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Abstract. We prove that a random orthonormal basis of eigenfunctions on the
standard sphere has quantum ergodic behavior.

As the title portends, this paper is about quantum ergodicity in the most completely
integrable of examples: the Laplacian on S2. The notion of quantum ergodicity we
pursue here is the one which characterizes ergodicity of a Schrόdinger (or Laplace)
operator H in terms of the semi-classical behaviour of its eigenfunctions ([Sn, V,
Be, Z.I-2, CdeV.2, HMR, ST]). Roughly, H is quantum ergodic if its orthonormal
bases {ψj} of eigenfunctions have the following property: (Aφ^ψj)-* J σAdμ

S*M

(j-+ co) for any 0 th order ΨDO A (dμ = Liouville measure, σA = principal symbol).
This limit formula is a kind of quantum analogue of the Birkhoff ergodic theorem
and is known to hold whenever the classical (e.g. geodesic) flow is ergodic. Otherwise
it does not seem well understood: for example, it might (for all that is proved to
date) even hold for a generic Laplacian. Our purpose here is, perversely, to investi-
gate it on the sphere. Of course, the usual basis {Yι

m} of spherical harmonics does
not have the ergodic property. But, due to the high degeneracy of eigenvalues, there
is an infinite dimensional manifold of orthonormal bases of eigenfunctions. This
manifold is actually a group and carries a unit mass Haar measure. Our main result
is that, relative to this measure, almost all bases have the ergodic property.

To state the result more precisely we will need to introduce some terminology
and background.

Throughout this paper we will be considering only the standard 2-sphere S2,
although our methods would work on many other spaces. We will usually omit
explicit reference to the metric on S2; all notation such as L2(S2), A, etc., will refer
to the standard metric.

We first recall that

L2(S2) = 0 £ , (dim£z = 2/+l) , (1.1)
i

where Et is the complex eigenspace of spherical harmonics of degree /. Equivalently,
Et is the eigenspace of the laplacian A of eigenvalue /(/ + 1). We will let πz denote
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the orthogonal projection onto E{.

π,:L2(S2)-^£,. (1.2)

Next, recall that a (hermitian) orthonormal basis for Et is provided by the vectors
{Yι

m, m= —/,...,/}, determined (up to constants) by the conditions;

\(l/i)δ/dΘYι

m = mYι

m,

where d/dθ generates rotation around the Z-axis. See, for example, [T,2.1] for the
specific constants.

The basis {Yι

m,/ = 0, l,2,...;m = —/,...,/} has some very special asymptotic
properties as /-> oo, reflecting the complete integrability of the geodesic flow on S2.
Indeed, for any fixed rational e, let Jf e be the subspace of L2(S2), spanned by
{Yι

m:m/l = e). J?e is the quantum analogue of the invariant torus Te a S*(S2) for
the geodesic flow, consisting of all great circles whose angle φ with the Z-axis
satisfies: cos φ = e. The precise meaning of "analogue" may be stated in several ways:

(i) Te is the microsupport of the quasi-mode Jfe (more precisely, the cone through
Te;see[C-deV]);

ίΆdμe, (1.4)
Z->oo Te

m/l = e

where A is a 0 th order pseudo-differential operator with symbol σA, and where dμe

is the invariant probability measure on Te for the torus action determined by the
geodesic flow and by rotation about the z-axis (see [Z.I]);
(iii) Jfe is the ladder subspace corresponding to the co-isotropic cone Φ ~ ι{{r(m, I):
m// = e,re]R+}), where Φ is the moment map for the above torus action ([G S]).

Thus, the foliation of 5*(52) by invariant torii Te for the geodesic flow has for
quantum analogue the decomposition of L2 into ladders J f e, invariant under A\
sequences of eigen-functions in j f β concentrate, in the limit of high eigenvalues, on
Γe; or, equivalently, functions in Jf\ can only have their wave front sets in the cone
thru Te.

The main object of the present paper is to contrast these asymptotic properties
of the "completely integrable orthonormal basis" {Yι

m} with the properties of a
"random" orthonormal basis of Laplace eigenfunctions. It turns out that the
random basis behaves like an orthonormal basis of eigenfunctions on a Riemannian
manifold with ergodic geodesic flow.

Let us recall this ergodicity of eigenfunctions ([Sn, Z.2, (CdV.2)]). To begin with,
let (M, g) be any compact, Riemannian manifold, let G* be the geodesic flow on S*M,
let A be the Laplacian and let {φ,} be an orthonormal basis of Laplace eigen-
functions: Aψj = λjψj. Let us say:

(1.5) Definition, {ψj} is a Liouυille-distributed basis if, for any ΨDO (pseudo-
differential operator) A of order 0,

l i Σ \ ( A ) \ 2 = 0. (1.6)
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Here, N(λ) = #{j: ^fλ} ^ λ}, (Aφp φs) is the matrix-coefficient of the ΨDO A, and

**A = —wo*»^ ί σAdμ, where dμ is the Liouville measure on S*M.
vol (S*

To understand (1.6), we recall a standard lemma on bounded sequences {α,-} in
])

This says:

£ \aj\p = 0 (any p > 0) (1.7a)

iff

lim ajk = 0, jfcG^ cz Z + , where Sf = {jk} is a subsequence of Z + of

density l:l/N#{; f ce^}n{l,2,...,ΛΓ}-*1. (1.7b)

The limit formula (1.6) is thus equivalent to the existence of a subsequence
y — {jk} °f spectral density one (in the obvious sense) for which

(ΛφΛ,φΛ)-><^. (1.8)

The subsequence if a priori depends on A. However by a diagonalization argument
one can show that (1.6) implies the existence of a subsequence Sf of density one for
which (1.8) holds for all A (see [Z.2]).

The limit formulae (1.8) and (1.6) give a quantum analogue of ergodicity. For
example if σA is the characteristic function of a nice subset E a S*M, then (Aφj9 ψj)
is interpreted as the probability that a free particle in state φ} has its (position,
momentum) in E. As the energy λ} tends to infinity, this should tend to the
probability that a free classical particle, i.e. a geodesic, goes through E. This
probability, calculated according to (1.8), is just the Liouville measure of E.

This heuristic reasoning suggests that if the geodesic flow Gx is ergodic, then (1.8)
should hold for any orthonormal basis of eigenfunctions. Indeed, this is the case
([Sn, Z.2, CdV]). Conversely, if (1.8) holds for any orthonormal basis of eigen-
functions, then the geodesic flow should be ergodic. This converse direction seems
however to be quite difficult. Our main result in this paper implies that, if we replace
the "any" by "some" or even "almost any," then in fact the converse is false. Indeed,
we will show that the random orthonormal basis of eigenfunctions on S2 is Liouville
distributed.

It emerges that existence of a Liouville-distributed basis of eigenfunctions for a
Laplacian Δ is not a good definition of the "quantum ergodicity " of Δ. It seems to
us that a more reasonable criterion for quantum ergodicity is in terms of operator

time-averages, where ,ϊ=w-lim — J e~ity/2AeitV2dt is the time average of A.
r-oo2T -T

The criterion is: Δ (or eityΓΔ) is ergodic if, for all ψDO's A or order 0, A = σA(lά) + K,
where the Hilbert-Schmidt norm of πλKπλ is o(N(λ)) as λ-» oo (πλ is the spectral
projection for the interval [0, λ] and N(λ) = tr πλ. In [Z1-Z2], we showed that Δ is
ergodic in this sense if the geodesic flow is ergodic; such ergodicity also implies that
all orthonormal bases are Liouville distributed. It is not yet clear to us if this
ergodicity of Δ implies classical ergodicity.

Returning to our main result, we first note that the set Θ0& of orthonormal basis
of Laplace eigenfunctions of S2 is a probability space. Indeed, any orthonormal
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basis {φ^: m = — /,...,/} of E, corresponds to an element τee (7(2/ + 1) via:

It follows that the manifold of orthonormal bases of E^ can be identified via (1.9)
with the unitary group (7(2/ + 1). Hence, the infinite dimensional manifold of
orthonormal bases of eigenfunctions can be identified with the product:

Θ@^U(l)x U(3)x (7(5) x •••. (1.10)

Now each 1/(2/ + 1) carries a Haar measure dμ£, normalized to have mass one.
Hence 031 carries the probability measure

d μ o o = d μ 1 x dμ3 x ••-. (1.11)

Let us denote by τ^ the sequence (τ1,τ2,τ3, •••)• Let us say, as in (1.6)—(1.8), that τ^
is Liouville distributed,

(1.12)

if, for any ΨDO A of order 0,

lim (1/L) Σ f-1— f \(π,Aπ,τ,Yi,τ,Yi)-σA\
2) = 0. (1.13)

Our main result is, then:

μβ)(J?(PΛ)=l. (1.14)

Thus, almost every orthonormal basis of Laplace eigenfunctions on S2 behaves
ergodically.

Let A be a Hermitian ΨDO of order 0 on L2(52, can). Associated to A is the sequence
{π^Aπf / = 0,1,2,...} of finite rank Hermitian operators on the sequence {E^} of
Hermitian vector spaces. Having fixed the basis {Y :̂ m = - / , . . . , / } of £ Λ we can
identify E, with C 2 / + 1 and πeAπ£ with a (2/ + 1) x (2/ + 1) Hermitian matrix. Thus,

may be considered an element of ^(2/ + 1) (the Lie algebra of (7(2/ + 1) ^

(μ )
U(Es). As such, it is conjugate to an element μ*(A) = ' of the

Cartan subalgebra 42ί+1 of diagonal matrices in 1/(2/ + 1). μe = μ\A) is uniquely
determined if we require that μ[ ^ μ ^ = •• ̂ μ2/+i> i e ^ a t tf ^Qs ^n Λ e positive
Weyl chamber * 2 , + l t + of 1/(2/ + 1).

Corresponding in turn to μ' are:

i) its adjoint orbit Θμ in ^(2/ + 1);
μ

μf =
I

ii) the probability measure dmμf = Σ ^~~Pi) o n **- (2-1)
2 / + 1 i = i
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The correspondences μe^Θμt++dmμt are all 1-1. On the other hand, the corres-

pondences A^{π,Aπ,}^>{μ'(A)} are not. Indeed, if Aave = — $ e~itPAeitPdt,

2π o
where P\E =/f, then Aave = @π^Aπ^ hence A and Aave correspond to the same

sequence {π^Aπ^}. Aayc is of course just the diagonal part of A, studied at some
length in ([Wei, Wi, Gu, U]). Since the definition of S£Θ0& depends only on
consideration of diagonal parts of ΨDO's, we will henceforth assume A = Aave. In
other words, we will always assume [A, Δ] = 0. The bounded ΨDO's A commuting
with A form a ring, denoted # in [U]. With no loss of generality, we assume
henceforth that A e<£.

Even with this assumption, the correspondence {π^Aπ/\^{μf(A)} is not 1-1.
For example, if A9 = TgAT*, where geSO(3) and Tg is the corresponding unitary
translation on L2(S2\ then obviously μ\A9) = μe{A). (It is possible however that,
conversely, μ\Ax) = //(>4)(vY) implies A1= A9 for some g) Moreover, the corres-
pondence is far from surjective. Indeed, the Szego limit Theorems of Weinstein-
Widom (loc. cit.) show that the sequences {μ^(A)} have quite special asymptotic
properties. The most important for this paper is that the measures dmμ,(A) have a
weak limit dmμ^ as /-»oo:

dmΰ0 = σ™*dμ, (2.2)

where dμ is Liouville (i.e. Haar) measure on S*(S2) (i.e. SΌ(3)), and where σ^ve is the
averaged principal symbol of A:

σ ve(x, ξ) = ~ 2\GA{{G\x^))dt (G< = geodesic flow). (2.3)
2π o

Actually (2.2) is only the first of a sequence of distributions associated to {μ\A)}.
Indeed, it is prove in [Wei] (see also [Gu, U]) that

j=0

for certain βjG&QR) (depending on Aeίf\ and with β0 = dm^. We will not use the
higher β/s in this paper. However, their existence constrains the sequence of
orbits {(9μί) associated to Ae%>.

We now reformulate our theorem in terms of the orbits {Θμ/}.
First, we fix an Ad-invariant inner product <•> on ^(2?+ 1): for example,

B0(Xy Y) = ΎxXY. Then let J{ be the corresponding orthogonal projection:
^(2/ + 1)-•/!/. Thus,

ίaλl 0 \

JMj)=\ •• L (2.5)

I o a I
Under the identifications u = a*,A = A* induced by Bo, the orbits Θμ go over

to co-adjoint orbits Θ*. These are symplectic manifolds, and the maximal torus He

corresponding to A{ acts on them in a Hamiltonian fashion (by conjugation). The
moment map for this action can then be identified, as above, with J(.
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Further, let « ( 2 / + l ) s ^ ( 2 / + l ) ® R be the decomposition in terms of

trace-less and scalar parts: a = a° + ά, where ά = l tra ]/ Λ with 1^ the

{2ί + 1) x (2/ + 1) identity matrix, and where a0 = a-aeo^(2S + 1).
Then the condition: τ^e^Θ^ can be reformulated by:

iff (VAeV): lim (1/L) Σ ^ - r l ^ ; 1 ^ ^ ) ^ ) - σΛ/,|2 = 0.

(2.6)

In view of the Szegδ limit formula,

(2.7)

So, we can further reformulate this condition as:

τneXΘaoφAeW. ^miλ/L)^ ~^—\Jί(τj\neAπffτ()\2 = Q. (2.8)

To demonstrate the usefulness of this reformulation, let us first prove that, for a
fixed Ae<g, there exists τ^eΘ^ satisfying;

^ m=-Λ...y). (2.9)

In fact, (2.9) follows from (2.7) and:

(2.10) Proposition. Let 0>μ be the image J^(Θμ) of the orbit Θμ under the moment map
(a convex poly tope, see [G-S]). LetdVμ be the measure on 0>μ which is the pushforward
under J( of the symplectic volume measure dvμ on &μ. Then the center of mass

( \( 1 \
relative to dVμ, is μ, where μ = I Σ fa )h

\2ί -f 1 f=i /

Proof. Let μ° — μ — μ be the traceless part of μ;μ°eά® (the Cartan subalgebra of
auQt + 1). Obviously 0>μ = 0>μO + μ (translation in Ae = 4 j 0 R ) . The proposition
is equivalent to: 0 is the center of mass of ̂ μ 0 .

Thus, we claim:

\ HdVμO{H) = 0. (2.11)

Since 0>μO = J^0βO) and dVμ0 = J^dvμθ9 (2.11) is equivalent to:

f J,(ξ)dvμO(ξ) = 0, (2.12Ϊ)

hence to

{ Jtf(τ-1μ°τ)dτ = 0 (dτ = Haar measure). (2.12ii)
SU(2<f+l)

But, clearly, J τ"V°τέ/τ = 0. •
SU(2S+1)
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We now prove (2.9). In view of (2.7), it follows from

Jfcj\neAne)\) = 0, (2.13)

but this immediately follows from (2.10). •

We now return to (2.8). Clearly this will involve the asymptotic dispersion from
the mean of 9 t{<Aί as /->oo. Among many possible formulations, the following
seems quite convenient.

Fix AeW, and let {Xj} denote the following sequence of positive random
variables on Θ0k\

An,)x,)-dAIA2. (2.14)

It is obvious that the Xj are independent random variables (they involve
different components of TW). Further, the condition that T^G^Θ^ is just that

*) Mm ; , , ^

The statement of Theorem (1.14) is that this holds for almost all τ v This can be
reduced to Kolmogorov's strong law of large numbers ([I], p. 188) once the expected
values and variances of the Xj are calculated asymptotically.

Let us denote by:
i) E(X)= ί I ( τ J ψ j t J ,

ii) V(X) = E((X - EX)2)
the expected value, respectively the variance, of a random variable X:

Our main lemma is:

(2.15) Lemma. Fix AeV. Then:

1

Proof. Evidently,

(dτ = Haar measure).

(2.16)

We first note that, using (2.7), we may replace Xf by Yj where:
def

πί)τί) ~ πsAπj-12. (2.17)

Indeed, XftτJ - Y^τJ = (2/ + 1) " !

2/+1
Second, we observe that

volt/(2(f

1

ί \JAτ-lAA)τ-μe\

J \JAξ)-μ\2dvμ{ξ). (2.18)
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The identities in (2.18) suggest a way of calculating E(Yj) asymptotically.
Indeed, for any μeA^ let us set:

D 2

2 ( μ - μ ) = J
vol υyλc + 1)

1
\\JM)-μ\2dvμ{ξ). (2.19)

vol Θμ Θμ

(D2 is the 2n d deviation of Θ>μ from its mean).
Clearly, D\(μ — μ) is a symmetric, homogeneous polynomial of degree 2 in μ.

So there exist constants α Λ bέ such that:

D\{μ - μ) = ——-(α,S*(μ) + b,S2(μ))> (2.20)

2/+1

where iSp(μ) = ^ yuf is the pth power function. Also, clearly, E(Yj) = Dl(μ^(A) —

μ\A)\ So we are reduced to calculating {a^b^} asymptotically. We claim:

~" ' ~ , (2-21)

b,= i + o(i/o

where the O-symbols are independent of any parameters.

Proof of (2.21). First, we plug μ = (1,1,..., 1) into (2.20) and conclude:

( 2 ^ + l ) α , + i>, = 0. (2.22)

Next, we introduce the Fourier transform of the orbit Θμ(μGό^(2/f + 1)):

T^\ f ^ < 7 V ( α i ί > ^ ^ ) (Jίe^). (2.23)

vol(0μ) ^

Associated to < , > is a gradient V and Laplacian Δ. They satisfy:

-Δei<fl>H> = \μ\2ei<μ>H>,

(\/i)Vei<μ>H> = μei<μM\ (2.24)

Clearly:

D2

2(μ-μ)=-Δ^μ_-(H)\H = 0. (2.25)
To make use of (2.23), we invoke a well-known formula [G-S, Sect. 33]:

dv (f) r(w)ei<wμ'H>
f c κ.//(a,g> f l V ς J = y fclWjg (2 26)

i/( (2π)" i i r Π <«,H>'
where μe/l^, n = dim Θμ, R + is the set of positive roots for ̂ ^(2/ + 1), and W is the
Weyl group of the pair (G, Gμ)(G = 5(7(2/ + 1), Gμ = stabilizer of μ).

We will use (2.26) with μ = δ9 where δ = (1/2) ^ α.

First, let us denote by rc(μ, //), respectively d(H), the numerator, respectively the
denominator in (2.26):
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i) n(μ,H)= £ ε(w)ei<w'μ-H\

ϋ) d(H)= π <α,#>. (2.27)

Let us also denote by D(H) the Weyl denominator:

iii) D{H)= f ] (e<a/2>H>-e~<«/2>H>).

Evidently d(H) is the term of order \R + | in the Taylor expansion of D(H). Further,
by WeyΓs denominator formula

Thus:

D(H) = X ε(w)e<wΛ-H\
weW

n(δ,H) = D(H).

(2.28)

(2.29)

Since (5 = 0, the thing to calculate is - Δ\ )

\d(H)J
But

H = 0

d(H)J
2sin<α/2,iί>

H = 0

= — I Δ Y <α,#>2

4.-1! \ "

•I- (2.30)

ΔiV "ι 1

ί, so S

). But δ = - \)e2

} ; and,

'-. Thus, ^ = 1 + 0(1//). CombiningS,{δ) = 0. Hence D2Jδ) = - ^ ^ b , = '-
1 2 W 3 ' 6

with (2.22) we get (2.21). •

This concludes our discussion of (2.21). Returning to (2.15)—(2.18), we see:

l ,. _ „ . ,. „ ( l ^ 2

2/+1

1
S2(μ'(A))-

1
. (2.31)

2/+1 * V2/+1.

Obviously, || μ^Λ) || „ < || A || (operator norm); while by the Szegό Theorem,
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— ! — S2(μ'(A)) = l—- f |σVΊ2 +0^(1/0, and
2ί+\ \ol(S*(S2))s*(S2) Λ

). Lemma (2.15) follows.

We next recall Kolmogorov's strong law of large numbers. Let {/„} c L2 be an
n

independent sequence, and let Sn = £ Λ Then:

(KSL) {V(fn)} bounded implies (l/n)[5rt - £(SJ] ->0 (a.s.) (2.32)

(almost surely). (See [I, Theorem 4.5.3]).
We set:

def 1

/> = Xj, (2.33)

So:

0 £(/» = : — : f l ] ( C " ^ ) + OA(Ψ2) (2.34)
^ ^ "7~ 1

(in an obvious notation);

Clearly V(f/) is bounded.
(KSL) therefore implies:

•0 (a.s.) (2.35)

Hence,

1 _ 1
(2.36)

or equivalently,

? ( O ^ 0 (a.s.), (2.37)

(N(L) = # eigenvalues ^L2). (2.36)-(2.37) is the criteria that τ^ be Liouville
distributed, at least as regards A e<£. To get rid of the dependence on A, we first set:

= jτoo:-)- Σ Xΐ(τJ-+θ\.
( N(L)/ZL J

\ (2.38)

J
We have just seen that μ^i^Θ^^ = 1 for any fixed A.

But &Θ@A only depends on the principal symbol σA. Further, choose an
orthonormal basis {φn} of L2(S*(S2)9 dμ), so that linear combinations Yβnφn, with
rapidly decaying an9 are dense in C(S*(S2)). It is straightforward to show that:

(2.39)
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where Op(φn) is any ΨDO with principal symbol φn. Since each member at right
has measure 1, we conclude our main theorem:

μoo(JS?(PΛ)=l. (2.40)
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