GH(Z,Y). (5.2)
ZeoW
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In order to shape it like in (5.1) one needs to apply Local Ward Identities [6, 16]
to the bonds (Z, Z'> crossing d, W. We need them in the present form in order to
control the limit n — co.

Inequalities (5.1) will serve here a double purpose: to produce mean field
bounds on é&.(d) and give decay in the multiscale expansion.

Mean-field bounds are obtained by taking W to be the thin set

— . My — _1_ 1 %
Wix, t) = {(x,s),sel, (t)_[t —2,1 —|—2]m n}

In this case (5.1) reads

GO0, NS YT LW (0, (% w) GE 1 (3 )

x=x|=1ueln N

+ G, I)<(x, 1), (x, t+ l>> G ( <x, t+ l), (7 5)>
2 2
e ,)(( 0, (x, . % >> G(n)((x, - %) (. s)) . (53)

McBryan—Spencer bounds applied to W,(x, t) give:
Gt ((x. 1), (x, ) < e~ Ot =l (5.4)

Therefore

_ J h(x)!
GP((x, 1), (1,5) £ GONZ, (p,s)| 2d= Y e M- ulp o727 | (5.5)
oy e

where Z is defined by
G™(Z,(y,9) =max {GS(Z,(y,9); Z=(x1%12)
or Z=(xu), |x—x|=1 uel™®)}. (5.6)

J
Suppose now h(x) g > 0 for all xe A. Then

ZdZ z 711(\ |t — ul + 2e” h(x” < <ﬂ + 2e -h(a)l>
n ue () - h(X)
Jl

<4do +2e <1, (5.7)

provided 4do < 1 and | = I(«) is sufficiently large. In this case, with
Jl

= (4do. 4 2e" %),
GIX,Y)<e "GINZ, Y). (5.8)
Iterating (5.8) we get
(n)((x 0, (y,s)<e —mli(x —y), =)/l . (5.9)
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6. Multiscale Analysis

For xeZ%and L > 0 let
Apx)={yeZ%|y—x| <L}, (6.1)

Z
and for X = (x, t)eZ"x;, T>0,

T T| Z
BUr(X)= A (x)x| | t—Z,t+= |n—). (6.2)
2 2 n
With a choice of ¢ > 1 to be later specified we set
B(n) n) (X)

Definition. A point xeZ‘ is m-regular at scale L (x is (m, L)-regular) if, for all
n=12...,

GY e op((x,0), Y) S e™™, ¥ YedBY((x,0)) . (6.3)

Remarks. 1) By translation invariance in the time direction if x is (m, L)-regular
then

V4
GE ((x, 1), Y) < e ™, VYedB.((x, 1), Vze; . (6.4)
V4
2) If we define, for W < Z9x—,
n
1
GP((x,0,0)= Y ~GW((x1), ), (6.5)
Yeew I

it follows that if xeZ? is (m, L)-regular then

Gl p((x, 1), 0) S e ™" (6.6)
with
clogL
">m— 7
m =m 7 (6.7)

where the constant ¢ depends on g¢.

Theorem 6.1. Let p > 2d and suppose that

(Ho): There exists mg > 0, Ly > 0 such that P{0 is (my, Lo)-regular} = 1 — 1/Lg.
Let Liyvy = Li, k=0,1,2,. . .with 1 <o <2p/(p + 2d). Then for any 0 <m,, <m
there exists L = L(p, d, q, mo, o, M) such that if Lo > L we have

1
P{0 is (m,, Ly)-regular} 2 1 — 7
k

forallk=1,2,....

Remark. Assumption H, can be satisfied for any choice of (Lo, mo) by taking
J sufficiently small. This follows from the mean-field bounds of Sect. 5.
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Corollary 6.2. With the hypothesis of Theorem 6.1, given 0 < m < m,, there exists
a constant C.y y < oo such that

G(x, 1), (7,5) S Copye " 0wl
Proof of Corollary. It is the same as the proof of Corollary 3.2 in [12].
Proof of Theorem 6.1. Let p>d, 1 <a < 2p/(p + 22) and for some [ > 0 let

1
P{0 is (m, [)-regular} > 1 —

[_P .
Then for L = [” we have

P{3x, x,e4,(0), x; and x, (m, [)-singular with A,(x;) " 4;(x,) = ¢}
L% 1 1

[T

IIA

(6.8)

for [ sufficiently large.

It is therefore sufficient to consider the situation where there exists at most one
box of side 2/ around some point ZeALEO) such that X is (m, [) regular for all
xe A (0)\A,,(Z). Let us first estimate Gé’L’(O)(O,X) for Xe€?dy B (0). From SLR
inequalities we get

n

G0, X) = [] Gyz)(Z:, 0)Gp,0)(Zn, Z1) ] Giz))(Z}, 0) (6.9)
. Lo

i=0
forsome Z,...,Z2,,2%,...,Z,, where

Zo=0,0),2Zo=X; Z1.2Z,,..., 2,1, Z},..., Zy-1€B.(0,0)\ By, 14((z, 0)

L
— =2l I
and Z,, Z,,€ B, (0,0), with n + m = IT =7 4. Therefore,
L
G ((0,0), X) < (e ™)+ < e ME (6.10)

where M = m' — o(l) = m — o(l), for large . If now X € 0;; B;.(0, 0) we now use the
McBryan—Spencer bound (4.5), to get

U 1 1
P{Gp 0.0((0,0),(x, 1)) 2 e 17] < P{hL < E} = P{f,‘ > L’} , (6.11)
L

where h, = hBL0) — min {h(x), xe B.(0, 0)}. But

1
L“E<;
1 1 h(O)") 11 1
P{— S LIP—> L < == — 12
{hL > L } = {h(o) > } = Lré héLré—a < 2LP (6 )

if 76 > p + d, and L sufficiently large. Therefore, if X edy B, (0, 0), ie., X = (x,1)
L‘l
with |t] = 5 we have from (6.11) and (6.12)

14 1

P{G 0 X)<e 207} 21 — — . 6.13
{Gp,0,0((0,0), X)<e 207} = T (6.13)
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If we now take ¢ > 7 + d + 1, and L sufficiently large,

B 1
P{Gg,0,0((0,0, X)<e M} 21— P (6.14)

if X €0y BL(0,0). Putting together (6.14), (6.10) and (6.8) we find that

1
P {0 is (M, [)-regular} =2 1 — I’

which concludes the proof.

References

1. a) Abeles, B.: Phys. Rev. B 15, 2828 (1977)
b) Doniach, S.: Phys. Rev. B 24, 5063 (1981)
¢) Ma, M., Halperin, B.I,, Lee, P.A.: Phys. Rev. B 34, 3136-3146 (1986)
d) Jacobs, L., Jose, J.V.: Physica B 152, 148-155 (1988)
e) Fisher, M.P.A., Grinstein, G.: Phys. Rev. Lett. 60, 208 (1988)
f) Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S.: Phys. Rev. B 40, 546-570
(1989)
g) Kim, S., Choi, M.Y.: Phys. Rev. B 41, 111 (1990)
2. Klein, A., Perez, J.F.: Localization in the Ground State of the One-Dimensional X-Y Model
with a Random Transverse Field. Commun. Math. Phys. 128, 99-108 (1990)
3. Campanino, M., Klein, A., Perez, J.F.: Localization in the Ground State of the Ising Model
with a Random Transverse Field. Commun. Math. Phys. 135, 499 -515 (1991)
4. von Dreifus, H.: Ph.D. Thesis, New York University, 1987
S. von Dreifus, H., Klein, A.: Commun. Math. Phys. 124, 283--299 (1989)
6. Driessler, W., Landau, L.J., Perez, J.F.: Estimates of Critical Lengths and Critical Temper-
atures for Classical and Quantum Lattice Systems. J. Stat. Phys. 20, 123-162 (1979)
7. McBryan, O.A., Spencer, T.: Commun. Math. Phys. 53, 299 (1976)
8. Bellissard, J., de Angelis, G.F.: Gaussian Limit of Compact Spin Systems, in: Random Fields.
Fritz, J., Lebowitz, J., Szas (eds.), Vol. I, Amsterdam: North Holland 1979
9. Ginibre, J.: Commun. Math. Phys. 16, 310 (1970)
10. a) Simon, B.: Correlation Inequalities and the Decay of Correlations in Ferromagnets.
Commun. Math. Phys. 77, 127 (1980)
b) Lieb, E.H.: A Refinement of Simon’s Inequality. Commun. Math. Phys. 77, 11 (1980)
¢) Rivasseau, V.: Lieb’s Correlation Inequalities for Plane Rotors. Commun. Math. Phys. 77,
145-147 (1980)
11. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. IV. New York:
Academic Press 1970
12. Campanino, M., Klein, A.: Decay of Two-Point Functions for (d + 1)-Dimensional Percola-
tion, Ising and Potts Models with d-Dimensional Disorder. Commun. Math. Phys. 135,
483-497 (1991)
13. Aizenman, M., Klein, A., Newman, C.: (in preparation)
14. Bonato, C.A., Perez, J.F.: J. Stat. Phys. 56, 13-22 (1989)
15. Aizenman, M., Simon, B.: Commun. Math. Phys. 77, 137143 (1980)
16. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I1II. New York:
Academic Press 1970
17. Klein, A.: Extinction of Contact and Percolation Processes in a Random Environment.
Preprint

Communicated by T. Spencer





