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Abstract. We show that the analog of the Miura maps and Backlund-Darboux
transformations for a general class of equations of Toda type and for a generalized
class of periodic Toda flows are isomorphisms of Poisson Lie groups.

1. Introduction

In the study of the Korteweg-de Vries (KdV) equation, it is well-known that an
important role is played by the Miura maps which relate KdV to an associated
modified equation (mKdV) [M]. On the other hand, Backlund-Darboux trans-
formations have been used successfully to construct soliton solutions (see, e.g.
[WE, D]). If L= -D2 + q and L=A*A denotes the factorization of L into first
order operators, where A = D — v9 then the starting point in [D], for example, is the
observation that the Backlund-Darboux transformation for KdV corresponds to a
reordering of factors in L, i.e. L = A * A h-• L = AA*. As has been noted by Adler [A],
there is also a parallel theory for the periodic Toda lattice. In this case, the analog
of the Miura maps takes the 2n-periodic Kac-van Moerbeke lattice [KvM] into
the n-periodic Toda lattice, and again, the Backlund-Darboux transformation
corresponds to a factorization and reordering of the factors. The Gelfand-Dickey
hierarchy [GDI] generalizes the KdV hierarchy to nth order operators, and in this
context, the generalized Miura maps were introduced and analyzed by Kuper-
shmidt and Wilson [KW]. In [KW] it was shown, for the first time, that the Miura
maps, and their nth order generalizations, were canonical with respect to
appropriate Poisson structures. This involves a so-called Adler-Gelfand-Dickey
second structure [GD2], which is a forerunner of a general construction on
associative algebras for skew-symmetric r-matrices [STS1]. By contrast, nothing
is known about the Hamiltonian character of the Miura maps for the case of the
periodic Toda lattice. From a different direction, in the study of the interpolation
of discrete algorithms in numerical linear algebra by continuous flows, it was
observed that if an n x n real matrix M solves the so-called SVD flow, then both
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MMT and MTM are solutions of the Toda equation [C, DDLT]. Again, the
question of whether the maps M f-> MMT, MTM are Poisson maps is open.

The purpose of this paper is two-fold. On the one hand, we would like to
understand the Hamiltonian nature of the analog of the Miura maps for a general
class of systems of Toda type, and also for a generalized class of periodic Toda
flows (see Sects. 3 and 4). Our approach to this question builds on recent progress
in [LP]. By working on the group level, our second purpose is to understand the
extended Sklyanin bracket in [LP], particularly with regard to its relation with
Poisson Lie groups. Let us recall [STS2] that a Lie group G equipped with the
Sklyanin bracket is a Poisson Lie group, i.e., the multiplication map is a Poisson
map from GxG (equipped with the product structure) into G. For a Poisson Lie
group, the underlying Poisson structure is uniquely determined by its linearization
at the identity. Also, it follows from a theorem of Manin [Drin] that there exists a
dual Poisson Lie group. With the modified structure in [LP], G is no longer a
Poisson Lie group and the above properties are unfortunately lost. However, as we
will show, the image of the analog of the Miura map(s) is a Poisson submanifold of
the Lie group equipped with the modified structure. Furthermore, this Poisson
submanifold (with the induced structure) can be endowed with two distinct
multiplication maps which turn it into isomorphic Poisson Lie groups, the
isomorphism being supplied by the Backlund-Darboux transformation! In
particular, our arguments also show that the restriction of the Backlund-Darboux
transformation to the classical (periodic and non-periodic) Toda lattice is also a
Poisson map.

The paper is organized as follows. In Sect. 2, for the convenience of the reader,
we assemble some of the basic facts about Poisson structures on Lie groups. The
main results are in Sects. 3 and 4. Section 3 is concerned with systems of Toda type
on real, semisimple Lie groups. We introduce these systems and the associated
modified equations. Then we study the Poisson geometry of the analog of the
Miura maps and the Backlund-Darboux transformation. As an application of our
results, we establish the complete integrability of the SVD flow [C, DDLT] on the
upper triangular group. In Sect. 4, we do the same for the generalized periodic
Toda flows, where the dynamics now takes place on appropriate infinite-
dimensional loop groups. We close the paper by considering the classical periodic
Toda lattice. Here, the maps which take the 2w-periodic Kac-van Moerbeke lattice
to the n-periodic Toda lattice are shown to be Poisson maps.

This paper was motivated by a question which arose in [DDLT]. As noted
above, the map M H+ MTM (or MMT) takes the SVD flow into the Toda flow. In
[DDLT], the SVD flow was shown to be Hamiltonian with respect to a Sklyanin
structure. On the other hand, the Toda flow is Hamiltonian with respect to the Lie-
Poisson structure on symmetric matrices, regarded as the dual Lie algebra of the
upper triangular group [S], The map M\-+MTM (or MMT\ however, is clearly
not canonical with respect to these two structures, and as noted above, the
Hamiltonian nature of the map(s) is not clear. In Sect. 3, however, we show that
M ι-> MTM (or MMT) is indeed canonical, if the domain retains the Sklyanin
structure, but the range, consisting of positive definite matrices, is equipped with a
modified structure in [LP].

Finally, we note that, at the general level of semisimple Lie algebras, the
underlying thrust of the results that follow is an interplay of the Iwasawa and
Cartan decompositions of a Lie algebra, moderated by the analog of the Miura
map. However, our understanding of the interplay is not yet complete.
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2. Poisson Structures on Lie Groups

We review in this section some of the basic facts about Poisson structures on Lie
groups which will be used in the sequel. For systematic treatments and proofs, we
refer the reader to [STS2, LP].

Definition 2.1. (a) A Lie group G equipped with a Poisson structure is called a
Poisson Lie group if group multiplication is a Poisson map from GxG (equipped
with the product structure) into G.
(b) Let G be a Poisson Lie group and H a Lie subgroup of G. We say H is a Poisson
Lie subgroup of G if H is a Poisson submanifold of G and forms a Poisson Lie
group with respect to the induced structure.

A Poisson Lie group has the special property that the underlying Poisson
structure is uniquely determined by its linearization at the identity. An important
class of Poisson Lie groups is associated with the so-called classical r-matrices.

Definition 2.2. Let g be a Lie algebra. A linear operator βeEndg is called a
classical r-matrix if the formula

x,
defines a Lie bracket. We shall denote by QR the vector space g when equipped with

From the point of view of integrable systems theory, operators R which satisfy
the modified Yang-Baxter equation

(mYB) IRX, K Y] - 2RIX, Y]R = - [X, Y], X, Y e g,

which is sufficient for R to be a classical r-matrix [STS1], are of particular interest.
Now, consider a Lie group G whose Lie algebra g is equipped with a

nondegeneratead-invariant pairing( , •). For φ e C°°(G), we define the left and right
gradients D'φ,Dφ:G^Q by

r=o

φ(getx), {Dφ{g),X)=jt φ(e'xg).
t = 0

We have

Theorem 2.3 [STS2]. Let tfeEndg be a skew-symmetric solution o/(mYB), then

{<P, Wskiy. = UR(D'<P), D'Ψ) - UR(D<P), Dψ), φ, Ψ e C°°(G)

defines a Poisson structure on G, known as the Sklyanin bracket. Moreover,
(G, {, }skiy J is a Poisson Lie group.

The Sklyanin structure admits an extension for a class of r-matrices which
includes the skew-symmetric ones. In [LP], the basic assumption on R e Endg is:

(H) R and A = ${R - R*) are solutions of (mYB).

Theorem 2.4 [LP]. Suppose R satisfy hypothesis (H) above and S = i(R + R*)9 then
the formula

{φ, ψ} = UA(D'φ), D'xp) -±{A(Dφ\ Dψ) + \{β(Dφ\ D'xp)

-US(D'φ\Dψ),

defines a Poisson structure on G.
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In contrast to the Sklyanin bracket, the group G equipped with the modified
structure in Theorem 2.4 is not a Poisson Lie group. Therefore, the Hamiltonian
operator η: G-*Endg defined by {φ, ψ} (g) = (η(g)Dφ(g), Dxp(g)) is not a 1 cocycle of
G for the Ad-action.

3. Analog of Miura Maps and Backlund-Darboux Transformations
for Equations of Toda Type

We introduce Lax equations of Toda type and the associated modified equations
on real, semisimple Lie groups. Then we describe the Poisson geometry of the
analog of the Miura maps and the Backlund-Darboux transformations. As an
application, we prove the complete integrability of the SVD flow [C] on the upper
triangular group.

Let g be a semi-simple Lie algebra over C, and < , > the associated Cartan-
Killing form. We fix a Cartan subalgebra t) of g, and let A be the root system for the
pair (g, ί)). Then we have the root space decomposition

9 = f)+ Σ 9α (3.1)
aeA

Suppose {Hί9..., Ht} is a basis of t)R, and A + C A is a positive system. According to
[V], there exists an involution τeAut(g) such that 1^= — 1; and also one can
select, for each αezl+, a Zαegα such that <Zα,τ(Zα)>= - 1 . Set Z_ α = -τ(Zα),
α e A + . Then the H^l^i^l) and the Za(oteA) form a Weyl basis [V]. The real,
semisimple Lie algebra

9o = ί)R+ Σ R Zα (3.2)
aeA

is the real normal form of g, and has subalgebras

1= Σ R ( Z β - Z _ J , u = ϊk + Σ R Z β . (3.3)
+ +

We have the Iwasawa decomposition g0 = ϊ©u and the Cartan decomposition
g0 = ϊ©p into +1 and — 1 eigenspaces of τ. Let Go be a connected Lie group with
Lie algebra g0. Then G0 = KU9 where K and U are analytic subgroups of Go with
Lie algebras I and u respectively. On the other hand, the map p x K
->G0: (X9 k) i—• (expX)k is a diffeomorphism and we denote exp(p) by P. Now, let
77j, Πu denote the projection operators relative to the Iwasawa decomposition of
g0. We define

R = Πt-Πu, A = ±(R-R*) and S = i (£ + 2ί*). (3-4)

Proposition 3.1. R is a solution of (mYB) which satisfies hypothesis (H).

Proof. Since I and u are subalgebras of g0, it follows from [STS1] that R is a
solution of (mYB). For X e g0, let X0,X+ and X_ denote the components of X in
ί)R, span{Zα}αezl+ and span{Z_α}αeJ+ respectively. Then ΠtX = X_ +τX_, ΠUX
= X0 — τX_+X+. By a straightforward computation, we find that Π?X = X+
+ τX _ and Π*X = Xo + X _ - τX _. Therefore, AX = X _ - X + and A can be easily
shown to be a solution of (mYB). •

In what follows, we denote the lift of the Cartan involution τ on g to the group
level also by the same symbol.
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Definition 3.2. (a) A Lax equation of Toda type on Go is an equation of the form

g = ± TeRg(R(Dφ(g))) - J TeRg(R(Dφ(g))), (3.5)

where <peC°°(G0) is a central function, i.e. φ(hgh'1) = φ(g), g,heG0.

(b) The modified Toda equation on Go associated with a central function φ
satisfying φ(τ(h~ι)) = φ(h% heG0, is the equation

g = ± ΓeKgμ(D/ιφ(g))) - i Γ e L g μ ( D ' y g)))> ( 3 6)

where hφ{g) = φ(τ(g-i)g).

Remark. Observe that on matrix groups, (3.5) is an equation in Lax pair form. A
model for (3.6) is the SVD flow in [C, DDLT].

Both Eqs. (3.5) and (3.6) are Hamiltonian systems on Go. Indeed we have [LP]

Proposition 3.3. (a) Equation (3.5) is the Hamilton's equation generated by φ in the
modified Poisson structure

(b) Equation (3.6) is generated by the Hamiltonian hφ in the Sklyanin structure

φl9φ2eC°(G0).

Using the fact that φ is a central function, it is clear that we can rewrite Eq. (3.5)
as

g = TeRg(ΠtDφ(g)) - TeLg(ΠtDφ(g)). (3.7)

Using formula (3.10a) and (3.10b) below, together with the fact that φ is central, we
find Dhφ, D'hφeρ. As AX = ΠtX for all Xep, we conclude that Eq.(3.6) is
equivalent to

g = \ TeRg(ΠtDhφ(g)) - i TeLg(ΠtD\(g)). (3.8)

At this juncture, we introduce maps α, β: G0-*P,
1 ) , geG0. (3.9)

Remark. If G = SL(n, C), then for the standard choice of the Cartan subalgebra (see
Remark 3.10 below), Go = SL(n,R) and τ(g) = (g" 1)Γ, geG0. Therefore, α and β
reduce to the maps discussed in the introduction.

The reason we call Eq. (3.6) a modified Toda equation is due to the following
result.

Proposition 3.4. // g satisfies Eq. (3.8), then α(g) and β(g) satisfy the Lax
equation (3.7).

Proof. We give the verification of the assertion for α(g). From the equation
satisfied by g, it is easy to check that

(αfe))' = h TeRaig)(ΠtD\(g)) - i TeLm{ΠtD
fhφ{g)).
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As φ is central and is invariant under the composition of the inversion map and τ,
we find from formula (3.10b) below that

D'hφ(g) = Dφ(a(g)) - τ(Dφ(a(g))) = 2Dφ(a(g)).

Hence the assertion follows. •

As a first step towards establishing the Hamiltonian nature of the maps α and β
introduced above, we first prove

Proposition 3.5. P is a Poisson submanifold of (Go, {,}).

Proof. The Hamiltonian vector field generated by i/jeC°°(G0) in the Poisson
structure {,} of Proposition 3.3 is given by

Xφ(g) = TeRgΠt(D'ψ(g) + DΨ(8)) ~ TeLgΠt(D'ψ(g) + Dψ(g))

+ TeRgII*(Dψ(g)-D'ψ(g))

+ TeLgΠZ(Dxp(g)-D'ψ(g)).

Now, take a point p = exp(s) e P; we must show Xψ{p) e TpP. Consider the first two
terms in the above expression for Xψ evaluated at p. This is equal to

TeRexpis)Πt(D'ψ + Dψ) - TeLexpis)Πt(D' e x p (AdgtiT, (D'v + Ώ Ψ) s)

which lies in TpP as Ad^n, (D'V,+DΨ)S is in p. For the other two terms, the evaluation
at p gives

TeRexpis)Π*(Dψ-Dfψ)+TeLexvis)Π^Dψ-Dfψ)

d
= — exp(tΠΪ(Dψ-D'ψ))exp(s)exp{tΠΪ(Dψ-D'ψ)).

dtt=0

But the image of 77* lies in p, and so

Qxp(tΠ*(Dψ - D'ψ)) exp(s) exp(ί/I*(Dφ - D'φ)) = τ(c(ή ' x)c(ί) e P,

where c(ί) = exp(is)exp(ίl7*(Dtp — D'ψ)). Consequently, the evaluation of the last
two terms at p is also in TpP. •

The induced Poisson structure on P will be denoted by {, }P.

Theorem 3.6. The maps α, β: (Go, {, }Skiy.)^(^? {•> }p) are Poisson maps.

The proof of this result is based on the following properties of the operators A
andS.

Lemma 3.7. For all X e g0,
(a) τ{AX)=-A{τX\
(b) A(X) + S{τX) = X.

Proof. For X eg0, let Xo, X+9 and X_ be as in the proof of Proposition 3.1. Then
(a) follows on noting that τ(X+) = (τX)+. On the other hand, it is easy to verify that
S(τX) = Xo + 2X+. As A(X) = X_-X+,(b)follows. •

Proof of Theorem 3.6. We shall prove the assertion for α. Let φ,ψeCco{P) and
extend them to functions φ, ψ on Go. We have to show {φ o α, ψ o α}Skly = {φ, ψ} ° α.
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By a direct computation, we find

D(φ o α) (g) = D(φ o Lτ(g-1}) (g) - τ(D(φ o L τ ( ί r 1 } ) (g)), (3.10a)

α) (g) = £>VMg)) ~ τφφ(α(g))). (3.10b)

In particular, as noted earlier, (3.10a) implies D(φoa)(g)ep and so
A(D(φ°<ή(g))el As <ϊ,ρ> = 0, it follows that

= <A(D'φ(a(g)) - τ(Dφ(g)), D'ψ(a(g)) -

To simplify notation, let X = Dφ(oc(g)% Y=Dψ(oc(g)), X' = D'φ(oc(g)) and
Y' = D'φ(α(g)). Now, invoke Lemma 3.7, we obtain

= (A(X% Γ>-(A{X\ Y)-<A(X%τY}-(A(τXl T)

y-(A{x\ γy + (x\τY-s(Y)y-(τx-s{x\ r>

\ Y> - (A{X\ Y> + <S(X), F> -

where we have used the facts that Dfφ(oι(g)) = Adα(ff)-i Dφ(α(g)) and τ°Adα ( 9 )-i
= Adα(&) o τ. This proves the assertion for α. The proof of the other half is similar
and details will be left to the reader. •

In what follows, we want to show that P can be turned into two distinct
Poisson Lie groups. To see this, recall that the maps α ^ and β\v are diffeomorph-
isms [H]. Pushing the group structure on U forward under oc\υ and β\v, we can
equip P with multiplication maps mP, mP:PxP-+P. In this way, oc\v and β\v

become isomorphisms of Lie groups.

Proposition 3.8. U is a Poisson Lie subgroup of (Gθ9 { }Skiy.)

Proof. According to [STS2], it is enough to verify that u 1 C(§0)A is an ideal (recall
that A is a classical r-matrix by Proposition 3.1). From the definition of u, we have

u

1 = Σ R Zα. If ae$0, l e u 1 , we find

from which it follows that \_a,X~\Ae\xL, as required. Π

The induced structure on U will be denoted by {, }υ. Combining Theorem 3.6
with Proposition 3.8 (we do not need the full force of Proposition 3.8, only the fact
that U is a Poisson submanifold of Go), we now have

Corollary 3.9. α^, β\v: ([/, {, }u)-+(P, {, }P) are Poisson diffeomorphisms.

Theorem 3.10. (a) (P,mP, (,}P) and (P,mP,{,}P) are Poisson Lie groups and the
maps α|ϋ 5 β\v are isomorphisms of Poisson Lie groups.
(b) The Backlund-Darboux transformation B: (P, mP, {, }P)->(P, mP, {, }P):

α(w) H-> β{u\ ueU, is an isomorphism of Poisson Lie groups.
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Proof, (a) The assertion follows from the following commutative diagrams:

(b) This is clear from the relation B = {β\v) (α^) *. •

Remark 3.ίί. Let g = s/(/ + l,C), / ^ l and let ί) be the abelian subalgebra of g
consisting of diagonal matrices. Then ί) is a Cartan subalgebra, and the Cartan-
Killing form on g is given by <Z, Y} = 2(1+1) tvXY LQtλ1,...,λι + 1e ϊ)* be defined
by λj: diag(α1? ...,aι+1)h-+ a} and let α, = ̂ ; — λi+ ί91 ^ / = I The set S = {α1?..., αz} is
a simple system of roots and the corresponding positive system is A + = {Af — A7 11
^ i < j g / +1}. For this particular choice of the Cartan subalgebra and the positive
system, τ is the map I h > - X * , go = s/(ί + l,R), ϊ = so(/ + 1 , R ) and u is the
subalgebra of g0 consisting of upper triangular matrices. We have
Go = SL(l +1, R), and the maps α and β are given by α(g) = gTg, β(g) = ggτ. It is not
hard to check that the subset of "bidiagonals"

is a symplectic leaf of (Go? { }Skiy.) ( s e^ [DDLT]). Thus, it follows from Theorem 3.6
that the maps L(a, b) »-> α(L(α, f?)), L(α, ί>) i—• β(L(a, b)) are Poisson maps. This special
case was first obtained by Flaschka who computed the Poisson brackets of the
various coordinate functions [F].

Now, although we present the above results within the framework of real,
semisimple Lie groups, it is clear that the computations should go through for a
reductive group like GL(n,R). Indeed, we have the Iwasawa decomposition
gί(n,R) = oφt , where o = 0(n,R) and t is the subalgebra of upper triangular
matrices. Therefore, if 77O, Πt denote the associated projections, then Π0 — Πt is a
classical r-matrix which verifies hypothesis (H) [LP]. Consequently, the identity
component GL+(n, R) of GL(n, R), say, is equipped with two Poisson structures as
in Proposition 3.3. Moreover, the identity component T + (n,R) of the upper
triangular group is a Poisson Lie group isomorphic to the symmetric space of real,
nxn positive definite matrices in two ways. In the rest of the section, we consider
the complete integrability of the SVD flow

ύ = (Π0(uuτ))u-u(Π0(uτu)), ue T + (n,R)

generated by the Hamiltonian tr(wΓw). As in Proposition 3.4, if u satisfies the above
equation, then the positive definite matrix OL{U) = UTU solves the Toda flow

Now, the Toda flow on positive definite matrices equipped with the induced
structure from (GL+(n,R), {,}) can be shown to be completely integrable on
generic symplectic leaves using the recursion relations in [LP]. Therefore, the
same must hold for the SVD flow on T+(n, R) as the two Hamiltonian systems are
isomorphic under u\-+oc(u) = uτu. To describe the integrals, we introduce the
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following notation. For a n n x n matrix M, let (M)k be the (n — k) x (n — k) matrix
obtained by deleting the first k rows and the last k columns of M and define

n-2k

Pk(M,λ)=det(M-λ)k= Σo Erk(M)λ"-2k~r,

Then the sign of Eok © α, 0 :§ k ̂  - is constant on the symplectic leaves of the

structure {,}Γ+(Π,R) induced from (GL+(n,R), (,}S k l y). Therefore, the set

W= LeT+(n,U)\Eok(uTu)*0, fc=l,..., [ j l j

is foliated by the symplectic leaves of { , } Γ + ( Λ R ) . For ueW, define Irk(u)
= Erk(uτu)/Eok(uτu\ O^kS[±(w-1)], 1 ^ r g n - 2 k .

Theorem 3.12. (a) The symplectic leaves of {,}Γ+(π,R) ^ ^ are of dimension

2 —- L fcdng ί/ie /ei;̂ / s^ί o/ ί/ie Casimir functions In-2k,k> 1 = ^ = 0

IV1
(b) T/ze SVD //ow Ϊ5 completely ίntegrable on the symplectic leaves in W. The —

Poisson commuting integrals are given by Irk, O ^ k ^ —-— , l ^ r ^ n — 2k— 1.

4. Analog of Miura Maps and Backlund-Darboux Transformations
for Periodic Toda Flows

We first introduce the periodic Toda flows and the associated modified equations
on some Banach Lie groups contained in LGL(n, <C). The paper [GW] provides
some of the technicalities for this part.

Let G be GL{n, C). The Lie algebra g0 = gKn, R) is a r e a l f ° r m of g = Lie(G) and
Go = GL+(n, R) is a corresponding Lie group. Denote by σ the involution of G and
9 defined by this real form. Also, denote by τ the automorphism of G defined by
τ(g) = (g~1)*. The induced map of τ on g will also be denoted by the same symbol.
We have the decomposition go = ϊ θ u (with associated projections ΠυΠu), where
ϊ = 0(n,R) and u is the subalgebra oϊnxn upper triangular matrices. On the group
level, this corresponds to G0 = KU, where K = 0(n,R), and U is the subgroup of
upper triangular matrices with positive diagonal entries. Therefore, if we define

R = Πt-ΠU9 A = ±(R-R*), and S = ±(R + R*). (4.1)

Then R and A are solutions of (mYB) so that R is a classical r-matrix which satisfies
hypothesis (H) [LP].

Let G = CCO(S\G) be the smooth loop group with the C00 topology. G is a
Frechet Lie group with the Lie algebra g = C 0 0 ^ 1 , g). We extend the conjugation σ
of G and g to a conjugation on the loop group and algebra by setting (σ/)(z)
= σ(f{z)\ \z\ = \. Similarly, we extend τ to G and g by (τ/)(z) = τ(/(z)), |z| = l.
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Notation 4.1. For geG, we use the simpler notation g* to stand for ^ g " 1 ) .
Let Go and g0 be the fixed point sets of the extended σ. We shall use the

following nondegenerate ad-invariant pairing on § 0 :

<X, Y} = J_^ tr(X(z)7(z)) ^ , άz= ~ . (4.2)

Obviously, <τX,τY> = <X, Γ>.
Following [GW], choose a symmetric weight function w:Z-*IR+ which is

rapidly increasing in the sense that

lim w ( φ ~ s = o o , Vs>0. (4.3)

Also, assume that w is of non-analytic type:

lim w(n)ίjn = l. (4.4)

Let X G § 0 be given by X(z)= f Xnz\ |z| = l. We define | | Z | | W = f \\XnM*\
— oo — oo

— oo

where || || is a norm on g0. Also, set (P+ X){z) = X Xnz
n and (P_ X){z) = Σ Xn2"-

«>0 n<0

Consider the Banach Lie group

(4.5)

with Lie algebra

§ 0 >v={^eg 0 | | |X | | w <(X)}. (4.6)

We have the decompositions

δow^θu^l^θPH,, (4.7)

where Tw, p w are the + 1 and — 1 eigenspaces of τ | § O w and

}. (4.8)

On the group level, this corresponds to the Iwasawa decomposition and the polar
decomposition of GO w [GW]:

Gow = KwUw, GOw = Kw- Pw, (4.9)

where

Kw = {geGOw\g*g = In}, Uw = {geGOw\P_g = 0,goeU} and

Pw = exp(pw). (4.10)

Denote by Π~t , i7 a the projection operators relative to the splitting § O w = T w Θ ϋ w .
We define

)*). (4.11)

Proposition 4.2. β # e End§ O w is a solution of (mYB) which satisfies hypothesis (H).

Proof Since ίw and u w are subalgebras of §O w, it follows from [STS1] that K # is a
solution of (mYB). Now, R*X = P_ X + KX0 ~ p + ^ + 2τP_Z. On the other hand,
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we find {R*)*X=-P.X + R*X0 + R+X + 2τP-X. Therefore,
+ AX0-P+X. To show A* is a solution of (mYB), observe that

Y]=SATIA±X0, A±Y0-]9

where A± =%(A±ί). Adding the two expressions gives

= 2[X0, Yo] + 2[AXQ, A 70] -

= 0,

as required. Π

Definition 4.3. (a) A periodic Toda flow on GOw is defined by an equation of the
form

, geGOw, (4.12)

where φ(g) = § φ(g{z))—, φeCco(G) being a central function.
|z| = l Z

(b) The modified periodic Toda equation on GO w corresponding to a central
function φeCco(G) is the equation

D%(g)), geGOw, (4.13)

where Kφ(g)= § φ(g*(z)g{z))—.
M = i z

From Proposition 4.2, it now follows from [LP] that (4.12) and (4.13) are
Hamiltonian systems.

Proposition 4.4. (a) Equation (4.12) is the Hamiltonian system in the Poίsson
structure

D ' φ i ) , D φ 2 > , φ 1 , φ 2 e C 0 0 ( G 0 J

corresponding to φ.
(b) Equation (4.13) is the Hamilton's equation generated by hφ in the Sklyanin
structure

For the Hamiltonians φ and hφ, we have

Dφ(g)(z) = D'φ(g)(z) =

DKφ(g)(z) = 2Dφ(g(z)g*(z))

and

In particular, Dh~φ(g% D'h~φ(g)epw. As A*(X) — n^X for Xepw, a calcula-
tion similar to the one in Proposition 3.4 shows that we have the following result.
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Proposition 4.5. 1/ g^GOw solves the modified periodic Toda equation (4.13), then
both g*g and gg* are solutions of the periodic Toda equation (4.12).

Now, forage GQ^, it follows from [GW] that gg*, g*gePw. Therefore, we have
maps α, # : GOw->Pw given by 6ί(g) = g*g, β{g) = g*g

Proposition 4.6. (a) Pw is a Poisson submanifold of (GOvv, {•}).
(b) Uw is a Poisson subgroup of (GO w, { }Skiy.)

Proof, (a) With I replaced by Tw, u by nw and so on in the proof of Proposition 3.5,
everything goes through just the same as before,
(b) We have to show uic(§OwL* is a n ideal. Now,

where u 1 consists of real, n x n strictly upper triangular matrices.
For X e § O w , F e u i , we have

and clearly, P_[X, Y]^#=0. As the constant term in [X, Y]^# is given by
\_A _X0, Yo] e u 1 , we conclude that [X, Y~\M e ύ^;. Π

Notation 4.7. The induced Poisson structures on Pw and ϋw will be denoted by
{, }pw and {, }ϋyv respectively.

Theorem4.8. α, β:(GOw,{ }skiy.)~^(^{'}pj a r e Poisson maps.

The proof of this theorem proceeds as in Theorem 3.6 because the properties of
A* and S* are analogous to those of A and S in Lemma 3.7. Indeed, we have

Proposition 4.9. For all X e § O w ,
(a) τ(A*X)=-A*(τX\
(b) A* *

Proof (a) For I e g O w ) we can check that P.{τX) = τ(P+X), (τX)0 = τX0 and
Λ{τX0)= -τ(AX0). Therefore,

A #(τX) = τ(P+X) - τ(AX0) - τ(P.X)

= -τ(A*X).

(b) The assertion follows from S*{τX) = S(τX0) + 2P+X and the property

0 + S(τX0) = X0. Π

Now, we are ready to state the analog of Theorem 3.9. But first, note that <%w,
j ^ l ^ are diffeomorphisms. To see this, suppose u*u = u'*u', w, ufeϋw. Then by
Liouville's theorem, (u'*)~ίu* = u'u~i = δ, where δ is a diagonal matrix with
positive diagonal entries. Thus, it follows from u* = u'*δ = u'*δ~i that δ2 = l.
Consequently, (5 = 1 and we conclude that α|&vv is injective. Now, let exp(X)ePw,
with Xepw. Since G0w = Kw'Uw, there exists keKw, ueϋw such that

fχ\
exp ί — J = ku. Hence, exp(Z) = u*u and so α|& w is surjective. In a similar way, one
proves β l ^ is a diffeomorphism. Since Uw is a Lie group, we can equip Pw with
multiplication maps mp^9 rhp^ so that α|#w, ^ |^w become isomorphisms of Lie
groups as before.
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Theorem 4.10. (a) (Pw, mpw, {, }pj) and (Pw, rhp^ {, }pw) are Poίsson Lie groups and
the dίffeomorphίsms α|ϋw> j3ί&w

 a r e isomorphisms of Poisson Lie groups.
(b) The Backlund-Darboux transformation B:(PW, mp^, {,}pJ-+(Pw,mp^
{5 }pj): &(u) ^ $(u\ u e ŵ> ^ an isomorphism of Poisson Lie groups.

We can apply Proposition 4.6/Γheorem 4.8 and Theorem 4.10 to the periodic
Toda lattice. Consider loops in GO w of the form

0

Jn-l

0 0\

(4.14)

It is straightforward to check that loops of such a form constitute a Poisson
submanifold of (GOw, {, }Skiy.) Therefore, the modified periodic Toda flow

is Hamiltonian. Indeed, it is equivalent to the 2n-periodic Kac-van Moerbeke
lattice άi = cci(af+1-af^1\ αί+2n = αi u P o n letting a2i-i = ai, a2i = bi, i = l , . . . , n .
Clearly, α(wαί)) is an w-periodic Toda matrix of the form

Ό ...

\0 0;

Cl d l ' Ό 0\
d1 ••. ••. 0

0

Moreover, if uΛfb satisfies the modified equation above, then (α(wα>b))' = [α(wα5),
Π~ι^a(uatb)] which is the equation of the periodic Toda lattice. Of course, similar
remarks apply to ${uab). Now, it is elementary to check that

T= {oί(Ua,b) I Ua,beGOw is of the form in (4.14)}

is a Poisson submanifold of (Pw,{,}pJ. Furthermore, if dt(uab)eT, then also
β(uab)eT and vice versa. Thus, the maps uatbt-+3(uath), ua,b\-+β(ua>b) and
&(ua,b) l~^ β(uajb) are Poisson maps when the domains and ranges are equipped with
the appropriate induced structures. We leave it to the reader to verify that similar
relations are also true for the nonperiodic version of the Toda lattice.
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