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Abstract. It is shown that the Yang-Mills measure ZΛ~ 1e~S(ω}lk[,Dώ]9 where /z>0,
describing gauge fields on the two-sphere converges to a probability measure on
the moduli space of Yang-Mills connections on S2, as /z-»0.

1. Introduction

In this paper we prove that the quantum Yang-Mills measure

= —e~S(ω)/Γ[Dω] (notation to be explained in Sect. 2) for gauge fields over the
Zτ

two-sphere S2 converges, as T->0, to a probability measure μγM on the set of
minima of the Yang-Mills action functional S. The measure μγM has been
constructed and studied in [Se 1, 2] (and, from a different point of view, by Fine in
[F]) for a wide class of gauge groups. On the other hand, the minima of the Yang-
Mills action S for gauge fields over S2 are also well-understood [AB, G, FH, Se 1,
NU]. In Sect. 2 we summarize the relevant results that are known and in Sect. 3 we
describe the limiting process.

2. Classical and Quantum Yang-Mills on S2

Let G be a compact connected Lie group with a fixed bi-invariant metric < , >^ on
its Lie algebra g.

Equip S2 with a Riemannian metric. If £ is a Borel subset of S2 we denote by |E|
its area as given by the area-measure dσ induced by the metric. For the geometric
discussions we will visualize S2 as the usual sphere sitting in .R3 and we will equip it
with a north pole n, a south pole s, and the hemispheres N and S which intersect in
the equator <f. We will often refer to the meridians - these are the usual meridians
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on S2CR3 running from n to s. We fix a basepoint e0 e δ and denote by M0 the
meridian through it. We will work with a principal G-bundle π:P-»S2. We fix a
point u on the fiber π~ ^(ή). The space of smooth connections on P will be denoted
by .«/, the group of automorphisms of P covering the identity map on S2 by 0, and
the subgroup of all those automorphisms in ̂  which fix the fiber over n by <&„. The
quotients # = j//^ and %, = j^/^n will be of basic importance. If ω is a connection
on P then we denote its curvature by Ωω. Consider any m e S2. Iίeί9 e2 e TpP, where
p is any point on the fiber π~ 1(m) and el9 e2 project to an orthonormal basis of TmS2

then the number ||Ώω||2(m)= \\Ωω(e^e2}\\2 is independent of the choice of p and
(el9e2) The Yang- Mills action S(ω) is defined to be J ||ί2ω||2dσ, where dσ is the

s2

area measure on S2. The value S(ω) depends only on the class [ω] e #. So S is
naturally defined on the quotients ^Π and #.

Choose any trivializations over the hemispheres N and S which agree at the
basepoint e0 e δ and let φ : $->G be the transition function. Then the homotopy
class of φ, as a loop based at e e G, specifies the topology of the bundle P (see [St]).
We denote this homotopy class by [P]e^(G,e).

Recall that u is a fixed point on the fiber over n. If C is a piecewise smooth closed
loop in S2 based at n then we denote by gM(C; ω) the holonomy around C for the
connection ω, with initial point u. We will often drop the subscript u in gM(C; ω).
Given C (and w) the value gu(C; ω) depends only on the class [ω]e^Π and,
conversely, the values gu(C; ω) for all C as described above specify the class
[ω] e (6n uniquely.

Recall that if y:[0,fe]-»G is a piecewise smooth path then its energy is

}\\dy/dt\\2dt.
a

The following relates the minima of S to minimum energy geodesies on G:

Theorem 2.1. Lei [ω] E^nbe a minimum of S( ). T/zew ί/zere w α unique minimum
energy geodesic yω:[0, |S2|]->G in the homotopy class [P] such that if C is any
piecewise smooth closed loop in S2 based at n, which bounds, in the positive sense, a
region Ec CS2, then:

Conversely, if γ is a minimum energy geodesic [0, \S2\~]-+G in \_F] then there is a
unique [ω] e %>„ such that y = yω.

Thus there is a one-to-one correspondence between the set #£ of minima of S
on cβn and the set Γ0

[P] of minimum energy geodesies in the homotopy class [P]. By
taking the quotient of both sides by suitable actions of G one obtains a one-to-one
correspondence between the set ̂ ° of minima of S on # and the conjugacy classes
of minimum energy loops in [P].

Proof. See any of the references cited in Sect. 1 in this context. We give a brief
sketch of the argument in [AB]. The Yang-Mills variational equations, in this
situation, say that the curvature is a covariant constant and this can be used to
show that the equation of parallel-transport corresponds to that of a geodesic on
G. One then computes that S(ω) is proportional to the energy of the corresponding
geodesic. Π

Note that if the bundle P is trivial then the minimum of S is 0 and is given by the
flat connections.
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Now we turn to the quantum description. We will use the results of [Se2]
(which extends ideas used in [GKS] and [Dr] for gauge fields on the plane to those
over S2). In that work the Euclidean quantum field measure μYM representing
gauge fields over S2 was constructed for gauge groups G with compact universal
cover (G compact semi-simple, for example) and for G abelian. If G is a general
compact connected group covered by the product of a compact simply connected
group H with N copies of the real line, and the metric on g is the product of the
usual metric on RN and an invariant metric on the Lie algebra of H then the theory
extends in a straightforward way to the gauge group G as well. The discussion
below applies to such situations. In the quantum setting, the space <βn of gauge
equivalence classes of smooth connections is replaced by a larger space~W~n. On~^
is defined the Yang-Mills probability measure which has the heuristic form dμΎM

= Z~1e~S(ω)[Dω], where [Dω] deμotes the pushforward of "Lebesgue measure"
on Λ/ to ̂ n, and Z is a "normalizing constant" insuring that μYM(#n) = 1. We now
pause to give a summary description of %„ (details may be found in [Se 2]) - this
material is not essential to the understanding of the discussions that follow it.

The sphere S2 is divided into the two hemispheres N and S, as before,
intersecting in the equator β\ a base meridian M0 is fixed and this meridian
intersects <? at the point e0. Let us first consider the part PN of P which is over N.
Fix a point u on the fiber over n and corresponding to any connection ω on PN

define a section ("radial gauge") s% of PN by parallel-translating u along meridial
lines. Define Fω:N^g by requiring that (s%)*Ωω = Fωdσ. Let <g% denote the
quotient of the space of connections on PN by the group of gauge-transformations
which fix the fiber over n. Then the assignment [ω] H* Fω sets up a well-defined
bijective correspondence between <#% and the space XN of smooth g-valued
functions on N. By use of this map it is standard practice to identify the Yang-Mills
measure for gauge fields over N with Gaussian measure on the space XN described
heuristically by a density proportional to e~ IIFH^ 2<D;«> (the space XN has a natural
inner-product structure and hence, informally, a "Lebesgue measure" defined on
it; the density just referred to is with respect to this Lebesgue measure). To be quite
precise the Gaussian measure is defined on some Banach space XN containing XN

but we will write XN instead of XN. The Fω is now replaced by the following
stochastic analog: for any Borel set EcN, there is a Gaussian random variable
F(E) on XN, taking values in g, which is the analog of J Fωdσ. We now outline how

E
parallel-translation is defined in this context. Consider a well-behaved curve
C: [α, b] ->N and, for each t e [a, 6], denote by Ct the loop based at n obtained by
following the meridial segment from n to C(a\ followed by C up to time t and then
followed by the meridial segment back to n. If g(Ct; ω) denotes the holonomy, with
initial point w, around Ct with respect to a smooth connection ω then it is an
immediate consequence of the definition of parallel-translation that gα = e and
dgt= — dMtgt, where Mt is the integral of Fω over the region Et whose positive
boundary is formed by Ct. To obtain the quantum analog we replace the
differential equation by its stochastic form (interpreting it as a Stratonovich
stochastic differential equation) and take Mt to be F(Et). Put another way, gt

describes Brownian motion on G with time clocked by \Et\ instead of t. We say that
the random variable gb describes stochastic parallel translation along the entire
curve C. We can carry out an exactly analogous procedure over S, using a section
s£ and obtaining a space Xs corresponding to XN. The transition function between
the sections s* and s^ can be taken as the (random) function φ: $^>G given by φ(m)
= 8N(eom)gs(eom)~ί> where gN(e0m) gives the stochastic parallel-transport along
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the part of δ from e0 to m with respect to the connection as viewed from N and
gs(e0m) is the corresponding quantity for S. For the Yang-Mills space ̂  for S2 we
take the product probability space XN x Xs and condition the measure so that φ
describes a loop in G in the homotopy class [P]. Thus is obtained W~n and μYM on
ξζ". If C is a well-behaved curve in either N or S then g(C) has been defined as a
random variable on XN or Jf s and, viewing it as a random variable on the product
XN x Xs in the natural way, g(C) is defined as a random variable on~^ and it is
well-defined under the measure μYM. If C is a closed loop based at n but passing
through both hemispheres then g(C) is defined by breaking up C into pieces in TV
and S and with appropriate factors involving the transition function φ introduced
at the points where C crosses from one hemisphere to the other.

The quantum analog of the holonomy is a random variable g(C):^n

-»G: ω ι-> g(C; ω) associated to a closed loop in S2 based at n. Due to technical (but
conceptually irrelevant) reasons one has to restrict to a certain class of curves C.
For our purposes a curve or curve segment in S2 will always mean a piecewise
smooth map of a compact interval in the real line into S2. Let us say that a curve
segment in S2 is a basic segment if it is smooth one-to-one and either lies entirely on
a meridian or intersects each meridian in at most one point (if the latter condition
is satisfied we say that the curve is horizontal); a collection of basic segments is a
basic collection if it contains finitely many segments and any two segments in the
collection either do not intersect or intersect at one or both endpoints only. We say
that a set of £f of curves in S2 is admissible if (i) there is a basic collection such that
every curve in £f is made up of a finite number of segments each drawn from the
basic collection, (ii) y is non-empty but finite, and (iii) no curve in Sf is a point
curve. The random variable ωh->g(C; ω) is defined whenever {C} is admissible.
For our purposes, the σ-algebra on C6n will be taken to be the one generated by
the g(C)'s.

We will always work with an admissible collection ίf = {C1?..., Cm} of loops in
S2 all based at n. The rest of this section describes a way to compute the joint
distribution of the random variables g^C^ω). The strategy is to construct a
collection of special loops (called lassos) L1?..., Lκ such that each Ct is essentially a
composite of a number of the Lf's (and reversed Lf's) so that g(Q) is the product of
the corresponding gίL^'s [and g(Lf) ~

1 'sj. Thus if we know the joint distribution of
the g(Lf)'s (under the probability masure μYM) then we would know that of the
g(Q's, too.

We draw enough meridians M0,..., Mk so that the curves Ci are broken up into
segments which together with the segments from the M3 form a basic collection.
We label the M/s in increasing order of the angles they make with the fixed initial
meridian M0. A lasso is a closed loop formed in the following way from five legs: (i)
follow a meridial segment from n along some meridian Mt to the initial point of
some horizontal segment σ running from Mf to Mί+1 (here, as always, Mn + l = M0)
or until the south pole s is reached; (ii) then follow σ till it reaches Mi+i; (iii) move
"back" along Mi + ί towards n until the final point of some horizontal segment σ'
(running from Mf to Mί+1) is reached or until n is reached in case there are no
segments like σ'; (iv) follow σ' in reverse until Mf; (v) finally, return to n back along
M{. Note that in degenerate examples some of these legs would be absent; for
example, if s is reached in step (i) then step (ii) is not necessary. Having defined a
lasso we observe that the lassos can be arranged in a natural sequence L l 5 ...,LX

such that the composite curve Lκ...Lί (read from right to left) reduces to the
constant curve at n after all segments that are traversed consecutively in opposite
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directions are dropped. For example, one can start with L1 as the lasso with its first
("long") leg reaching all the way along M0 to 5, L2 as the lasso with its first leg along
MO but "closest" to s after Lί, etc. If L is a lasso and we drop from L part of its first
leg and all of its last leg then we obtain a simple closed loop (the little "square" at
the head of the lasso) - we denote by |L| the area of the region enclosed (in the
positive sense) by this closed loop at the "tip" of L.

The following result involves the Brownian loop [0, \S2\~] ->G, based at e, in the
homotopy class [P]. This is obtained by projecting onto G the corresponding
Brownian bridge process on the universal cover of G. To be precise, the Brownian
loop we deal with here is described by a probability measure on the space Λ\S2\ of
continuous loops [0, |S2|] ->G based at e and in the homotopy class [P] the basic
random variables on Λ\S2\ are the maps y H» y(t\ where t e [0, |52|]. The set A\S2\ is a
metric space under uniform convergence.

Theorem 2.2. The Gκ-valued random variable ω ι-» (g(Lί ω),..., g(Lx; ω)) on Wn has
the same distribution as y ι->(y f l,y t 2y~1,...,y t κy^~κ*_ J, where t{ = \L^\ +... + \Lt\9 and
[0, |S2|]->G:ίι—»gf is a Brownian loop in G, based at eeG, in the homotopy
class [P]. Π

Proof. See [Se2]. Π

3. The Limiting Process

We wish to consider the probability measure constructed in the same way as dμΎM

except with S( ) scaled to S( )/T, where T > 0. That is, we consider the measure
/\nΎ — 7~li>~s^lTVnm~}a^ΎM — ^T e \_υω±.

There is an easy way to see how the measure μγM is related to μYM. Instead of the
metric ds2 on S2 that we have been working with, introduce a new metric
dsf2 = Tds2. Then the corresponding area-measures dσ and dσ' are related by
dσ'=Tdσ. Now recall that S(ω)= J \\Ωω\\2dσ, where ||Ωω||2 is the function on S2

whose value at a point m is given by \\Ωω(e^ e2)\\2, where (eί9 e2) are tangent vectors
to P at some point on π-1(m) and which project to a basis of TmS2 which is
orthonormal with respect to the metric ds2. Thus S"(ω), the corresponding object for
the metric ds'2, is related to S(ω) by: S'(ω) = S(ω)/T. This suggests that the measure
μγM should be constructed just as μYM except all areas should be scaled by T. Both
the probability space ̂ n and the σ-algebra are the same as before but now we have
a new probability measure μγM on Wn. Thus, if «^ = {Cl5..., Cm} is an admissible
collection of curves in S2 and L l5..., Lκ is the sequence of lassos constructed as in
Sect. 2, then the random variables g(Cf) are products of the g(Lj)'s and g(Lk)~ l5s as
before, but the joint distribution of the g(Lt )'s is as described in Proposition 3.1
below.

We denote by Λa the space of continuous loops [0, α] ->> G, based at e, lying in the
homotopy class [P]. The standard Brownian loop in G in the homotopy class [P]
is described by a probability measure μ[0,α] on Aa. If ίe[0,α] then y*-+y(t) is a
random variable on Λa (and these variables generate the σ-algebra on Λa). On the
other hand, for T > 0, one also has a probability measure μτ on Aa such that, for
any tl9..., tt e [0, α], the random variable y ι-> (γtί,..., yt) has the same distribution
under μτ as does y i—> (yTίl,..., yτt) as a random variable on the space ATa with the
measure μ[0,τα] PU* another way, the measure μ[0,τα] describes the standard
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Brownian loop [0, Γα]-»G (in the homotopy class [P]) whereas μτ is a measure on
loops [0,0] ->G (in [P]) which is related to μ[0 Ta] by time scaling. In our usage,
a = \S2\.

Using Theorem 2.2 and the discussion above we can then formulate the
relationship between μγM and μτ as follows:

Proposition 3.1. The Gκ-valued random variable ω h- > (g(LA ω), . . ., g(LK; ω))
on <&n has the same distribution with respect to the measure μζM as
y !-» (Vtί> 7t27Γί

 1- > 7tκ7Γκ _ J on AIS2{ has under the measure μτ. Π

We now invoke the following result proved by M olchanov [Mo] and Hsu [H] :

Theorem 3.2. The sequence of probability measures μτ on Λ\S2\ converges weakly to
a probability measure μ0 which is concentrated on the set Γ0

[P' of minimum energy
geodesic loops [0, |S2|]->G, based at e, in the homotopy class [P]. Π

Proof. See Sect. 5 of [Mo] or Theorem 4.2 of [Hsu]. Π

Note that a minimum energy loop in G is described by a smooth map of S1

into G.
Combining Theorem 2.2 with Proposition 3.1 we see that for any bounded

continuous function / on Gκ the expectation value [J(g(L^ ω), ...,

g(LK; ω))d/4M(ω) converges, as T^O, to J

y(\LK\)y(\LK- i l) ί)dμ0(y). Recalling the correspondence (Theorem 2.1) between <g%
and /JP] we see that the measure μ0 can be transferred to a probability measure

on Ή® and then we have as T-*Q:

j_f(g(L, ω), . . ., g(LK; ω))dμ$M(ω)^ f f(g(L, ω), . . ., g(LK; ω))dμ°M(ω) .

Now recall that the L/s were constructed as tools for computing g(Q; ω), where
the C/s constitute an admissible collection {C1? ...,Cm} of closed curves
in S2 all based at n. Now if / is a bounded continuous function on Gm then
f(g(Cί ω), . . ., g(Cm; ω)) is of the form F(g(L1 ω), . . ., g(LK; ω)) for some bounded
continuous function F on G*, since each g(Q is a product of some g(L/s and some
g(Lfc)~l9s. Thus we have:

Theorem 3.3. There is a probability measure μ$M on <&„ such that for any admissible
collection {Cl5 ..., Cm} of closed loops in S2 based at n, as Γ->0

f f(g(C, ω), . . ., g(Cm; ω))dμ$u(ω)^ f f(g(C, ω), . . ., g(Cm; ω))dμ°YM(ω) . Π

By taking only those / which are invariant under the replacement f*-^f9, for
every g e G [where /e(xi,...,xJ=/(gXig~1,...,gxwg"1)], we obtain the analo-
gous result for the full quotient spaces * and ̂ °.
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