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Abstract. A general approach is adopted to the construction of integrable hierar-
chies of partial differential equations. A series of hierarchies associated to untwisted
Kac-Moody algebras, and conjugacy classes of the Weyl group of the underlying
finite Lie algebra, is obtained. The generalized KdV hierarchies of V.G. DrinfeΓd
and V.V. Sokolov are obtained as the special case for the Coxeter element. Various
examples of the general formalism are treated in some detail; including the fractional
KdV hierarchies.

1. Introduction

It is only comparatively recently that some degree of mastery of non-linear equations
has been achieved, and in this regard it is the notion of integrability that has
proved one of the most useful concepts. Prior to the discovery of the Korteweg
de Vries (KdV) and Nonlinear Schrόdinger (NLS) equations, there were very few
known integrable systems, examples being the harmonic oscillator and rigid body
motion. (There was also the exactly solvable Ising model of Statistical Mechanics,
the only such system with an infinite number of degrees of freedom.) In the 1960's
the KdV equation was shown to have an infinite number of conservation laws
and in fact to be integrable (see [1] for a nice discussion of the history of these and
subsequent developments). The existence of solitons solutions of the KdV equation,
which is a hallmark of integrable systems, is the result of an apparently delicate
interplay between dispersion on the one hand and nonlinearity on the other - the
latter causing a steepening of the wave-front. Despite the seemingly delicate nature
of the interplay required, the KdV equation finds a wide application in physics. Five
years after the efforts required to demonstrate the integrability of this equation,
Zakharov and Shabat found the Lax pair formulation of the NLS equation, and
shortly thereafter the sine-Gordon equation was similarly treated (these equations
too are widespread). Subsequent to the successful treatment of the above three
equation, all sorts of generalizations were obtained [1].
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In the work of DrinfeΓd and Sokolov [2] many disparate threads were pulled
together in an elegant manner. What they did was to proceed roughly along the
following lines. If the following definition is made

UiD\ D = A=έviD
i,

ax i = o

then the scalar Lax equation is given by

(1.1)
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where if the uf are given, the vt are determined by requiring that the evolution
equation is a consistent equation. A matrix Lax pair formulation of the above can
be given without much difficulty, by choosing
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with z a spectral parameter, in which case (1.2) becomes the matrix Lax equation:
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where the differential operator A, of order m, becomes a matrix A of the form A =
m

£ z ltJ f. However, it was by no means clear to how to generalize this construction.
ί = 0

One could for example consider a more general q, allowing it to be a lower
triangular matrix, but then the matrix A whose commutator with L would give
the evolution equation of the hierarchy at a certain order, is not uniquely defined.
However, introducing the following notion of gauge-equivalence

with N a lower-triangular matrix with 1's on the diagonal, this indeterminacy in
A can be circumvented (in a manner which will be explained) and effectively the
situation is that considered initially in Eqs. (1.1) and (1.2). The benefit, though, of
proceeding in this manner is that whereas the q in Eq. (1.3) has no group-theoretic
interpretation, the lower-triangular q can be considered elements of the Borel sub-
algebra, while the N can be considered an exponentiated subalgebra. This inter-
pretation allows a natural generalization, and so in fact KdV type equations can
be defined for arbitrary Kac-Moody algebras (the actual construction required the
principal and homogeneous gradations which we shall come to). Similar results
were obtained in [3], though the association here was made between mKdV equa-
tions and untwisted affine Lie algebras. In this same work a suggestion was made
concerning the proper setting in which these developments were to be viewed and
it was this suggestion that provided the impetus for the present work.

Apart from the intrinsic interest of the generalizations considered here, they
being in some cases new integrable systems and in others familiar systems with a



Generalized Hierarchies 59

novel interpretation, there are other motivations connected with the attempt to
understand quantum gravity in two dimensions. In the one-matrix model it was
shown that the partition function can be written as the square-root of the τ-function,
subject to an extra constraint, namely the string equation, and hence the specific
heat can be considered as a potential u = w(x,ί1,ί2> ) which satisfies the KdV
hierarchy of equations [4]. More general matrix-models are similarly connected
with the SL(JV)-KdV hierarchies of [2]. On the other hand it has recently been

3/c
shown that twisted N = 2 super-conformal models of the minimal c = - series,

if coupled to topological gravity, give correlation functions which obey relations
similar to those encountered in k + 1 -matrix models (the minimal models are

u . J U .Λ . SU(k+l) . t , , „
obtained by considering - cosets at level one, and so - describes

* SU(k) x 17(1) C7(l)
the one-matrix model which in turn corresponds to pure gravity). It is desirable
to understand this connexion better and in addition to consider what happens
when we replace the above cosets by the non-minimal N = 2 coset models of [5]
based on Hermitian symmetric spaces G/H, where G is simply laced and has Kac-
Moody level equal to one. What, for example, are the matrix models to which
this corresponds?

Another motivation concerns the generalized VF-algebras and the fractional
KdV hierarchies. In [6] Polyakov demonstrated a relationship between WValgebras
and a constrained SL(N) current algebra. A similar structure emerges in the
DrinfeΓd-Sokolov picture, where the classical commutation relations of the WN-
algebra constitute one of the two Hamiltonian structures of the SL(JV)-KdV
hierarchies. In [7] generalizations of the above W-algebras were introduced, namely
^-algebras, where / runs from 1 to N - 1 and the W^-algebra is the standard
WValgebra. In [15] fractional KdV hierarchies were introduced, where these now
bear the same relation to the ^-algebras as the earlier SL(JV)-KdV equations
bear to the HValgebras.

An outline of the paper is as follows. We restrict our attention to the untwisted
algebras, which have a nice realization in terms of an underlying finite Lie algebra
g. We introduce the notion of a gradation of a Kac-Moody algebra, that is to
say a decomposition of the algebra $ = ©& such that [_gi,gj'] = gi+j We then

i

discuss the classification of maximally commuting subalgebras with central extens-
ion of the given Kac-Moody algebra, which are known as Heisenberg subalgebras.
An important element of this classification will be the Weyl group of the finite
Lie algebra g, generated by reflection in the hyperplanes normal to the vectors of
the root-system and which is a normal subgroup of the group Aut(Φ^), the auto-
morphism group of the root system of g. We then proceed to show how generalized
hierarchies can be defined and discuss various examples, including the fractional
KdV hierarchy mentioned above. Finally we present our conclusions.

2. Kac-Moody Algebras

In this section some of the formalism of Kac-Moody algebras will be introduced,
but only the bare minimum necessary to understand the construction in the following
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sections. A thorough review of the theory may be found in the excellent book by
Kac [8]. The section is organized as follows. First of all, we introduce the untwisted
Kac-Moody algebras as central extensions of loop algebras. The algebra is
naturally equipped with a Z-gradation, conventionally known as the homogeneous
gradation. We then use a theorem of Kac to classify all the Z-gradations of the
algebra. Of special importance, from our point of view, are the subset of these
gradations induced by elements of the Weyl group of the underlying finite Lie
algebra. In these gradations there exist Heisenberg subalgebras whose elements
have well defined grade. In fact, this leads to the crucial result that the inequivalent
Heisenberg subalgebras, up to conjugation, are in one-to-one correspondence with
conjugacy classes of the Weyl group. We point out that there is a natural notion
of partial ordering on the space of Z-gradations. A few trivial lemmas are also
proved, which play an important role in later sections.

2.1 . Untwisted Kac-Moody Algebras and Gradations. We will restrict our discussion
to the untwisted Kac-Moody algebras, (#(1) in the notation of Kac), which can
be realized as central extensions of the loop algebra of a finite Lie algebra g:

If we write a typical element of g as an = (a® zn\ where aeg and rceZ, then the
algebra may be written as

where (a, b) is the Killing form of the finite Lie algebra g and [α, fc] is the Lie-bracket
in g. c is the central element of g, and d is the derivation which naturally induces
a Z-gradation of g:

ieZ

where [*/,&] = i&. This distinguished Z-gradation is known as the homogeneous
gradation.

At this time we point out the existence of a natural Heisenberg subalgebra of
g. Introducing the triangular decomposition of the finite Lie algebra 0 = n _ © Λ 0 n + ,
allows us to define the homogeneous Heisenberg subalgebra as the algebra spanned
by the elements [h®zn,c}\

[an, fcm] = (α, b)cδn+m0 a, beh.

This is a maximal commuting subalgebra of g, with central extension. Clearly, a
different choice of h in g will give an equivalent Heisenberg subalgebra, up to
conjugation. One of the main purposes of Sect. 2.2 is to find all the inequivalent
Heisenberg subalgebras of g.

The classification of Z-gradations of g turns out to be equivalent to the problem
of classifying all finite order inner automorphisms of g.

Theorem 2.1. (Kac [8,9]). Classification of all finite order inner automorphisms of
g. Let g be a (simple) Lie algebra of rank r, and S = (s0,s1,s2,...,sr) be a sequence
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of non-negative relatively prime integers. Set

where kt are the Kac labels (that specify the decomposition of the highest root θ of
r

g in terms of the simple roots, that is θ = — £ k^ and /c0 = 1). We then define the
i=l

finite order inner automorphism σ ofg, in some Cartan-Weyl basis, by σ:g^>g such
that

h^H9 EΛ^e2πi"'δEa, (2.1)

1 ' / 2 \
where δ = — Y — - Js/o),-, and ωt are the fundamental weights (these are the duals

N i = i \ < x f /
of the co-roots α t

v = 2a;/a?). Such automorphisms exhaust the finite order inner
automorphisms of g up to conjugacy.

An inner automorphism of g can be used to define a new Z-gradation of g in
the following way. Under σ, g has an eigenspace decomposition

where σ:gk\-+e2πik/Ngk and N is the order of σ. Consider the centrally extended
loop algebra

neZ

where the element a®zi+nN, for aeg^σ), of gσ has grade i + nN with respect to
the derivation d'.

Theorem 2.2. The algebra gσ is isomorphic to g with a new derivation dσ.

Proof. Theorem 2.1 implies that there exists a Cartan-Weyl basis for g such that
the inner automorphism acts as in (2.1). In this case

In order to exhibit the isomorphism we have to find a new derivation dσ, of g such
that

The required expression is dσ = N(d + δΉ)9 where δ is the vector of Theorem 2.1,
and the isomorphism is, in this basis, (a®zn)eg^(a®zi+nN)egσ for aeg^σ).

So we are led, following Kac [8,9], to define the gradation of type s.

Definition 2.1. A Z-gradation of type s of g is defined in terms of a sequence of
r + 1 non-negative relatively prime integers s = (s0, s l 5 . . . , sr), by a derivation
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Under ds:

ieZ

where [d.,&(s)] = i&(s).

The homogeneous gradation is given by s = (1, 0, 0, , . . . , 0), in which case δ = 0.
Another gradation of note is the principle gradation for which st = IVi.

The sf's are canonically associated to the nodes of the Dynkin diagram of g
(the extended Dynkin diagram of g). There is a simple algorithm for determining
the horizontal subalgebra, g0(s)9 in a gradation of type s. It is simply the algebra
whose Dynkin diagram is found by removing nodes from the Dynkin diagram of
g corresponding to non-zero sh and adding enough abelian factors to preserve the
rank. So for the homogeneous gradation the horizontal algebra is g, whilst for the
principle gradation it is the abelian algebra h.

Remark. Two gradations s and s' are equivalent, up to trivial isomorphism, if there
exists some symmetry of the Dynkin diagram of g that takes s -> s'.

We will use the terminology "minimal gradation" to describe a gradation for
which, for some fc, sk = 1 and Sj = 0 \// Φ k. Clearly the number of "minimal grada-
tions" is equal to r + 1, the number of nodes of the Dynkin diagram of g; however,
in view of the above remark not all such gradations are inequivalent if there exists
some symmetry of the diagram. For example, the A(

n

ί} Dynkin diagram has a cyclic
symmetry under which all nodes are equivalent, and so there is only one inequivalent
"minimal gradation" of A(

n

1}.

2.2. Heisenberg Subalgebras and the Weyl Group. In this subsection we shall show
how to classify all inequivalent Heisenberg subalgebras of g. A Heisenberg sub-
algebra of g is a maximal nilpotent subalgebra (with central extension). The precise
definition may be found in [10].

We have already established a connexion between inner automorphisms of g
and Z-gradations of g. There exists a certain gradation which is naturally associated
to each Heisenberg subalgebra of #, in the sense that elements of that Heisenberg
subalgebra belong to the eigenspace of the derivation defining the gradation.

To this end, we are led to consider inner automorphisms of g which fix a
Cartan subalgebra h'. Such automorphisms have the following action on the algebra
P' Q^g (with p: h' -> h'), so that in some Cartan-Weyl basis

To avoid confusion later, we have used a prime to denote this Cartan-Weyl basis
in order to distinguish it from the basis in (2.1). In the above p is an automorphism
of the root system Φg of g, and p = (p, ψ) is its lift into the algebra g. The auto-
morphism group of Φg, Aut(Φ0) is a semi-direct product of the Weyl group of
g, Wg, and the group of symmetries of the Dynkin diagram. We now restrict our
attention to the Weyl group, the normal subgroup of Aut(Φ^); the diagram sym-
metries led to outer automorphisms of g and we shall not discuss them further.
So for every element we Wg we have an inner automorphism of g given by w: g -> g
such that

E'jr+W^y (2.2)
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Notice that an element of the Weyl group acts naturally on the Cartan subalgebra.
The phases ψa generate a projective representation of the root system with a factor
set determined by the structure constants of g:

The lift w is actually unique up to trivial automorphisms. The important point
to notice about these inner automorphisms is that they fix the Cartan subalgebra
of g, and it is because of this that they lead to classification of Heisenberg sub-
algebras of g.

Theorem 2.3 (Kac and Peterson [10]). The lift w has order N equal to n or 2n,
where n is the order of w. When w has no unit eigenvalues then N = n.

Remark. For the simply-laced algebras there is a rather simple way to determine
whether the order of w is twice that of w, or not. It was shown in [12] that it is
possible to find a basis for the phases such that the element (w)" acting on a step
generator is

where α = £ wp(α). It follows that w has order n or 2n depending on whether
p = l

α αe2ZVαeΦ0, or not. (Notice that if w has no unit eigenvalues, then α = OVαeΦ^
and so N = n as claimed.)

Under w, g has the following eigenspace decomposition

9 = ® 0i>
i

where w(gk) = e2πik/N(gk). In particular, the Cartan subalgebra h' has an eigenspace
decomposition © h'., where /[w] is a set of r = rank(#) integers, such that the

ιe/[w]

eigenvalues of w are exp(2πik/N), for fce/[ω]. This set of numbers will be important
in the following section and so we repeat its definition.

Definition 2.2.

/[w] - {/ceZ|0 ̂  k < N, Eigenvalues of w are e2πίk/N}.

Since w is an inner automorphism of g there exists some different Cartan-
Weyl basis (the unprimed basis) in which it acts as in (2.1). So for each element
of the Weyl group there exists a unique, up to conjugation, inner automorphism
of the form (2.1), and hence a Z-gradation of g. We will denote the gradation
corresponding to we Wg as s[w]. The gradation is unique (up to diagram symmetries)
for conjugate elements of the Weyl group. Finding the gradation s[w] for a given
conjugacy class of the Weyl group is not a straightforward task. Algorithms were
suggested in [12], where they were used to find the gradations corresponding the
112 conjugacy classes of the Weyl group of £8. (These results have been extended
to other algebras in [13].)

The conjugacy classes of the Weyl group of all simple Lie algebras are given
in a uniform way by Carter [11]. For each conjugacy class he gives a corresponding
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diagram, rather like a Dynkin diagram. Each node of the diagram corresponds
to a root, not necessarily simple, whilst the number of lines joining two nodes
equals 4 cos2 Θ, where Θ is the angle between the two roots. This gives two sorts
of diagrams, some of which look exactly like Dynkin diagrams as well as a few
exceptional diagrams that require their own notation. The element in the Weyl
group represented by a given diagram is found by dividing the nodes into two
sets J1 and J2 each containing mutually orthogonal roots and then performing
Weyl reflections in all the roots in one set followed by Weyl reflections in each of
the roots in the other. So if Rβ represents the Weyl reflection in the root β then

w =
1 A J- f I \

\yeJ2

where the actual ordering in each set is irrelevant because in each set the roots
are orthogonal. In particular, for the Coxeter element wc of Wg, the Carter diagram
is the Dynkin diagram of g. For the An algebras the Weyl group is isomorphic to
the symmetric group on n + 1 objects, Sn+1, and representatives of the conjugacy
classes are found from the Carter diagrams which are simply the Dynkin diagrams
for the subalgebras

Ani®An2® ®An such that £ (nt + l) = π+ 1,
P i=l

where A0 is taken to mean the empty set.
The important property of the gradations s[w], induced from conjugacy classes

of the Weyl group, is that each of them has an associated Heisenberg subalgebra
which is inequivalent, up to conjugacy, and moreover, these Heisenberg subalgebras
completely exhaust the set of inequivalent Heisenberg subalgebras of g.

Definition 2.3. The Heisenberg subalgebra Jf [w] of g, corresponding to the
representative w of a conjugacy class of the Weyl group, is, in the basis for which
w acts as in (2.2), simply the elements of g whose restriction to g lies in the Cartan
subalgebra h'.

The important point is that elements of ffl[w] are homogeneous with respect
to the gradation ds[vv]. That is, tf [w] has an eigenspace decomposition in s[w]-
gradation:

ieZ

where Jf7 [w] = 0 if j<£/[w]modΛΓ.

Remark. In the case when c = 0,3? [w] is a maximal commutative subalgebra of g.

2.3. Partial Ordering of Gradations. In the construction which follows, it is important
to be able to define a notion of partial ordering on the set of gradations. At this
point we introduce some convenient notation.

and similarly for ^<l (s),^</(s) and ^> t (s).
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Proposition 2.1. There exists a partial ordering on the set of gradations {s} of g
such that s r̂ s' if st Φ 0 whenever s'. φ 0.

For what follows we shall need the following lemmas relating to two gradations
such that s' ̂  s.

Lemma 2.1. For s' ̂  s:

Lemma 2.2. For s' >: s:

Lemma 2.3. For s' ^r s:

The proof of the lemmas is trivial. Lemma 2.1 follows because when s'^rs the
Dynkin diagram of #0(

s') is a sub-diagram of the Dynkin diagram of #0(s), by the
removal of nodes. Lemma 2.2 follows because if α <Ss>0, or <0, respectively,
where δs is the vector of Theorem 2.1 associated to s, then this implies α (5s, >0,
or <0, respectively. While Lemma 2.3 follows because if α <5s, >0, or <0, res-
pectively, then this only implies α <Ss^O, or ^0, respectively.

3. Generalized Hierarchies

In this section we define a series of hierarchies of equations based on an untwisted
Kac-Moody algebra with zero centre. The rather abstract construction will be
made more concrete in the following section, where the usual DrinfeΓs-Sokolov
hierarchies will be recovered as special cases. The method of defining the hierarchies
and exhibiting the flows is just a generalization of the DrinfeΓd-Sokolov matrix
Lax representation approach [2], which itself extended earlier work [14]. As stated
before, our approach is closely related to that of Wilson [3], in fact that reference
contains the germ of idea that allows us to generalize the DrinfeΓd-Sokolov
hierarchies: that is, to consider more general automorphisms of the underlying Lie
algebra. It will be clear that most of our arguments are direct generalizations of
those of [2]. Throughout the rest of the paper we are considering g to have zero
centre c = 0.

3.1. Type I Hierarchies. We begin by defining a differential operator L, associated
to the data (Λ,w,s), in the space C°°(R,$), where g is an untwisted Kac-Moody
algebra:

In the above we require:

(1). A to be a constant regular element of Jf t[w] with i > 0 in the gradation s[w]
of g. w is some element of Wg9 and conjugate elements of Wg will lead to isomorphic
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hierarchies. By constant we mean dxΛ = 0, and by regular we mean that Ker(ad Λ) =
3?[w~] (i.e. in its restriction to g, Keτ(adΛ\g) is a Cartan subalgebra). This will not
be the case if Λ lies in a wall, that is a hyperplane perpendicular to some root.
In such a case [Λ, £α] = 0, for the particular root α, and so the Ker(ad Λ\g) would
be larger than h. We shall refer to the hierarchies which satisfy this constraint as
type-I hierarchies. For type-II hierarchies Λ is no longer regular, however, one
can still construct an infinite hierarchy of integrable equations. We shall, for the
moment, concentrate on type-I hierarchies, we shall discuss type-II hierarchies
briefly in Sect. 3.3.

(2). The potential geC°°(R, g), where Q is defined to be the following subspace of g:

Q = g^0(s)ng<i(s[_w]\

using the notation of (2.3). It is convenient to define

βω = ̂ o(s)n^<7.(s[w]), (3.1)

and so Q = Q(l\ In the above, s is some other gradation of g such that s^

Proposition 3.1. There exist an infinite number of commuting flows of the form

^ = [>l(b),L], (3.2)
dtb

where b is a constant element of ffl + [w], the subspace of Jf [w] with positive
s\_w~\-grade, and ,4(b)eC°°(R,<7) will be defined below.

The fact that the flows commute means that it makes sense to define q as a
function of all the flows: q(x, . . . , tb9 . . .). (Following the philosophy of [2] we shall
treat the ίfc's in the calculations below as parameters and temporally "forget" that
the potentials A(b) and q depend on them.)

The elucidation of Proposition 3.1 will require a couple of lemmas which we
now establish.

t p
mj= Σ mp where mjECco(R,gj(s)) and

j — — oo j = — oo

m'.eC°°(R,^(s[w])) are the expansion coefficients in the two gradations, we shall

define M + = m,.,M_ =M-M + ,M'+= m] and M'_=M-M'+.
j = o j = o

Lemma 3.1. // [M,L] = 0, where M has the form of Definition 3.1, then

[M + ,L]eC°°(R,β), (3.3)

and

[M'+,L]eC°°(R,0. (3.4)

Proof. The proof proceeds by equating the grades on the left- and right-hand sides
of the equalities [M + ,L] = - [M_,L] and [Mr

+,L] = - [Mr_,L]. At worst, the
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grades of the various terms are:

67

L
M
 +

M_
M'

+

M'

s

0 to oo
0 to oo
— oo to —1
0 to oo
-oo to 0

s[w]

— oo to i
— oo to oo
— oo to — 1
0 to oo
— oo to —1

where use was made of Lemmas 2.1, 2.2, and 2.3, which apply because s[w]^s.
So, for example, - [M_,L] has s-grade in the range (- oo to oo) and s[w]-grade
in the range (— oo to i — 1), whilst [M + ,L] has s-grade in the range (0 to oo) and
s[w]-grade in the range (— oo to oo). Since these two expressions must have the
same grade, the actual grade of both expressions lies in the intersection, which
proves (3.3). Similarly one proves (3.4).

Definition 3.2. There exists a formal action of the Kac-Moody group G on L,
which we call a gauge transformation. The action is defined by the exponentiated
adjoint action:

L0 = exp(adΓ)(L),

where the exponentiated adjoint action is defined by its power series expansion, i.e.

Proposition 3.2. There exists a (non-unique) gauge transformation of the form given
above, where TeC°°(R,0<0(s[w])), such that L0 has the form

= dx + A + H (3.5)

where HjEC^R^jM).

Proof. Essentially one equates terms of the same s[w] -grade in the expression .L0 =
exp(ad(T))(L), to get a recursion relation of the form

Hj+lΛ,Tj_i-] = *, (3.6)

where 7} is the component of T of s[w]-grade;, and * denotes terms of grade;
which depend on Hk, for k>j,Tk, for k>j — i, and q. The proof proceeds by
induction. The first equation of the series states that

/f ί _ 1 + [Λ,T_1] = ̂ ._1, (3.7)

where qi_1 is the component of q of s[w]-grade i — 1. We now appeal to the fact that
A is a regular element. This implies that g has the decomposition g = Ker(ad Λ)0
Im(ad/l), where Ker(adΛ) = 3?[w]. Hence, we can solve (3.7) uniquely for Hi.1,
and for T_ l 9 up to an element of Ker(adΛ). We can fix the freedom in the Γ/s
by demanding that Tj elm(ad/l). The same decomposition means that we can
solve (3.6) iteratively.
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Proof of Proposition 3.1. We have to find A's such that the right-hand side of (3.2)
is in C°°(R, Q). By Lemma 3.1 if we can find M such that [M, L] = 0, then suitable
expressions for A are M+ or M'+. Using the fact that exp(ad Γ)[M,L] =
[exp(ad Γ)M,L0], where T was found in Proposition 3.2, we can find M's which
commute with L by using the fact that L0 consists of a derivative and terms in
J f[w]. So we get the two sets of flows

BL
— = [(exp(-adT)(fr)) + ,L], (3.8)
ct

^ = [(exp(-adΓ)(/>))'+,L]. (3.9)
Ct

for a constant element be3? +[w].

Now we introduce the concept of a gauge symmetry of the system of equations.
If s<s[w] them the form of L is preserved under certain gauge transformations.
In this case one can define a reduced set of flows which preserve some consistent
slice of the orbits of the symmetry.

Proposition 3.3. The form of L is preserved under certain gauge transformations. In
fact the most general such gauge transformation, L = exp(adS)(L), has SeC°°(R,P),
where

P = <7o(s)n0<0(s[>]). (3.10)

Under this action:

<?h->exp(ad S)(dx + q + Λ)-dx-Λ.

Proof. Consider an infinitesimal gauge transformation. Under such a transformation

δq=-dxS+[S9q + Λ].

Requiring that <5geC°°(R, Q) implies that S has to have s[w]-grade < 0 and s-grade
^0, and soSeC°°(R,P).

Furthermore, exp(adS) acts freely owing to the fact that the map adΛ:P->β
is injective. (This follows because it is easily shown that P contains no elements
in Ker(adΛ).) It is therefore possible to fix the gauge freedom by choosing some
consistent gauge slice of CCO(R9Q)/CCO(R,P\ say C°°(R,β). The dimension of Q is
easy to calculate

dim(β) = dim(β)-dim(P)

J = 0

Λ -i \
= dim 00, (s[w]) ,

\ j = o /

by Lemma 2.3. Notice that the dimension of β is independent of the gradation s.
We can now write consistent flows for the gauge fixed operator L, by choosing

geC°°(R, β). However, if we do this then there is no guarantee that (3.8) and (3.9)
will preserve the gauge slice chosen. To compensate for this it will be necessary
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to modify (3.8) and (3.9) by infinitesimal gauge transformations:

+0,L], (3.11)
dt

+^,L], (3.12)

for some 0,0'eC°°(R,P).

Proposition 3.4. (3.11) and (3.12) feαd ίo identical equations for q.

Proof. Consider M an element of g. M+ — M'+ clearly has s[w]-grade less than
zero, by Lemmas 2.1 and 2.3, and moreover by Lemma 2.2 it has s-grade equal
to zero. Hence, M+ — M'+eP. Applying this result, we see that the difference
(exp(- ad T)(b))+ - (exp(- ad T)(b))'+ is an element of C°°(R, P), but neither (3.1 1)
nor (3.12) evolves L out of the gauge slice β, therefore neither can their difference.
This implies that

(exp(- ad T)(b))+ - (exp(- ad T)(b))'+ + 0 - 0' = 0,

and therefore the difference of the right-hand sides of (3.11) and (3.12) is identically
zero, and so t = t'.

Definition 3.3. If we introduce a basis ξa, a = 1, . . . , dim(β) for C°°(R, β), and a basis
for J f +[w] consisting o//l7>e^f7 +/jΛr[w], with jel[w~\ and neZ^O, then we call
the hierarchy of flows o/(3.11) (or (3.12)) with b = Λj^ which can be written in
the form

the (Λ,$[w~\,$)-hierarchy, with a particular choice of gauge, associated to g. The
hierarchies corresponding to conjugate elements of Wg are isomorphic.

In the following couple of propositions we establish that the flows defined by
(3.2) commute. We also find the conserved densities of the hierarchy, and show
that some components of q are constant under all the flows and may be consistently
set to zero.

Proposition 3.5. The quantities HjJeImodNZ<i, of (3.5) are the conserved
densities for the hierarchy.

Proof. Since g is a loop algebra we shall consider a particular faithful matrix
representation of g. Recall that there exists a gauge transformation T such that
LO = exp(ad(T))(L), has the form:

where HjeCco(R, ^-[w]). Now that we have a definite matrix representation in
mind, the gauge transformations may then be written as L0 = ΦLΦ"1, where Φ
is a matrix with an expansion of the form Φ = I + £ Φ7, where Φ7 has s[w]-grade

7 < 0

j. The Φ/s are polynomials of the Γ/s of Proposition 3.2. Each flow of the hierarchy
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can be written in the form

[d,-Λ,L0]=0, (3.13)

where for each flow

A = (dtΦ)φ-ί + ΦAΦ~1. (3.14)

It is easy to see that (3.13) requires the component AjeCco(R9 3fj[_w~\\ and so (3.13)
has the form of a conservation equation

dtHj + dxAj = 0.

Proposition 3.6. The finite set o/H/s with i>j^0 are constant along all the flows
(recall that i is defined by the fact that ΛeJ^i[w']\ i.e. for any flow

d,Hj = Q i>;^0.

Proof. Consider (3.14) and the fact that the explicit expression for A is

A=(φ-1bΦ)'++θf.

This can be rewritten as

A = φ-ίbΦ-(φ-ίbΦ')_+ff9

and so

A = (dtΦ)φ-i+b-Φ((φ-1bΦ)'_-ff)φ-i.

The only term in the above with s[w]-grade ^ 0 is b, which is a constant element
of Jίf + [w], and therefore dxAj = OVy ^ 0.

This result means that some components of q can be eliminated, since they are
constant under the flows. For example, (3.7) implies that

and so by Proposition 3.6 we can consistently set

^_1nCβo(R,JT[w]) = 0. (3.15)

Indeed one can show directly that dtqi.i = [/I, T_ t].

Proposition 3.7. The flows defined by (3.2) commute for different elements b and

Proof. It will be sufficient for us to show that the flows on L before gauge fixing
commute. The condition that the flows commute:

= 0, (3.16)
\_0l 01: J

will be satisfied if

dtA(b'}+ —dt'A(b)+ + [A(b') + , A(b) + ~\ = 0, (3.17)

where A(b) = Φ~*bΦ. In Proposition 3.5 we showed that A, defined in Eq. (3.14),
is an element of tf [w], and so [dt — A(b\ b'~\ = 0, since b' is a constant element of
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[w], and similarly [3r - Λ(fe')» &] = 0- BY conjugating these with Φ we deduce

dtA(b') = lA(b)+9 A(b')l δ'tA(b) = [A(b')+ , Λ(b)],

and so dtA(b')+ = [A(b) + , X (&')] + » and similarly for δt^(fc) + . Substituting into the
left-hand side of (3.17), we find

But [Λ(i>') + ,Λ(&)] + = D4(&),Λ(ίO-] + = [Λ(&)+,Λ(&')-] + and so (3.16) is zero.

Proposition 3.8. The (gauge-fixed) flows (3.11) (or (3.12)) have the form

w/zere A j>n = /1J5Π + qjtK,Λjtn is the same as in definition 3.3 and qjίneC°°(R,Q(nN+j)),

where Q(k) was defined in (3.1).

Proof. Ajίn has the form

By considering the grades of the two expressions, one deduces that AjtΛ has
s[w]-grade ^j + nN and s-grade ^ 0. But the component of AjtΛ with s[w]-grade
equal to j 4- nN is Λjtn and therefore the rest of Ajttt, that is qjtn9 has grades lying
in the intersection g^0(s)ng<j+nN(s[_w]).

As a consequence of Proposition 3.8 we see that the hierarchy has a rather
uniform description. If we define

where the original L-operator is L = — Lk m, with x = —tkm,q = qkm and Λ = Λkm,
for some fixed /c and m, such that k + mN = i, the grade of Λ. In the above,
ΛjίneJ>ίfj+nN[w] and constant, and the potential qjjneCco(Rί Q(j+nN)). The equations
of the hierarchy, after suitable gauge fixing, lead to the zero-curvature conditions

IΛ,mΛ ,J = 0. (3-18)

3.2. Generalized Miura Maps. We now consider the spectrum of hierarchies for
fixed w and /leJ f + [w]. The spectrum results from varying the gradation s^s[w].
For s = s[w], where by "equals" we mean as vectors, then it is apparent from (3.10)
that there is no gauge in variance and so we have a generalization of the DrinfeΓd-
Sokolov modified-KdV hierarchies. On the contrary, when s is as "small" as it can
be, i.e. a "minimal gradation," the gauge invariance is maximal, then we have a
generalization of the DrinfeΓd-Sokolov KdV hierarchies. Choosing a gradation s
between these two extremes leads to what we will call a partially modified KdV
hierarchy (pmKdV). We will show that there exist generalized Miura maps
connecting some of these hierarchies in the spectrum.

Proposition 3.9. For the hierarchies of fixed w and Λ, the two hierarchies defined
by L! and L2 corresponding to gradations Sj and S2, respectively, with s[w] ̂ ΓSj >~s2,
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are related by the fact that L± can be obtained by appropriately restricting the
potential of L2.

Proof. First of all Q\ c: Q2. This follows from Lemmas 2.1 and 2.3, which apply
because Sj Xs2. Let us denote the complement X:Q2 = Qι®X. It follows from
Lemmas 2.1 and 2.3 that

We now restrict L2 by imposing q2 n CGO(R,X) = 0, and .so L2-^L1.
Proposition 3.9 allows us to introduce the concept of a generalized Miura

transform. If we have a solution of the (Λ, v^sj-hierarchy, then we can translate
this into a solution of any (/t,w,s2)-hierarchy by a suitable gauge transformation,
where sλ >s2.

3.3. Type II Hierarchies. Type II hierarchies are defined by the fact that Λ, the
constant element of Jf + [w], is not regular. As has already been pointed out, this
will occur if, in the basis of (2.2), where A = μΉ' for some μ,μ lies in some walls
{WΛ} (these are the hyperplanes orthogonal to a given αeΦg). If this does occur
then Ker(adΛ) is now larger than J f[w].

It is rather obvious how to modify the construction of the type I hierarchies
to that of type II hierarchies. Following the same steps, the conserved densities
HJ in (3.5) are now elements of Ker(ad/i), and a set of commuting flows can be
constructed of the form (3.2), but now b is constrained to lie in the centre of
Ker(ad/l), a point discussed in ref. [3].

4. Examples

In this section, a number of examples of the preceding formalism will be developed.
Our examples will be restricted to type I hierarchies.

4.1. The DrienfeΓd-Sokolov Hierarchies. The hierarchies defined in ref. [2] can
be recovered from a (Λ, w, s)-hierarchy by choosing w to be Coxeter element wc

of Wg9 and Λ to be the (unique) element of #ι(s[wj). The Coxeter element of
Wg was discussed in Sect. 2.2. Recall that /[wc] = {Exponents of g} and the order
of wc is the Coxeter number h of g. For this element of Wg the lift wc also has
order h, because wc has no unit eigenvalues. The gradation associated to wc is the
principle gradation for which s[wj =(1,1,..., 1). For this choice of gradation the
whole of ^f[wc] is regular, and so the hierarchies are of type I, in this case
g = Ker(ad/l)φlm(ad/l). In order to make contact with [2] we shall write down
the expression for the L-operator in the basis in which the Coxeter automorphism
is the adjoint action of an element of the Cartan subalgebra. This is the basis of
(2.1). $! is spanned by the r + 1 elements ei9 i = 0, . . . , r, where

where the αf are the sample roots of g and α0 is the extended root. The spectrum
of the Heisenberg algebra is

je/[wc]mod/ιZ
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The unique element of the Heisenberg algebra in $ι[wc] is

73

(4.1)
i = 0

For fixed, g we have a spectrum of hierarchies by varying the gradation s^
The usual generalized mKdV hierarchy is recovered choosing s = s[wc], in which
case

where Λ is (4.1) and <?eC°°(R,ί70(s[wc]) = h). The usual generalized KdV hierarchy
is recovered by choosing s to be a "minimal gradation," i.e. sk = 1 and s7 = 0V/ φ fe,
for some k. So there is a KdV hierarchy for each node of the extended Dynkin
diagram, up to symmetries of the diagram. In this case geC°°(R, Q) where

The gauge freedom corresponds to C°°(R, P), where

Using the DrinfeΓd-Sokolov formalism one can construct the flows t^n9 labelled
by 7'e/[wc] = {Exponents} and neZ ̂  0. Reference [2] discusses a rather natural
way to gauge fix the KdV hierarchies. For an arbitrary, "non-minimal gradation"
s-<s[wc], the hierarchies are partially modified.

For the g = An hierarchies, which include the usual mKdV and KdV hierarchies
when n = 1, we can write down the L-operator explicitly in the n + 1 -dimensional
representation. In this representation, EΛt = eί+ίi9 (the matrix with a 1 in the ιth

row and i + 1th column, and zeros elsewhere), and so

Λ =

The Heisenberg subalgebra is spanned by elements which can be written in block
form as

/ o

0

\z

1

0

0

1 '

- Oλ

. 0

. 1

. o)

<--(: v) c^ ;=l,2,. . . ,w, meZ, (4.2)

where It is the i x i unit matrix. The mKdV L-operator is

-f

1

V

(4.3)

where usual choice of gauge fixing leads to an L-operator for the
j = ι
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generalized ^π-KdV of the form

o ... o o

0 - 0 0

ui .. un 0

(4.4)

Solutions of (4.3) and (4.4) are connected by the usual generalized Miura

4.2. Fractional KdV-Hierarchies. Recently, a new series of integrable hierarchies
has been proposed [15], called the fractional KdV hierarchies (FKdV). Their
structure evolved from a generalization of If-algebra proposed in [7]. (These
algebras are related to the Hamiltonian structure of the hierarchies.) The idea is
to generalize the DrinfeΓd-Sokolov construction, for the case g = An, to L-operators
of the form

where Λit0 is given in (4.2). From our point of view this is nothing but the (Λ, wc, s)-
hierarchy, where in contrast to the usual case A is chosen to be the unique element
of the Heisenberg algebra in &[wc], where 1 ̂  i ̂  n. In fact, one could consider
more general situations in which A was any of the elements in (4.2) with m ̂  0.
Such a generalization is possible even for the standard SL(2)-KdV hierarchy, a
direction which will be pursued elsewhere.

For the case of A2 the proposed form of L is [7,15]

-β)u o o ^ | f o o Λ
G+ -at/ 0 + z 0 0 , (4.5)

v T G- βϋ) (o z o j

where a and β are arbitrary constant numbers, and t/, G ± and T are the potentials.

Proposition 4.1. From the point of view of our general construction (4.5) is nothing
but a possible gauge fixing of the hierarchy corresponding to (/I2,o>wc,s = (1,0,0)),
for A2.

Proof. The proof amounts to showing that (4.5) is a consistent gauge choice. The
set Q is in this example

Q = hu{E_aι_Λ2,E_^E_Λ2,E^E^zE_Λί_J,

whilst P, the gauge freedom, is

P = {£_.,_.„£_.„£_.,}.

Therefore, we can write the (unifixed) potential as

y1 c 0

e y2 d

Ί + bz f y3
N ,

The gauge transformations which preserve the form of q can be written

q^>ΦdxΦ~ί + Φ(q + A)Φ~1 -A,
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where

Φ =

Notice that the gauge freedom is exactly the same as for the Λ2-DrinfeΓd-Sokolov
hierarchy, which is a general feature in the sense that the subspace P only depends
on s[w] and s, and not on the choice of ΛE Jjf + [w]. The proof proceeds by showing
that there exists a gauge transformation which brings q into the form

(4.6)

It is not difficult to construct the required gauge transformation, one finds that

B= - -dC --(Ac + y2-dC- CA\
α

and φ = (b + c + d)β. Having established the form (4.6), we now appeal to
Proposition 3.6, (and the discussion following it), which states that the time
evolution of the component of q in tf ^_ 1 [w] is zero. In our case, i = 2 and #ι(s[wc])
is spanned by {Eα ι,Eα 2,z£_α ι_α 2}, and there is an element of this vector space
which is in Jfi_ι[w]: it is precisely Λ l f 0 , the matrix multiplying φ in (4.6). The
proposition implies that we can consistently impose φ = 0, and hence recover the
L-operator defined in (4.5).

We now construct the first flow of the hierarchy:

(4.7)

Proposition 3.8 implies that Al >0 has the general form

a, 1 0

s a2 1

+ ι? t a3

3

for functions s, t and ai9 with £ a{ = 0. One can then solve the recursion relations
ί = l

that follow from (4.7) to obtain

/ 0 1

0

* + ( ! - £
α

β

α

o^

1

0
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and the equations of the flow

θ(ι 0G
+ = (α + β)U' - (α + 0(2α - β)U2 + T,

dtιaG- = (2α - β)U' + (α + β)(2u - β)U2 - T,

4- -(α2 - α)8 + β2)£/(G- - G+), (4.8)
α

where prime denotes 3X. To compare with ref. [1 5] set α = 2β = 1 and put x -> — x.
Notice that the first flow can be written as

^=H + /l2i0,L l i0], (4.9)
dx

where L1>0 = 3fι o — A. It is apparent that (4.9) is nothing but the second flow of
the A2 DrinfePd-Sokolov KdV hierarchy, with the identifications x-» — ί2,o

 and
ί1>0 -> — x. In fact, if we choose β + α = 0 then L l f 0 becomes

0 0 0 \ / 0 1 0 \

0 0 0 - 0 0 1 . (4.10)

2G--G + -3αl7 O / V z 0 O /

This is precisely the conventional form of gauge-fixed L-operator for the
A2-DrinfeΓd-Sokolov hierarchy. This leads us to propose the following:

Proposition 4.2. Any solution of a (Ai M, w, ̂ -hierarchy gives a solution of a (A. m, w, s)-
hierarchy, where AineJ^ί+nN[w~], ΛjmeJ#'j+mN[w']. (We are assuming that both
hierarchies are of type /.)

Proof. The first hierarchy is defined by the zero curvature equations [L; „, Lk p] =
0, where Lin = —L and the Ljttn are defined in (3.18). However, the equations of
the hierarchy also implied the more general statement that \_Lkp, Llq~\ = 0. A similar
picture emerges for the second hierarchy. The important point to notice is that
for both hierarchies the potentials ήffctpeC°°(R,βk+pN). Furthermore, both the
hierarchies have the same gauge invariance. Having a solution of a hierarchy
implies that we know qkp = qkίp(tlq). Clearly, a solution of the first hierarchy is
also a solution of the second hierarchy, and vice- versa. So the space of solutions
of hierarchies can be mapped to each other.

Let us illustrate how this works for the fractional KdV hierarchy that we are
considering. Let us take α + β = 0 and so the first flow has the form (4.10). If we
have a solution of the KdV hierarchy, that is ^(x, ί2, 0^1,1^2, 1^1,3^ ••) and
Wifo^.o^i . i '^ . i j ί i .a j ) then a solution of the fractional KdV hierarchy is given
relabelling x-> — ί1>0 and ί2,o~)> ~ x and tne following relations, where for clarity
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we have indicated the dependence only on the relevant variables:

^ (* ι,o>*) = - — M- fι ,o> ~ x)>
3α

G + (ti,o,x) = "ι(- ίι,o» - *) - 1 5r1)0

M2(- £1,0, ~ *)>

G~(*ι,o,x) = "ι(- f ι ,o» - *) - H l f 0

M2(- * ι,o» - x)»
Γ(ίlι0,x) = δ f ι 0W!(- ί l t 0, - x) - fδ^ f θw 2(- ί l f 0, - x).

Conversely, if we have a solution of the fractional KdV hierarchy, that is G±, U
and Γas functions of (ί1>0, x, tltl9t2tl,tlt39 . . .), then a solution of the KdV hierarchy
is obtained by relabelling x-> — ί2 0 and ί1>0-^ — x and

M!(X, ί2t0) - 2G"(- x, - ί2i0) - G+(- x, - ί2§0),

MX. '2,0) = - 3αί/(- x, - ί2t0).

Proposition 4.3. // we cα/ί ίfeese two maps between the two solution spaces
& ί : KdV -» FKd V and ̂ 2 : FKd V -> KdV, ίΛβπ ^^^2and ^r

2o^ί are both the
identity.

The proof of this is straightforward, and uses the equations of the first flow
(4.8). In summary, the following picture has emerged. For any choice of w and s
one can define a sequence of hierarchies by choosing for A each (regular) element
of the Heisenberg subalgebra Jf +[w]. Each of these hierarchies has the same
gauge invariance and after gauge fixing the solution spaces of each hierarchy are
isomorphic. The only difference between the hierarchies is in the identification of
the defining variable x; in this sense there is a complete democracy between the
flows. One might expect, therefore, that these hierarchies will lead to different
Hamiltonian structures as claimed in [15] for A2.

4.3. Homogeneous Hierarchies. In this section we consider hierarchies for which
w = 1, the identity element of Wg. So in this case s[l] is the homogeneous gradation.
For these hierarchies there is only an analogue of the mKdV hierarchy, since there
is no lower gradation in the partial ordering. The simplest such type I hierarchy has

where A = zμΉ, for some μ. In order that the hierarchy be of type I we require
that μ H be regular, and so α μ/OVαeΦ^, the root system of g. Following the
general construction of Sect. 3.1 geC°°(R,0). In components

oteΦg

for functions / and q". Using the arguments following Proposition 3.6 we see that
/ is constant along the flows, and so we set it to zero.

The Heisenberg algebra J f [1] is spanned by the elements znvΉ9 and so at
each level there is a vector space, of dimension r, of elements of jtf* [1]. Therefore,
at each level we can define a vector space of flows. For example the flows with
n = 1 are given by



78 M. F. de Groot, T. J. Hollowood and J. L. Miramontes

which gives the following equation for α0:

and the flow

dq _

Solving (4.11) we find

and so the first vector space of flows is

,
( μ a) β . ( μ β ) '

where NβtΓ for β + yeΦg, are the structure constants of g.
The second vector space of flows is

Σ

When g = Aί9 the construction above is the non-linear Schrodinger hierarchy,
associated to the L operator

0 i/Λ /I 0

Φ oy ΛO i
So it is natural to view the homogeneous hierarchies as generalization of the non-
linear Schrodinger hierarchy. We have only considered the case where A is regular,
i.e. type I hierarchies. In general there are many other possibilities [16].

4.4. Hierarchy Associated to w = R(Xί in A2. The Weyl group of A2 has three
conjugacy classes corresponding to the following Carter diagrams: A2, correspond-
ing to the Coxeter element, Al9 corresponding to the conjugacy class {Raι,RΛ2,
Rα ιRα 2Kα ι}, and 0, corresponding to the identity. We have already dealt with the
hierarchies that can be constructed from the Coxeter element, which leads to the
conventional generalized KdV and its fractional generalizations, and the identity
element, which leads to the "homogeneous hierarchy" of Sect. 4.3. In this section
we consider the hierarchies associated to the third conjugacy class.

We take w = R/XIR(X2R(XI as the representative of the conjugacy class this corres-
ponds to the Weyl reflection in the root α0 = — α x — α2, under which:

α?ι—> —



Generalized Hierarchies 79

Obviously, w has order 2, w2 = 1. The lift w:A2^>A2 such that

H'^w(H'), E'a^φxE'wM,
has the property

w2(E'Λ) = (-\Γ«E'oι, α = α + w(α),

so the order doubles and become 4 (w2(E'Λι 2) = — E'Λι 2). The result follows because
A 2 is simply-laced (see the remark following Theorem 2.3).

Since w is an inner automorphism of A2, we may realize it in the "shifted
picture" of (2.1). In this basis,

w://h->#, EΛ\-+e2πiΛ'*EΛ9

where the shift vector, in this case, is δ = ^(ω: + ω2) ((s, ) = (2, 1, 1)). In this basis,
A 2 decomposes into the following eigenspaces under w, 00, :

i

g0 = {Hί9H2}; gί = { E Λ l , E Λ 2 } ' 9 g2 = {Eαι +αj

0_ ! = {£_α ι,E_α 2}; 0 _ 2 = {E_ α ι _ α J,

which defines a new gradation of the loop algebra A2 given by the derivation ds[w]5

of Definition 2.1:

z"),

The Heisenberg subalgebra, J f [w], corresponding to this element of the Weyl
group is

neZ meZ

«eZ meZ

Obviously, we can write

neZ

where for this element of the Weyl group /[w] = (0,2), and

/ I 0 0 N

\0 0

\z 0 O/

in the three-dimensional representation of A2.
Let us now construct the generalized hierarchies associated to w. We define

the operator L in the space C°°(R, A2)

L = dx + Λ + q,

Λ is a constant "regular" element of J^f+ [w], and so the hierarchy is of type I.
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We shall take Λ = h2, which is obviously regular. Given some other gradation
of ^2>

s^s[w]> the potential q is an element of the following space:

Such a operator is invariant under gauge transformations L = exp(adS)(L), with

SeC°°(R,P), P = ̂ 0(s)n<7<0(s[>]).

If we choose s to be the homogeneous gradation, then the hierarchy has maximal
gauge invariance, and

Conversely, if we choose s to be the same as s[w], then the hierarchy has no gauge
freedom at all and the potential is

+ > + U<-> g<l> 0

0 0 -ι/( + ) + w(

where u(±) parametrize g0, and g(1>2) parametrize q±. Let us work out this (gauge
fixed) case, which leads to a generalized modified hierarchy.

Following the steps DΪ Sect. 3.1, first we have to "diagonalize" L

exp(ad T)(L) = L0 = dx + Λ2 + | H.2j.

Proposition 3.6 implies that the HjECao(R9Jtf'j[w']) will be the conserved densities
of this hierarchy. In the matrix representation we are using,

and we obtain a series of recursion relations

[/I, Φ_i] + //! =#1,

J + l

[ΛΦ-^al + H.^Φ.^o + Φ-j- i^i-Φ-j- Σ Hk-j&-k, 7 = 1, . . ,00,
fc=l

from which the H/s and the Φ_/s, up to pieces in Ker(adΛ), can be obtained.
Given that Jf(s[w]) lives in a subspace of g of even grade, the first equation implies
that qlelm(adλ), which is already the case. Solving for the first few terms
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Φ-3 = [ - dxq
w + (iu( + ) - 3u<-> - !<?(1 V2)te(1)]£«, <8> z~ '

+ C - θx<?<2) + («( + ) + 3ιι(-> + <?(1 Y2))<7(2>]£«2 ® z" ',

+ R(<?(1 Y2)) - ^«(+) - u'+w + 3«<- y1 Y2)

where

/I 0 0 \ /O 0 -z'Λ
h+ = \0 0 0 , F= 0 0 0 .

\0 0 -I/ \1 0 0 /

Once Φ has been obtained, the flows are found from (3.8),

for each be«?fi+4n[w], with i = 0, 2 and i + 4n > 0. The first one, (2,0), corresponds
to 6 = /

2,0

3*2.0

This flow implies that the conserved density H0 is, in fact, a constant,

3H0 φ(-> + ̂ (1V2))
- = - = u.
^2,0 ^2,0

Notice that this is just a consequence of Proposition 3.6. So we can put H0 = 0,
which reduces by one the number of independent potentials (degrees of freedom)
and then the flow simply identifies x and ί2,o

:

du(~]

i ( + ) o ( — }=—dxu
(), - = — dxu

( \

(1)

2,0 ' 2,0

Of course, one is redundant.
The second flow, (0,1), corresponds to b = Λ0<g)zeJf4. H0 is also constant
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under this flow.

^ = - k(W V2)) -
dt0,ι 2

~ = -
<3ί0ι 2

'4

;W2>
^-=-38x(d,^-(u^-^q^)q^
0*0,1

The first non-trivial conserved density is

5. Discussion and Conclusions

In the preceding sections we have described a way of generalizing the approach
adopted by DrinfeΓd and Sokolov towards constructing integrable hierarchies of
partial differential equations. The main protagonists were Kac-Moody algebras
and their maximal Heisenberg subalgebras. Although for simplicity's sake we only
considered the untwisted Kac-Moody algebras, there is no reason why similar
constructions might not be undertaken with the twisted Kac-Moody algebras
(DrinfeΓd and Sokolov considered both twisted and untwisted algebras).

Our main result was that for each positive element of the Heisenberg subalgebra
of an (untwisted) Kac-Moody algebra, we could define a collection of hierarchies
consisting of generalized KdV's, a modified KdV, and various partially modified
KdV's. The various hierarchies in the collection for fixed A are related by generalized
Miura maps. So up to the equivalence under Miura maps, the inequivalent hier-
archies are given by the inequivalent Heisenberg subalgebras of the Kac-Moody
algebra. These, in turn, are in one-to-one correspondence with conjugacy classes
of the Weyl group of the finite Lie algebra. So loosely speaking, there is a hierarchy
for each conjugacy class of the Weyl group.

The so-called "fractional" KdV hierarchies of [15] are naturally contained in
our framework, and result from taking A to be an element of 3f+ [w] of arbitrary
grade. We showed that the solution spaces of such hierarchies are identical, differing
only in the choice of the variable x from amongst the flow variables. It is well-known
that the modified KdV hierarchies of DrinfeΓd and Sokolov admit a single local
Hamiltonian structure, whereas their KdV hierarchies admit two distinct Hamiltonian
structures, a fact that has been known for some time for the original KdV hierarchy.
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The second Hamiltonian structure of the DrinfeΓd-Sokolov KdV hierarchies are
the classical W-algebras, so it is natural to ask whether more general classical
W-algebras appear from the hierarchies introduced above, as it appears they do
[15]. There is also the question of whether the different hierarchies corresponding
to different Weyl conjugacy classes, can be written in a Hamiltonian form. We
will address these questions elsewhere.

It is an interesting issue as to whether the hierarchies that we have constructed
are related to the "tau-function" approach to integrable structures. In [10], to
each Heisenberg subalgebra of a simply-laced untwisted Kac-Moody algebra, a
realization of the basic representations (level 1) were found. Using each of these
"vertex operator" representations, Kac and Wakimoto [17] have constructed an
integrable hierarchy. It is natural to ask whether these hierarchies are related to
the ones that have been considered here. Indeed in the formalism of [17], the usual
DrinfeΓd-Sokolov KdV is obtained from the vertex construction associated to the
Coxeter element of Wg. For more general conjugacy classes of Wg it is not known
whether the two constructions lead to the same hierarchy. For the case of the
KdV hierarchy, where g = Aί9 a direct connexion between the tau-function and
zero-curvature formalisms has been established by Wilson [18], employing the
dressing procedure [14]. It would be interesting to try and extend this work to
the more general hierarchies.
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