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Abstract. We consider the zero-temperature behavior of a disordered array of
quantum rotators given by the finite-volume Hamiltonian:

- φ(y)) ,
(x,y)eΛ

where x, yeZd, <,) denotes nearest neighbors in Zd; J > 0 and h = {h(x) > 0,
xeZd} are independent identically distributed random variables with common
distribution dμ(h), satisfying J h~δdμ(h) < oo for some δ > 0. We prove that for any
m > 0 it is possible to choose J(m) sufficiently small such that, if 0 < J < J(m), for
almost every choice of h and every x e Zd the ground state correlation function
satisfies

(cos(φ(x) -

for all yeZd with C x h , j < oo.

1. Introduction

Ferromagnetically coupled quantum rotators have been used in the physics litera-
ture to describe the effect of quantum fluctuations in granular superconductors [1].
In this paper we discuss the typical properties of a disordered array of such rotators
with random moments of inertia. Apart from its intrinsic physical interest the study
of this model is a natural step in the program initiated in [2] and [3] of understand-
ing the effect of randomness in quantum spin systems. In [2], Klein and Perez
studied the ground state of the one-dimensional quantum x-y model in the
presence of a random transverse field: exponential decay of the correlation
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functions for any amount of disorder was shown to be a consequence of expo-
nential localization for one-dimensional random Schrόdinger operators. In [3]
Campanino, Klein and Perez considered the d-dimensional Ising model in the
presence of a random transverse field. A path space representation was used to map
the original quantum model into a limit of a classical ferromagnetic Ising model in
(d + l)-dimensions with d-dimensional disorder. This allowed the control of the
Griffiths' type of singularities through the use of correlation inequalities and
a multiscale analysis of the type used in the theory of localization for random
Schrδdinger operators [4, 5]. Their results were: exponential decay of correlation
functions for high-disorder and any d ^ 1 and long-range order in the low disorder
regime for d ^ 2. For d = 1 long range order at low disorder was established by
Aizenman, Klein and Newman [13].

The ideas and techniques of this paper share much in common with those
involved in [3], namely an approximate path space is used mapping the system into
a limit of (d + l)-dimensional ferromagnetic classical rotators with d-dimensional
disorder, allowing the use of correlation inequalities. The novel feature is the
presence of a continuous symmetry which allows, through the use of McBryan-
Spencer bounds, an easier control of the Griffiths' singularities. Our multi-scale
analysis follows the strategy of von Dreifus and Spencer [4], with the role of the
resolvent identity replaced by the Simon-Lieb-Rivasseau inequality [10] and the
role of Wegner's estimate replaced by McBryan-Spencer bounds.

2. The Model and Results

In a finite volume A c Zd the Hamiltonian is given by

-~2-J Σ cos(φ(x) - φ(y)) (2.1)

acting on the Hubert space jfΛ = ®xeΛ^x, J?x = L 2 [ - π , + π], xeZd. The

operator ~ is taken with periodic boundary condition so that its spectrum
dφ(x)2

is {n2, nxeZ}. The second sum in (2.1) is taken over all pairs of nearest neighbor
sites <x, y} in A. The coupling between the rotators is ferromagnetic, i.e., J > 0.
The inverse of the moments of inertia of the rotators, h = {h(x) > 0, xeZd}, are
taken to be independent identically distributed random variables with common
distribution dμ(h). We shall allow h(x) to take arbitrarily small, but positive values,
with the condition that for some δ > 0,

s j d M Λ ) < ° o . (2.2)

We shall denote by P and E the underlying expectation and probability measure
induced by dμ. The parameter h defined by (2.2) measures the amount of disorder in
the system.

The operator HΛ has a unique ground state ΩΛi with a normalized wave
function ΩΛ(φ) > 0 for all φ = {φ(x), xeA}, φ(x)e[ — π,+π]. This follows from
the fact that HΛ has discrete spectrum and generates a positivity improving
semigroup (Sect. 3).
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Moreover the correlation functions:

<cos(φ(x) - φ(y)))Λ = (ΩΛ, cos(φ(x) - φ(y))ΩΛ) (2.3)

are monotonically increasing in A and J > 0 and monotonically decreasing in each
h(x), xeZd. This follows from correlation inequalities derived in the path space
representation (see Sect. 3).

The Hamiltonian (2.1) in the deterministic homogeneous situation ft(x) = ft, for
all xeZd, has been used to describe quantum fluctuations in superconducting
arrays [1]. In its ground state for d ^ 2, it exhibits a phase transition with long

range order for a = - > occ(d). This follows from the path space representation

developed in Sect. 3 and standard techniques [6]. In d = 1, the system has
a Kosterlitz-Thouless phase transition (see [14] for a similar gauge field model)
with polynomial decay of correlation functions for a > αc(l). Mean field bounds

(see Sect. 5) also guarantee the existence of dc(d\ ac(d) §: dc{d) g; —-, such that if
4a

α < 0Lc(d) the correlation functions decay exponentially.
In order to state our results we introduce the imaginary time correlation

function

Monotonicity in A (obtained from the path-space representation) ensures the
existence of

G((x,t\(y,s))= lim GΛ((x,t)Λy,s)),

Λ^Zd

in terms of which we state our main result.

It is important to notice that if for some ε > 0 we have ot(x) = -——

h(x)
^ (1 + ε)αc(d) for all xeZd with probability one, then the system will have long

range order (d ^ 2) or polynomial decay of correlations (d = 1), with probability
one. This is a consequence of monotonicity of G((x, ί), (>', s)) in each α(x), xeZd,
and the corresponding result in the homogeneous deterministic case. Conversely if
for some ε > 0, α(x) < (1 — ε)αc(d), for all xeZd with probability one, correlation
functions will decay exponentially with probability one.

From the above it follows that non-trivial behavior is expected only when both
α(x) > occ(d) and α(x) < άc(d) may occur with non-zero probability.
Theorem 2.1. Let d = 1, 2,. . ., q > (1 + 3/δ)d + 1. Then for any m > 0 there exists
J(m) such that, for any 0 < J < J(m) and almost every choice of h and every xeZd,
we have

G ( ( x , ί ) , ( ^ s ) ) ^ C x Λ J e - w i ^ - ^ l ί - s l 1 / β ) l l % (2.5)

where ||(x, ύJW^ = max( |x | , |u | ) and CxhJ < oo.

It is important to notice the less than exponential decay in the time direction
compared with the exponential decay in the space direction. This is a consequence
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of the Griffiths' singularities, i.e., the fact that with probability one there exists

arbitrarily large regions A such that α(x) = —— > occ(d) for all xeA. For these
n(X)

regions the energy gap between the ground state ΩΛ and the first excited state gets
arbitrarily small.

Remark. Our methods can actually prove a stronger result. We can admit random
couplings {./<*,j;>; <x, y}eZd} and relax our hypothesis on the probability distri-
bution of h(x). More precisely, let

HΛ = ~ Σ ~^~Λ / ,2 - J Σ ^<χ,y>cos(<jθ(x) - φ(y)) ,
xeΛ ^ Oψ[X) (x,y}eΛ

where J > 0, h = {h(x) > 0, xeZd} and J = {</<*,),> > 0, <x, y)eZd} are indepen-
dent sets of independent identically distributed random variables with

E([log(l + l//i(x))]a) < oo and E([log(l + J<x,yy)y) < oo ,

where δ > Id. In this case Theorem 2.1 still holds, with the conclusion being true of
almost every choice of h and J, and (2.5) replaced by

for some q > 1.
The modifications required in the proof are similar to the arguments in

Klein [17].

3. The Approximation by Classical Rotators

Let us denote by h0 the self-adjoint operator —~ in L2\_ — π, + π ] with
2dφ

periodic boundary condition. Our starting point is the formula
γ — (φ — φ' + 2πm) 2

Kt{φ,φ') = e-th0(φ,φ ) = - j = £ e ft (3.1)

x/2πί meZ

for the kernel of e tho, t > 0.
Using (3.1) and the Trotter product formula we obtain the representation

(ΩΛ9 F{φ(Xl)9. . ., φ(xn))ΩΛ) = lim (F(φ(xu 0), φ(x2, 0),. . ., φ(xn9 0))>5Γ> , (3.2)
n—* oo

where < >^} denotes the expectation for the classical plane rotator in
Z Z / 1 \

/I x — cz Zd x — i.e., with lattice spacing - in the "time" direction I with the
n n \ n J

so-called Villain approximation taken in the "time" direction i.e., the Gibbs weight

of a configuration φ = <φ(x, t\ xeA, te— n — - , - > given by

(3.3)
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where m = <m(x, ί); xeΛ, te\ — - , + - n — > and the summations are over

β β~

This approximation enables us to use Ginibre's correlation inequalities [9]
taking into account the ferromagnetic nature of the model. This is made possible by
the use of the remark [8] that

Fβ(φ - φ') =

= lim φ ) J dθx... J dθnexp{nβtcos{φ- ΘJ + + cos(0Π - φ')]}
n ^ oo [ — π,+π] [ —π,+π]

(3.4)

with suitably chosen c(ή) > 0. Formula (2.4) allows the substitution of the Villain
couplings by standard rotator (cosine) couplings for which Ginibre's inequalities
apply.

The derivation of (3.2) starts with the fact that the operator

has a unique ground state, given by the function

1
(3.6)

h(x)]its spectrum being < ΣXGΛ -^— 1%, lxeZ >. Moreover the operator HΛ generates

a positivity improving semigroup (this is true for H^] from formula (2.1) and
remains true for HΛ since VΛ(φ) = — «/Σ<χj>>eΛ cos(φ(x) — φ(y)) is a multiplica-
tion operator). Moreover, the spectrum of HΛ is discrete, since H{®] has compact
resolvent and VΛ is bounded (e.g., [11, p. 113]). It follows from the Perron-
Frobenius theory [11] that HΛ has a unique ground state and ΩΛ(φ) is a positive
function. In particular

0. (3.7)

It then follows for any bounded operator A in Jf^:

β

/3->oo

Using Trotter's product formula we obtain [6]:

(F(φA))Λ = (ΩΛ, F(φA)ΩΛ) = lim lim (F{φA<0)}tβ , (3-9)
β->oo n^oo
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ί Z]

w h e r e φA = {φ{x)9 xeA}9 A cz A; φAt = <φ{x, t), xeA, te~ >. H e r e <• YA]β de-

notes the expectation in the classical rotator given by (3.3) and restricted to the

region Axil , - n — } with free boundary conditions. Using Ginibre's in-

equalities (and the free boundary conditions) we get the monotonicity in the

volume:
if Λ <= Λ', β £ β'. (3.10)

We may thus interchange the limits in (3.9):

0)yjί). (3.11)

In particular we can take the thermodynamical limit

<F(φA))= limd(F(φA))Λ=lim(F(φA)yn) for any A cz Zd . (3.12)

Correlation functions involving time can also be obtained. For instance

lim (ΩΛ9F(φA)e-^-5^G{φB)ΩΛ)= lim (F{φAtt)G(φBtS)Yn) . (3.13)
Λ^Zd i-x

4. An Estimate of the Energy Gap

The existence of a continuous symmetry plays an important role in the estimate of
the energy gap EΛ

l) between the ground state ΩA and the excited states in the
invariant subspace generated by {e~ ιφ^ΩΛ, xeΛ}.

Such an estimate would give us a priori bounds on the decay of finite volume
correlation functions, since it follows immediately from (2.4) that

Let us introduce the total angular momentum operator

L = y

The Hamiltonian can then be decomposed (e.g., [16, p. 77]) in the form of

HΛ = 1A

1L\ + Hr

Λ , (4.2)

where the first term is the "center of mass" Hamiltonian and the "relative"
Hamiltonian Hr

Λ involves only the relative coordinates (φ(x) — Φ(y); x, y e A}, and

Λ l

If we did not have periodic boundary conditions on H{

A\ our Hubert space
would be written as a tensor product with the two terms in (4.2) acting on different
factors. It would then follow that LΛΩA = 0 and

LAe ~ iφix)ΩA = e~ iφ{x){LΛ - l)φΛ = - e ~ iφ{x)ΩΛ .
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Thus

Therefore we would have

^ (4.3)
\Λ

where h^Ώ = minxeΛh(x). It would then follow from (4.1) that

-h™\t-s\

GΛ((x> t\ (y, s ) ) S e ~ l Λ ] t ' s l ^ e \Λ\ . (4.4)

The above argument is not correct since the periodic boundary conditions do
not allow us to write our Hubert space as a tensor product where each term in (4.2)
acts on a different factor. But if all the h(x) are rational numbers, this can be done in
a bigger space where we can prove (4.3). The result then follows for arbitrary h(x)
by a perturbation argument.

This estimate should be compared with the estimate

obtained for the Ising model in the presence of a random transverse field [3].
We actually need more than (4.4), we need a uniform bound on the correlation

functions of the classical rotators given by (3.3). This is given by

Lemma 4.1. Let

G{2]β({χ, t)9(y,s)) = (eWΛ-rty-Myfa .
Then

t), {y, s)) ^ e - ^ l ' - s l ^ e M Γ ~ (4.5)

for all β and n.

Proof. We use a technique of McBryan and Spencer [7].
Let a(t) be a C(2)-function on R. We perform the imaginary shift

φ{x,t)-+φ(x,t) + iα(ί)

on the integration variables appearing in the numerator of the expression for the
correlation functions to obtain:

r ,ΛΛ , \ Ί sr v ( < y ( s ) - α ( s + 1/n)) 2

V Ί ) Y ! (α(s)-α(s + I//1))2

<- β in nOJ + >HLΛ&Λ,;

 / l W ) ^ ε Z π 2{l/n)2 ,

We then choose

d2

r
ΣxeΛh(x)
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where I ^ I *s ̂ e inverse of the second difference operator (lattice Laplacian)
\ dt Jn

Z
in the lattice —, i.e.,

n

given by

for r, s e — .
n

It follows that | ί _ s (

proving the lemma.

5. Mean Field Bounds

An important feature of the classical path space model are the Simon-Lieb-
Rivasseau [10] inequalities. Let us state them in a form that is suitable for our
purposes.

Let

We shall denote by dv W the "vertical" interior boundary of W i.e.,

dvW= {(z,u)eW:3{z\u)φW,\z-

and by dH W, the horizontal boundary of W, i.e.,

dHW= \(z,u)eW\{z,u + -\ o r ί z , u

With the notation X = (x, t\ Y = (y, s\ Z = (z,u)εZdx- we have:

G%\X9 Y)^ X G$(X, Z)G%\Z, Y) + - Σ Gw\X, Z)G{n){Z'9 Y) , (5.1)

ZedHW n ZedvW

where the second summation is taken over all <Z, Z'> = <(z, u\ (z\ w)> horizontal
nearest neighbor pairs with Z' φ W.

Remark. In its original form Simon-Lieb-Rivasseau's inequality reads simply

GJS\X9Y)^ Σ G$(X9Z)G%\Z,Y). (5.2)
ZedW
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In order to shape it like in (5.1) one needs to apply Local Ward Identities [6, 16]
to the bonds <Z, Z'> crossing dv W. We need them in the present form in order to
control the limit n -> oo.

Inequalities (5.1) will serve here a double purpose: to produce mean field
bounds on dc(d) and give decay in the multiscale expansion.

Mean-field bounds are obtained by taking W to be the thin set

\n)(t) = Γί - l-,x, t) = <J(x, 5); s e J

In this case (5.1) reads

G^tfx, ί), (^ 5)) ^ X X - G$(JC,f)((x, ί), (x, ")) G^ίίx', w), (j;, 5))
|x — χ'| = 1 «e/,w(ί) ^

+ G^ ( X j f ) (x, 4 x, ί + - G£} x, ί + - , (y, 5)

V V 2JJ \\ 2> >

+ G%(xJ(x, ί), Γx, ί - ^Ϋj G%] ( U t - lΛ {y, s)\ . (5.3)

McBryan-Spencer bounds applied to Wt(x, t) give:

Therefore

L n«e//B>(t) J '
where Z is defined by

Gin)(Z, (y, s)) = m a x {G ( ^(Z, (y9 s)); Z = ( x , t ± 1/2)

or Z = (x\ w), |x — x ; | = 1, tίG//("}(ί)} (5.6)

Suppose now h(x) ̂  - > 0 for all xeΛ. Then

J h(x)l / 4dJ h(x)l

Jl

2e~^ < 1 , (5.7)

provided 4da < 1 and / = I (a) is sufficiently large. In this case, with

Jl

e~m = (4d(x + 2e~^) ,

G{o\X, Y) ^ e~mG^{Z, Y) . (5.8)

Iterating (5.8) we get

G^((x,t),(y,s))^e~ml {χ-y>Λt~sWU. (5.9)
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6< Multiscale Analysis

For xeZd and L > 0 let

ΛL(x) = {yeZd;\y-x\^L} , (6.1)

and for JT = (x, ί ) e Z d x - , Γ > 0 ,

ί p - \, t + ~ 1 n ^ . (6.2)

With a choice of g > 1 to be later specified we set

Definition. A point xeZd is m-regular at scale L (x is (m, L)-regular) if, for all
n = 1, 2,. . .,

Gj&(x,o))((x> 0), Y) g e~m\ V YedBΪ\(x, 0)) . (6.3)

Remarks. 1) By translation invariance in the time direction if x is (m, L)-regular
then

G(

B

nj((x, ί), 7) ^ £~mL, V 7eδJ5L((x, t)\ V i e - . (6.4)

2) If we define, for W c= Z d x —,

G#((x, ί), 5) = X - G^((x, t), F) , (6.5)

it follows that if x e Zd is (m, L)-regular then

GB]

L(X, t)((x, ή, d)^e~m>L (6.6)

with

«' * m _ £fc*ί:, (6.7)

where the constant c depends on q.

Theorem 6.1. Let p > 2d and suppose that

(Ho): There exists m0 > 0, Lo > 0 swc/z ίΛβί P{0 is (m0, L0)-regular) ^ 1 — 1/Lo

Let L k + 1 = LJ, k = 0, 1, 2,. . . with 1 < α < 2p/(p + 2d)._Thenfor any 0 < m^ < m
ί/zere exists L = L(p, d, q, m0, α, m^) 5wc/z f/iαί if Lo > L we have

P{0 is (moo, Lk)-regular} ^ 1

/or α// k = 1, 2,. . . .

Remark. Assumption ί/0

 c a n be satisfied for any choice of (L0,m0) by taking
J sufficiently small. This follows from the mean-field bounds of Sect. 5.
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Corollary 6.2. With the hypothesis of Theorem 6.1, given 0 < m < m^, there exists
a constant Cx h. j < GO such that

Proof of Corollary. It is the same as the proof of Corollary 3.2 in [12].

Proof of Theorem 6.1. Let p > d9 1 < α < 2p/(p + 2α) and for some I > 0 let

P{0 is (m, Z)-regular} ^ 1 - - .

Then for L = 1° we have

P { 3 x h x 2 eylL(0), * I a n d *2 (m, /)-singular with Λj(xi) n /Iz(x2) — Φ}

L 2 d 1 1

- T ^ = ^ ^ < 2 L ^ ( 6 8 )

for / sufficiently large.
It is therefore sufficient to consider the situation where there exists at most one

box of side 2/ around some point Ze/lLί0) such that X is (m, /) regular for all
xeΛL(0)\Λ2l(Z). Let us first estimate G^(0)(0, X) for I e ^ β L ( 0 ) . From SLR
inequalities we get

GBι(0)(0, X)=f\ GB,(z,)(Zh δ)GBM(Zn, Z'm) Π GB,(Z ){Z'J, d) (6.9)
i = 0 ; = 0

for some Z,. . ., Z n, Z ' l 5 . . ., Z^, where

Z o = (0, 0), Zi = X; ZUZ29. . ., Zn.l9 Z ί , . . ., Z m _ : G 5 L ( 0 , 0)\52 /,L β((z, 0))

2/

and ZW5 ZmeBL (0, 0), with π + m ^ — = 4. Therefore,

Gβ/(0)((0? 0), X) ^ (e-
O T ' z)T-4 ^ ^ " M L , (6.10)

where M = m' — o(l) = m — o(l)9 for large /. If now X edHBL(09 0) we now use the
McBryan-Spencer bound (4.5), to get

0, 0), (x, 0) ^ e~Ί^} ί PĴ L < ̂  j = Plγ > Lτ\ , (6.11)

where /zL = h{*^0)) = mm{h(x), xeBL(0, 0)}. But

if τ^ > p + d, and L sufficiently large. Therefore, if X edHBL(0, 0), i.e., X = (x, t)
Lq

with | ί | = — we have from (6.11) and (6.12)

P{GBl(o,O)((O, 0), X) £ e -Ίϋ^} ^ 1 - ^ . (6.13)
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If we now take q > τ + d + 1, and L sufficiently large,

P{GB L ( O,O)((O, 0), X) < e~ML} ^ 1 - 2^ί (6 1 4 )

if XedHBL(0, 0). Putting together (6.14), (6.10) and (6.8) we find that

P {0 is (M, 0-regular} ^ 1 ,

which concludes the proof.
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