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Abstract. We study the infinite dimensional Grassmannian structure of 2D
quantum gravity coupled to minimal conformal matters, and show that there
exists a large symmetry, the W1 + O0 symmetry. Using this symmetry structure, we
prove that the square root of the partition function, which is a τ function of the
p-reduced KP hierarchy, satisfies the vacuum condition of the W1 + ao algebra. We
further show that this condition is reduced to the vacuum condition of the Wp

algebra when the redundant variables for the p-reduction are eliminated. This
mechanism also gives a prescription for extracting the Wp algebra from the W1 + 00

algebra.

1. Introduction

Recently great progress has been made in the understanding of the non-
perturbative aspects of 2D quantum gravity by formulating it in terms of the
matrix models [1]. In particular, it has been recognized that the 2D quantum
gravity has a close connection with the KP hierarchy [2-4]. Furthermore, the
analysis through the Schwinger-Dyson equation reveals the universal structures of
2D quantum gravity and from this one can obtain an analogue of the operator
product expansion even in the theory of quantum gravity [5, 6]. In particular, it is
shown [5, 6] that the Schwinger-Dyson equation for the ID gravity coupled to the
(/?, q) conformal matters ((p, q) quantum gravity)* is expressed as the vacuum
condition of the Wp algebra on the function τ(x) = γZ(x), where Z(x) is the
partition function of the 2D gravity with the action S = £ χnΘn and the x's

nΦO(modp)
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control the renormalization group flows corresponding to the change of the
parameter q.

Although this formulation by the Schwinger-Dyson equation gives a systematic
description, it is not completely satisfactory for the purpose of revealing the
universal structures of the 2D quantum gravity. In fact, in contrast to the case of
the q flows which we can easily control by varying the location of the background
sources xn, we must change the form of the constraint itself in order to control the p
flows. For example, while two theories parametrized by (/?,#) = (2,3) and (p,q)
= (3,2) should be identical, the relation between two sets of the scaling operators
{®n}n*o(mod2) and {C^φocmods) is n ° t clear. Thus we need a more general
framework for the 2D quantum gravity where the two parameters p and q can be
changed freely.

In this paper, as a first step towards this direction, we investigate the symmetry
structure of the 2D quantum gravity and show the existence of a large symmetry,
the W1 + o0 symmetry [7]. Using this symmetry structure, one can easily prove that
the τ function automatically satisfies the vacuum condition of the W1 + a0 algebra if
it obeys the string equation. Furthermore, we show that this condition is reduced
to the vacuum condition of the Wp algebra when some redundant variables are
eliminated. In this sense, the Wp symmetry in the (p, q) quantum gravity can be
regarded as a by-product of the W1 + a0 symmetry. Although we have not yet found
a final framework in which the p flows can be controlled, we expect that the
exploration along this line leads to the final answer.

This paper is organized as follows. In Sect. 2, we summarize the Sato theory
that describes the KP equation in terms of the infinite dimensional Grassmann
manifold, and show how the string equations are treated in this formalism. In
Sect. 3, after explaining the rule for translating the operators acting on the τ
function into the one-body operators acting on the one-body wave function, we
introduce the w1 + 00 algebra as a set of the one-body differential operators. Then we
show that the string equation takes a simple form when it is expressed in terms of
the universal Grassmann manifold. In Sect. 4, we show that this w1 + 00 algebra
becomes its central extension, the Wί + O0 algebra, when it is represented as a set of
differential operators acting on the τ function. Furthermore, we prove that a τ
function of the p-reduced KP hierarchy satisfies the vacuum condition of the Wί + O0

algebra when it obeys the string equation. This form of the vacuum condition
includes the variables, xp, x2p, , which become redundant when we take the
conditions of the p-reduction into account. In Sect. 5, we then show that after the
elimination of these redundant variables the vacuum condition of the W1 + oo

algebra is reduced to the vacuum condition of the Wp algebra with central charge
c = p — 1. Section 6 is for some concluding remarks. In Appendix A, for the sake of
completeness, we explain the relation between the Lax operator and the τ function.
Appendices B and C are devoted to the details of the calculations in Sect. 5.

2. The τ Functions of the KP Hierarchy and the String Equations

In this section, we summarize the Sato theory that describes the KP equation in
terms of the infinite dimensional Grassmann manifold [8-10], and show how the
string equations are treated in this formalism.

Let H be the set of formal Laurent series:

H = C[z,z- 1 ]=ί/(z)= Σ arz-'-ι<2}, (2.1)
[ reZ+1/2 j



Two-Dimensional Gravity 373

and V be a subspace of H which is spanned by linearly independent functions ξ(ϊ)(z)
= Σ ^ z - " " 1 / 2 (i = 0,l,2,...) in H; V=[_£°\z\ £(1>(z), £(2)(z),...]. We call V

reZ+1/2

comparable when V is linearly isomorphic to the subspace
i/_ = ίf(z)= Y arz~r~ί/2\> a n ( * the universal Grassmann manifold (UGM) is

defined as the set of such comparable subspaces:

UGM = {Fcif |F^tf_}. (2.2)

See, for example, [10] for more mathematically complete definitions.
In order to express the τ functions in a compact form, we introduce fermionic

operators ψ}, ψs(r,seZ +1/2) satisfying the following anticommutation relations

0, (2.3)

and define the zero-particle state | — oo> as the state that satisfies

t/V|-oo> = 0 ( v reZ + l/2). (2.4)

We then make a correspondence between a vector ξ(z) in H and a fermionic
operator ψ\_ξV in the following way:

ξ{z)= Σ f r Z " r ~ 1 / 2 ^ V [ a f = Σ Zrψl (2.5)
reZ+1/2 reZ+1/2

Furthermore, we associate a comparable subspace V= ίζ{0)(z), ξ(1\z),...] of H with
a decomposable multi-fermion state |g> via 2

F=[^0>(z),ξ<1>(z),...]^|g>=φK<0)]tφK<1)]t...|-oo>. (2.6)

Obviously this correspondence between the UGM and the set of all decomposable
states is one-to-one up to an overall factor. We denote the subspace V associated
with the decomposable state |g> by Vg. We further define the vacuum as the state of
Dirac sea filled up to r— —1/2 and denote it by |0>:

|0> = ψL 1 / 2φt_ 3 / 2 . . . |-α)>. (2.7)

This state satisfies yv|0> = 0 (r>0) and φJ|0> = 0 (r<0).
The τ function is now defined as follows. First, we introduce the normal

ordering for fermionic operators by

and define the current operators Jn as

Jn=Σ-ΨΪ-nΨr - (neZ), (2.9)

or equivalently

J(z)= Σ ^ - " - ^ ^ ( z M z ) : , (2.10)
ZΣ

neZ
where ψ(z) = Σ Ψrz~r~1/2 a n d ψ\z) = Σ Ψ*-rz~r~ 1 / 2 Then, the τ func-

reZ+l/2 reZ+1/2

2 A multi-fermion state |g> is called decomposable if it can be expressed in the form of the right-
hand side of Eq. (2.6). This state is nothing but the one that can be written as a Slater determinant
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tion associated with a decomposable state |g) is defined as a function of infinitely
many variables x = (xl9x2,x3,...):

τ(x)=<0|exp(Σ xnJn)\g) . (2.11)Jn)\g) .

Hereafter we will consider only neutral states, that is, Jo\g} = 0.
Note that this function τ(x) can be reinterpreted as the bosonic coherent

representation of the state |g>. In fact, if we introduce a free boson φ(z) via

\z)ψ(z): (2.12)

or conversely

ψ\z) = :eφ(z):9 (2.13)

ψ(z) = :e-φ{z):, (2.14)

then <0| exp ( £ xnJn\ is nothing but the coherent state of the free boson. Thus, the

following relations hold:

ί ^ ^ (m>0)

xnJn

(215)
{ }

The p-reduction of the KP hierarchy is defined by imposing the following
additional constraint on the state |g>:

ΛPlg>=0 (n = l,2,3,...). (2.16)

Due to (2.15), Eq. (2.16) is equivalent to

dnpτ(x)=0 (n=l,2,3,...). (2.17)

Now let us consider the following differential operators

sen=\ Σ MxkXι+ Σ kx^+i Σ dtdt, (2.18)
k + Z=-n k-l=-n k + l = n

which satisfy the Virasoro algebra with central charge c = 1:

^ 3 - n ) ( 5 l l + m , 0 . (2.19)

We then impose the following condition on a τ function of the p-reduced KP
hierarchy 3

JS?_PΦ) = O. (2.20)

This τ function can be identified with the square root of the partition function Z(x)
of the (p,q) quantum gravity with source terms £ x«0«

Mφθ(modp)

Z(x)=τ(x)2. (2.21)

3 Note that xp, x2p, x3p,... are included in Eq. (2.18), which are redundant parameters under the
p-reduction. However, in Eq. (2.20) they appear in the form 2px2pdp + 3px3pd2p + •-., so that we
can neglect them in Eq. (2.20). This kind of remark should be kept in mind in the following
discussions
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One way to see this is to expand Eq. (2.20) around a background source

XΪ = t,X°p + q =
 C O Π S t > ^others = 0 . (2.22)

Using the equations in (A.2.17), one can show that the corresponding pseudo-
differential operator L for this background satisfies [5]

) = 0,

which leads to the string equation of the 2D gravity coupled to (p, q) minimal
conformal matters [4]:

(ί/)_=0. { ' }

Furthermore, as we will show in Sect. 4 in a more general framework, if a τ function
of the p-reduced KP hierarchy satisfies the condition (2.20), then it automatically
satisfies the Virasoro constraint

P 1 ) < W Φ ) = 0 (n= -1,0,1,2,...). (2.25)

On the other hand, for the case of the one-matrix models one can prove that the
set of Schwinger-Dyson equations for τ(x) = \/Z(x) is equivalent to the Virasoro
constraint (2.25) with p — 2 [5]. Since the Schwinger-Dyson equations contain
necessary and sufficient information of the system, it is expected that the function
τ(x) satisfying the Virasoro constraint for p = 2 automatically becomes a τ function
of the 2-reduced KP hierarchy. However, in the cases of p ̂  3 the Virasoro
constraint alone does not determine the system completely unless we use the fact
that the τ(x) is a τ function. In these cases we thus need additional constraints on
the τ(x), and it was shown in [5, 6] that these constraints should be the vacuum
condition of the Wp algebra:

W<fc)τ(x) = 0 (k = 2,..., p; n ̂  - k +1), (2.26)

where the Wĵ 's are the generators of the Wp algebra constructed via quantum
Miura transformation in terms of the Zp-twisted scalar fields (see Appendix C). In
fact, these conditions generically determine the system up to several non-
perturbative parameters, and in the particular case of the topological gravity [11],
(p,q) = (p, 1), they enable us to calculate all the correlation functions analytically
[5].

In the following sections, we will prove that the KP hierarchy has the W1 + o0

algebra as its fundamental symmetry under every reduction, and that the τ
function satisfies the formal vacuum condition of the W1 + o0 algebra if it obeys the
constraints (2.17) and (2.20). Furthermore, we will show that they are reduced to
the vacuum condition of the Wp algebra (2.26) after we eliminate the redundant
variables for the p-reduction.

Before going through the proof, we make a crucial remark that the string
equations (2.17) and (2.20) for the (p, q) quantum gravity are expressed in terms of
local fermion bilinear operators. In fact, the reduction condition (2.16) is stated in
terms of a local fermion bilinear operator, that is, the current operator
J(z) = :ψ\z)ψ(z):. Furthermore, due to Eq. (2.15) and the bosonization rule
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(2.12)-(2.14), the Virasoro operator acting on the τ function in Eq. (2.20) also turns
out to be a local bilinear operator acting on |g>:

JmLa\g}, (2.27)

where

Remark. Rigorously speaking, the multi-fermion state |g> given in Eq. (2.6) is, in
general, ill-defined. In fact, the τ function for the topological gravity ((2.1) quantum
gravity) has the form [5]

τ(xl9 x3,0,0,...) = const x3" ̂  exp [ - j | U , (2.28)

so that we can not set x = 0. However, since we can expand it around a generic
background source x = x°, the state |g> becomes well-defined if we define the τ
function by

>. (2.29)

Furthermore, if we introduce J'n by

J'n =Jn

(2.30)

then we have

I Σ (x n + jφ./ n

dmφ\e^ (m>0)

*{*+*>'~ (m<oy
which allows us to still regard <0|expf ^ {xn + Xn)Jtλ a s the bosonic coherent

V^ 1 /state. Although we will formally set x° = 0 hereafter, the generalization to the cases
x° + 0 is easily carried out by replacing the operator O which acts on the state |g>
by

Oem . (2.32)

For example, as for the Virasoro generators in Eq. (2.27), it holds that

^Bτ(x) = <0|em L;|g> (2.33)
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for

neZ (3.2)

Σx&Jm Σx&Jm / Λ χ

L'n = e ~ Lne™ . (2.34)

3. String Equations in Terms of UGM

As we have seen in the previous section, fermion bilinear operators such as the Jw's
and the Lπ's play essential roles in the two-dimensional gravity. We call operators
W(z) local fermion bilinear of spin k if they have the following form:

W(z) = V cj: dψ(z)dk-' ~jψ{z):, (3.1)

where Cj are complex numbers. In particular, J(z) and T(z) are local fermion
bilinear operators of spin 1 and 2, respectively:

J(Z)= Σ

T(z)= Σ
neZ

We also call Wn local fermion bilinear of spin k if it is the nth mode of such an
operator:

W(z)=ΣWnz-»-k. (3.3)
n

In this section, we investigate how such operators act on a decomposable state |g>
and rewrite the string equations in terms of the UGM.

First we consider fermion bilinear operators of the general form:

O=Σ ΨΪOnφ.:. (3.4)
r,s

The crucial point is that bilinear operators can be regarded as one-body operators
in terms of the first quantization. In fact, one can construct the one-body operator
o that corresponds to a fermion bilinear operator 0 by taking a commutator with
the fermion operators ψr:

[φ,O] = Σ O , Λ , (3.5)

which means that the one-body operator o maps a one-body wave function f(z)

to

. (3.6)

Conversely, if a one-body operator o is given, we can construct a fermion bilinear
operator 0 uniquely up to an ambiguity of additive constant caused by the
operator ordering. Furthermore, if fermion bilinear operators Ox and O2

correspond to one-body operators o1 and o2, respectively, then the commutator of
Oγ and O2 corresponds to the commutator of o± and o2:

ίol9o2']. (3.7)
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Thus we have

Lemma 3.1. // a set of one-body operator forms a Lie algebra w, then the set of
corresponding fermion bilinear operators forms a central extension of w.

Furthermore, for any value of ε the action of exp(εθ) on a decomposable
multifermion state |g> is represented over the UGM as

e*°\g}~eε°Vg = |>^(0)(z), e^\z\ . . . ] , (3.8)

where Vg— ££(0)(z), £(1)(z),...] is the subspace off/ corresponding to |g>. From this
fact, it is obvious that the following lemma holds:

Lemma 3.2.

>oPςcKr (3.9)

This lemma will be frequently used below.
If we restrict ourselves to the local fermion bilinear operators, the correspond-

ing one-body operators become local differential operators with respect to z. In
fact, for an operator having the form

dxv
W^j —

W(w) =: 5 V

the commutator with ψ(z) gives

dxv
[φ(z), WJ = - § —

z lnι

This equation indicates that the corresponding one-body operator is given by 4

where [rri]n=m\/(m—ri)L In particular, the one-body operators corresponding to
the current Jn and the energy-momentum tensor Ln are as follows:

A + ^ 1

If we take into account all modes of all the local fermion bilinear operators, they
generate a Lie algebra called the W1 + o0 algebra. From Eq. (3.12) it is easily seen

4 If we define the τ function as (2.29), then this expression for wn must be replaced by Wn

\ m )
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that the corresponding one-body operators form a Lie algebra of differential
operators that is spanned by

which we call the wί + o0 algebra. Obviously the Wί + O0 algebra is a central extension
of the w1 + 00 algebra. In fact, the central charge c of the Virasoro subalgebra of
Wί + O0is 1, whereas that oϊwί + o0 is 0.

Using these one-body operators, we can express the string Eqs. (2.17) and (2.20)
for the (p, q) quantum gravity in terms of the UGM. As is shown in the next section,
these two equations are equivalent to the following weaker conditions on the τ
function:

dpτ(x) = const τ(x),

JS? _ pτ(x) = const τ(x),

or equivalently,

Jp\g} = const |g>, (3.15)

L_p|g> = const |g>. (3.16)

Then Lemma 3.2 together with the relations in (3.13) tells that these equations are
equivalent to

W£>V * V V (3.17)

+ z^v9ZV§. (3.18)

Therefore the subspace Vg is invariant under any differential operator that is
constructed by repeatedly taking products and linear combinations of w^ and
w(-p. In other words, if we define r+(p) as the associative subalgebra of differential
operators that is generated by w^ and w(ip, we have

oVgcVg for voer+(p). (3.19)

Since the commutator of w^1} and w(-p is a c-number
p

l , (3.20)

and the differential operators (w^υ)w(w(ipz (n,/ = 0,1,2,...) are all linearly inde-
pendent to each other, any element of r*(p) is uniquely expressed as

Σ
π,ϊ = 0

(3.21)

where the cnl

9s are complex numbers. Thus we have the following theorem:

Theorem 3.3. Let τ(x) be a τ function of the KP hierarchy that satisfies the string
equations of (p, q) quantum gravity (3.15) and (3.16). Then the corresponding element
Vg of the UGM satisfies

r+(p)Vg=Vg, (3.22)

where r+(p)= j £ U^W-2*,)', cnlec\.
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As is shown in the next section, we can reinterpret Eq. (3.22) in terms of the τ
function by using Lemma 3.2 again. There we will see that the structure of the
Wί + O0 algebra arises in a natural way. Here, before going back to the τ function, we
analyze the Lie algebraic structures of the set r+(p) of one-body operators that
appears in Eq. (3.22).

First we introduce the following notations for

l Σ ( (3.23)
neZ ίeZ+ \ UZ J )

r+ = wΐ+ oo = { Σ Σ cnlz" (- ffί, (3.24)
( Z ieZ+ \ UZ J )

Σ M / ( ^ r f p j , (3.25)
/eZ+ \P ) J

r+(P) = < + OO(P) = { Σ Σ U O " (- ^
lneZ+ leZ+ \P

(3.26)

Here, r, r+, r(p), and r+(p) are, as a set, identical to w1 + 00, wt+00, w1 + 00(p), and
w^+ ̂ (p), respectively. We introduce, however, different symbols for them in order
to indicate whether we regard them as associative algebras or Lie algebras. In
other words, when we call them r, we consider not only commutators but also
products as differential operators.5 In addition to the trivial relations

r + C r, r+(p) C r(p) C r (as associative subalgebras),

wΐ+00Cw1 + 00, wί+00(p)Cw1 + Jp)Cw ί + 00 (as Lie subalgebras),

we have the following isomorphisms, which indicate that the wί + o0 algebra has an
infinite-fold self-similar structure:

Lemma 3.4.

r(p)^r, r+(p)^r+ (as associative algebras),

Wi + OO(P) = Wi + oo, wϊ+ao(p) = wx

+

+ ̂  (as Lie algebras).

Proof. As is clear from the definition, r is generated by w^^z" (neZ) and w{-\
= —d/dz, and the structure of r is completely specified by the following relations
among them:

(3.29)

. (3.30)

On the other hand, r(p) is generated by wj^ = znp (n e Z) and w(_?*, with the relations

< } = «*)", (3.31)

l . (3.32)

5 In fact, the so-called lone-star product of the W1 + 00 algebra [7] is nothing but the usual product in r,
when we translate the set offermion bilinear operators, W1 + „, into the set of corresponding one-body
operators, w1 + 00
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Therefore r(p) is isomorphic to r as an associative algebra through the following
mapping:

\ - % \

Furthermore, since r+(p) is generated by w^υ and w(i^, and r+ is generated by w(

1

1)

and w(i\, these two associative algebras are isomorphic under the above
mapping. •

To express this isomorphism more explicitly, we note the following relation:

dz 2 J \ dλ

where λ = zp. Then we see that the w1 + 00(p) algebra and the w1 + 00 algebra are
related via

+ 0 O | w i t h , r e p l a c e d b y Jz-o-M. (3.36)

In order to see how wx + ^(p) is imbedded inwί + o0 more explicitly, we introduce
the following basis of the w1 + 00 algebra:

fc-i i (Γk — 1ΊV2 f d\k~ι~ι

which corresponds to the standard basis of the W1 + o0 algebra6 [7]:

2"(2*-3)!!A w / ( 3 3 8 )

Then by using Eq. (3.36) the corresponding basis of w1 + o0(p) is expressed as

fc-i \ (Γ/c — I ] ) 2 , „,„ j., < Y^^-i-ί

w^>=(-l) f e ' ϊΣ yy [ 2 f e _ 2 ] z

The right-hand side of this equation can be expressed as a linear combination of
the wί^'s. For example,

w<1> = w<1

p>, (3.40)

(3.41)

(3-42)

- 4 ) = F { w - 4 p ) + έ 0 7 2 " 1 ^ ' } - (3-43)

Here, (-!)" = !
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As a final remark in this section, we point out the following properties of wί"+ «,
and w*+00(p), which we use in the next section:

Lemma 3.5. Any element of wf+o0 can be expressed as a commutator of two
elements of w^+00. The same statement holds for wf+oo(p)>

Proof For any element of w^+ ̂  we have

dz) ldz\άί+ Jfc + 1 \dz

which proves the assertion for wί~+00. The same assertion holds for wf+oo(p)
because it is isomorphic to wf+o0 Π

Constraint

In the preceding sections we have investigated the structure of the string equation
in terms of the UGM. In this section we will rewrite Eq. (3.22) as a set of differential
equations for τ(x).

As we have seen in the previous section, if a set of one-body operators is given,
we can construct a corresponding set of fermion bilinear operators up to the
operator ordering ambiguities. One way to fix the ambiguities is to introduce the
usual normal ordering for the fermion operators (2.8). In fact, the Wί + 00 algebra
can be regarded as the set of fermion bilinear operators constructed from w1 + 00

through this normal ordering. Similarly, we define W*+ <*> as the subset oϊ W1 + O0

that is constructed from wf+ «, by using the same normal ordering. As is clear from
Eq. (3.12), W^+a0 is spanned by J^,(fe)'s satisfying n^ — k +1. A crucial property of
the P^Λoo is the following:

Lemma 4.1. W^+ ^ forms a Lie algebra without a central term. In other words,
W^+ QO closes under the commutator.

Proof Since wf+ao is a Lie algebra, it is obvious that W*+ao is a Lie algebra with
possible central terms. In order to show that the central terms vanish, we consider
the c-number term of the operator product expansion between fermion bilinear
operators W(k\z) and J0Z)(w) of spin k and /, respectively:

W(k)(z) W{l)(w) = const r^pi + (fermion bilinear operators), (4.1)

which means that the c-number term of the commutator [_W^k\ W^~\ is given by

const [n + fc-l]k+I_A+».o = const(n + fc-l)...(n-/+l)^+lllfo. (4.2)

Then it is easy to see that one of the factors in Eq. (4.2) vanishes if n ̂  — k + 1 and
Thus we find that W*+ao closes under the commutator. •

We then define W1 + ^(p) and W*+ ^(p) as the sets of fermion bilinear operators
that are constructed from w1 + ^(p) and w^+ ̂ (PX respectively. Here again we have
the operator ordering ambiguities for the 0 t h modes of the fermion bilinear
operators. We can, however, show the following:

Lemma 4.2. There exists such a proper definition of the 0th modes that Wx\ Jj))
closes under the commutator. Furthermore, any element of Wf+ ̂ (p) can be expressed
as a commutator of two elements of W^+ ^{p).
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Proof. The isomorphisms (3.36) between w1 + oΰ and w1 + ^(p) can be regarded as a
conformal mapping from z to λ = zp:

^) ί/2 ( 4 3 )

Therefore, if we fix the operator ordering by introducing the new normal ordering
as the subtraction of the singular part in the (p-sheeted) λ plane, such as

lψf\λ')ψ\λYo =ψ%λ')xp\λ)- -j^-v (4.4)

then the structure of the c-number terms of the operator product expansions for
Wί + oo (p) in the λ plane is exactly the same as that of W^+ «, in the z plane. Thus the
same argument as in Lemma 3.5 leads to the closedness of W^+ao(p) under the
commutator. The latter assertion follows immediately from this fact and
Lemma 3.5. •

As is well known, the difference between the λ plane normal ordering and the
usual normal ordering can be calculated as the Schwarzian terms associated with
the transformation z\-+λ = zp. For example, the generators of the Wί + O0(p)
corresponding to (3.40)-(3.43) take the following forms:

(4.5)

(4.6)

(4-8)

Note the appearance of the additional c-number correction terms compared to
(3.40H3.43). It is obvious from the construction that they satisfy the commutation
relations of the Wί + Q0 algebra with central charge c=p.

After the rather lengthy preparation given above, we can finally prove that a τ
function of the p-reduced KP hierarchy satisfies the vacuum condition of the
Wί + nip) algebra when it obeys the string Eq. (2.20). Here, we can start with weaker
assumptions

or equivalently

In Theorem 3.3,

dpτ(x) = const τ(x),

S£ -pτ(x) = const τ(x),

JP\g> = const |g>,

L_p|g> = const |g>.

we found that these equations are equivalent to

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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By using Lemma 3.2 again, this means that |g> is a simultaneous eigenstate of
^i+

+oo(p):

O|g> = const|g> for "ΌeWf+Jp). (4.14)

Furthermore, Lemma 4.2 asserts that all of these constants vanish. In fact, any
element 0 of W^+ ^(p) can be expressed as

0 = [ 0 1 ? 0 2 ] , Ou02eW1

+

+00{p). (4.15)

Therefore, we have O|g> = O1O2 |g> —O2O1 |g> = 0, because |g> is a simultaneous
eigenstate of Wx

+

+ ^(p).
We thus have proved the following theorem.

Theorem 4.3. Let τ(x) be a τ function of the KP hierarchy that satisfies the
conditions (4.9) and (4.10). Then the decomposable fermion state |g> corresponding
to the τ function satisfies

O\g> = 0 for "ΌeWf+Jp), (4.16)

that is,

^ ( k ) | g> = 0 ( fe=l ,2 , . . . ;n^- fe + l ) . (4.17)

This theorem can be restated in terms of bosons as follows. By using the
bosonization rule (2.12)-(2.14), the normal ordering of two fermion operators

:dkψ\w)dιψ(z): (4.18)

is expanded in powers of w — z as

\W — Z W — Z

oo j — 1 — fe

" It ' - ^ -

where Pu\z) is defined by

Pu\z)=:e-φiz)ej

ze
φ(z):, (4.20)

and :: stands for the normal ordering for bosonic operators. Considering the
coefficient of (w — z)° in Eq. (4.19), we have

k+ι+ι \ / / \
: dkψ\z)dιψ(z) := Σ T ( - 1 ) 7 " ' " Ί ' . dk+ι~j+ 1P^(z). (4.21)

j=k+ij \j-\-KJ

Thus, by substituting this expression into Eq. (3.38), we obtain the bosonic
realization of the W1 + oo algebra:

the first few of which are
w = J(z), (4.23)

\:J{zf:, (4.24)

| : J ( z ) 3 : , (4.25)

) = i [: J(z) 4 : + f: J(z)d2J(z): - 1 : (dJ(z))2:]. (4.26)



Two-Dimensional Gravity 385

Then by using the equations such as (4.5)-(4.8), the generators of Wx + Jp) are
expressed as follows:

WJnp, (4.27)

'=\ Σ • JΛ--+^(P2-Dδn,o, (4.28)

Σ •JaJbJc: + ~(p2-i)JnP, (4.29)
+ = np 12

: + ̂ (P 2 -l) Σ =V»:

(4.30)

Hence, Eq. (4.17) is rewritten as a set of differential equations for the τ function:

#2*>τ(x) = 0 (fc=l,2,3,.. .;^-fc + l), (4.31)

where the differential operator #^(k) is obtained by replacing all the Jw's in the
by

W

(n<0)

Note that the first equation ψ^\(χ) = -—τ(x) = 0 shows that the τ(x) is a τ
oxnp

function of the p-reduced KP hierarchy. As was discussed in [5] it is expected that
a function τ(x) satisfying Eq. (4.31) automatically becomes a τ function of the KP
hierarchy, since Eq. (4.31) determines the function τ(x) completely at least for the
case of topological fields [5].

5. Wp Constraint

We have shown that a τ function of the KP hierarchy under the conditions (4.9)
and (4.10) is a τ function of the p-reduced KP hierarchy which satisfies the vacuum
condition of the W1 + O0(p). However, in the expressions (4.30)-(4.32) there appear
redundant variables for the p-reduced KP hierarchy, that is, Jnp (n e Z). In this
section we show that after the elimination of these redundant variables the Wί + Q0

algebra with central charge c=p is reduced to the Wp algebra with c=p — 1.
As we have seen in the previous section, the generators of W1 + ̂ (p) have simple

forms when they are expressed on the p-sheeted λ plane which is the image space of
the conformal transformation z\-+λ = zp. More explicitly, we first define the
operators W^k\λ) on the p-sheeted λ plane by Eq. (4.22) with z replaced by λ:

= i(dλ + J(λ)yi 1. (5.2)
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Here, dλφ(λ) = J(λ)=-Yλ~n/p~1Jn, and °o°o stands for the "minimal" normal
P n

ordering on the p-sheeted λ plane, by which we mean the following procedure:

(5.3)

:=lim ij(X)j(χ)--±- Ί

λ'-*λ

°oJ(λ)3oo = lim \j{λ")J{λ')J{λ)

( 5 5 )

Since we are considering the p-sheeted λ plane, each value of λ corresponds to p
different points, which we denote by λl9..., λp. Then the generators of Wγ + ^(p) are
expressed as

Wik\λ)= Σ fl^U""-1 = W{k)(λί) + W{k)(λ2)+...+ Wik\λp). (5.6)

Note that this expression gives a single-valued function of λ because the right-hand
side is invariant under the transformation: Λ,ι->exp[2πί|Λ,, which generates a
permutation of the A/s.

In order to investigate further the structure of the Wγ + ^(p) constraint, we
introduce the elementary symmetric polynomials of J{λ^ ...,J(λp) as

S{k)(λ) = Σ J(λtι)... J(λik) (ίίkίp). (5.7)
Igi<i< <i^

Here, the ordering of the operators on the right-hand side need not be specified
because we have for two different points λ and X on the p-sheeted λ plane

[ J ( n W ] = o if \λ'\=\λ"\. (5.8)

Furthermore it is apparent that the S(fe)'s are single-valued functions of λ for the
same reason as in Eq. (5.6). Next we introduce another type of product for two
local operators on the single-sheeted λ plane as

ψ. (5.9)
Although this product is neither commutative nor associative, it plays a crucial
role in the following argument.

For any set Sf of local operators on the single-sheeted λ plane, we can construct
an algebra # [5^] of operators by repeatedly taking /l-derivatives, linear combi-
nations and the product (5.9). Then it is expected that the following statement holds,
although we do not have a complete proof:

Lemma 5.1 (conjecture).

^[{S(fc)(2);/c = l,2,...,p}] = ̂ [{^fc>(A);/c = l,2,...}]^ (5.10)

In other words, W^eR[_{S^k\λ)\ fe = l,2, ...,p}] and S(/)eR[_{W*\λ)\ fe = l,2,...}].
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This equation becomes obvious if we ignore all terms including A-derivatives of
J(λ). In fact, we have

Ww(λ)= \ £ Uiλifl + terms including δ J(λ), δ2 J(λ),..., (5.11)
k 1=1

and the product (5.9) is equal to the normal ordering up to terms with derivatives of
J(λ), e.g.,

(Sm(λ),Sil)(λ))= ZSik)(λ)Sil\λ)S + terms including δJ(λ), δ2J{λ),.... (5.12)

Therefore, if we keep terms only with the form of polynomials of J(λ), the statement
of Lemma 5.1 is nothing but the fundamental theorem for symmetric polynomials.
The remarkable fact is that the use of the product (5.9) gives Eq. (5.10) exactly. As is
shown in Appendix B, we have checked this for operators of spin k = 1,2,..., 6. The
explicit relations between the Ww's and S(*''s are given by, for example,

, S<2>) + (S<2

, S< 3 >)+2(S ( 2 >, S(2>) - 4 S < 4 ) .

Assuming the correctness of Lemma 5.1, we have

Theorem 5.2. The vacuum condition of the W1 + oo algebra

fif>|g>=0 (k=l,2,3,...;n^-k+l) (5.14)

is equivalent to

S!*)|g> = 0 (fc = l,2,3,...,p;n^-fc + l), (5.15)

where S<-k\λ)=Σλ~"~kS(ϊ)

n

Proof. We introduce such an abbreviation as Uik)\g} = 0, if a state |g> is annihilated
by the modes of spin k operator U{k\λ) with n ^ — fe + 1 , that is,

(5.16)

where U{k)= X λ~n~kUik\ Obviously, we have

(i) t / | g > 0 ^ ( < 5 l / ) | g > 0 ,

(ii) [/W|g>=o, F ( f t ) | g > 0 ^ ( α t / ( ) t ) + f ) F w ) | g > 0 (' '

Furthermore, since the nxh mode of the product of operators U(k) and F ( l ) of spin k
and /, respectively, is given by

(5.18)
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and the left-hand side is an operator of spin k + /, we have

(iii) l/(fc)|g> = 0, F«>|g> = 0 => (£/<*>, F(/))|g> = 0. (5.19)

Lemma 5.1 together with (i), (ii), and (iii) proves the statement of this theorem. •

Finally we show that the condition (5.15) becomes the vacuum condition of the
Wp algebra after the elimination of the variables Jnp (n e Z) which are redundant for
the p-reduced KP hierarchy. In order to eliminate these variables, we first expand
S(k\λ) as a sum of operators with the usual normal ordering for the oscillators Jn.
For example, we rewrite Sik\λ) as

| (5.20)

S<2>(1)= Σ Jiλ^iλj)

= Σ :J(λi)J(λj):+ Σ <J(λi)J(λj)), (5.21)

:J(λi)J(λj)J(λk):+ Σ

(5.22)

where :: is the usual normal ordering for the Jπ's I recall that J(λ)=-

\ P

Σλ n/p ιJn\, and <> is the usual vacuum expectation value,
bnJm> = nδn+w, o θ(ή). We then define W(k)(A) by formally setting Jnp (n G Z) to 0 in
this normal ordered form of S{k\λ). Note that W(1)(Λ,) vanishes identically, because

S(1\λ)= Σλ~n~γJnp contains only the variables to be dropped. As is shown in
n

Appendix C, these W(fe)(A)'s are identified with the generators of the Wp algebra
with Virasoro central charge c=p — l that is to be constructed from Zp-twisted free
bosons. Furthermore we have

Lemma 5.3. The condition S^fe)|g> = 0 (k = 1,2,..., p; n^ — k +1) is equivalent to

ίJnp\g>=0

llW<*>|g> =

Proof. First we note that S(k) can be expanded with respect to Jnp (n e Z) as

S<*) = W<*>+ Σ Σ C?_-(«+...+, l )[»1>... ,n , ] : J n i P . . . J n , p : . (5.24)
1= 1 « i , . . . , « z e Z

Here the operators C^_"(̂ 1 + >,m+nι)[n l9 ...,nj do not contain Jnp (neZ), and are
obtained from S{k) by repeatedly taking commutators with the Jnps (n e Z) and then
sotting Jnp(neZ) to 0:

This implies that

? A + . . . + - , ) . (5-26)
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because we have

Unp, S Ώ = IW\ S»>] = (p + 1 - ΛίnSSί;.1', (5.27)
which follows from

S{1\λf)Sik\λ)= P*1~2 S^-^W + ίregular terms). (5.28)

(/ —A)

The assertion follows immediately. •

Thus combining Theorem 5.2 and Lemma 5.3, we obtain the following theorem:
Theorem 5.4. Let τ(x) be a τ function of the KP hierarchy that satisfies the
conditions (4.9) and (4.10). Then the corresponding state |g> satisfies the conditions
of the p-reduction

ΛPlg>=0 (n£l) (5.29)

and the vacuum condition of the Wp algebra

By reinterpreting the oscillators Jπ's as the differential operators /w's acting on
τ(x) [see Eq. (4.32)], the set of Eqs. (5.29) and (5.30) are rewritten in the form of
differential equations for τ(x). Thus we have seen that the statement conjectured in
[5, 6] follows naturally from the infinite dimensional Grassmannian structure of
2D quantum gravity.7

6. Conclusion

In this paper, we showed that all the quantities of 2D quantum gravity can be
expressed in terms of the infinite dimensional Grassmann manifold. Then, we
found that every matrix model has the W1 + o0 algebra as its fundamental symmetry,
and that the τ function obeying the string equation satisfies the vacuum condition
of the Wι + O0 algebra. Furthermore, if we restrict ourselves to the 2D gravity
coupled to (p, q) conformal matters, then the vacuum condition of the W1 + o0

algebra is reduced to the vacuum condition of the Wp algebra with central charge
c = p — 1. In this sense, it seems that the real universal symmetry of 2D gravity is the
W1 + o0 algebra and that the Wp algebra which appears in the (p, q) quantum gravity
is merely a by-product of this symmetry. Thus we expect that a deeper
investigation of this structure will lead to a formalism in which we can control the
renormalization group flows that correspond to the change of the parameter p.
Furthermore, it might be useful for writing down the exact solutions of the non-
perturbative 2D gravity coupled to the c = 1 conformal matters. Among other
interesting problems are the generalization to the D- and E-type W1 + a0 algebras
and their application to 2D quantum gravity. Moreover, it has been reported
recently that the relations among the orthogonal polynomials of matrix models
are reduced to the Toda lattice hierarchy [13] (see also [14]). Their observations
should also be understood in terms of infinite dimensional Grassmann manifolds.

7 See [12] where some analyses are made based on Hirota's bilinear equation
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Appendix A. Explicit Construction of the τ Functions

In this appendix, we explain a method of constructing a τ function directly from a
solution of the KP hierarchy.

A.I. The KP Hierarchy and the Sato Equation

In this subsection, we define the KP hierarchy and derive the Sato equation which
plays an important role when we interpret the KP hierarchy as a dynamical system
over an infinite dimensional Grassmann manifold [8-10].

First we introduce functions wf(ί,x) (i = 2,3,...) of infinitely many variables
(t,x) = (t,xl9X2,X3,...) and define the Lax operator

as a pseudo-differential operator with respect to d = d/dt. Here, d'1 is defined so
that dd~1 = d~1d = l. Explicitly, we have for any function /

We further introduce the potentials Bn and B% as

where ( )+ (respectively ( )_) is non-negative (negative) power part of a pseudo-
differential operator with respect to d. Then the KP hierarchy is defined as the set
of the following differential equations:

Note that they satisfy the integrability conditions d2L/dxndxm = d2L/dxmdxn. The
following theorem is fundamental.

Theorem 1. There exists a pseudo-differential operator W of the form

W=

SUCkthat

JL w=Bc

nW=BnW-Wdn. (A.1.7)
uxn

Equation (A. 1.7) is called the Sato equation.
Proof. First we introduce a group ^ and its Lie algebra Lie^ as the set of elements
of the following forms:

$ = {\+V{t)d-' + v{i)d-2 + ...},

+ ...}. ( ' ' j

Then the B%s can be regarded as the components of a Lie ̂ -valued 1-form Ωc on
the space of the ̂ ,,'s:
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Then the KP Eq. (A. 1.4) is rewritten as

dL=lΩc,L], d= Σ dxn^-. (A.1.10)
n ^ l VXn

Furthermore, by using an identity -r—B% = ([£,, #£])_, one can easily show that
OXγ

Eq. (A. 1.10) leads to the zero-curvature condition

dΩc = ΩcΛΩc. (A.1.11)

Thus the connection Ωc is a pure gauge and can be written in the form

Ωc=-V~1dV9 (A.1.12)
where Fis a ̂ -valued function of the xn\ It is also easy to see that d(VLV~ ι) = 0,
which indicates that the VLV~ι has the form

Therefore, VLV~X can be expressed as

VLV~1

using an element U of ̂  which depends only on t:

U = l+Pί(ήd-

Hence, if we denote V~1U by W, that is,

then the following relations hold:

L=WdW~1, (A.1.17)

Ωc=-V~1dV=-WdW-1=dWW-ί. (A.1.18)

The latter equation dW=ΩcW is nothing but the Sato equation

-£-W=B$W=BnW-Wdn. •

Remark. From the identity B1=(L)+=d/dt, we obtain

Thus every function / appearing in the KP equation depends on the variables (ί, x)
in the following manner:

f = f(t + xl9x29x39...)9 (A.1.20)

so that we can (and will) set t = 0 without loss of generality. Then d is interpreted as
a differential operator d/dxv
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A.2. τ Functions and an Infinite Dimensional Grassmann Manifold

In this subsection, by using the Sato equation, we show that the KP hierarchy is
nothing but a 4ynamical system over an infinite dimensional Grassmann manifold
[8-10]. Furthermore we explain that all the unknown functions w^'s can be
described in terms of a single function, Hirota's τ function [15]. In what follows, we
assume that the functions Wj{x) can be taylor-expanded around a point
x° = (x?,X2? •••)• I n particular, we restrict ourselves to the case x° = 0. Generaliz-
ation to the cases x° + 0 is straightforward.

Let H be the linear space consisting of pseudo-differential operators, which is
isomorphic to C z .

H - (A.2.1)

and if _ be a linear subspace of H consisting of all the differential operators. Then
all the linear subspaces of if which are linearly isomorphic to if _ make an infinite
dimensional Grassmann manifold, and we denote it by UGM (Universal
Grassmann Manifold).8

Now we make a mapping from the set of the solutions of the KP equation {W}
into a set of orbits in the UGM in the following way. First we construct the vectors
η{n\x) (n=0,1,2,...) in if as those whose components are the coefficients of the
pseudo-differential operators d"W:

: Σ */(-*-i/2(x)d\ (A.2.2)
fceZ

(A.2.3)

Then we define the subspace spanned by these vectors ηm(x), ηw(x), • • • and denote
it by V(x):

F(x)=[»7<0>(x),^1>(x))...]. (A.2.4)

Note that we can represent the subspace V(x) as a Z x Z + matrix

>/(x) = [ί/<°>(x)f/<1>(x)...]. (A.2.5)

Obviously, this matrix has an ambiguity of the right-multiplication of GL(Z+),
which corresponds to changes of the basis of V(x).

The time (x) evolution of the V(x) in UGM is, in general, determined from the
Sato Eq. (A. 1.7). This evolution can be represented in terms of the corresponding
matrix in the following form:

C(x)eGL(Z+), (A.2.6)

For more mathematically complete definitions, see [10]
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where A = (Λkl) = (δki ι+1)e GL(Z). In fact, since the first term on the right-hand side
of Eq. (A.1.7) has the form BnW= £ bn djW, it does not change the subspace V(x)

itself and gives rise to the factor C(x) in Eq. (A.2.6). Hence x-evolution of the V(x)
comes only from the second term — Wdn in Eq. (A. 1.7), which is integrated into
expΓ— Σ v ί " ! in the matrix representation. Thus we have seen that the KP

hierarchy is nothing but a dynamical system over the UGM whose time evolution
is given in a simple form exp Γ — £ XΠΛ(ΠΊ.

We next show that a solution of the KP equation, W, which has infinitely many
unknown functions Wj{x\ can be expressed by a single function, τ function. First let
us introduce a matrix fj(x), which also represents the subspace V(x\ as

- Σ xnΛ
n

ή{x) = e "=' η(0),

and further we decompose it in the following way:

Then the τ function corresponding to the subspace V(x) is defined as

(A.2.7)

(A.2.8)

(A.2.9)

(A.2.10)

This τ function completely reproduces the solution of the KP equation due to the
following theorem:

Theorem 2. Let τ(x) be the τ function which corresponds to a solution of the Sato

equation, W= £ wj(x)d~}. Then it holds that

where x-ε(k-1)=(x1-ί/k>x2-ί/(2k2),x3-ί/(3k3),...).

Proof. First, if we rewrite ή(x) as

ή(x)=

then the matrix ρ(x) also represents the subspace V(x). Noting that the vector
having the form

*

1

0

0

3/2

1/2

-1/2

-3/2

-5/2

(A.2.13)



394 M. Fukuma, H. Kawai, and R. Nakayama

does not exist in V(x) except for

w2(x)

wt(x)

1

0

0

3/2

1/2

-1/2 ,

-3/2

-5/2

(A.2.14)

we find that the first column vector of the matrix ρ(x) is nothing but η{0\x). Next, if
we calculate ή(x — s(k~1)), then we can show from Eqs. (A.2.6), (A.2.7), and (A.2.9)
that

= Γρ+(x,/c)Ί ( )

-lS.(χ,k)\η-{x)

Since a straightforward calculation shows that

detρ_(x,fc) = Σ W/Λ

we conclude that

(A.2.15)

(A.2.16)

Σ w/x)fc"Λ.τ(x). D

The set of Eqs. (A.1.5)-(A.1.7) and (A.2.11) yields useful formulas which express
the second derivatives of lnτ in terms of the pseudo-differential operator L:

dxxdxn

lnτ = )- 3 + 3 - — (L")_2 + -̂ -2 (L")_! -f 3 j - j lnτ

...etc.,

where the symbol ( )_k stands for the coefficient of 3~fc.

(A.2.17)

A3. Free Fermion Representation of τ Functions

In this subsection, we describe the method of expressing τ functions in terms of free
fermions.
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First, by using the correspondence between UGM and the set of all
decomposable states [see Eqs. (2.5) and (2.6)], we construct a multi-fermion state
|g'> from the matrix η(0) = [η{O){0)η{1)(0)...] which represents the subspace F(0):

\g'>= Σ Λ ^ ^ . ̂ V I-^). (A.3.1)

Then, the multi-fermion state corresponding to the matrix fj(x) = exp Γ— Σ xn^n

η(0) in Eq. (A.2.7) is

\g'(x)>^e~n**nJn\g'y, (A.3.2)

where Jn = Σ ψl-nΨr'- (n E Z). Thus
r

τ(x) = detJ/_(x)=<O|g'(x)>

(A.3.3)

Note that this state |g'> can be expressed in terms of the Clifford group Cliff:

lg'> = gΊO>, g'e Cliff, (A.3.4)

where the Clifford group is the set of the elements of the following form:

Cliff= ίg=expΓΣ -ψXsΨsψ (A.3.5)

Thus the τ(x) is also written as

τ(x) = (0\e~n**nJng'\0>, g'eCliff. (A.3.6)

The above expression (A.3.3) has a different sign of exponent from that in
Eq. (2.11). We can change the former by carrying out the CP transformation

(A.3.7)

(A.3.8)

In fact, under this mapping, Jn changes its sign; Jn\-^—Jn, while the vacuum |0>
remains unchanged. Moreover, recalling that τ functions can be calculated by
using algebraic relations of fermions alone, we find that τ(x) is unchanged under
the transformation. Thus, denoting the transformed element in Cliff by g, the τ(x)
can be reexpressed as follows:

Appendix B. The Structure of R[{S(k); k +1,2,...,/>}]

In this appendix, by explicit calculations we check Lemma 5.1 for operators of spin
up to 6.
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First in order to simplify the calculations, we generalize the normal ordering o °
defined in Sect. 5 as follows. If we consider a small disk D on the single-sheeted λ
plane (D C C — {0}), it corresponds to p disks Dl9..., Dp on the p-sheeted λ plane. We
denote by λt the point in Dt that corresponds to λ e D. Furthermore we denote J{λ^
by Ji(λ). We then define the normal ordering of J^λ) as that of p independent
current operators on the complex λ plane. For example, we have

J ^ / ) + J(n+°J(λ'vμv(λyo. (B.i)

Clearly the normal ordering considered in Sect. 5 is a special case of this one.
Next we make some formulas which relate this normal ordering to the product

defined by Eq. (5.9). Suppressing λ and denoting the summation for i by an overline
as

Ίr= Σ WY(d(W)W(d2(Uxnr, (B.2)
i=ί

we have the following formulas:

Formula.

(i) (S ( 1 ),(S ( 1 ),(S ( 1 ),...(S ( 1U)...)))=gS ( 1 )Uo° for any operator A(λ)9

(ii) {ooPoo,ooJno)=oJ1Jno+kood2JJk-loo ,

(iii) (S J ^ , °oΓkθo)=°oFΓkθo + l k°od2(J2)Jk~lθo
2

(iv) (iFι,(ϊFι, s
(v) {%Fι,z¥Jj )=

Proof, (i) First we consider (Sw(λ), Sw(λ)). Recalling that Sw(λ)= Σ J&), we have
ί

(A)S. (B.3)

Taking the coefficient of (λ'—λ)°, we obtain

(Sw(λ),Sw(λ))= °oSw(λ)S(1\λ)°o. (B.4)
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Similarly for any operator A(λ) we have

(S(1)(A), A(λ)) = o° S{ί)(λ)A(λ) °o. (B.5)

Using this equation repeatedly, we have the formula (i).

(ii) For example, we show the calculation for the simplest case, k = 2. Following
the definition of the normal ordering, we have

= Σ (μrrj}4 + ̂ ^ 2 a UWβ)% + uiλ'fjμf^j. (B.6)

Expanding this expression with respect to λ' around λ and taking the coefficient of
(/-A)0, we have

,°oi jμf%\ ^nid^^Jiλγ^iyiλfyβYo • (B.7)

(iii)-(v) can be shown by similar calculations. •

Using these formulas, we can rather easily check the statement of Lemma 5.1
for operators of lower spins. In the following we abbreviate R [{S(i>; k=1,..., p}] to

spin 1

Ww=iJi=T=SweRip). (B.8)

spin 2

°oF°o [Eqs. (5.1) and (5.6)]

=(S w , Sw)- 2S(2) [Formula (i)] e K(p). (B.9)

spin 3

°oF°o [Eqs. (5.1) and (5.6)]

=(S(1),(S(1\S(1)))-3(S(1),S(2)) + 3S<3) [Formula (i)]eΛ(p). (B.10)

spin 4

It is easier to consider the following combination:

AWw + \d2W™= iJt+ίFjJl [Eqs. (5.1) and (5.6)]. (B.ll)

For the first term on the right-hand side, we have

By using Formula (i), it is obvious that each term on the right-hand side except for
the last one belongs to R(p\ Thus we have

i 1*1 =2S(S(2))2c° (modΛω). (B.13)
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In order to evaluate this, we express (S(2))2 as a combination of the Jfc's as (note that
J = S ( 1 ) )

2(S(2))2 = i ( J 2 ) 2 - (S ( 1 ) ) 2 J2 +

Using Formulas (i) and (ii) for fc = 2, and recalling oJ2o

o ER(P) as shown above, we
have

2°o(S{2))2oo = - ZϊPΊjZ (modR(p)). (B.15)

Thus we obtain

o°Fl = -ZtFljZ (modRip)), (B.16)

which indicates that the combination in Eq. (B.I 1) and hence W{A) belongs to R(p).

spin 5

_ p

Here we note that as a set of basis of Wx + ^{p) we can take Pik\λ) = £ P(k\λi)

(k= 1,2,...) instead of the W(k)'s [see Eq. (5.1)]. Using Eqs. (5.1) and (5.2), we have

p( 5 ) = °oF + f TΨΊl + (a linear combination of dW{4\ d2W{3\ d3 W{2) and d4ίV(1)),

which indicates the following equivalence assuming W(k)eR{k) for fc = l,2,3,4:

Wi5)eR{p) o P{5)ER{P) O Sp+ϊJψjZeR™. (B.17)
In order to evaluate ° J 5 ° , we express J5 in terms of the elementary symmetric
polynomials S(k) as

- 5 ( S ( 1 ) ) 3 S ( 2 ) + 5 ( S ( 1 ) ) 2 S ( 3 ) -

+ 5 S ( 1 ) ( S ( 2 ) ) 2 - 5S(2)S(3)o°.

By using Formula (i), it is apparent that each term on the right-hand side except for
the last two terms belongs to R(p). Thus we have

(modRip)). (B.19)

We then express the right-hand side in terms of the Jk's as

5o°S(1>(S(2))2-S(2)S(3)oo =i°oJ2~F-(Sil))2F-iS^)3JI + (S(1))5o°. (B.20)

Using Formula (i) and recalling that iFl e R(p) and SF°o e Rip) as shown above, we
see that each term on the right-hand side except for the first one belongs to R(p\
Furthermore, as for the first term the use of Formula (ii) for fc = 2 gives

= -ilΨJFl {moάR{p)). (B.21)

Therefore we find

5§S(1)(S(2))2-S(2)S(3)o° = -^o^JFl ( m o d l ^ ) , (B.22)

which proves that the combination I J5 + \J2d2J°o and hence W{5) belongs to R(p).

spin 6

Using Eqs. (5.1) and (5.2), we can show that an appropriate linear combination
of W(6\ dWi5\ d2W{4\ ...,d5W(ί) gives the following operator

F ΨJF ¥°o . (B.23)
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Therefore thetwo statements V(6)eR(p) and Wi6)eR{p) are equivalent under the
assumption W(k)eRip) (fc = l,2, ...,5). Here we will show the former statement,
since it is practically easier. In order to evaluate ° J6l, we express J6 in terms of the
elementary symmetric polynomials S{k) as

%J*l = ooAoo + ooB°o9 (B.24)

A = ( 5 ( 1 ) ) 6 - 6(S ( 1 ) ) 4 S< 2 ) + 6(S ( 1 ) ) 3 5 ( 3 ) - 6(S ( 1 ) ) 2 S<4) + 6S ( 1 )S<5 ) - 6 S ( 6 ) ,

B = 9 ( S ( 1 ) ) 2 ( S ( 2 ) ) 2 - 12S ( 1 ) 5 ( 2 ) S ( 3 ) - 2 ( 5 ( 2 ) ) 3 + 6 S ( 2 ) 5 ( 4 ) + 3 ( S ( 3 ) ) 2 .

Since each term of A contains operators Sik) other than Sik) other than S ( 1 ) at most
linearly, Formula (i) indicates that lAl belongs to R{p). We then express B in terms
of Jfe's as

f - f J 2 (S ( 1 ) ) 4 +

Obviously IB^l belongs to Rip) because of Formula (i) (recall that
oJ3oeRip)). By using Formula (ii) for fc = 2, oB3o is written as

) 4S. (B.26)

This equation together with Formula (i) indicates that °oB3o belongs to Rip\ since
we have

and ooJ^ + d27jooeRipK (B.27)

The evaluation of °B2o is slightly nontrivial. Using the formulas (ii), (iv), and (v), we
have

°o(F)3oo =(SJ I S,(o o J I S,sJ I ^))-6§5 I j7J I S

-llψjψl - °od*Jj°o [Formula (iv)], (B.28)

§ J 2 J 4 o = ( § J 2 o , o J 4 o ) - 4 o 3 2 J J 3 o [Formula (ii) for fe = 4]

- °o(d2J)2oo -\l¥Ώ°o - lT2ΨJjl [Formula (v)].

(B.29)

Therefore we have

= -3°od2JJ3oo -i°od*JJ°o -^°o{d2J)2 ( )

(B.30)
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Finally IBXZ can be evaluated by using Formula (iii) for fe = 3 as
o D o i o / τ3\2o
ol p — 30\y j o

where the last equation holds because ° J 3o belongs to R{p\ Thus, combining Eqs.
(B.24), (B.30), and (B.31), we find that F ( 6 ) and hence W{6) belongs to R{p\

Although we have written the equations with taking modR(p\ the above
procedure gives explicit expressions of the Wik)'s in terms of the S(fc)'s as is shown in
Eq. (5.13). Since these equations have such structures as

) = (_!)*+!$<*> + (terms consisting of S(Z)'s with l<k), (B.32)

we can easily obtain the inverse expression, that is,

Sik) = (-l)k+1W(k) + (terms consisting of ΐF(Z)'s with l<k). (B.33)

Thus we have checked Lemma 5.1 for operators of spin fc^6

Appendix C. Construction of the Wp Algebra from Zp-Twisted Bosons

In this appendix, we show that the W(fc)(/l)'s defined in Sect. 5 can be identified with
the generators of the Wp algebra constructed from Zp-twisted bosons.

Let Φ(λ) = (Φ1(λ), ...,Φp-ι(λ)) be a (p — l)-component vector consisting of free
scalar fields Φj(λ) on the complex λ plane. When Φ3{λ) (j = 1,2,..., p — 1) satisfies the
untwisted boundary condition (Φj{e2πiλ) = Φ/A)), the generators W(fc)(A) of the Wp

algebra with Virasoro central charge c — p — 1 are constructed through the
quantum Miura transformation [16]:

- k = ( - l ) k - 1 Σ : Π Φjm'dΦ{λ)):. (C.I)
n l ^ J i < . . . <Jk^P m = l

(We took the limit αo-»0 in Eqs. (2.7) and (2.9) in [16].) Here the /Γ/s are the weight
vectors of the fundamental representation oϊsl(p) (in Rp~x) and satisfy the relations

ίfi=o, £-*Hv-£. (c.2)
The simple roots OLU...,OLP_1 of sl(p) are given by

oίj = fίj-f!j+1. (C.3)

It is known that the W(k)(/l)'s in Eq. (C.I) generate the Wp algebra [17].
In what follows, we will impose on the Φj{λ) a boundary condition which

generates a cyclic permutation of the simple roots α l 5 ...,α t and the lowest root
p - l

« o = - Σ 2L that is,
i=i

Ky Φ(e2πiλ) = f!j+ί. Φ(λ) (j = ί,2, ...,p) (Λp+i = ί i ) . (C.4)

We note that the W(k)(/ί) in Eq. (C.I) is single-valued under this boundary
condition.
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The boundary condition (C.4) is diagonalized for the following scalar fields

(ί=l,2,...,ί>-l), (C.5)
yp ; = i

which satisfies a Zp-twisted boundary condition

(C.6)

Then the spin k current W(k)(Λ) in Eq. (C.I) can be written in terms of φι(λ) by the
formula

•• Π Γi V
= i [_yp 1=1

+ (terms proportional to λ~2, λ~4,...). (C.7)

Here the second terms on the right-hand side are necessary in order to make the
W(fe)(A)'s close under the operator product expansion. It is easy to see that the W(Λ)'s
defined by this equation are identical to the W(fc)'s defined in Sect. 5 up to overall

normalizations if we identify dφ^λ) with £ — λ~n/p~1 Jn. Note that the
«=-ϊ(modp) yp

construction of the W(Λ)'s in Sect. 5 fixes the form of the second terms in Eq. (C.7)
automatically without any ambiguity. Their explicit forms for fc^4 are

Σ plλ): +

i '£ :dφιμ)

1 ' ϊ ; 1 :dφh(λ)dφl2(λ)dφh(λ)dφl4(λ):

ί Σ li = 0modp]

1

By using the contraction rule

\klp ίk\ /λ\1~k/p

j
(λ'-λ)2

+ (regular terms), (C.8)
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one can explicitly check the operator product expansion, which actually forms the
Wp algebra with central charge c=p — 1:

.W ( 2 )(A)+-

1

2)(P 3)

2p {λ'-λf

+ '
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