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Abstract. We use the lace expansion to study the standard self-avoiding walk in the
^-dimensional hypercubic lattice, for d ^ 5. We prove that the number cn of n-step
self-avoiding walks satisfies cn ~ Aμn, where μ is the connective constant (i.e. 7 = 1),
and that the mean square displacement is asymptotically linear in the number of
steps (i.e. v = 1/2). A bound is obtained for cn(x)9 the number of n-step self-avoiding
walks ending at x. The correlation length is shown to diverge asymptotically like
(μ"1 — z)~1/2. The critical two-point function is shown to decay at least as fast as
|x|~2, and its Fourier transform is shown to be asymptotic to a multiple of k~2 as
k -> 0 (i.e. η = 0). We also prove that the scaling limit is Gaussian, in the sense of
convergence in distribution to Brownian motion. The infinite self-avoiding walk is
constructed. In this paper we prove these results assuming convergence of the lace
expansion. The convergence of the lace expansion is proved in a companion paper.
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1. Introduction

The self-avoiding walk is a simply defined mathematical model with important
applications in polymer chemistry and statistical physics. It also serves as a basic
example of a non-Markovian process, but lies beyond the reach of current methods
of probability theory. In addition, it poses simply stated combinatorial questions
which have not yet met a mathematically satisfactory resolution.

It has been conjectured for some time that the self-avoiding walk behaves like
simple random walk in more than four dimensions. In four dimensions logarithmic
corrections to the scaling behaviour of the self-avoiding walk are expected, while
below four dimensions quite different behaviour is expected. This "triviality" of the
self-avoiding walk above four dimensions is analogous to the triviality of φ4 field
theory in more than four dimensions [1, 10], and more generally to the existence of
an upper critical dimension for statistical mechanical models. The proof of trivial-
ity of the φ4 theory relies on the infrared bound, for which there is no general proof
known for the self-avoiding walk, and does not extend readily to the self-avoiding
walk.

Brydges and Spencer [8] proved Gaussian behaviour for the weakly self-
avoiding walk (or Domb-Joyce model) above four dimensions, if the interaction is
sufficiently weak, using the lace expansion. This provided strong evidence that the
standard self-avoiding walk is also Gaussian above four dimensions, according to
the conjecture that the weakly self-avoiding walk is in the same universality class as
the standard self-avoiding walk. The lace expansion was subsequently applied to
study the standard self-avoiding walk above some high undetermined dimension dQ

[32-34, 24]. The lace expansion has proved to be a versatile tool, and has been
applied successfully to percolation [16, 15], oriented percolation [29], and
branched polymers [17,19].

In this and a companion paper [20] we extend and improve the results for the
self-avoiding walk in dimensions d g: d0 to d ̂  5, using the lace expansion. The
small parameter responsible for convergence of the lace expansion is the "bubble
diagram," whose Gaussian value for d = 5 is Σx*oC(x)2 = 0.5979, where
C(x) = Σωro^x (l/2d)|ω|, the sum being over all simple random walks from 0 to x.
Because this value is so large, convergence of the expansion is a much more
significant problem here than in the previous results for which the small parameter
could be taken arbitrarily small. Computer calculations (with controlled errors)
have been used to perform some of the calculations involved in the convergence
proof. As a result good numerical bounds have been obtained, e.g. for the diffusion
constant. The proof of convergence of the expansion is treated in the companion
paper [20], which we shall refer to as Part II.

The previous methods used to study the self-avoiding walk for d^d0 could not
be extended directly to d ̂  5, due to the use of derivatives of Green's functions
which diverge for d = 5. To overcome this we have developed a method using
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convergent fractional derivatives of Green's functions instead. (Fractional deriva-
tives were also used by Brydges and Spencer [8], although not referred to by that
name and with a quite different approach.)

Our method also differs from previous applications of the lace expansion to the
self-avoiding walk, in that we work directly with the self-avoiding walk and need
not consider finite-memory walks, which are self-avoiding only over finite time
intervals. This provides a conceptual simplification of the method for the self-
avoiding walk, and is also significant for further application of lace expansion
methods to branched polymers, for which it is less clear how to implement a finite
memory [19].

The self-avoiding walk is defined and reviewed in the next section. Then our
results are stated in Sect. 1.2. The organization of this paper and its relation to
Part II is described in Sect. 1.3, and an overview of the proof of the main results is
given in Sect. 1.4.

The results of this paper and Part II were announced in [18].

1.1. The Self-Avoiding Walk. An n-step self-avoiding walk ω on the d-dimensional
hypercubic lattice Zd is an ordered set ω = (ω(0), ω(l), . . . , ω(n)) in Zd, with each
ω(i)eZd, \ω(i) — ω(i + 1)| = 1, and ω(i) φ ω(j) for i ή=j. The notation | | denotes
Euclidean distance. Unless otherwise indicated, we take ω(0) = 0. We denote by cn

the number of rc-step self-avoiding walks, and for xeZ d we denote by cn(x) the
number of n-step self-avoiding walks for which ω(ri) = x. By convention, c0 = 1
and c0(x) = δXf0. When x is a nearest neighbour of the origin cn(x) counts the
number of self-avoiding polygons. The mean square displacement <|ω(n)|2>M is by
definition the average value of the square of the distance from the origin after
n steps, i.e.,

^n ω: |ω|=«

where the sum is over all rc-step self-avoiding walks.
The conjectured asymptotic behaviour of these quantities as n -> oo is

Cn-AμW-1, (1.2)

<|ω(n)| 2>π~Dtt 2 v, (1.3)
and

cn(x)~ Bμnn*sins~2 , (1.4)

where in (1.4) n and H x l ^ have the same parity. Any reasonable interpretation of
the symbol ~ may be taken at this point; we will be more precise about this
notation in the next section. The constants A, D, B are dimension dependent, and
μ is a dimension dependent constant known as the connective constant. In all
dimensions it is believed that the critical exponents satisfy the hyperscaling relation
αsing — 2 = — dv. The critical exponent y is believed to take the values 43/32 for
d = 2, 1.162 . . . for d = 3, and 1 for d ̂  4, with a logarithmic correction when
d — 4. The conjectured values for v are 3/4 for a = 2, 0.59 . . . for d = 3, and 1/2 for
d ^ 4, again with logarithmic corrections in four dimensions. These conjectures are
based on nonrigorous renormalization group arguments [30, 31] and numerical
work (see e.g. [12, 28] and references therein).

It is known that μ = lim,,-^ c\ln exists and that cn ̂  μn [13]. The best general
upper bounds on cn are of the form cn ̂  μ"exp[0(n2/(d+2)logrc)], with the log n not
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present for d = 2 [14, 22]. There is no general proof that v ̂  1/2 or that v ̂  1 — ε
for some ε > 0. In high dimensions, it has been proved that for d^d0, for some
undetermined dimension d0, that (1.2) holds with γ = 1 [34] and (1.3) holds with
v = 1/2 [32]. Progress is being made in the rigorous study of the weakly self-
avoiding walk in four dimensions, using renormalization group methods [7, 3].

We introduce the generating functions for cn, the susceptibility:

χ(z) = Σ cnz», (1.5)
w = 0

and for cn(x\ the two-point function:

Gz(x) = Σ cn(x)z" (1.6)
n = 0

Both of these power series have radius of convergence equal to the critical point
zc = μ"1. The correlation length of order two is defined by

For ze(0, zc), it is known that the two-point function decays exponentially as
\x\ -> oo, and that the correlation length

ξ(z) = (- lim iΓMogGΛfaO, . . . , 0)A * (1-8)

exists and diverges to infinity as z/% [9]. It is widely believed that ξ(z) and ξ2(z)
are asymptotic to multiples of (zc — z)~v as z/%, with the same critical exponent
v as that governing the mean square displacement in (1.3). It is also believed that at
the critical point the two-point function decays via a power law:

_ , ^ const.

with η satisfying Fisher's scaling law y = (2 — η)v. Inserting γ = 1, v = 1/2 gives
η = 0 for d ̂  5. In terms of the Fourier transform

Gz(k)= Σ Gz(x)eik'x, fc6[-π,π]«, (1.10)
xeZd

(1.9) leads one to expect

GZc(k) - const.-^ a s / c ^ O . (1.11)
/c

The simple random walk analogue of Gz(k) is [1 — 2dzD(/c)]~1, where
b(k) = d~1 ΣJ= icos kj At the simple random walk critical point z = (2d)~ *, this is
asymptotic to 2dk~2 as fe -> 0.

7.2. Main Results. Our results are stated in the following theorems.

Theorem 1.1. For d ̂  5 there are positive constants A, D such that the following
hold.
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(a) cn = Aμn[\ + 0(n~ε)] as n -> oo,/or any s < 1/2.
(b) <|ω(n)|2>π = Dn[l + 0(n"ε)] as n -> oo,/or any ε < 1/4.
For d = 5, A ell 1.493] ami De [1.098, 1.803].

A corollary of (a) is that lim,,^ cn+1/cn = μ. This is believed to be true in all
dimensions, but remains unproved for d = 2,3,4. (Kesten has proved that
lim^oo cn + 2/cn = μ2 in all dimensions [21].) Our method first controls the suscep-
tibility and correlation length of order two, and then uses contour integration
to prove Theorem 1.1. The results for χ and ξ2 are stated in the next theorem.
In the statement of the theorem and throughout the remainder of the paper, the
notation /(z) ~ g(z) means \\mz^Zcf(z)/g(z) = 1 (and similarly an~bn means

Theorem 1.2. For d ̂  5,
Azc

Zc- Z

and

Dzc V'2

as z/z c, with the same constants A, D as in Theorem 1.1.

We have not succeeded in proving a bound of the form cn(x) ^ Bμnn~d/2 for
d = 5, although such a bound can be proven for a spread-out self-avoiding walk for
d > 4 [27]. Here we prove a bound on the generating function for cn(x) which is
consistent with such an upper bound on cn(x). (See [26] for a related result for
x a nearest neighbour of the origin, for general d.)

Theorem 1.3. For d^5, supx^=0n
acn(x)μ~n <ao,for any a<(d- 2)/2.

For the correlation length we have the following result. The proof is based on
the method employed in [15] to study the analogous problem for percolation.

Theorem 1.4. For d ̂  5,

i ~ 11 i as z / zc .
<2d\zc-zJ

By Theorems 1.1, 1.2 and 1.4, the length scales defined by the mean square
displacement, the correlation length of order two, and the correlation length are as
expected all governed by the same critical exponent v = 1/2. Moreover, if we set
D = 1 and zc = (Id)'1 in the asymptotic forms of these three quantities, then we
exactly recover the asymptotic forms of their simple random walk analogues.

Our results for the critical two-point function are stronger in fc-space than in
x-space, and are summarized in the following theorem. The upper bound on GZc(x)
in the theorem, for p < (d — 2)/2, follows immediately from Theorem 1.3 and the
fact that \x\pcn(x) ^ npcn(x). The fc-space result provides a strong infrared bound.

Theorem 1.5. Let d ^ 5. For any p satisfying p < (d — 2)/2 or p ^ 2 there is
a constant C(p) such that for all x, GZc(x) ^ C(p)\x\~p. The Fourier transform
satisfies GZc(k) = const.[fe2 + O(fc2+ε)]~ lC as k -> 0,/or any ε < 1/2.



106 T. Kara and G. Slade

To discuss the scaling limit we first introduce some notation. Let Cd[0, 1]
denote the continuous Rd- valued functions on [0,1]. Given an rc-step self-avoiding
walk ω, we define XneCd[Q, 1] by taking Xn(t) to be the linear interpolation
of the points n~1/2ω([nf]), where [nί] denotes the integer part of nt. We denote
by άW the Wiener measure on Cd[0, 1], unconventionally normalized so that
$eik'BtdW= exp[-Dfc2ί/2d], where D is the diffusion constant of Theorem 1.1.
Expectation with respect to the uniform measure on the π-step self-avoiding walks
is denoted by <•>„• The following theorem extends the results of [33, 34] from
d ^ d0 to d ̂  5.

Theorem 1.6. For d ̂  5, the self-avoiding walk converges in distribution to Brownian
motion. In other words for any bounded continuous function f on Cd[0, 1],

In [24], the lace expansion was used to construct the infinite self-avoiding walk
for d ̂  d0. This construction can be extended using the methods of this paper to
d ^ 5. See Sect. 5 for the definition of the infinite self-avoiding walk. We have no
reason to doubt that the infinite self-avoiding walk exists in all dimensions, but
a new idea will be needed to prove its existence for d = 2, 3, 4.

Theorem 1.7. The infinite self-avoiding walk exists for d ̂  5.

All of the above results rely on the lace expansion. In the course of the proof of
Theorem 1.2, good bounds on the value of μ were required. An elementary method
of obtaining a lower bound on μ was developed, which does not use the lace
expansion, and which is valid above two dimensions. The resulting bound in three
dimensions slightly improves the previous best rigorous lower bound 4.352 of [11].
The bounds for d = 3, 4, 5 are as given in the following theorem. The proof of this
theorem is independent of the rest of our methods, and can be found in Appendix
A of Part II.

Theorem 1.8. Let μ(d) denote the connective constant for Zd. Then μ(3) ̂  4.43733,
μ(4) ^ 6.71800, and μ(5) ̂  8.82128.

1.3. Organization. The proof of the results stated in Sect. 1.2 is long and divides
naturally into two parts. This paper treats one part of the proof, while the second is
treated in Part II. Part II contains all aspects of the proof which involve numerical
computations. In this section we give a brief guide to the organization of this paper
and its relation to Part II. Equation, section and theorem numbers from Part II are
indicated with the prefix II.

Section 1.4 gives an overview of some of the main ideas involved in the proofs of
the theorems stated in Sect. 1.2.

Sections 2.1 and 2.2 give a general description of the lace expansion and
a review of the method of [8] for obtaining bounds on the expansion. However for
d = 5 much more detailed methods are required for proving convergence of the
expansion. These methods are presented in Part II, where the proof of convergence
of the lace expansion is given. One ingredient of the convergence proof is the bound
on the connective constant of Theorem 1.8. The proof of Theorem 1.8 is given in
Appendix A of Part II.
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In Sect. 2.3 we summarize the results of Part II which are needed to prove
Theorems 1.1-1.7. Theorem 1.2 follows immediately from the results summarized
in Sect. 2.3; its proof is given in Sect. 3.1.

In addition to the estimates from Part II summarized in Sect. 2.3, the proofs of
Theorems 1.1 and 1.3-1.7 rely on the fact that certain norms of "fractional
derivatives" of the propagator Gz(x) are finite at the critical point z = zc. A calculus
of fractional derivatives is briefly developed in Sect. 3.2, and then applied to the
propagator in Sect. 3.3, where Theorem 1.3 is proved. Then contour integration is
used to prove Theorem 1.1 in Sect, 3.4. However the proof of the numerical bounds
on A and D for d = 5 relies on numerical estimates and is deferred to the end of
Sect. Π.1.3. Section 3.5 contains the proof of Theorem 1.4.

The infrared bound is intimately connected with the convergence of the ex-
pansion, and in Corollary II. 1.2 upper and lower bounds^are obtained on GZc(k).
These bounds are then improved to give the bound on GZc(k) of Theorem 1.5 in
Sect. 3.6. The x-space bound GZc(x) ^ const.|x|~2 of Theorem 1.5 is proved in
Theorem II. 1.1.

In Sect. 4 the proof of Theorem 1.6 is given. Finally in Sect. 5 we prove
Theorem 1.7.

1.4. Overview of the Method. In this section we give a brief general overview of the
methods used to prove the results for cn and χ(z) stated in Theorems 1.1 and 1.2.
The estimates and methodology developed in proving these results illustrate many
features of the proofs of the other theorems.

The basic starting point is the lace expansion, which provides a formula for the
quantity Πz(k) defined implicitly by the equation

Gz(k) = - J - , - . (1.12)
1 - 2dzD(k) - Πz(k)

The lace expansion can be derived either by an expansion and resummation
procedure similar to that used to derive cluster expansions in statistical mechanics
and quantum field theory [8, 6], or by repeated application of the inclusion-
exclusion relation [35]. The resulting formula for Πz(k) can be bounded above,
using the repulsive nature of the self-avoidance interaction, by a sum of Feynman
diagrams in which the lines in the diagram represent the propagator (two-point
function) (LI 2). It is then possible to estimate these diagrams to obtain an upper
bound on Πz(k) in terms of the two-point function itself. In particular, a bound on
the zeroth, first and second derivatives of Πz(k) with respect to kμ can be obtained
of the form

δ0>u

L

\ d » μ Π z ( k ) \ ^ \ \ x « μ G l z l ( x ) \ \ δ 0 > u 2 d \ z \ + B(\z\)N^ll+B(\z\)T-2)

L N = 2 L

(u = 0, 1, 2), where B(z) is the "bubble diagram"

B(z) = Σ Gz(x)2 (1.14)
c Φ O

and the norm in (1.13) is the supremum norm. Bounds such as (1.13) can be
somewhat costly in numerical terms, and considerably more elaborate estimates
are used in Part II.
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Con vergence of the right side of (1.1 3) requires that £(|z|)[l + #(|z|)] < l.For
simple random walk at its critical point z = (2d)~1, the bubble diagram is infinite
for d ̂  4 and diverges as d -> 4 + . The same can be expected for the self-avoiding
walk. This restricts the method to d > 4, or more accurately to d larger than four
plus some positive amount. In this sense our method is unnatural. A more natural
method would have as its driving force the fact that B(zc) infinite rather than small,
but unfortunately such a method has not materialized. For d = 5 we expect B(zc) to
be somewhat less than the critical simple random walk bubble diagram value of
0.5979. Since (0.5979) (1.5979) = 0.9554 < 1, the required inequality is satisfied with
this value, but barely.

The estimate (1.13) provides a bound on du

μΠz(k) in terms of the norms B(z)1/2

and || xu

μ Gz(x) \\ ̂  . But (1.12) provides a means of calculating these norms in terms of
duμΠz(k) itself. It was shown in [32] that in high dimensions self-consistency
requires a finite uniform bound on these two norms, for |z ^ zc. This gave the
x-space bound asserted in Theorem 1.5 (with p ^ 2) for high dimensions, and in the
course of establishing these bounds an infrared bound was also obtained. In Part II
this self-consistency argument is improved to d ̂  5. Dealing with actual d = 5
values, rather than simply taking the inverse dimension as small as required,
complicates the proof considerably. Computer calculations played an important
experimental role in developing the proof, and in performing some of the calcu-
lations in the final version. Rigorous error bounds were obtained for the computer
calculations.

Similar arguments lead to a proof that || δzG|z|(x) || ̂  is finite, and a finite bound
on \dzΠz(k)\ in terms of this norm, for |z| ^ zc. Higher order z-derivatives of Πz(k)
would involve /°° norms of higher order derivatives of Gz(x).

A basic philosophy underlying the analysis is that for d greater than four GZc(k)
behaves essentially like the critical simple random ^walk two-point function
C(k) = [1 — jD(fc)]"1. According to this philosophy, dzΠZc(k) should be infinite for
d ^ 6 (so in particular for d = 5) since for simple random walk the norm
|| dz C(x) || oo behaves like ]Γn n

2n~d/2. However for d > 4 it should be possible to take
fractionally more than one derivative, since Σnn

1+εn~d/2 < oo for ε < (d — 4)/2. In
Sect. 3.2 a method of calculating such "fractional derivatives" is developed, and it is
then applied in Sect. 3.3 to prove that \δε

zdzΠZc(k)\ < oo (δe

z is defined in Sect. 3.2).
It follows from the fact that the bubble diagram is finite at the critical point that

χ(z) is bounded above and below by positive multiples of (zc - z)~ l as z / zc [5]. To
obtain the stronger asymptotic behaviour claimed in Theorem 1.2, we first note
that because GJO)'1 = 1 - 2dzc - 772c(0) = 0,

χ(z) = Gz(0) = -^ - ̂  - - - 1 - ̂ - . (1.15)
G,(OΓ 1 - GZc(0)- 1 2d(zc - z) + 77Zc(0) - ΠZ(Q)

The desired asymptotic behaviour

χ(z) ~ [2d + dzΠZc(G)Yl(zc - z)-1 (1.16)

then follows from a positive lower bound on 2d + dzΠZc(Q), which is itself estab-
lished in the self-consistency argument referred to above.

To prove Theorem l.l(a), we now want to obtain the large-n asymptotics of cn

from the asymptotic behaviour (1.16) of the generating function at its closest
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singularity to the origin. Generally additional information beyond (1.16) is required
for such a task, and any additional sufficient condition usually is called a Tauberian
condition. To see what sort of error term is involved, we add and subtract the right
side of (1.16) to (1.15), and perform a contour integral to obtain cn. The result can be
written as

cn = [2d + dzή — '- ' |_ 2πi" (zc - z)

where

h(z) = dzΠZc(G)(zc - z) - 77Zc(0) + 4(0) (1.18)

and the contour is a small circle centred at the origin. We now proceed to analyze
the error term, i.e., the contour integral on the right side of (1.17).

If the contour is deformed to the circle of convergence z| = zc, the factor
(zc/z)"+1 becomes e~'("+1)0. If the rest of the integrand were integrable on the circle
z| = zc, then by the Riemann-Lebesgue lemma the error term would go to zero as

n -> oo. As discussed above, it can be shown that (1 + ε) z-derivatives of Πz(k) can
be taken. A lemma in the spirit of Taylor's theorem then can be used to show that
h(z) vanishes at least as fast as |zc — z| x +ε at zc, which is enough to give integrabil-
ity. We also prove a lemma which gives control of the error in this type of
Riemann-Lebesgue argument.

2. The Lace Expansion

Sections 2.1 and 2.2 provide a brief overview of the Brydges-Spencer lace expan-
sion. Readers already familiar with the lace expansion may wish to skip directly to
Sect. 2.3. A detailed account of the lace expansion is given in [27].

2.1. General Description. We first need to introduce some notation and terminol-
ogy. Given an π-step simple random walk ω = (ω(0), ω(l), . . . , ω(n)) and two
nonnegative integers s and ί, we define

-1 if ω(s) = ω(ί)
0 ifcφUJo (11)

The self-avoiding walk two-point function can then be written

G,(x)= Σ z'ω' Π (1 + **M), (2.2)
ω:0-*x 0^s<ί^|ω|

where the sum over ω is the sum over all simple random walks ending at x.
The Fourier transform of (2.2) is given by

Gz(k) = X z

|ω|βίk'ω(|ω|) Π ί1 + **M) . (2.3)
ω θ5Ξs<f5Ξ|ω|

We denote the radius of convergence of the right side by zc(/c). Since Gz(0) = χ(z),
zc(0) = zc. For any fc,

zc(k) ^ zc . (2.4)
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To obtain a formula for the inverse of the propagator Gz(k\ we first introduce
some terminology.

Definition 2.1. Given an interval / = [α, b~\ of positive integers, we refer to a pair si
of elements of /, with s < ί, as an edge. The length of an edge st is t — s. A set of
edges is called a graph. A graph Γ is said to be connected if both a and b are
endpoints of edges in Γ, and if in addition for any c e (α, b) there are 5, t e [0, b~\ such
that s < c < t and steΓ. The set of all graphs on [α, b~\ is denoted J*[α, fe], and the
subset consisting of all connected graphs is denoted ^[α, b]. A lace is a minimally
connected graph, i.e., a connected graph for which the removal of any edge would
result in a disconnected graph. The set of laces on [0, b~\ is denoted by JS?[α, fe], and
the set of laces on [α, 6] which consist of exactly N edges is denoted &N[a, b].

The following prescription associates to each connected graph Γ a unique lace
JS?Γ. The lace JS?Γ consists of edges s^, s 2£ 2> where

sx = α, ίi = max{ί:

ίί+1 = max{ί: steΓ, s < ίj

sf = min{s:

Given a lace L, the set of all edges stφL such that ^Lu{sί} = L is denoted
Edges in #(L) are said to be compatible with L.

For <3 < fo we define

K\a,V\= Π (!+**)• (2-5)
sίe^[α,b]

We set K[a, a] = 1. For a < b we also define

J*[*,&]= Σ Π** Π (l+*sr) (2.6)
Le^N[α,6] sfeL s'ί'e^(L)

and

J[α,6]= £ J^[α,fc]. (2.7)

The sum in (2.7) is a finite sum, since the sum in (2.6) is empty for N > b — a. We set
J[α, a] = 1. By definition, J[α, α + 1] = 0, since the only lace on [α, α + 1] con-
sists of the single edge {α, α + 1} and ^α,α + ι =0 (because a walk cannot be at the
same place at consecutive times).

Now we define

(2.8)
ω:0->:c

and

Πz(x)= Σ (-iyπW(x)= Σ z«β"j[0,|ω|], (2.9)
N = l ω:0-»jc

for any z for which the right sides converge. By definition, Π(

z

N\x) ^ 0 for all
nonnegative z. Theorem 2.6 below asserts that for d ̂  5,

^ . (2.10)
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Equation (2.10) guarantees the existence of the Fourier transform of Πz(x\ for
\z\ ^ zc. Recall that D(k) = d~1^d

μ=ί coskμ.

Theorem 2.2. (Brydges and Spencer [8]). For any value of z for which
Σπ*2 z|ω|./[0, H] and ΣN*O z|ω'K[0, |ω|] converge absolutely,

Gz(x) = δ0,x + z Σ GΣ(x-y)+ Σ Πz(υ)Gz(x-υ) (2.11)
y:\y\ = l veZά

and

Gz(k) = J * . (2.12)
1 - 2dzD(k) - Πz(k)

Theorem 2.2 gives an expression for the inverse of the propagator Gz(/c). By
definition,

4(/c) = Σ Σ e*-<H>zH Jw[0, |ω|] . (2.13)
N = l ω:|ω|^2

There is a useful diagrammatic interpretation for the terms in the above sum over
N9 arising from the fact that JN[Q, |ω|] φ 0 only for walks ω with a specific
topology. This has been described in detail in [8], so we state this interpretation
without detailed explanations here. The factor ΠsίeL^sf in (2.6) is nonzero only if
the walk intersects itself at times s and ί, for each sίeL, while the factor
ΓLίew(l + <%st) rules out many (but in general not all) other self-intersections.
The walk decomposes in a natural way into 2N — 1 strictly self-avoiding subwalks,
corresponding to the time intervals intervening between the intersections required
for Πsf6L*st Φ 0. We represent the Nth term: (-lfΠ™(k) of (2.13) by an AΓ-loop
diagram, as follows:

The subwalks which are not slashed in (2.14) must consist of at least one step,
whereas the slashed subwalks can be of zero or more steps. The subwalks forming
each loop of a diagram are mutually avoiding. Further mutual avoidance is also
present.

2.2. Bounds on the Lace Expansion. To bound a term on the right side of (2.14), we
first take absolute values inside all sums. We then overcount by neglecting all
mutual avoidance between distinct subwalks. To give an explicit example, we first
define

G?\x) = Σ '»(*)*" = Gz(x) - δ0,x . (2.15)
ιι=l

Then the three loop diagram is bounded above in absolute value by

u(x)G$(x-y)2. (2.16)

Brydges and Spencer [8] proved the following lemma, which can be used to
bound diagrams such as those occurring in (2.14), or their derivatives with respect
to z and k. Although this lemma will be adequate for some of our needs, we will
require considerably more detailed estimates on some diagrams, particularly those
with few loops. These detailed estimates will appear in Part II.
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Lemma 2.3. Evaluate the N-loop diagram contributing to the right side of (2.14) by
associating to any one vertex the origin in Zd, associating to each additional vertex an
index in Zd, and associating to the ith subwalk an even function ft evaluated at the
difference of the indices corresponding to the endpoints of the subwalk, and then
summing the product of thefts over all indices. Then for anyje{l, . . . , 2N — 1} the
diagram is bounded above by

\\fj\\vll\\fi\\2,

i*j

where \\ \\p denotes the lp norm for functions on Zd.

This lemma can be used directly to estimate expressions such as (2.16). It can
also be used to estimate various modifications of the diagrams in (2.14), and this is
described in detail in [8]. Here we try to give an idea of how the process works.
Given a nonnegative integer w, if we take the uih kμ -derivative of a diagram, we can
bound the result by introducing a factor |xμ|". Similarly a z-derivative introduces
a factor of |ω|. More generally we consider the case in which a factor \ω\v is present,
where υ is a positive real number. Denoting the subwalks in the N-loop diagram by
ωt , we can write |ω| = Σfj^"1 l ω ί l> and thus by an appropriate inequality (e.g.

|ωΓ ^ (2N - l^ΣffΓ1 \ωi\v for v ^ !) we obtain a sum of diagrams in which
one subwalk carries a factor |ωf

 v. Similarly, if xμ\
u is present, we write xμ = ̂  y®

as the sum of displacements along a number of subwalks, and with an appropriate
inequality we can arrange that in a particular term only one subwalk carries
a factor \yff\u. Moreover if both \ω\v and \yff\u are present, it can be arranged that
different subwalks carry the factors \y(

μ

j}\u and \cθi\v. The number of terms obtained
will be polynomial in the number of loops. All other subwalks will be unchanged.
Reasoning in this way, the following lemma can be proved. See for example [8, 27];
more detailed estimates are obtained in Part II.

Lemma 2.4. Suppose that in each diagram contributing to (2.14) the factor \x\u\ω\v is
introduced. The result is bounded absolutely by a finite constant if

|x|"Gw(x)||r, Σ n°cn(x)\z\n

n = l

< oo (2.17)

with (r, s) = (2, oo) or (oo, 2), and if in addition

| | G f z

1

l

) M | | i < l . (2.18)

If these inequalities are satisfied, then the sum of modified diagrams in (2.14) is
proportional to each of the norms in (2.17).

2.3. Bounds Required from Part II. In this section we collect some results from
Part II which are needed in the remainder of Part I. See Theorem II. 1.1 for the
proofs of these results.

Theorem 2.5. Let d ̂  5. There are constants CΊ , C2 such that for any z with \z\ ̂  zc,

and

2

with C2(l + C2) < 1, i.e., (2.18) is satisfied.
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Theorem 2.6. Letd^5 andue{0, 1, 2}. The quantities \dzΠz(k)\ and \du

μΠz(k)\ are
finite and bounded uniformly in /cs[ — π, π]d and |z| ^ zc. In fact the series repre-
sentations of these quantities are bounded absolutely (absolute values inside sums over
x, AT) and uniformly.

It follows from Theorem 2.6 and the dominated convergence theorem that
dzΠz(k) and du

μΠz(k) (u = 0, 1, 2) are^continuous on the closed disk |z| ^ zc. In
particular, since χ(z) = [1 — 2dz — Πz(0)']~ί diverges at zc we have 1 — 2dzc

- ΠZc(0) = 0.

Theorem 2.7. Lei d ^ 5. For z = zce
iθ with θ φ 0, ίfe zero-momentum inverse propa-

gator 1 — 2dz — ΠZ(Q) is nonzero.

Theorem 2.8. Let d ̂  5. There are positive constants C3, C4, εx swc/z that for any
-ε1 ?zc]

2d + δzΠp(0) ̂  C3 > 0

2dp - V^ΠP(0) = 2dp + X |x|2ϋp(x) ̂  C4 > 0 .
X

Also, there is a positive constant C5 such that for any pe[0, zc],

with 2dzc - C5 > 0. In particular, FZc(k) ^ 0, where Fz(k) = l/Gz(/c).

3. The Critical Exponents

This section is organized as follows. We begin in Sect. 3.1 with the proof of
Theorem 1.2. In Sect. 3.2 we prove some elementary lemmas concerning fractional
derivatives. In Sect. 3.3 we prove existence of fractional derivatives of Πz(k\ and
also prove Theorem 1.3 [see Theorem 3.7(a)]. In Sect. 3.4 contour integration is
used to prove Theorem 1.1. In Sect. 3.5 the correlation length is studied and
Theorem 1.4 is proved. Finally in Sect. 3.6 the proof of Theorem 1.5 is completed.

3.1. Proof of Theorem 1.2. The bubble diagram is defined by B (z) =
was shown in [5] that if B(zc) < oo, then there are constants cί and c2 such that for

c2(zc-PΓ
1 . (3.1)

Thus by Theorem 2.5 and the results of [5], (3.1) holds.
To obtain the stronger asymptotic behaviour stated in Theorem 1.2, we observe

that since 1 - 2dzc - 77Zc(0) = 0,

z, — z / V zr - z
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It then follows from Theorem 2.8 that χ(z) is asymptotic to [2d + <3z/7Zc(0)] ~l(zc—z)~ 1.
Defining

A = - L - = - l—^ - (3.3)

gives the desired result.
For the correlation length of order two, we note that by symmetry and direct

calculation,

= ~? ( Q ) = L2dz - Vfc

277z(0)]χ(z) . (3.4)

The desired asymptotic behaviour of ξ2(z) now follows from the asymptotic
behaviour of χ(z) and the bound on V& Πz(0) of Theorem 2.8, if we define

D = ΓZcl-dzFZc(Q)]
D

3.2. Fractional Derivatives. In this section we describe some elementary properties
of what we term fractional derivatives. This terminology is somewhat inaccurate,
but is useful in a suggestive sense in the analysis of the large-n asymptotics of power
series coefficients. Given a power series /(z) = £*=0 anz" and ε ̂  0, we define the
fractional derivative

δε

zf(z) = f n*anz» . (3.6)
Λ = 0

Note that for ε a positive integer δε

z does not give the usual derivative. We will use
(3.6) with εe(0, 1). Allowing ε to take on arbitrary negative values defines a relative
of the antiderivative, as follows. For α > 0 we define

δϊ'fW = Σ n-Λanf . (3.7)
n = l

Both of the above quantities will be finite at least strictly within the circle of
convergence of f(z).

The following lemma provides formulas which are convenient for estimating
fractional derivatives.

Lemma 3.1. Letf(z) = Σ^°=0 anz
n have radius of convergence R. Then for any z with

\z\ < R, and for any α > 0,

(3.8)
o

where Cα — [αΓ(α)]"1. In addition, for any z with \z\ < R and for any εe(0, 1),

δlf(z) = d-.z ]f'(ze-ίlllt-*)e-ίllll-*dλ . (3.9)
0

The identities (3.8) or (3.9) also hold for z = R, if an ^ 0.
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Proof. Let |z| < R. We first note that for any α > 0,

e-»λίlΛdλ, (3.10)

as can be seen by making the substitution y = nλ1/cί in the integral on the right side.
Therefore

Σ n-«anz
n = Cα Σ an f (z<ΓA /α)« Ai . (3.11)

w = l «=1 0

Since the right side converges absolutely the order of integration and summation
can be interchanged to yield (3.8).

For (3.9), we write nε = n~(1~ε)n and use (3.10) with α = 1 — ε to obtain

Σ n'αnz» = d-.z £ nan ] (**-*""")- V^dA . (3.12)
κ=0 n=l 0

Since the right side converges absolutely we can interchange the order of summa-
tion and integration to obtain

00 00

Σ p n *~ι C Πf — >i1^1~ εK — j l /d-s ) 7 Λ //•» + Λ \
rc^z" = Ci_ ε z J /'(ze λ )e λ dλ . (3.13)

« = o o

Now suppose that an ̂  0 and take z = R. Then the above interchanges of sum
and integral are justified by Fubini's Theorem. D

The following lemma provides an error estimate analogous to the error esti-
mate in Taylor's theorem. In applications of the lemma R will be the radius of
convergence of/

Lemma 3.2. Let εe(0, 1) and let /(z) = £^°=0 anz
n. Let R > 0 and suppose that

Aε = ΣiΓ=0 n
ε\an\Rn~ε < cc, so in particular /(z) converges for z\ ̂  R. Then for any

z with \z\ ̂ R,

\f(z)-f(R)\^2ί-*AεR-z\ε. (3.14)

Suppose that Bε = ^w°°=1 n
1 + β |α I I | JR π ~ 1 " e < oo, so in particular f ' ( z ) =

ΣΓ=o nanzH~1 converges for \z\ ̂  R. Then for any z with \z\ ̂  R,

|/(z) -/(Λ) -f'(R)(z - Λ)| g ̂ -1 5ε|^ - z|1 + ε . (3.15)

Proo/ We just give the proof of (3.15). The proof of (3.14) is similar and simpler. By
definition,

/(z) -f(R) -f'(R}(z -R) = (Z-R)Σ anR
n^ "̂  Γf^Y - ll . (3.16)

π = l 7 = 0 L\Λ/ J

But in general

[ wj — Πε

- (\vj - l)1

w - l j

ΓJ-l Ίε

= (w - in Σ w" (w' - i)1

Lm = 0 J
(3 17)
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Taking absolute values in (3.17) and using w = z/R and |w| ^ 1 gives

^ |z- R\εjε21~εR~ε . (3.18)

Since Y^lj* ^ (1 + ε)~ V+ε, the lemma follows from (3.16) and (3.18). D

The intuition behind the following lemma is that if a power series with radius of
convergence R behaves like \R — z\~b near z = R, for some b ^ 1, then roughly
speaking it should have coefficient of zn not much worse than order R~nnb~l.

Lemma 3.3. Letf(z] = ΣΓ=o a^n naυe radius of convergence greater than or equal
to R > 0.
(i) Suppose that for \z\ < R, \f(z)\ ^ const.|R - z\~b for some b^l. Then \an\
<; 0(R~nn"),for any α > b - 1.

(ii) If for some b ̂  1 a bound on the derivative of the form \f'(z)\ ^ const. \R — z\~b

holds for every \z\ < R, then \an\ ^ 0(R ~nn~a)for any α < 2 — b.

Proof, (i) Fix b ^ 1 and let α > b — 1. Since n~"an is the coefficient of zn in the
fractional antiderivative δ~(tf(z\

where the integral is around a circle of radius r < R centred at the origin. By
Lemma 3.1,

w'λί"n~«\an\ ^ constr-" J dθ dλ\f(rewe'λί") -/(0)| . (3.20)
-π 0

Since /(z) — /(O) = 0(\z\) for z near zero, the contribution to the integral with
respect to λ due to Ae[l, oo) is finite. Using the assumed bound on/(z), we thus
have

[ π 1 Π

1+ J dθldλ\R-reiee-λ"aΓb . (3.21)
-π 0 J

Replacing the R on the right side by r gives an upper bound. Taking the limit r -> R
in the upper bound leads to

[ π 1 η

1+ J dθJd/ l l l -Λ-^Γ 6 . (3.22)
-π 0 J

To check that the integral on the right side is finite, it suffices to show that the
corresponding quantity with limits of integration θ = ± 1 is finite (or any other
small finite interval containing θ = 0). Thus it suffices to verify that

Λ - A ' Γ * < o o . (3.23)
o o

As we now show, it is an exercise in calculus to see that the left side is bounded for
α > b - 1 > 0.
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Making the substitution u = I1/α and writing the absolute value on the right
side as the square root of the sum of the squares of its real and imaginary parts
leads to an upper bound for (3.23) of the form

i i
ll(l - e~u}2 + e~2uθ2Γb/2 - (3.24)

The change of variables Θ1 = θe~u/(l — e~u) in (3.24) gives

1 i _ β-u e~u/(l -e~u)

f duu"-1 - zϊ— (1 - e~"Γb ί dθ^l + θlYbl2 . (3.25)
o e o

The θι -integral is bounded uniformly in u if b > 1, while if b = 1 it is finite for
u near 1 and 0(|logw|) for u near 0. Hence for b ̂  1, (3.25) is bounded above by
a multiple of

f Ai iOlogMl, (3.26)
o

which is finite for α > b — 1.
(ii) Given the bound on the derivative, it follows from (i) that \nan\ ^ 0(R ~nnp) for
any p > b - 1. Therefore \an\ ^ 0(R ~nnp~l) for any α = 1 - p < 2 - b. D

Remark. The hypothesis b ̂  1 in Lemma 3.3(i) is not artificial. For example,
let /(z) = X*= 5 ln~V n . Then /(z) is finite for \z\ ̂  1 so in particular
|/(z)| ^ const. 1 1 - z\~b for any be [0, 1). However aN = [Iog2 N]~2 for N = 2", so

0, 1-6).

The following lemma is a kind of Tauberian theorem, in which information
more detailed than merely the asymptotic form of a power series near its singularity
provides information about the large-rc asymptotics of the coefficients of the power
series.

Lemma 3.4. Let

/ω = » — 1 — τ^= Σ t>nzn,R-z- φ(z) Λf o

where φ(z) = ̂ ^=0anz
n. Suppose that for some εe(09 1), Σ^°=0 n

ί+ε\an\Rn < oo,som
particular φ(z) and φ'(z) are both finite for \z\ = R. Assume in addition that
φ'(R) φ - 1. Suppose that φ(R) - 0 but that R-z- φ(z) Φ 0/or \z\ ̂  R, z Φ ,R.
Then

- 1 ) (3.27)

uniformly in \z\ ̂  R, and

/or ei ^rj; α < ε.
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Proof. Since φ(R) = 0,

R - z + φ(R) - φ(z)

1

R - z + φ'(R)(R - z) + [φ(Λ) - φ(z) - φ'(R)(R - z)]

Let

(3.29)

R-z

and

h(z)
\l/(z) = ^ . (3.31)

A little algebra gives

Since |ft(z)| ^ O(\R — z\ε) uniformly in |z| rg R by Lemma 3.2, it is also the case
that \ψ(z)\ ^ 0(\R - z|ε) uniformly in |z| ^ #. This proves (3.27).

Let Cr be the circle of radius r centred at the origin and oriented counterclock-
wise. The coefficient bn is given by the contour integral

C.R/2

so by (3.32)

t, = _l__Jπ + _i__L^J|Lττίz. (3.34,

It remains to show that the second term gives a correction of the desired size.
We use statement (ii) of Lemma 3.3 for the correction term, as follows.

A straightforward calculation using the assumed bound on the (1 + ε)-derivative of
φ, together with Lemma 3.2, gives

d
dz R-z

^ const. |K-z| ε~ 2 (3.35)

uniformly in |z| ^ #. Hence the coefficient of z" of (R — z) V(z) is bounded above
by 0(R ~"n~α), for every α < ε, by Lemma 3.3(ii). This gives the required bound on
the second term of (3.34). D

3.3. Fractional Derivatives of the Propagator. In this section we begin by obtaining
bounds on norms of fractional derivatives of the propagator. These are thenused in
conjunction with Lemma 2.4 to obtain bounds on fractional derivatives of Πz(k). In
a final lemma, a bound on Gz(0) is obtained.
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For λ ̂  0 we define
- 3 J /( l-e) //Λ -s^

pλ = zce
 λ . (3.36)

We also write

The following two lemmas will be used to bound fractional derivatives of the
propagator.

Lemma 3.5. Let d^5. There is a positive constant c such that for any k and any λ

FPλ(k)^czc[\-e-λ^D(k)-]. (3.38)

Proof. Since FZc(0) = 0,

= 2dpλ[i - D(/c)] + [ΠΛ(0) - ΠΛ(k)] + J [-3PFP(0)] rfp . (3.39)
p^

By Theorem 2.8, there are positive constants C3 and λ0 such that for λ ^ λQ and
pe[pλ,zc],

-5pFp(0)^C3>0. (3.40)

Therefore for λ ^ A0,

J [ - δ/p(0)] rfp ̂  C3 (zc - pλ) . (3.41)

By Theorem 2.8, ΠPλ(0) - ΠΓλ(k) ^ - C5 [1 - D(/c)]. Let c = min{2d
— CspΓo1? ^3}- Then by Theorem 2.8, c > 0 (decreasing λ0 if necessary), and for
λ ^ Ϊ0

 we have Λe desired bound

Λ(fc) ^ (24 - CspΓ^pάl - D(k)-] + C3(zc - pλ)

pA)

(3.42)

But for A ;> AO,

GPA(/C) ^ GPλ(0) ̂  G,(0)|z = ^ e_A o l / ( 1-ε ) < oo . (3.43)

Hence for λ ^ λ0 FPλ(k) is bounded below by a positive constant, and so (3.38)
holds (decreasing c if necessary). D

For the next lemma, we define

Hz(x) = z'^Gz(x)-δ0tχ ]. (3.44)

Lemma 3.6. For any pe(0, zc] and m = 1, 2, 3, . . . ,

d£ Gp(x) ̂  m! /f , * . . . * H, * GP(JC) , (3.45)

where there are m factors of Hp in the convolution.
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Proof. By definition,

where the sum is over all self-avoiding walks from 0 to x. The binomial coefficient
on the right side counts the number of ways of choosing 0 < ιΊ < i2 < . . .
< ίm ^ |ω|, so it is also the number of ways to break ω into m + 1 pieces such that
the first m pieces each consist of at least one step. The upper bound then follows by
neglecting the mutual avoidance between these pieces. D

We are now able to obtain bounds on fractional derivatives of the propagator.
For this we introduce the notation i(d) to denote the integer (d — 4)/2 if d is even,
and (d — 3)/2 if d is odd. The bound (3.47) in the statement of the next theorem
proves Theorem 1.3, and should be optimal in the sense that (d — 2)/2 or more
derivatives would diverge (as they do for simple random walk). For d > 5 the
bounds (3.48) and (3.49) can be improved, but for simplicity we state only the
results valid for all d ̂  5.

Theorem 3.7. Let d^5. There are positive (dimension-dependent) constants Kι(ε),
K2(ε) and K3(ε) such that for any pe(0, zc],

( f\ 9 \
0, -̂ - - i(d)\ , (3.47)

\\δε

pGp(x)\\2^K2(ε) if 86(0, 1/4), (3.48)
and

(3.49)

Proof. For an upper bound, we take p = zc. We define pλ as in (3.36). The proof of
each of these three inequalities is similar, and we focus mainly on the first one. By
Lemma 3.1 [using the fact that Gp(x) has nonnegative coefficients cπ(x)], we have

0

Using Lemma 3.6 and the Fourier transform we can bound the right side as

ddk °° l/U-ε) -

It is not difficult to check (using Theorem 2.6) that there is a constant K4, not
depending on A, such that

\HPλ(k)\ ^KtFpftΓ1 . (3.52)

We bound the right side of (3.51), using (3.52) and (3.38), by

\i(d) + l]!Kί« + 1 J- d-A J
\LK) Q

jdlL 00

^ const. J- j άλe~λ^~\\ - e-λl/"-*D(k)Γ(m + 2) (3.53)
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Now by ($.9), the right side of the above inequality is equal to

ddk \

ddk °°
= const. J— 5 Σ n(n-ί)...(n-i(d) + ί)(n-i(d)γD(kΓ^-1. (3.54)

(3.55)

Since

ddk
—d

the right side is finite for i(d) + ε - (d/2) < - 1, i.e., ε<(d- 2)/2 - i(d).
For (3.48), we proceed in a similar fashion. Using Lemmas 3.1 and 3.6 and the

Parseval relation gives

(3.56)
0 2

where

11/2

Arguing as above and using the triangle inequality for || ||2 gives

H SpGpMh ^ zΓ'c-2/^ Σ »HW~Ίl2 (3.58)
11=1

The desired bound now follows from the fact that ||D(fc)"||2 ^ 0(π~d/4).
For (3.49), we again use Lemmas 3.1 and 3.6 and the Fourier transform, with

the result

oo Jdj. d

\x\2yfG,(x) £ d-.z, J dλe-λl'(1-'}l—d Σ |^2[HpΛ(/c)GpΛ(/c)]| . (3.59)
o l/π; μ = ι

By Theorem 2.6, \dμFPλ(k)\ is bounded. Also, it follows from Taylor's theorem and
the bound on |3μJ7z(fc)| of Theorem 2.6 that

d
Σ L3μFPλ(k)']2 ^ const.fc2 g const. [1 - e-Al/(1"β)D(fc)] . (3.60)

μ = l

It then follows from direct computation of the second derivative in (3.59) that for
some constant K5,

oo JdJf

|x|2«5pGp(x) ̂  d-.z, f dλe-λl'(1"}l-—dK5Fpί(kΓ3 - (3.61)
o (/πJ

Now the argument proceeds as below (3.52). D

The following result follows immediately from Lemma 2.4, Theorem 2.5, and
the above theorem. (In fact, the ε = 0 version of (3.49) given in Theorem 2.5 is
sufficient for Corollary 3.8. The ε > 0 version is used in Sects. 3.5 and 3.6.)
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Corollary 3.8. Let d ̂  5. There is a finite positive K6(ε) such that for any kε
[ — π, π]d and \z\ ̂  zc,

\δ*zdzΠz(k)\, \δε

zd»μΠz(k)\ ^ K6(ε) , (3.62)

far u = 0, 1, 2, where the first bound holds for any positive ε < 1/2 and the second for
any positive ε < 1/4. In fact the series representations of the left side are bounded
absolutely by K6(ε).

We end this section with an upper bound on the zero-momentum propagator,
for z in the closed disk of radius zc.

Lemma 3.9. Let d ̂  5. There is a constant c > 0 such that for any z with \z\ ̂  zc,
Fz(0)^φc-z|.

Proof. By definition of zc, Fz(0) is nonzero for |z| < zc. By Theorem 2.7, Fz(0) is
also nonzero on the circle of convergence |z| = zc, except at z = zc. Since Fz(0) is
continuous in z for |z| ^ zc, it thus suffices to obtain the inequality in the statement
of the lemma for z in a neighbourhood of zc.

By Corollary 3.8, we have an absolute uniform bound on \δε

zdzFz(k)\ for
|z| ^ zc. Therefore, by Lemma 3.2 there is a constant B such that

l£(0) - δzFZc(0)(z - zc)| ^ B\zc - z|1+ε (3.63)

for all |z| ^ zc. Since (by Theorem 2.8) -dzFZe(0) ^ C3 > 0, it follows that there
are positive constants c, δ0 such that

|F z(0)|^c|z c-z| (3.64)

f o r z e { | z | ^ z c } n { | z c - z | < ( 5 o } . Π

3.4. Proof of Theorem 1.1. In this section we give the proof of Theorem 1.1.
(Bounds on A and D for d = 5 are discussed at the end of Sect. II. 1.3.) We begin
with cn.

Proof of Theorem 1.1 (a). Since FZc(0) = 0, the susceptibility can be written as

X(z) = -^ \ - 1 - ττl , (3.65)
2d \_zc-z- φ(z)_\

where

(3.66)

By Corollary 3.8, for any ε < 1/2, £Π n1 + ε |πM |z" < oo, where πn is the coefficient of
z" in the power series representation of 77Z(0). Moreover by Theorem 2.8
φ'(zc) Φ — 1, and by Theorem 2.7 the only zero of φ(z) on the circle |z| = zc is at
z = zc. It then follows immediately from Lemma 3.4 that

c - —Cn~ —
2dc

1
0(n~ε)

= Aμn[\ + O(n-)] , (3.67)

where A is given by (3.3). D
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We now turn to the mean square displacement.

Proof of Theorem 1.1 (b). By definition of the Fourier transform,

/ . / \ ι 2 \ *kCn(y) /o zτo\< I ω(n) I2 >n = - . (3.68)
CH

The asymptotic behaviour of the denominator on the right side was obtained in
(3.67), and we now proceed to analyze the numerator.

Since cn(k) is the coefficient of zn in Gz(k\

where the integrals are performed around a small circle centred at the origin. We
define an error term E(z) by

S*f- >2JV0)

 2 + £(z). (3.70)
Fz(0)2 [5zί-Zc(0)]2(zc - z)2

Inserting the right side of (3.70) into the right side of (3.69), the integral correspond-
ing to the first term can be performed exactly to give

-vίί (0) =

The remaining task is to bound the last term in (3.71). This is done using
Lemma 3.3. In fact, it follows from Lemma 3.3(i) that if it can be shown that for
every ε < 1/4, \E(z)\ ^ const.|zc — z|~ 2 + ε for all |z| ^ zc, then the second term on
the right side of (3.71) is 0(z~nn") for every α > 3/4. Assuming for the moment this
bound on the error term and using (3.67), we then have the desired result

with D given by (3.5).
We now establish the upper bound on \E(z)\ used in the previous paragraph.

We first use (3.70) to write E(z) as a difference of two fractions, and then write this
difference over a common denominator and add and subtract V & F Z ( 0 ) F Z ( 0 ) 2 in the
numerator. This leads to

E(z) =T, + T2 (3.73)
with

,_2V t

2F,(0)-V2F,e(0)
(zc - z)2

and

=

[32JF2,(0)]2Fz(0)2(zc - z)2

Fix ε < 1/4. For T1, we use existence of an ε-derivative in the numerator by
Corollary 3.8, together with the Taylor theorem type bound of (3.14) to conclude
that

|7\ |gO( |z c -zr 2 ) . (3.76)

For T2 we factor the difference of squares in the numerator and use Lemma 3.9 to
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bound the denominator, obtaining

I T2\ ^ const.(zc - zΓ4[Fz(0) + dzFZc(ϋ)(zc - z)] [Fz(0) - 3zFZc(0)(zc - z)] .
(3.77)

The middle factor on the right side is 0(\zc - z|1+ε), by (3.63). For the last factor,
the second term is clearly 0(\zc — z|), as is the first, again by (3.63). Therefore
\T2\^0(\zc-zΓ2). D

3.5. Proof of Theorem 1.4. In this section we prove Theorem 1.4. The proof
basically follows the method used in [15] to study the analogous problem for
percolation, but differs in its use of fractional derivatives. The use of fractional
derivatives simplifies some aspects of the proof, and gives the stronger result of
asymptotic behaviour of w(p), rather than upper and lower bounds.

We work in this section only with positive activity p < zC9 and denote the
inverse of the correlation length (1.8) by m(p):

m(p) = - lim n'MogGpin^) . (3.78)

It was shown in [9] that w(p)\0 as p/*zc.
For any function /defined on Zd, and weR, we define

. (3.79)

For m < m(p\ let χ(m)(p) = Σ*G<m)(x). As usual B(p) = ΣX Φ O Gp(x)2, and we let
B(m\p) = Σx^G^(x)2.

By multiplying (2.11) by emxι and then taking the Fourier transform, we obtain

G<m)(/c) = - x— ̂ - ̂ — - . (3.80)
1 - 2dpD(m\k] - Π™(k)

It is not clear a priori that the Fourier transform Π(™} exists, but we will show in the
following that it does, for p < zc and m < m(p). By definition,

D^(k) = ̂ - £ emyιeik'y , (3.81)
2" y. \y\ = i

and hence

l>o»>(0) = -Λ [cosh m + d - 1] . (3.82)
a

Therefore

! = 2p[coshm - 1] + Π<«)(0) - ΠP(Q) . (3.83)

We intend to take the limit as m/*m(p) in (3.83). Arguing as in the proof of
Corollary A.4 of [15], it can be seen that χ(m(p)}(p) = oo . Since results of [9] imply
that χ(m\p) is finite for m < m(p\ it follows from the monotone convergence
theorem that for any p < zC9

lim χ(m\p) = oo . (3.84)
m /* m(p)

To understand the behaviour of the last two terms on the right side of (3.83) as
m / m(p), we proceed as follows.
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By definition and symmetry,

77<w)(0) - 77P(0) = Σ [coshmxi - 1] JT^x)

\x\2Πp(x) + Σ coshm*! - 1 - Πp(x) . (3.85)

There is a positive constant C such that for any εe[0, 2],

! - 1 -rt^^Cm2+ε\xί\
2+εcoshmxί . (3.86)

Therefore

m 2 Xj
! — 1 — Πp(x) (3.87)

Suppose we knew that the sum on the right side of this inequality was 0(1)
uniformly in m < m(p) and p < zc. [In particular this would imply existence of
Π(

p

m)(k).'] Then the limit of the left side, asmSm(p) would be 0(m(p)2+ε). Assuming
this, and using (3.84) and (3.85), taking the limit as mSm(p) in (3.83) gives

χ(pΓ1 = 2p[coshm(p) - 1] + Σ x\2Πp(x) + 0(m(p)2+ε) . (3.88)

As p/%, m(p)\0 and hence the right side of (3.88) is asymptotic to

(3.89)

The quantity in square brackets is positive by Theorem 2.8. Also, by Theorem 1.2
the left side of (3.88) is asymptotic to (Azc)~1(zc — p). Therefore

m(p)2 ~ d. .2

 Z-^ , (3.90)2

and Theorem 1.4 would be proved [using (3.3) and (3.5)], once we show the sum
over x on the right side of (3.87) is 0(1).

We now show that the sum over x on the right side of (3.87) is uniformly
bounded, for ε < 1/2. This sum involves diagrams having two or more loops,
weighted with both \x1 \

2 + ε and emxι. We split the former among sub walks along the
lower side of the diagram using Holder's inequality, and factor the latter along the
upper side of the diagram. Lemma 2.3 is used to bound the diagrams. The subwalk
weighted with |xι|2 + ε is bounded using the infinity norm, as follows:

sap[\xί\
2+tΣc-(x)pm]^sa.p[\x1\

2Σrfci (χ)P"l

(3.91)

The right side is finite, by Theorem 3.7. All other subwalks are bounded using the
L2 norm, yielding factors of B(p)1/2, [1 + £(p)]1/2, B(m\p)1/2 and [1 + £(m)(p)]1/2.
The sum of all diagrams is then bounded above by a geometric series with an
m-dependent ratio. If we knew that for some δ > 0, B(m\p) were bounded uniformly
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in m < m(p) and pe[zc - δ, zc) by a constant marginally larger than B(zc\ the
geometric series would converge and the proof would be complete. This last step is
completed in the following lemma.

Lemma 3.10. For any y > 0 (sufficiently small), there is a δ > 0 such that for
pe [zc — δ, zc~] and m < m(p\

B^(p) < B(zc) + y .

Proof. Let y > 0 and ε < 1/2. For any p < zc, B
(m}(p) is continuous in m e [0, m(p)).

This follows from the monotone convergence theorem and the fact that for p < zc

and m < m(p\ B(m)(p) < oo . (The finiteness of B(m)(p) follows from the fact [9] that
Gp(x) ^ const.(p)exp[-m(p)\\x\\ao'].) Clearly B(0}(p) < B(zc). Hence by the "for-
bidden region" argument of Lemma II. 1.11 (now with m playing the role of p) it
suffices to show that there is a δ > 0 such that given p G \_zc — δ, zc~\ and m < m(p\ if
B(m)(p) < B(zc) H- 2y then in fact B(m)(p) < B(zc) + y. The remainder of the proof is
concerned with showing the existence of such a δ.

Denoting the inverse of G(™\k) by F(™}(k\ we have

I G<w)(/c) I < - i - . (3.92)
P '"-

Now

(fc) = χ(m\pΓl + 2ίfpRe[D(m)(0) -

(3.93)

But

2dpRe[D(m)(0) - D(m)(/c)] - p £ emyι[l - cos/c j;]
3>:M = 1

= p ]̂ cosh mj/! [1 — cos fe j;]
y:bl = i

(3.94)

Also,

Re[ilim)(0)-J7<m)(fc)]

= [77,(0) - Πp(k) } + Re [(77 (̂0) - Π™(k)) - (Πp(0) - 7

= [77P(0) - 77p(fc)] + X [cosh mx! - 1] Πp(x) [1 - cos k x] . (3.95)
X

Therefore

Re^m)(/c) ̂  2dp[\ - D(k)-} + 77^(0) - ίίp(k)

+ Σ [cosh mx1 - 1] Π^x) [1 - cos k x] . (3.96)
x

Since

0 ^ coshm*! — 1 ̂  const.(m|x1 |)
εcoshmx1 (3.97)
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and

0 ^ 1 - cosfc x ̂  ί^yJ- ̂  ̂  |x|2[l - D(fc)] , (3.98)

we have

Σ [coshwx! — l]77p(x)[l — cos/c x]
JC

^ Kπf{_\ - D(/c)] X Ixfdl jdΠΠ^MI (3.99)

for some constant K. Now using the assumption that B(m\p) < B(zc) + 2y, we
bound the sum on the right side of (3.99) using the method described above the
statement of the lemma (for γ sufficiently small). The result is

|G<,m)(/c)|< - * - ̂ - L - s - , (3.100)
- 2dp[l - D(/c)] + Πp(Q) - Πp(k) - 0(mε)[l - />(*)]

where the 0(mε) is uniform in p < zc. We denote the right side of (3.100) by g(

p

n}(k).
By definition, B(m)(p) = ||G<,m)(/c)||i - 1. Hence by (3.100) and the triangle

inequality,

£(m)(/>) ̂  [||0J0)(*)ll2 + IIΛ) - ^m)(fc)ll2]
2 - i - (3.ιoi)

For the second term in square brackets, we put the difference over a common
denominator and use Theorem 2.8 to bound the resulting denominator from
below. The result is that the second term in square brackets is 0(mε) uniformly in
p near zc. Since m < m(p) and m(p) \ 0 as p /* zc, such a term is o(l) as p ? zc. This,
the triangle inequality, and the fact that g(

z^(k) = GZc(k) give

B(m\p) ϊ [||G,β(fc)||2 + II0ΓW - 9%\k)\\2 + o(l)]2 - 1 (3-102)

It now suffices to show that the second term in square brackets is 0(1) as p
The difference whose norm is being taken in the second term is

2d(zc - p)[l - J(fe)] + 77Zc(0) - 77P(0) - [ΠZc(k) - Πp(Kf}

[2dp[l - D(k)-} + 77,(0) - Πp(k)} {2dzc[l - D(fc)] + 77Zc(0) - ΠZc(k)} '
(3.103)

By Theorem 2.8 the denominator can be bounded below by a multiple of
[1 — D(/c)]2, uniformly in p near zc. Hence the contribution to the norm due to the
first term in the numerator is 0(zc — p). For the remaining part of the numerator,
we begin by rewriting it as

Σ nn(x)(zn

c - pn) [1 - cos k x] , (3.104)
n,x

where ππ(x) denotes the coefficient of z" in Πz(x). Since 0 ^ 1 — cos/c x
^ const.|x|2[l - D(/c)], (3.104) is bounded above in absolute value by

const.[l - D(fc)] Σ |x|2 |πn(x)|(zc" - pn) . (3.105)
n, x

It suffices to observe that the right side is bounded by a multiple of
[1 - D(k)~\(zc - p)ε by Corollary 3.8 and the first bound of Lemma 3.2. D
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3.6. The Infrared Bound. In this section we complete the proof of Theorem 1.5 by
showing that as k -> 0,

(3 106)

for any ε < 1/2.
Since Gfc(QΓ

GZc(kΓl = 2dzc[\ - D(Kf] + 77Zc(0) - ΠZc(k) . (3.107)

The last two terms on the right side can be written as

^Σ \x\2ΠZc(x) + Σ Γl - cos/c x - fc^l ΠZc(x) . (3.108)2« x x L 2 J
The quantity in square brackets on the right side can be bounded above by
Kk2+ε\x\2+ε, for some constant K. The sum over x can then be bounded as in
(3.91). The result is

] , (3.109)

where

C-1 = ze + ̂ \x\2ΠIt(x). (3.110)

4. Convergence to Brownian Motion

In this section we prove Theorem 1.6. It suffices to prove convergence of the finite
dimensional distributions to Gaussian distributions, and tightness [4]. Tightness
follows from Theorem l.l(a) and (b) exactly as in [33], and we do not repeat the
details here.

To obtain convergence of the finite dimensional distributions, we modify the
argument of [34] to avoid the use of a memory. First, we need some notation. We
fix 0 = ί0 < *ι < *2 < < *ΛΓ ^ l Let k = (fc(1), . . . , k(N)), where each fc(ί)eRd,
and similarly for x. We define k x = £.= χ /cω x(l\ Let a = (al9 . . . , aN\ with each
a,- a nonnegative integer, and let

Δω(a) = (CΦ L), ω(α2) - ω(a1)9 . . . , ω(aN) - ω(aN.1)) . (4.1)

We define

M(k,a)= Σ e* Δ»™ K[0,aN], (4.2)
ω:\ω\=aN

where the sum over ω is a sum over simple random walks, and K [α, b~\ was defined
in (2.5). As explained in more detail in [34], to obtain convergence of the finite
dimensional distributions it suffices to show that for N = 1, 2, 3, . . . ,

Γ - ̂  £ (Wffa - ί̂ )] .
L Λa i = l J

lim c ^ M ί k / , nt) = exp - (Wffa - ί^) . (4.3)
w^oo L Λa i = l J

Here D is the diffusion constant of (3.5), and the nt and ntN on the left should be
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interpreted as ([wίi], . . . , [ n t N ] ) and [nίn] respectively. To simplify the notation
we will continue to omit the square brackets denoting integer part.

We obtain (4.3) for N = 1 in Sect. 4.1, and prove (4.3) for N ^ 2 by induction on
N in Sect. 4.2.

4.1. The Scaling Limit of the Endpoίnt. In this section we prove (4.3), for N = 1. In
fact, a minor generalization of (4.3) will be needed to take the induction step, and
we prove the generalization here.

Theorem 4.1. Fix d ^ 5. Let hn be any fixed nonnegative sequence with
l imπ_ 0 0Λπ = 0, and g = {gn} be any real sequence with \gn\ ^ hn for all n. Let
T=t(l- gn). Then for any feeRd,

lim "n /V ; = exp[-Dfc2ί/2d] , (4.4)
CnT

uniformly in g.

Proof. Fix any ε < 1/4. By (3.67), the denominator of (4.4) can be written

The numerator of (4.4) is the coefficient of znT in Gz(k/^/n\ and hence is given by

'ά*?^^' (46)

where the integration contour is a small circle centred at the origin. The task now is
to obtain the asymptotic form of the integral on the right side.

We extract the leading contribution to the right side of (4.6) as follows. We

subtract FZc(0) = 0 from Fz(k/^/ή\ and then add and subtract

dzΠZc(0)(zc - z) + 1 VΪΠZe(0) ^ . (4.7)

The result can be written

Fz(k/^/n) = ot-βz + E, (4.8)

where

α = φ/^fn) = -zcdzFZc(ϋ) - ~ V2

kΠZc(V) ^ , (4.9)

β = β ( k / n ) = -dzFZc(ϋ) - 2d[l - D(kln)-] , (4.10)
and

E = -Πz(k/^/n) - dzΠZc(0)(zc -z) + 77JO) + ̂  Vk

277Zc(0) . (4.1 1)

The error term can be written

E = E! + E2 + £3 , (4.12)
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where

E, = E,(Z, k/^n) = Πzc(k/^n) - Πz(k/Jn) - δzΠZc(k/^ι)(zc - z) , (4.13)

E2 = E2(z, kljn} = ldzΠZc(k/^n) - δzΠZc(0)] (zc - z) , (4.14)

and

) = ΠIc(Q) - ΠZc(k/Jn) + - V2

kΠZc(0) . (4.15)

By (4.8),

We now insert (4.16) into (4.6). The integral corresponding to the first term on
the right side of (4.16) is βnTa~(nT + 1}. A straightforward calculation using the
definition of D in (3.5) and the fact that 1 - D(u) ~ -u2V2D(0)/2 shows that

βnT 1 Γ n/,2ΊnΓ

α"Γ+1

Dk

1 exp[-Dfc2ί/2d] . (4.17)
-dzFZc(0)zf+1

Comparing (4.5), the theorem follows from (4.17) if it can be shown that

T = o(z-"τ) . (4.18)
"T+ί

We show that (4.18) holds by using Lemma 3.3.
The first step is to obtain lower bounds on the two factors in the denominator

of the integrand of (4.18). We begin with |α - βz\ = β\a/β - z\. For large n, β is
bounded away from zero by Theorem 2.8. Also, it can be seen from (4.17) that
&/β ^ zc for n large. Hence there is a positive constant such that for large n and
\z\ ^zc,

|α- βz ^const.|zc-z| . (4.19)

For a lower bound on \Fz(k/^/n)\9 we write

(4.20)

By Corollary 3.8 and Lemma 3.2, the first two terms on the right side combine
to give — dzFZc(k/^/n)(zc — z) + 0(\zc — z|1 + ε). By the dominated convergence
theorem the derivative appearing here is continuous in fc, and hence differs from its
value at fe = 0 by 0(1). Thus we have

n) = l-dzFZc(0) + 0(\zc - z|ε) + 0(l)](zc - z) + F Z c ( k / n ) . (4.21)

By Theorem 2.8, the last term on the right side is nonnegative. Since the first term in
square brackets on the right side is also nonnegative by Theorem 2.8, it follows that
for z in a small neighbourhood of zc (inside the closed disk of radius zc), the right
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side of (4.21) is bounded below by const.|zc — z| (for large n). Outside of this
neighbourhood, by Lemma 3.9 there is a constant c > 0 such that |FZ(0)| ^ c.

Hence \Fz(k/^/n)\ ^ c/2 if n is sufficiently large, since by Theorem 2.6 there is
a bound on \VkFz(k)\ which is uniform in k and |z| ^ zc. Therefore for |z| g zc we
have

|F,(fc/^)|£const.|zc-z|. (4.22)

We now turn to upper bounds on £{ for i= 1,2, 3. Beginning with E±, it follows
from (4.19), (4.22), and a straightforward calculation using Corollary 3.8 and
Lemma 3.2 that

A π
2), (4.23)

dz (« - βz)Fz(k/jn)

and hence by Lemma 3.3(ii) (4.18) is satisfied if E is replaced by
For E2, we show

n- ε / 2 | z c -z | , (4.24)

which suffices by Lemma 3.3(i). To do so we write πm(x) for the coefficient of zm in
Πz(x\ so that

dzΠZc(k/jn} - dzΠZc(ϋ) = - X mπw(x)zr 1 [1 - cos(fc x/^)] . (4.25)
x, m

Since 1 1 - cos t\ ̂  0(ίε) for small ε g 2, and since |x|ε |πm(x)| ^ mε|πm(x)|, the right
side of (4.25) is O(n~ε/2) by Corollary 3.8, which gives (4.24).

Finally, for £3 we use symmetry to write

£3 = Σ *mW# l - cos(/c x/^n) - . (4.26)
x,m \_ ZH _\

For small positive ε, |1 - cosί - ί2/2| ̂  0(|ί|2+ε). Since |x2 + ε | |πm(x)|
^m ε |x|2 |πm(x)|, it follows from Corollary 3.8 that |E3| ^ 0(n-l'εl2). Then
Lemma 3.3(i) gives (4.18) for E replaced by £3. D

4.2. The Finite-Dimensional Distributions. In this section we complete the proof of
Theorem 1.6 by showing that (4.3) holds for N ^ 2. The following lemma, whose
proof can be found in [34], will be used for this purpose. (See (2.5) and (2.7) for the
definitions of K[α, b~\ and J [α, b].)

Lemma 4.2. For any integers 0 ̂  m ̂  b,

/9m

where the sum over I is the sum over intervals [/ι,/2] of integers with either
0 ^ /! < m < 72 ^ 6 or /! = /2 = m.

The proof of (4.3) is by induction on AT, with the case N = 1 having been treated
in the previous section. To perform the induction step, some flexibility is needed in
the number of steps in the walk. Let g = (gn) be any sequence satisfying
0 ^ gn ^ n~i/2, and let T = (ί1? ί2, . . . , ί N _ l 5 T\ where T = tN(ί - gn). It suffices
to prove the following theorem.
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Theorem 4.3. Let N ^ 2. Suppose that

lim c^Mtk/v/n, nT) = exp Γ - £ (fcW)2^ - ί^)! (4.27)

uniformly in g, when N is replaced by N — 1. 77z£/7 m/flcί (4.27) /zo/ds #s stated,
uniformly in g.

Proof. The proof closely follows Sect. 4 of [34], and more details on the proof can

be found there. To simplify the notation we write K = (κ l 5 . . . , KN) = k/^/w. By
(4.2), and Lemma 4.2 with m = nίN_ 1 ?

M(ιc,nT) = Σ Σ ^•Jω("T)K[0,/1]J[/1,/2]K[/2,nΓ]. (4.28)
/Bnf v-! ω: |ω |=nΓ

In (4.28) we factor the walk ω into three independent subwalks on the subintervals
[0, /i], / = [/!, /2] and [/2, nΓ]. We fix a sequence £>„ with lim,,^ bn = oo and
bπ = o(n1/2), for example bn = n1/4. It will become apparent that the significant
contribution to the right side of (4.28) is due to intervals / with \I\^bn. We take
n sufficiently large that for such /, ntN-2 < h ^ntN-1 ^ I2 < nT.

By factoring the exponential in the right side and summing only over those
/ with I / I ^ fcπ, a resummation can be performed to give

M| = Σ M(KI> > KN-I', nti, . . . , ntN-2, A)
1

(4.29)
ω:|ω| = |/|

where

E(ω, /) = exppKjv-! -cφίjv-! - /i) + iκN ω(I2 - nίjv-i)]

= 1 + 0(bMn-1/2) (4.30)

uniformly in ω and |/ |^£v For | / | ^ f c π and n sufficiently large, ^
[nί]v-ι(l — n~lf2), wίjv-ι] Hence by the induction hypothesis,

(4.31)

where |£2(/)| = 0(1) uniformly in |/| ^ bn. Similarly it follows from Theorem 4.1
that for \I\^bn,

cnτ-ι2(κn) = cnτ-l2 Γ expΓ - jj(k(N))2(

where |E3(/)| = o(l) uniformly in |/| ^ &„.
Substituting (4.30)-(4.32) into (4.29) leads to

M/ = exp Γ - £ Σ (fe(0)2(ίi ~

(4.32)

(4.33)
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where

\A\£o(l) Σ '/i Σ l^[0,l/|] |cnr-/ 2. (4.34)
|ω| = |/|

Since M(0, nT) = cnT, we have MQ~ = cnT — Mf , where M£ is defined as in (4.29)
with the sum over | / | ^ bn replaced by the sum over | / | > bn. Hence

= exp - tt ~ f i-

+ c^A + c;τ

lM£ . (4.35)

Now by Theorem 1.1 (a) and (4.34),

c^\A\^o(l) Σ I/I Σ |J[0,/]|z[" (4.36)
|/| = 1 |ω| = |/|

(here the sum is no longer a sum over intervals; now | / 1 is merely a summation
index). In (4.36) the factor | / | counts the number of possibilities for ntΉ-^^L
Extending the summation over | / 1 on the right side to infinity, it follows from the
(absolute) bound on dzΠ of Theorem 2.6 that

(4.37)

It suffices now to show that c~γM^ = 0(1) as n->oo. Arguing as in the
previous paragraph,

l«/[0,/] |z"". (4.38)
\I\=bn+l \ω\ = \I\

The right side goes to zero as n -> oo, since by Theorem 2.6

Σ \I\ Σ l^[0, |/ |] |zl j '<^) . (4.39)
/| = 1 |ω| = |/|

D

5. The Infinite Self- Avoiding Walk

In this section we give the proof of Theorem 1.7. The proof follows the basic
approach used in [24] to prove existence of the infinite self-avoiding walk for
d sufficiently large, but is simpler since use of a finite memory is avoided.

The infinite self-avoiding walk was defined in [23] as follows. Given n ̂  m and
an m-step self-avoiding walk ω, we let Pm>n(ω) denote the fraction of n-step walks
whose first m steps are given by ω, i.e. Pw>w(ω) is the fraction of n-step self-avoiding
walks which extend ω. Then we define

Pm(ω) = lim Pm,n(ω) (5.1)

if the limit exists. If the limit does exist, then the probability measures Pm on m-step
walks will be consistent in the sense that for each n ̂  m and each m-step self-
avoiding walk ω,

Pm(ω) = Σ Pn(η) , (5-2)
η> ω
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where the sum is over all n-step self-avoiding walks η which extend ω. This
consistency property allows for the definition via cylinder sets of a measure P^ on
the set of all infinite self-avoiding walks (see [24] for more details). The measure P^
is the infinite self-avoiding walk.

The closest results to existence of the limit (5.1) in general dimensions d ^ 2
are the proofs in [25] that for any m-step self-avoiding walk ω which can be
extended to an infinite self-avoiding walk, liminf^oo Pm,π(ω) > 0 and
lim^oo Pm>π + 2(ω)/Pm>M(ω) = 1. The remainder of this section is devoted to a proof
that the limit in (5.1) exists for d ̂  5.

Given a nonnegative integer w, let k = (k(1\ . . . , /c(m)), where /c(l)e[ —π, π]d.
Given n ̂  m and an rc-step self-avoiding walk ω, let ωm be the first m steps of ω, and

k ω m = X fcW ωίί).
i = l

Let
Φm.»(k)= Σ eίk ω"K[0,π], (5.3)

|ω| =n: simple

where the sum is over all n-step simple random walks and K was introduced in
(2.5), and let

φm > Π(k)= X eίk »Pm,Π(ω) = -φm,n(k). (5.4)
|ω |=m:saw ^n

Since {Pm,n}n is clearly tight, a standard convergence theorem (see [4], p. 46)
implies that existence of the limit (5.1) follows from existence of the limit

φm(k) = lim φmtll(k) , (5.5)
«-> oo

forke[-π,π]m d.
For m ̂  0 we define a quantity similar to the two-point function Gz(k) by

00

Γz(k,m)= Σ φm,n(k)z". (5.6)
H = m

Since |Γz(k, m)| ^ χ(|zj), this power series converges for \z\ < zc. We define
a quantity similar to Πz(k\ again for m ̂  0, by

] (5.7)
s = m |ω|=s: simple

It follows from the absolute bound on the lace expansion of Theorem 2.6 that for
v = 0,1, dv

z !Pz(k, m) is bounded by a finite constant uniformly in k and \z\ g> zc. For
j < m we define k, = (fcα+1), . . . , fc(m)). The following identity is proved in [24]
along the lines of the proof in [8] of Theorem 2.2.

Lemma 5.1. For m ̂  1 and for any z for which both sides make sense,

Γz(k, m) = 2dzD ( Y *uΛ Γ.ίkj, m - 1)

m— 1

Σ zs Σ exp i X /c(Λ ω(minαs}))j[0,s]Γz(k s ;m-s)
s=2 |ω|=«

!Pz(k, m)χ(z) .
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Let Nz(k, m) = χ(z)~ 1Γz(k, m). Lemma 5.1 and induction on m then can be used
to argue that for v = 0, 1, δzAΓz(k, m) is uniformly bounded in k and \z\ ̂  zc.

To prove existence of the limit (5.5), we proceed as follows. By definition of NZ9

= ]V2c(k, m)cn + — § [ΛΓz(k, m) - JV2c(k, m)]χ(z) -̂  , (5.8)
Z7Π Z

where the contour is a small circle centred at the origin. It suffices to show that the
second term on the right side is o(cn\ which by Theorem 1.1 (a) is equivalent to
o(z~n). Hence by Lemma 3.3(ii) it suffices to show that for |z| ^ zc,

ι L^ZV"5'"7 i τ ZCV"5 "VJ AW == ~ V I ~ C *Ί J l^ ")

Now since |dzNz | is uniformly bounded for |z| ^ zc,

— [JVz(k, m) - WZc(k, m)]χ(z) = O(l)χ(z) + 0(\zc -z\) — χ(z) . (5.10)
dz dz

The first term on the right side is 0(\zc — z\ ~1) by Lemma 3.9. It follows easily from
Theorem 2.6 and Lemma 3.9 that the second term on the right side is also
0(\zc — zp1). Thus we have (5.9) and hence by Lemma 3.3(ii) the second term on
the right side of (5.8) is 0(z~nn~a), for every α < 1. This completes the proof of
Theorem 1.7.
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