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Abstract. The Borel-Weil (BW) construction for unitary irreps of a compact Lie
group is extended to a construction of all unitary irreps of the quantum group Uq(n).
This <?-BW construction uses a recursion procedure for Uq(n) in which the fiber of
the bundle carries an irrep of Uq(n — 1) x U q ( l ) with sections that are holomorphic
functions in the homogeneous space Uq(n)/Uq(n— 1) x Uq(l). Explicit results are
obtained for the Uq(n) irreps and for the related isomorphism of quantum group
algebras.

1. Introduction

There is an elegant geometric procedure for constructing all unitary irreducible
representations (irreps) of a compact classical Lie group, the Borel-Weil (BW)
construction [8] which realizes irreps as holomorphic sections of homogeneous
holomorphic line bundles over Kahler manifolds. Our objective in the present paper
is to develop the quantum group extension of this construction for the quantum
group Uq(ή), a ^-deformation of the enveloping algebra of the classical Lie algebra
4.-ι X Λ

The Borel-Weil method [14,24], applied to representations of a compact simple
Lie group G, constructs a line bundle over the homogeneous space G/Γ, where T is
the maximal torus of G. This coset space G/Γ can be made into a complex manifold,
as can be seen from the fact that G/Γ^ GC/B+, where Gc is the complexified group
G and B+ is the Borel sub-group. (We will be considering primarily U(n) for which
B+ is the sub-group of upper triangular matrices.) To every character λ of the torus
T one associates a homogeneous holomorphic line bundle Lλ over G/Γ; this uses
the fact that every homomorphism λ: Γ->C*, extends uniquely to a holomorphic
homomorphism λ:B+ ->C*, so that one may define the associated line bundle
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Lλ = Gc x B+ C, (which denotes the quotient of Gc x (C by the equivalence relation
(gb, ξ) = (g, λ(b)ξ)VbeB+). The group Gc acts on the line bundle Lλ and hence on its
cross-sections; this action descends to an action by the group G. The Borel-Weil
theorem [14] asserts that if λ is a dominant weight then the space of holomorphic
sections of Lλ is an irrep of G with dominant weight λ. (A nice discussion of the
Borel-Weil construction, accessible to physicists and interpreted physically in terms
of quantal models, is in [1], see also [28].)

In our extension of this construction to the quantum group Uq(n\ we will employ
a recursive approach which differs from the BW procedure in that the induction
will be from an irrep of the subgroup Uq(n — 1) x Uq(l) rather than from a character
of the maximal torus Tq. The base manifold is then Uq(n)/Uq(n — 1) x Uq(l), which
however, still has a complex structure. The recursive procedure assumes a prior
construction of irreps of Uq(n — 1) itself by the same method, and similarly. Appealing
now to the theorem on "induction-in-stages" [20,14] one sees that this recursive
approach is, despite the seeming difference, equivalent in fact to the BW construction
itself. (In the literature, holomorphic induction from a general subgroup is ascribed,
among other things, to Bott [9] in his extension of the BW theorem to homology
and cohomology spaces.)

Our extension of the Borel-Weil construction to quantum groups will differ in
still another way from the procedure actually used by BW, in that we will employ
analytic methods rather than the purely geometric methods of BW. In part this is
due to our preference for the methods of theoretical physics which emphasize
explicit, concrete constructions including explicit bases carrying irreps. (In the
physics literature induced representations of the BW type are known as "vector
coherent states" [23,27,25,11,17].) The more incisive reason is, however, that
although quantum planes with quantum (non-commutative) coordinates are known,
we do not know of any quantum extension to a theory of curved quantum manifolds,
and certainly no theory of "quantum Kahler manifolds" as yet. Such considerations
are essential to the geometric concepts employed in the BW construction, but will
play no role in our g-BW construction. It is our belief that a suitable re-interpretation
of the explicit results (obtained below) in the context of the geometry of manifolds
may be of use in developing such a curved non-commuting quantum manifold
theory.

Let us sketch the plan of this paper. In Sect. 2, we recall the defining algebraic
relations for the quantum group Uq(n). To illustrate our explicit constructive methods,
we obtain in Sect. 3 all irreps of the g-group Uq(2\ using g-boson operator techniques
adapted to flat g-manifolds.

In Sect. 4, we develop our ^-extension of the Borel-Weil method for the simplest
of examples, Uq(2\ obtaining again all the irreps of Sect. 3 by this method. In Sect. 5
we extend our g-BW procedure to Uq(n\ obtaining thereby all irreps. Theorem
(6.23) - establishing the isomorphism of the g-algebras, defined by the g-BW cons-
truction, to the standard Uq(n) algebras of Sect. 2 - is one of the basic results of this
paper, and is developed, and proved, in Sect. 6, along with Theorem (6.24) the
^-analog of the Borel-Weil Theorem (for Uq(n)). In Sect. 7, an alternative form for
the g-BW irrep bases is established. This result, given in Lemmata (7.1) and (7.3), is
another of the basic results of this paper, and defines (by construction) a basic class
of Uq(n) g-Wigner-Clebsch-Gordan coefficients (Lemma (7.1)) as well as the matrix
elements of the metric (Lemma (7.3)).



g-Borel-Weil Construction

2. Resume of the Defining Relations for Uq(n)
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The defining algebraic relations for the quantum group SUq(n) corresponding to a
deformation of the classical simple Lie algebra An. { have been given by Jimbo [13],
DrinfeΓd [10], among others [31]. Denote the ^-generators in the Chevalley-Weyl
basis as {E*9 Ht}9 i = 1, . . . , n - 1. Then the SUq(n) algebra is defined by the following
relations:

Commutation Relations.

where

. >-ι
ϊ i=J±l

0 otherwise

EE 5y [2H,], (see (2.8) below).J[£+, E- ] = δi}J J qίi _

Quadratic q-Serre relations.

lE*9Ef]=OJ*i±l9 l^ i , j^n-l.

Cubic q-Serre relations.

(-l)
v = 0

)T2! (E*)2-*Ef(E*γ = 09 (U) = ( / , i ± l ) , l ^ / J ^ F i -
Lvjq

where the ^-binomial coefficient is defined by

[""I s [H]! [n]! s [n][n -1] -[I].
LmJ, [m]![n-m]!

We use the notation [n] for the ^-number

~ '/2

[n] =

(2.1)

(2.2a)

(2 2b)

(2.3)

(2.4)

; (2.5)

(2.6a,b)

+. (2.7)

This notation for ^-numbers is extended to the diagonal operators Ht by defining:

Hi,2_ -Htl2

Remark. Note that [n] is symmetric under q-+q~l, and has precisely n terms whose
powers decrease by steps of unity. Just as for angular momentum theory [4], these
requirements force the use of half-integers, here integral powers of q1/2. The litera-
ture is not uniform, however, and q often appears for q1'2, with corresponding steps
of two units. (In a similar way k(ij) in (2.2b) accords with the use of half-integers in
quantum physics.)
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The Hopf algebra operations take the form:

1 + 1® Hi, (2.9)

qHi/4 + q~Hi/4®E*, (2.10)

ε(l) = 1, ε(£ί

±) = 8(̂  = 0, (2.11a,b)

=-//, (2.12a,b)

The quantum group Uq(n) is defined by the generators above plus the additional
generator Hn which commutes with all other generators. The Hopf algebra operations
for Hn are the same as those for the other Ht.

The Chevalley-Weyl basis for Uq(n) is very economical in introducing only the
minimal number of generators (3rc — 2 for Uq(n)). To carry out the g-BW construc-
tion for Uq(ή) in the required detail, as given in the sections following, we need the
full set of generators (n2 for Uq(n)) and not the minimal set alone. To denote these
n2 operators we will use WeyΓs notation:

Eij9 iϊj, Ig i , j gn . (2.13)

The correspondence between these operators and the minimal set used above is:

^+ = £w+ι for i = U,...,n-l, (2.14)

EΓ =£1 + 1,1 for i=l,2, . . . ,n-l, (2.15)

and

#, = £(£«-£,+!.,+ !), l g i^n-1, (2.16)

with

(2 17)
ί=l

3. The φ-Boson Realization Applied to Vq(2} Irreps

Let us now consider a realization of these algebras, extending an approach - the
Jordan-Schwinger mapping [4] - which stems from the physics literature on field
quantization. This approach (for classical Lie groups) maps a matrix realization of
the Lie algebra generators into bi-linear boson operators [4]. In one dimension
these boson operators comprise the boson creation operator, α, and its Hermitian
conjugate, (the boson destruction operator), α, obeying the Heisenberg algebra
relation

[fl,a] = l, (3.1)

with the cyclic ("vacuum") ket- vector |0> defined by the equation

α|0> = 0. (3.2)

(Equivalently, one can construct basis vectors as functions of the complex variable
z and regard the operators a, a as multiplication by z and differentiation d/dz
respectively, with the vacuum ket omitted.) Orthonormal basis vectors, |n>, cor-
responding to n quanta, that is:

(3.3)
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can be constructed by repeated application of the creation operator, α, acting on
the cyclic vector |0>,

|π> = (n!)-1/2(αΠO>. (3.4)

Let us now construct ^-analogs to the boson operators [5, 19, 29, 16]. Introduce
the q-creation operator aq, its Hermitian conjugate the q-destruction operator άq,
and the q-boson vacuum ket vector |0>^ defined by the equation

5«|0>ί = 0. (3.5)

Instead of the Heisenberg relation (3.1), postulated the algebraic relation:

άqaq-qίl2aqάq = q-Nq/2, (3.6)

where Nq is the (Hermitian) number operator satisfying

[ΛΓ«, α«] = aq, [Nq, άq~] = - άq, with Nq \ 0\ = 0. (3.7a, b, c)

This algebra is a deformation of the Heisenberg algebra, which is obtained in the
limit q-+l. (Note that the ^-number operator Nq is now no longer the operator
aa as in the Heisenberg case.) Orthonormal ket vectors corresponding to states of
n g-quanta are given by:

(3.8)

with: N'\nyq = n\n)q. (3.9)

In (3.8), the expression [π]! denotes the ^-number factorial defined in (2.6b).
In the constructions to follow, we will find it useful to introduce the ^-exponential

function defined by: (αeC)

which has the property (which follows from (3.6)) that:

(3.11)

This ^-exponential is a g-analog of the classical exponential function, although as
such it is not unique; it is, however, invariant under q-^q'1.

Remark. As in the case of the boson operators, one can equivalently regard the
operator aq as effecting multiplication by the complex variable z, but now άq is
represented not by differentiation, but by the finite difference operator Dz defined by

for suitable functions /(z). The operator Dz and ^-extensions to classical functions
are not new to quantum groups, having been studied, early in this century, by
Jackson [12]. (In fact the theory of ̂ -functions dates back to Heine a century earlier.)
The subject has been developed extensively more recently by Andrews [2], Askey
[3], Koornwinder [15] and Milne [22].

It is now easy to define a g-analog for the algebra of the generators of the
quantum group SUq(2). In the language of g-boson operators, one defines a pair of
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mutually commuting g-bosons a] and S\ for / = 1,2. That is, for each /, #f and a] obey
Eqs. (3.5)-(3.7) and, in addition, the relations:

The generators {Eί2,E2l,Hl} ofSUq are then realized by:

E12 = alάq

29 E2ί=aq

2ά
q

l, Hί=^(Nί—N2). (3.13a,b,c)

It can be verified, using (3.5)-(3.7), that these generators satisfy under commutation
the quantum algebra of SUq(2), Eqs. (2.1)-(2.3), (there being no Serre relations for
this case).

Let us consider now, for SUq(2), the set of basis vectors defined by:

m12 0\ _ t _ 1 / 2

mu /q

(3.14)

for 0^mn ^m12, m12 = 0,1,... .

Remarks. (1) The vector |(m)>q in (3.14) is labelled using the GeΓfand-Weyl pattern
(m) specialized to SU(2). More generally, each basis vector - denoted |(m)>-in
the vector space belonging to the unitary irrep[mlπ mrtπ] of U(ri) is labelled
uniquely by a triangular pattern of integers:

m2,n-l (3.15)

\ '"n /

with the integers mi} in the pattern obeying the betweenness constraints:

(3.16)

This labelling incorporates, by means of the (geometric) betweenness constraints,
the content of the Weyl branching theorem for U(ri); thus for example, the
pattern (m) in (3.15) shows that the vector (m) belongs to the irrep[mlπ mπn]
in U(n\ belongs to the U(n-l) iΓrepCm^^ m,,-!^-!], to the U(n-2)
irrep[w1>w_2 m M _ 2 n _ 2 ], . . . , and finally to the (7(1) irrep[mn]. The GeΓfand-
Weyl labelling is the analog in representation label space of a flag manifold labelling.

(2) It is important to remark for applications to the quantum group Uq(n) that it
follows from the Lusztig-Rosso theorem [18, 26] that the GeΓfand-Weyl labels for
Uq(ri) are invariant under deformation and hence properly label, uniquely, the basis
vectors for the unitary irreps of the quantum group Uq(n\ and incorporate (just as in
Remark (1) above) the Weyl branching theorem for the Uq(n) quantum groups.

(3) For the simple group SUq(n) the unitary irreps have mnn = 0 in the GeΓfand-
Weyl pattern.

It is easily verified [5] that the vectors in (3.14) under the action by the generators
(3.13) form a basis for the unitary irrep[m12,0] of SUq(2\ each vector being
distinguished by the eigenvalue (mn-m12)/2 of H^. The vector space V [ m i 2 θ ]
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spanned by the{w12 + 1) basis vectors
m12 0

mn =0,1,...,m12 f carries
mιι

a unitary irrep of SUq(2) and every unitary irrep of SUq(2) is realized in this way.
Let us denote the direct sum of these spaces by V:

v= y evr m. (3.i7)
i~~4 "̂̂  I W I l Z i v J J ^ f

Consider now the quantum group Uq(2) and its unitary irreps. The g-boson
realization of the algebra of Uq(2) is given by (3.13a-c) with the adjunction of the
Uq(l) generator

H2 = (N1+N2), (3.18)

or, equivalently, by adjoining Ni and N2 independently.
In order to construct all unitary irreps of Uq(2) via a q-boson realization it is

necessary, however, to use two independent (commuting) pairs of g-bosons, (a\,aq

2)
and (b\9b

q

2). Using the co-multiplication operation, one finds for the generators
(dropping the q-superscript label henceforth):

> 2 > (3.19a)

17 ~ ~ -ov f,(N, —N7)I4 I _ — (JV? — N^)/4 /c>. L L fJ 1 QU\^ 2 1 — a 2 a ^ ( ^ ) q x 2 ~r q 1 2 V iS/"2"ι> \o.ι.yΌ)

N1=Na

i®l-\-l®Nb

19 (3.19c)

N2 = Na

2 ® 1 + 1 ® Nb

2. (3.19d)

where the superscripts α,ft refer to the g-boson sets {α}, {b} respectively. The
generators in (3.19a-d) act on the space V® V and we seek irreducible subspaces
of V® V in which the states carry GeΓfand-Weyl labels (m) of Uq(2).

Remarkably, the desired basis vectors can be compactly written in the operator
form [6]:

\ = M-1/2(α12)
m22(α1)

mιl~m22(α2)
mi2~mιl |0>, (3.20a)

^

where

Cm12 + l]![m12-m11]![m11-m22]![m22]!

[m12-m22 + l]!

and α12 is the operator defined by:

al2 = q(N2+Nb^^a1b2-q-^+N^ + ̂ 4a2bl. (3.20c)

We remark that the operator α12 in (3.20c) is invariant under the action of SUq(2)
generated by an appropriate subset of (3.19).

The proof (by direct verification), that the vectors (3.20) are indeed a realization
of the carrier space of the irrep [m12, w22] of Uq(2) in an orthonormal GeΓfand-
Weyl basis, proceeds by expanding the operator aί2 so that (3.20) becomes a sum
of homogeneous polynomials in the operators {ai9 bt}. In carrying out this expansion
we use essentially the ̂ -binomial theorem, which can be expressed elegantly in terms
of non-commuting coordinates. In the problem at hand, these coordinates are
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defined by

x = e fllfe2, y = q-W+N + 1)/4a2bι (3.21a)

which satisfy

xy = qyχ> (3.2ib)
and so can be regarded as quantum coordinates [21], [30].

Remark. Taking the inner product of (3.20a) with product states (given by (3.14)
for {a} and {b}) (separately) defines the explicit Wigner-Clebsch-Gordan coefficient
reducing V ® V.

4. The Extension of the Borel-Weil Construction to Uq(2)

We are now in a position to develop the ^-analog to the Borel-Weil (BW)
construction for the simplest case, Uq(2). Recall that the BW construction for the
compact classical group 17(2), constructs irreps as holomorphic sections of a
holomorphic homogeneous line bundle. The homogeneous space U(2)/T, with T
defined to be the maximal torus is the manifold S2 which can be made into a
one-dimensional complex space, in fact, a Kahler manifold. To every character of
T one associates a holomorphic homogeneous line bundle over G/T, which carries
a G-action. The sections of this bundle are irreps of U(2) with highest weight given
by the character of T.

Before embarking on the ^-extension of the BW construction, let us first carry
out the BW construction using the explicit boson operators and coherent state
techniques of the physics literature [23, 27, 25, 11, 17]. For the group 17(2), we
consider the coset space U(2)/U(ΐ) x l/(l), which will be spanned by polynomials
in the single boson, z, (so labelled to emphasize the analogy to the complex variable
used in the BW construction). The eigenvectors of the torus group T = (7(1) x l/(l)

(the fiber vector space) will be one-dimensional irrep vectors
m12 w22 which

m22

have fixed GeΓfand-Weyl labels (m), corresponding to the character χλ having the
weights λ = (w22, w12). These weights result from the action of the two (7(1) x 17(1)

generators £n ->w22 and £22->m12 on the vector '™12 ™22 ^
m22

Note that this character corresponds to minimal weight, that is the GeΓfand-
Weyl pattern has the form (' /), where the line / denotes that the labels m^ and
w22 are identical ("minimally tied patterns"). The reason for using minimal weight
("anti-dominant") instead of maximal weight ("dominant") - as in BW - is technical,
and results from the requirement that we add "angular momenta," and not subtract
angular momenta as in the original BW procedure (with the nuisance of many
confusing minus signs).

The BW construction augments the vector
satisfies:

m22

m22

by a function which

(4.1)
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where teT and χλ is the aforementioned character of Γ, with λ corresponding to
the weight (w22,w12). This condition on / is the constraint that associates the
principal bundle 17(2)-> U(2)/T to the line bundle determined by the character χλ.

Such functions are easily constructed and we will use the function given by:

w22

exp(z£21)
m12 ™22\

"hi /

(4.2)

which are matrix elements in 17(2) of the operator g = exp(z£21) in the universal
enveloping algebra. Note that the state on the right in the bracket, Eq. (4.2) denotes
an arbitrary eigenvector in the 17(2) irrep[m12 w22] Since £21 is a lowering
operator, the exponential series in (4.2) terminates so that f(g) is actually a
polynomial in the boson operator z, and hence f(g) is clearly holomorphic in z.

The explicit normalized vectors |m>BW of the irrep [m12 m22] are given by:

™22\ /

/BW \

exp(z£21)
m12 m22

m12 m22

m22

(4.3)

There are many features to discuss for these irreps, (for example, the explicit
G-action), but we will omit these for brevity since such results will be clear from
specializing the ^-analog results below.

Remark. There is one feature [17] of the vectors given in (4.3) which, however, must
m12 m 2 2

N

be discussed for clarity. The vector
m22

on the right-hand side is a unique

eigenvector of the group U(l) x U(l) with £u ->w22, E22^>mί2, but it is also (by
construction) defined to be a vector in the U(2) irrep [m12 w22] in order that the
matrix element (4.2) be well-defined. The coefficient on the right-hand side in (4.3)
(that is, f(g) in (4.2)) is a function of z, but strictly speaking, since z (and z) are
operators, we must make explicit that this operator-valued function acts on the
vacuum vector |0> to yield a new vector, called a coherent state in the physics
literature [23]. To be precise and use the standard notation properly therefore one
should re-write (4.3) in the form:

m12 w 2 2\

ΉII Λ

m12 m22

W2 2

(4.4)

To proceed to the quantum group Uq(2) is now straightforward. The q-
exponential, exp^ in (3.10), replaces the ordinary exponential in (4.2), and the carrier
space for all unitary irreps of ί/4(2) is then given by the vectors:

ι12 m22

q-BW

m12 m22 m12 w22

analogous to (4.3), or in the proper form of (4.4),

m 1 9 m^\ / iwn-w^ \ι Γ'"i. _ zmι

q.BW

m12 m22

m22

m22

m22

(4.5)

(4.6)

where we have evaluated explicitly the matrix element f(g).
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The simplicity of the explicit q-BW result (4.6) for the vectors carrying all irreps
of Uq(2) - as contrasted with the standard g-boson realization for the same irreps as
given by (3.20) - is striking.

It remains to give in detail the action of the group Uq(2) on the basis vectors
of (4.6). Let us express this action as a mapping 7", from the four abstract Uq(2)
generators Eί2,E2l,Nl and N2 to the induced G-action on (4.6) denoted by Γ(g).
That is, we define the mapping Γ:g^gf = Γ(g\ where g is one of the generators
Eί2^E2l9N1

 OΓ #2- I* is easily shown that the explicit action on (4.6) requires that
Γ have the form:

Γ(JB21) = z, Γ(NJ = Nι + N, (4.7a,b)

) = z[ΛΓ 2 -Λr 1 -JV] Γ(N2) = N2-N, (4.7c,d)

where the g-boson creation (destruction) operator is z (respectively z) acting on
|0>, N is the number operator as given by (3.9), and Ni9N2 denote the Uq(l) x Uq(l)

m12 m 2 2

N

generators which act on the fiber vector in (4.6). (To interpret Γ(£12),
m22

recall that (2.28) extends the ^-number notation to diagonal operators.)

Remark. The notation used in (4.7) for the q-BW generators is an abuse of the
proper notation, but is, however, clearer and certainly more convenient. The reason
is that the generator Γ(E12) must be "taken apart" in order to write it in the proper
co-multiplicative tensor product form. Written properly the generators in (4.7) have
the form:

Γ(£12) = (1 ®z)([JV2 - NJ ®qNI2 - qW*-N^2 ® [JV]), (4.8a)

Γ(£21)=l®z, (4.8b)

Γ(ΛΓ1) = Λ T 1 ( χ ) l - h l ® N , (4.8c)

Γ(N2) = N2 ® 1 - 1 (x) N. (4.8d)

In this form the q-BW generators are not only more complicated in appearance,
and less understandable, but are seemingly not invariant under q ^q"1, unlike (4.7).

Let us sum up the results, obtained above, in the form of a lemma.

Lemma (4.9). The map Γ:g-+g' = Γ(g\ given in (4.7), where g is one of the four
generators Eΐ2,E2l,Nί9N2 ofUq(2), is an isomorphism of quantum group algebras.

Proof. Direct verification.

Remarks. (1) The factor defined by K2(m) = [m12-m22]!/[m12-m11]! in (4.6)
has the significance of defining the metric in the Kahler manifold (S2 in the classical
case). This construction (for the ^-analog) case thus allows one to define the metric
for the analog to a "g-Kahler" manifold for the quantum group Uq(2).

(2) It is noteworthy that in this q-BW construction, (4.6), all irrep vectors of
Uq(2) appear as monomials, involving only a single g-boson, in sharp contrast to
the ίwo <?-bosons involved in (3.14) for SUq(2), or the four bosons in (3.20) for Uq(2).
This suggests that the recursive construction of all unitary irreps of Uq(n) from
Uq(n - 1) x t/(l) can be achieved with only n — 1 ̂ -bosons; this is indeed correct as
developed in the next sections. As noted in the introduction, such induction by
stages is equivalent to induction from a representation of the maximal torus. It
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follows that to induce Uq(n) from a one-dimensional torus representation requires
vif™ _ n

g-bosons in the q-BW construction versus n2 g-bosons in the standard
2

g-boson approach.

5. The q-BW Generalization for Uq(n)

The q-BW generalization, to be developed in this section, corresponds - for the
classical group U(n) - to constructing holomorphic sections of an associated bundle
whose fibers carry irreps of the sub-group U(n — 1) x 17(1), in contrast (as mentioned
in Sect. 1) to the standard BW construction where the fibres carry one-dimensional
irreps of the maximal torus. The base manifold is accordingly U(n)/(U(n — 1) x (7(1))
having (n — 1) complex dimensions. Such a procedure is well adapted to a recursive
approach to the unitary group U(ri) since at each stage in the construction one needs
only explicit results for a group known, by construction, from the previous step,
that is U(n - 1) for U(n\ U(n - 2) for U(n - 1),.... For 17(2) itself one has, of course,
the BW construction. This approach is well known in the physics literature [11,17],
in contrast to the quantum group analog where the construction has not been
hitherto obtained. It is clear that from this recursive approach the BW result itself
is easily obtained by substituting explicit prior results for all recursive steps.

Our q-BW construction begins by assuming (as the recursion hypothesis)
the existence and knowledge of a realization of the quantum group gene-
rators of Uq(n — 1) and explicit basis vectors carrying any given unitary irrep
[m 1 > π - l 9 m 2 t Λ -ι> >™*-ι,n-ι] °f Uq(n-l). We augment this Uq(n- 1) space by a
tensor product with the one-dimensional vector space |(v)> carrying an irrep
of the quantum group Uq(\\ generated by Enn. The fibers then carry an
irrep of Uq(n — 1) x £7^(1) and belong to the vector space spanned by the vectors
IM>®l(v)>, (where |(μ)>6[m1>π_1 m π _ 1 > π _ 1 ] and |(v)>e[mnj) with an action on
this vector space by the generators, E^ ® 1 and 1 (x) Enn belonging to the quantum
group Uq(n-l)xUq(l).

Just as in our defining example (Uq(2) in Sect. 4) where it proved convenient in
constructing the function f(g) (Eq. 4.2) to embed the one-dimensional fiber vector
carrying an irrep of Uq(ΐ) x Uq(l\ in the larger space of an irrep of Uq(2)9 so too is
it useful to embed the vectors carrying irreps of the quantum group Uq(n - 1) x 17 (̂1)
in the larger space of an irrep of Uq(n). Accordingly we assume that the vector space
of the fibers carries an irrep [mίnm2n mnn~\ of Uq(n) transforming irreducibly under
the q-group Uq(n) whose n2 generators are denoted {£,-,-}, 1 ̂  i,j ^ n. The fiber
vectors carrying irreps of Uq(n - 1) x Uq(l) are a subset of this Uq(n) irrep,
transforming under the Uq(n — 1) x Uq(l) subset of the generators {E^}.

It is essential to point out that the associated bundle achieved in this q-BW
construction will actually involve only that subset of Uq(n) irrep vectors which
belong to a single Uq(n — 1) x £7^(1) irrep, exactly as the vectors in Eq. (4.6), for the
q-BW construction for Uq(2), explicitly are restricted to a single one-dimensional
irrep of Uq(l) x ϋq(\) for the vector space of the fiber.

The base manifold of the bundle has complex dimension n — 1 and correspond-
ingly n - 1 commuting g-boson coordinates denoted by {zi9 z2,..., zπ_ J. We define
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j
a Uq(n — 1) quantum group action on this base manifold by the realization:

Eij^ZiZj, (5. la)

EU -» N; ΞΞ the ith number operator, with i J = 1, 2, . . . , n — 1. (5.1b)

Here {zh zj denotes, for z'= 1, 2, . . . , « — 1, the n — 1 commuting g-bosons obeying,
for each z, Eqs. (3.5-7).

The vector space V of the base manifold carrying representations of Uq(n — 1)
is the space of all polynomials & in the n — 1 g-bosons {zf} terminated by the vacuum
ket |0>, where, for all /,Z; |0> - 0; that is:

VΞ{^({zt.})|0>}. (5.2)

These two realizations of Uq(n — 1) - one generated by {E^}, the other by (z^Zy, NI}
acting on the base manifold - admit a co-product carrying tensor product
representations initially of Ό^n — 1), which can then be extended to Uq(n — 1) x
Uq(l)9 by adjoining the generator Enn of Uq(l).

Explicitly we have as generators of this direct product quantum group,
Uq(n - 1) x Uq(l), the realization:

Zj, i <;, (5.3a)

zj9 i >7; (5.3b)

(5.3c)
where ij range over 1,2,..., n — 1, and for the πth generator:

(5 3d)
ί=l

We have labelled these generators of Uq(n - 1) x Uq(\) as {Γ(Etj)} to distinguish
the action of these generators as the left action on the bundle.

The problem posed now for completing the q-BW construction is to extend this
left action by generators of the sub-group Uq(n - 1) x Uq(l) of Uq(n) to an action
realizing the group Uq(ή) itself. Phrased differently, the problem now to be resolved
is the imposition of constraints analogous to (4.1) and (4.2) such that one obtains
an associated bundle from the principal bundle. This step requires the introduction
of an invariant operator θ, the analog of zE2ί in (4.3).

Definition. Define the operator Θ by:

Lemma (5.5). The operator Θ in (5.4) is invariant under the commutator action of
the Uq(n - 1) x Uq(l) generators {Γ(£0 )} defined in (5.3).

Proof. The invariance under the generators of the Chevalley-Weyl basis
( f = l , . . . , n ) and for Γ^^ .J, r(Et-iti) with ι=l , . . . ,n- l , is verified directly.
Defining the elements of Γ( ) not in this set by the ^-commutator: [A,B\ =
AB-q~1/2BA-which can be shown to satisfy the Serre relations - extends the
invariance to all of Γ(-) defined in (5.3).
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The construction which we have carried out so far in this section is a tensor
product of fiber vectors belonging to irreps of Uq(ή) tensored with vectors in the
base manifold V. Consider now the sub-set W of these tensor product vectors
defined by:

(5.6)
(m)

where (m) is a GeΓfand-Weyl pattern belonging to Uq(n). Under the action of the
generators {£{j }(χ)l, with ίj= l,2,...,/t, the space W splits into a direct sum of
Uq(n) irreps labelled by Young frames [m lnm2π mrιn], with individual vectors in
these irreps labelled by the GeΓfand-Weyl patterns (m).

Consider next the vector space W(w) defined by:

W(w) = (0)WW, (5.7)

where (@)w denotes the invariant operator Φ multiplied by itself w times, with w a
non-negative integer.

It is easily shown that:

Lemma (5.8). // a vector v in W is labelled under the action of Etj (x) 1 by the Uq(n)
labels (m) = (wί7 ) with 1 g ι, j ^ n - see (3.15-3.16) - then the vector &w\ carries the
same Uq(n — 1) x Vq(\) labels (m0 ) with 1 ̂  ί, j ^ n — 1 under the action of the
generators Γ(Eij) defined in (53a-d).

Proof. This is clear from Lemma (5.5) since the action of Γ(Eίj) commutes with the
invariant 0 and Γ(Eij) -> Etj on W.

In fact one can state much more about the vectors in W(w).

Lemma (5.9). Let a sub-space of W(w) be defined as the vectors (@)w v, where v belongs
to the Uq(n) irrep [mlrt mπn] o/W. Under the action ofE^® 1, this subspace splits
into a direct sum of Uq(n~ 1) x Uq(\) irreps with labels [m\ l l _ 1 •••w^-i Π _ J x [w^J,

n-l n n~ 1

where £ (m i ιΠ_ t - m; „_ J = w, m'lfl - X mίM - ^ min_1 4- w, and tfte Uq(n - 1)
ι = l / = ! ι = l

irrep labels [m'ltn_1 m'n_ltn_ί'] are compatible, as a sub-GeΓfand-Weyl pattern,
with the Uq(n) labels [mln, m2n, . . . , mn J.

This follows from the fact that the expansion of (θ)w as a sum of monomial
products in the g-boson operators {z1 , . . . , zn _ j } is homogeneous of degree w. This
implies that the action of Γ(Enn), on a given term in the expansion of @w\9 yields:

n— 1

However, from Lemma (5.8) we know that:

Hence, taking the difference, we find:
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as asserted. This also implies that the label for the Uq(i) vector is:

m'ln= Σ min~ Σ m;,n-l (5.13)

since this is the eigenvalue of Enn®\. Since the vectors in Uq(n— 1) x Uq(l) are
generated from the irrep [mln*-mnn~] of Uq(n) by the lowering operators Eni®l in
&, it follows that the irrep labels [m\ „_ : m'n_1>w_ x] of L^(tt — 1) are compatible as
sub-GeΓfand-Weyl pattern labels.

The restriction to a specified value of w in W(w) can be removed. Using the
^-exponential defined in (3.10) we can now construct the vector space W(e):

= expβ(0)W. (5.14)

Just as in our defining example (Uq(2) in Sect. 4) the space W(e) is too large and
we must project this space onto the Uq(n — 1) x Uq(l) sub-space that is anti-dominant
in Uq(n). For this purpose we use the projection operator P defined by:

mlnm2n- mnn

(μ)

mlnm2n <mnn

(8)1. (5.15)

We assert, and will prove below, that the vector space (call it Wq.BW) carrying
all unitary irreps of Uq(n) in this q-BW construction is the vector space given by:

Wq_B WΞ=PW(4 (5.16)

Specializing to a generic vector in the irrep [mlrtm2n mπ/l] having the
GeΓfand-Weyl labels (wιί7), 1 ̂  i,j ̂  n, we find:

IN>q-Bw= Σ <(μ)|exp^)|(m)>|(μ)>(g)|0>, (5.17)

where the meaning of (μ) ̂  [m] is that the pattern (μ) "fits into" (injects into) the
GeΓfand-Weyl patterns of the Uq(n) irrep [mlπ mnn] as:

Wl m2n mn-l mn
\

so that the vectors |(μ)> carry the Uq(n — 1) x Uq(l) irrep labels:

r'2n Wo

The constraint expressed by the projection operator P is exactly the geometric
constraint imposed by the construction of an associated bundle from the principal
bundle. In fact, one sees that the matrix element in (5.17) is the precise analog of
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the constraint in the Uq(2) construction, Eq. (4.1), imposed by the Uq(2) matrix
element (4.2).

To be fully explicit as to the meaning of Eq. (5.17), let us note that the sum in
Eq. (5.17) is a finite sum (since &, cf. [5.4], consists of lowering operators Eni only),
and that the matrix element <(μ)|expβ(0)|(m)> is therefore a polynomial, with
numerical coefficients e(C[g, q ~ 1], over powers of the g-boson operators {z1 , . . . , zn _ ̂  }.
This operator-valued polynomial acts on the vacuum ket |0> to produce an ortho-
normalized vector in the carrier space of Uq(n — 1) with an action by the generators
Eij-^ZiZj, Ea-^Ni ( l^ϊ, j^n— 1). The vectors |(μ)>, as discussed above, are
orthonormal vectors in the irrep [μ ln_ 19 μ2 M_ 15 . . . , μπ_ l f l l _ J x [μx J of Uq(n- 1) x
Uq(\\ with an action by the generators Etj. (As also remarked we inject this (μ)
pattern into Uq(n) by identifying (for Uq(n - l))μitn- 1 = mi + ln9 (with i = 1, 2, . . . , n— 1)
and for l/α(l)μ = m l Λ.)

To clarify the bundle nature of (5.17) let us note that since the fiber is the vector
space {|μ>} and the base manifold is the space {^(z)|0» we can identify the
left-action of the Uq(n - 1) x Uq(l) generators as action by the generators Γ(E0)
given in Eqs. (5.3a-d). (We will shortly extend this action to all of Uq(n).) The right
action on the bundle is defined by the generators {£0} of Uq(n) now acting directly
on the vectors |(m)> inside the matrix element - yielding £ <(flO|0|(m)>|(m')>,

(m')

where the < > are matrix elements of the given generator ge{Eίj} - and hence the
right action on Eq. (5.17) realizes by definition the unitary irrep [mlw mnn~] of Uq(n).
(We remark again that these two actions do not commute.)

What remains to be proved is that the left-action Γ(£0 ) extends from
Uq(n - 1) x Uq(l) to Uq(n\ that the map Γ is an isomorphism of <?-Lie algebras, and
that (5.17) defines orthonormal vectors carrying the irrep [m] with GeΓfand-Weyl
labels (m) under the action of the Uq(n) generators Γ(E0).

6. The Isomorphism of 0-Lie Algebras

The invariant operator 0, Eq. (5.4), has several properties which will be of
importance for our construction. As written, (5.4), the invariant operator 0 is the
sum of n - 1 monomials, xi9 and may be written in the form:

with
t-1 n-1 ί-1 π-1

We state the most significant fact about the operators (xj in the form of a
lemma.

Lemma (6.3). The operators xl9x29...,xn_l obey the q-commutatίon rule:

XiXj = q~ίXjXi, for i<j. (6.4)

Accordingly the operators (xj are an operator realization of the quantum coordinates
of an n—I hyper plane.

Proof. Direct verification.
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It is useful to introduce a sectmd set of operator coordinates, the set {AΓJ, which
have the definition:

X =a~^HJ + ϊ V **JE (x^-iV^ + i Y Nj (65]Λi — */ j = i j = ί+ι ^ni^S/*/ j=ι j = ί+l Li VU J/

Lemma (6.6). The operators {X^ have the property that XiXj = XjXi VϊJ =
l,...,n-l.

Proof. Direct verification.

We are now in a position to state a very useful identity for the ^-exponential
function of Eq. (3.10).

Lemma (6.7). Using the operators {xj and {Xt} ofEqs. (6.1) and (6.4), respectively,
the q-exponential identity:

(
n — 1 \ n— 1

Σ * i ) l ° > = Σ (exp,(*ί))IO>, (6.8)
i = l / i = l

is valid. Since the {JfJ commute, the product on the right-hand side of (6.7) may be
taken in any order.

Proof. Direct verification. Note, however, that this identity is not valid if the
terminating vacuum ket |0> is absent.

These ancillary results have an immediate application to the determination of
the left-action Uq(n) generators denoted by Γ(Eni).

Lemma (6.9). The left-action generators corresponding to the abstract Uq(n) genera-
tors Eni are given by:

zh (6.10)

f o r / = l , 2 , . . . , n - l .

Proof. Consider the action of Γ(Eni) on the vector |(m)>q.BW given in (5.17). The
operators En in the ^-factor of Γ(Eni) have an action on the ket vectors |(μ)> in the

tensor product, |(μ)>® |0>, giving the eigenvalues £#-> Σ A*o'~ Σ Pij-r These
/ = ! i = l

same eigenvalues would be produced by the action of the E^ acting to the left
immediately inside the matrix element <(μ)|expg(0)|(w)>. Since the zi act on the
exp^d?) inside the matrix element as well, we can therefore take Γ(Eni) to act inside
the matrix element. To determine the action of Γ(Eni) on expg(0) we note that this
operator is terminated on the right by the vacuum ket, so that we may use Lemma
(6.7).

One next observes that Γ(Eni) commutes with all Xj for j Φ i. Hence we need
only calculate that:

Γ(Em.)exp^)|0> = exp^tSQEJO) (6.11)

as can be shown directly.
Thus we find that:

(μ)eUq(n-l)*Uq(l)
(μ) c; [m]
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using (6.8)

Σ <(μ)\ Π exp^)EJ(m)>|μ>(χ)|0>, (6.12)
(μ.)eUq(n-l)*Uq(l) ί=l

using (6. 11).
By definition, however, the matrix elements < | | > of the g-Lie algebra generators

Enί acting on the standard GeΓfand-Weyl (abstract) basis vectors {|(m)>} are given
as:

EΛi\(m)y = Σ <(m')|£llί|(m)>|(m')>, (6.13)
(m')

so that Eq. (6.12) becomes

Γ(Eni)\(m)\.EVί

n-l

= Σ <(m')|Em |(m)> Σ <MI Π exp^)|(m')>|(μ)>(x)|0>,
(m') (μ)eUq(n-l)*Uq(l) ί = l

(μ) C5 [m]

= Σ <(m')|£J(m)>|(m')>q.BW, (6.14)
(m')

where in the last step we used Eq. (6.8) once again. Thus the action of Γ(Eni) on the
g-Borel-Weil basis yields precisely the same action as the (abstract) generators Enί

on the (abstract) standard GeΓfand-Weyl basis.

The determination of the generators Γ(Eίn) is - in contrast to Lemma (6.9) - a
much more difficult task. The reason for this difficulty lies in the problems associated
with the existence of the Serre relations. To calculate one needs to find an explicit
form for the generators Etj of Uq(n) including those which are not in the set
{£ ί f ί+1,£M_ !,£«}. The choice of any explicit form must be required to be stable
under co-multiplication, and since Γ(g) and g (#e generators of Uq(n)) are to have
the same abstract matrix elements, this necessary requirement can easily lead to
contradictions or inconsistencies for a particular (incorrect) explicit form. (Of course
one could always work directly with the generic matrix-elements, but this is a task
of daunting complexity.)

The procedure we will use is based on the following observation:

Lemma (6.15). The generators Γ(Eni\ i = l,2,...,π- 1, defined in Eq. (6.10) all
commute.

Proof. Direct calculation.

Moreover, we find that the realization by Γ(Eni) in Eq. (6.10) and r(Eiti±1) in
Eq. (5.3a,b) have the property:

Lemma (6.16). The generators Γ(Eni\ Eq. (6.70), and Γ(Eίti±1)9 Eqs. (5.3a, b) satisfy
the relations

Γ(Eni)Γ(Eiti±1) - q^2Γ(Eiti±l)Γ(Eni) = q±1/2Γ^Γ(En,i± J. (6.17)

Proof. Direct calculation.
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Remark. These relations are quite special to the present construction and are not
necessarily stable under co-multiplication. However, since Γ(g) and g, where
gεUq(ri) generators, have the same generic matrix elements, these particular
relations are, in fact, stable. One must be very cautious with such relations; for
example, it is easily shown that using £ίj5 w i t h y V i + 1 in Eq. (6.17) leads to a
contradiction.

The construction Γ:g-> Γ(g\ gεLie (Uq(n)\ has the implication that the matrix
elements of both g and Γ(g\ evaluated on their associated irrep bases, are not only
isomorphic, but identical.

Since we explicitly assume that the generators {E^} of Uq(n) have the standard
matrix elements of the g-Gel'fand-Weil basis, it follows that these generators
possess an involution: g -+g^ such that E\. = Ej{. It follows that Γ(g) also possesses
the same involution, defined via explicit matrix elements. We conclude that:

Lemma (6.18). The generators Γ(Ein\ i = 1,2,..., n — 1, all commute.

Lemma (6.19). The generators Γ(Ein\ and Γ(Ei±lti)9 satisfy the relations

Γ(Ei±1.)Γ(Ein) - q±^2Γ(Ein)Γ(Eί± J = q + W»>Γ(Ei± 1§II). (6.20)

We are now in a position where the explicit form of Γ(Ein) can be given. The
procedure is to calculate, using only those quadratic commutation relations of the
Uq(ri) Lie algebra which are independent of the Serre relations, to determine that

is aΓ n"1 1component of Γ(Eίn) involving the operator z\ E^ — E^ — £ Nk . This i
L fc = ι J

straightforward calculation (the result of which is given below.) One then uses
Lemma (6.19) and the known operators Γ(Ei±ίi) to determine all remaining
components of Γ(Ein).

The result of this calculation is:

Lemma (6.21). The left-action generators Γ(Ein), i = 1.2,..., n — 1, corresponding to
the abstract Uq(n) generators Ein by the mapping Γ are given by:

Γ(Ein) = q*»ZiEnn - Ett - *Σ Nk - Σ <?"%% (6 22)
k = l J j = l

where i= 1,2,..., n — 1, and:

k=l k=j+l

with

and the sum £ Nk in the last term is over k- values lying strictly inside the interval i
τ

toj (if i <j) orj to ί (if i >j).
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Proof. By construction, the generators Γ(Ein) validate the map Γ:g^>Γ(g), for
which the matrix elements of both g and Γ(g) (on their associated irrep bases) are
identical. Since the generators geUq(n) certainly obey the Uq(n) algebra, including
all Serre relations, this must be true of the generators Γ(Ein\ which establishes the
Lemma.

Remark. It is all too easy in a proof such as the one above to make subtle errors,
so that it is reassuring to know that we have actually demonstrated, by direct
calculation, that all of the defining relations Eqs. (2.1)-(2.5) of the Uq(n) algebra are
valid for Γ(Ein\ Γ(Eni) and, of course, for the remaining elements of the Γ(Eij)
mapping (this is automatically true via co-multiplication). A direct verification is
such an exceedingly tedious and uninstructive task that it is not useful even to sketch
the procedure here. Surprisingly the cubic Serre relations, and the relations asserted
in Lemma (6.19) are not the most difficult. The hardest relations to prove by direct
calculation are the quadratic Serre relations, each of which involve (n— I)2

commutators. Almost all of these commutators evaluate to zero or cancel with the
result of other commutators in pairs. There are, however, a special class of
terms - beginning at Uq(5) - which do not vanish (seemingly in contradiction to our
assertion). For these terms one can show that the constraints imposed by the form
of Eq. (5.17) - the constraint being expressed by Lemma (5.9) and the projection
(5.15)-cause these terms when operating on the basis (Eq. (5.17)) to vanish, thus
validating the claimed commutation relations.

We may sum up all of the above results by stating them collectively as a theorem:

Theorem (6.23). The map Γ:g-+ Γ(g) - where g is a generator of Uq(n) - given in
Eqs. (5.3a-d\ Eq. (6.10) and Eq. (6.22), is an isomorphism ofUq(ή) q-algebras.

It is a straightforward task - now that we have the isomorphism of Theorem
6.23 - to complete the proof that the vectors |(m)>q.BW of Eq. (5.17) are the carrier
space of the irrep [m] of the quantum group Uq(n) generated by the Γ(£0), 1 ?g i,
j^n. We need only apply the lowering operators Γ(Eni) to Eq. (5.17), thereby
eliminating all of the g-boson operators (zj. Using the lowering operators jΓ(£ij ),
i >j in Eq. (5.3b), then carries this vector to a lowest weight vector, whose weight
is the anti-dominant weight, Γ(Eii)^>mn + 1_in. This establishes the theorem:

Theorem (6.24). The q-BW vectors constructed in (5.17) are the carrier space of a
unitary irrep [m] of the quantum group Uq(n) generated by the operators Γ(Eij) in
Theorem (6.23).

7. An Alternative Form for the Irrep Vectors |(/n)>q_BW

The explicit vectors carrying an arbitrary irrep [m] of the quantum group Uq(n)
have been given in Eq. (5.17). Each such vector is a sum of vectors which are tensor
products of a homogeneous holomorphic vector over the (quantum space) base
manifold and fiber vectors carrying Uq(n — 1) x Uq(l).

It is useful, however, to express these vectors in an alternative form which makes
explicit the matrix-elements of the Kahler potential which normalizes the irrep
vectors. To obtain this alternative form we recall that the left action generators,
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Γ(Eij\ contain a sub-set of generators that realize the co-product action for the
sub-group Uq(n — 1) x Uq(l). Since the GeΓfand-Weyl pattern, (w), of the irrep
vector |(m)>q.BW uniquely specifies the irrep labels of this sub-group, we conclude
that we may write the vector |(m)>q.BW in the following form:

Lemma (7.1). The basis vectors |(m)>q.BW defined in (5.17) validate the relation:

"0>q-BW = K

(μ)

[W0]\

(μf) base fiber

(7.2)

(M')

where:
(i) the numerical constant K depends only on the Uq(n) irrep labels [mπ] and the

Uq(n — 1) irrep labels [_mn_ J;
(ii) the q-Wigner-Clebsch-Gordon coefficient qC" effects the tensor coupling:

(iii) the irrep vector
[wO]\

is homogeneous and holomorphic in the q-bosons
/base

(zj acting on the ket |0> with the Uq(n—l) irrep labels: [wO O], where
w = Σ K.-ι-^..-ιλ

i = l

(iv) the UQ(n — 1) irrep labels of the fiber vectorQ

fiber

are given by:

uin_1=mi + 1 n for i= 1,2,...,n — 1. (Thesefiber vectors are actually tensored with
a fixed Uq(l) vector carrying irrep [mlπ] but this is suppressed to avoid complication.)

Proof. This may appear to be a rather complicated result, but the underlying
structure is simple and actually implicit in the construction for Eq. (5.17). The
vectors in the fiber, by construction (this is the projection (5.15)), carry the minimal
(Uq(n— I)) weight contained in the irrep [m]. (These are the labels [μ].) The
homogeneous holomorphic vectors have a unique degree, w, which labels the
(symmetric) Uq(n - 1) irrep that these vectors carry, [wό]. The label w is at the same
time the total degree of the polynomial in (zj, and this is the number of g-boson
quanta in the irrep, namely w = £(w. n_ 1 — μin_ x) ̂  0. The known action by the

i

generators Γ(Etj) then completes the proof.

To determine the explicit value of the function K \ n 1, we remark that the
VIX-i]/

Γ(Etj) realize, by construction, the standard matrix elements of the generators on
the basis {|(w)>q_BW}. To determine the function K then, one need only evaluate
the left-action on the q-WCG coupled vectors and compare. This calculation shows
that:

Lemma (7.3). The normalizing factor κl n \in Eq. (7.1) for \(m) >q.BW has the
value: n - i j /

Γn. ^ ^

where: piy = m^ +j — i, and [n]! denotes the q-factorial.
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Remarks. (1) The parameters ptj are called "partial hooks" in the literature since
differences of the ptj are precisely Nakayama's hook parameters.

(2) The q-WCG coefficients that appear in Eq. (7.2) are known, in principle, via the
recursion process which assumes Uq(n — 1) information to obtain Uq(ή) results. It
will be observed, however, that these coefficients are actually determined explicitly
by evaluating the q-exponentίals in Eq. (5.17) and putting the results in the form of
Eq. (7.2). For reasons of brevity we will not give the explicit result here, although
it is useful to remark that for w = 1 these results validate the g-pattern calculus
results obtained earlier [7].

(3) For the q = 1 limit these results go over, as they must, into the well-known
Borel-Weil results for Eq. (5.17), in particular, and into the so-called "vector-
coherent states" which have been much discussed in the physics literature [11].
These explicit (q — 1) bases have proved to be very convenient for the optimal
construction of tensor operators and their matrix elements [17]. The recursion
aspect has been of considerable significance in that the procedure relates (3-;)
coefficients of, say, the U(n) group, to (6-7) coefficients in the U(n — 1) sub-group
[17]. It is reasonable to expect that structural results of this type will carry over to
the generic q case, implying the existence of significant new ^-analog identities.
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