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Abstract. We consider random walks on Z‘ with transition rates p(x, y) given by a
random matrix. If p is a small random perturbation of the simple random walk, we
show that the walk remains diffusive for almost all environments p if d>2. The
result also holds for a continuous time Markov process with a random drift. The
corresponding path space measures converge weakly, in the scaling limit, to the
Wiener process, for almost every p.

1. Introduction

Random walks are probably the most extensively studied models of non-
equilibrium behaviour. On a lattice Z¢, a random walk is defined by a matrix
p(x, y), x, y € Z° giving the probability of jumping from x to y at each time. The only
constraints on p are

p(x,y)=0, (1
gp(x, y)=1 Vx. V)

Usually one considers walks on homogeneous environments, which means that

p(x,y)=p(x—y). 3

For a random walk in a random environment (RWRE), p is a random matrix. The
randomness models the effect of impurities on a physical system, and one would
like to study properties of the walk (e.g. its long time asymptotics) for almost every
sample p.

Apart from its obvious interest in the study of diffusion in non-homogeneous
media, RWRE may be considered as a simple model related to various other
physical situations. These include Anderson’s tight-binding model for disordered
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electron systems, deterministic motion among random scatterers (the Lorentz gas),
or the time evolution of disordered systems.

In this paper we consider a RWRE, where p is a small short range random
perturbation of a homogeneous walk. We can deal with rather generic such
perturbations, but the most interesting is the one where the environment is
asymmetric: p(x,y) and p(y, x) are independent. For such walks we show that
normal diffusive behaviour takes place if d > 2: the diffusion constant is non-zero
and independent of p for almost all p. Also, the (long time) scaling limit of the walk
is the Wiener process.

The continuous time analog of random walk is Brownian motion. The analog
of RWRE is the Markov process (on the state space Z%), with generator

A+b-V, 4

where b is random. Thus, the transition probability P(x, t) in time ¢ from origin to x
satisfies the Fokker-Planck equation

0Pp=AP—V-(bP). (5)

Our results extend to such Markov processes for a distribution of b whose
covariance equals

E(b(x)by(y)) =800, (6)

with ¢ small, and d> 2.

One of the first results on asymmetric RWRE is due to Sinai [1]. He showed
that, in one dimension, the effect of the asymmetry in the environment is drastic:
the mean square displacement is typically of the order (logt)*, instead of ¢ in the
homogeneous environment.
~ Thisresult prompted investigations and some controversy about the behaviour

in higher dimensions. Some numerical work [2] indicated logarithmic behaviour
in d=2, for strong disorder. Subsequently, perturbative renormalization group
computations were performed [3-5] which gave support to diffusive behaviour in
d=2. The argument showed that the zero disorder (homogeneous) fixed point is
stable: upon scaling space and time, the effective disorder renormalizes to zero. On
dimensional grounds this is easy to understand for d>2. If we define P'(x,t)
= I’P(Lx, I*t), where P solves (5), then P’ solves (5) with a new noise b’ = L*b(Lx'). If
we replace the state space by R? and if b is white noise, then

E(o)by(y)) =2>L*6,40(x— ). ™

Of course, to make sense of this argument one has to regularize the delta
function and replace scahng by a renormalization group (RG) analysis. In d=2, a
second order computation in the disorder reveals the irrelevancy of the disorder
[3]. Of course the perturbative RG can be argued to be reliable at most for small
disorder. However, in [3], it was argued that the large disorder fixed point is
unstable under the RG, and, thus, this gives plausibility to the claim that the walk
is diffusive for all (local) disorder.

This claim was subsequently challenged [6, 8] by explicit counterexamples. In
[6], environments with long-range correlations were constructed which have
logarithmic behaviour like the one found by Sinai in d =1. These models do not fit
into the framework discussed above due to the non-localities. However, they can
be understood in the RG framework [7] at least heuristically.
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An important problem in the asymmetric walk is the presence of traps, i.e.
regions where the walk can remain trapped for long times. Such traps will occur in
all distance scales and, if too abundant, they may produce sub-diffusive behaviour.
These traps occur in local models and were used in the counterexample of [8].
However, as we explain below (see also [7]), such counterexamples again fit very
well in the RG picture.

The trapping properties of the asymmetric environments are absent in models
of RWRE in symmetric environments, where e.g. p(x, y)=p(y, x). For continuous
time, this means that the random force b is the gradient of a stationary random
potential b= V. If v is white noise, then, in the formal scaling argument (7), the
power of L is replaced by —d, i.e. the noise is irrelevant in all dimensions. This is
indeed the case: in [9 and 10] it was shown that the diffusion is normal in all
dimensions and without our restriction on ¢ being small. These results were
subsequently extended to various lattice models [11-14].

Our proofis outlined in detail in Sect. 3. It is based on a RG analysis, somewhat
similar to the one in [15]. The RG transformation consists of decimation in time,
combined with the scaling of space and time. This transformation maps a RWRE
to another RWRE, with local transition probabilities, but weaker randomness, as
in (7). Iteration of the RG drives the system to a fixed point, given by the Wiener
process, which describes the long time asymptotics of the original RWRE.

The method should extend to d =2, where a more detailed study of the RG in
the small disorder region is required. The proof given below works, formally, in
d=2+¢for all e>0. We hope to be able to use the method to study the emergence
of stochastic (diffusive) behaviour in deterministic models such as the Lorenz gas
and lattice versions thereof.

In Sect. 2, we state our results. The ideas of the proof are explained in detail in
Sect. 3, where the outline of the rest of the paper is given.

2. The Model and the Results

A random walk on Z¢ is described by the transition probabilities p(x, y) from x e Z¢
to yeZ4:

p: 2 x 7°-[0,1] (1)
satisfying

Y plx,y)=1. )
yeZd

p allows us to define measures p;, TeN on the space Q; of walks
w:{0,1,..., T} >Z* starting from »(0)=0:

pal)= T ploti=1),0(0). ®)

We will study in this paper the large T properties of such measures. It will be
convenient to realize them as measures v; on C([0,1]), the space of continuous
paths w: [0, 1]—>R?, by rescaling the time in a standard way. Thus, given an w € Q,
we obtain a piecewise linear path

o@)=T " wi—1)+(Tt—i+1)(0(i)—wi-1)), 4
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where i—1=[Tt] and [ ] denotes the integral part. v; is the measure induced by
(4) on C([0,1]), and we will study the limit
lim vg (5
T—
also called the scaling limit, and its properties. For convenience, we will consider
below times given by T=L*" for neN and L a fixed integer chosen later. We will
denote v;.. by v, for short.

A random walk in a random environment is a random walk for which the
probabilities p(x,y) satisfying (1) and (2) are random variables with a given
probability distribution. We then investigate the existence of the limit (5) almost
surely with respect to this distribution.

Let us now specify precisely the properties of p which we impose. For simplicity,
we consider nearest neighbor walks (see, however, Remark 1 after Theorem 2):

1
57 Ty Ix—yl=1

For b=0, (6) defines the simple random walk. From (2) we see that
Y b(x,y)=0. ()
y

Theb={b(x, y)},. yczais a family of random variables whose distribution 2 we now
describe.

(P1) Independence. We take b(x, y) and b(x', ) to be independent if x = x": order
the unit vectors in Z¢ in some arbitrary way: (e;,e,, ..., e,,). Put

b(x)=(b(x,x+ey), ..., b(x, x +e,4)) e R**. )

We take {b(x)} . za to be independent, identically distributed random variables with
mean zero

Eb(x)=0 O

satisfying (7) and (1) for p of (6). Note, in particular, that b(x, y) and b(y, x) are
independent: the environment is asymmetric

(P2) Isotropy. Let R € O(d) be a rotation of R fixing the lattice Z“. This induces a
permutation ne S,, of the ¢;’s, and thus a permutation of the coordinates of b(x),
n*b(x). Then, we require that

b(x) and 7*b(x) (10)

are identically distributed (note that this and (7) imply (9)).
We next require that b in (6) is a “small” perturbation in the following sense.

(P3) The generating function of b satisfies
Ee"™) <t (11)
Finally, we impose a condition on the probability that the p(x, y)'s are near zero:

(P4)
Prob(p(x,y)g %e“"’) <e ™, NeN, (12)
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This is designed to avoid the walk getting “trapped” in some region of Z¢, see the
discussion in Sect. 3; ¢ in (11) will be taken small and I in (12) large.
We now state the main result concerning the limit (4). Let us denote by

D —d/2 d 2
TH(x)= <2ng> exp[— 2%:' (13)

the transition probability density for the Wiener measure v? with diffusion
constant D. The scaling limit of our walk is given by v” for almost all environments.
The convergence takes place in at least in two senses: first of all, as Theorem 1
shows, suitable correlation functions converge, and this implies convergence of the
diffusion constant and of the finite dimensional distributions (take f(x)=e™**
below, and use Theorem 7.6 in [16]). We consider the following class of smooth
functions:
F ={fe C*RY||f(x)| +|Vf(x)| < Ce""} .

Then,

Theorem 1. Let 2 satisfy (P1)—(P4) and d > 2. Then there is an ¢, >0 and I, such that
for e<gy, I'> I there exists a D >0 such that the limit

lim {dv,(@)[] f{o(t))

n—o i

exists and is given by

[dv2(@)] flo(t:)
for any fy ... L,eF,and t, ... t,€[0,1] P-almost surely. Moreover, D satisfies
ID—1|<Zce?. (15)

Let us define the diffusion constant in time T=L*" by

1
D,(p)=7X pr(@)o(T)? (16)
and
D(p)=lim D,(p). a7
Then,
Corollary. The limit (17) exists ?-a.s. and equals
D(p)=D,

where D is given in Theorem 1.
Indeed, (16) equals
D(p)={ dvy{w)o(1)?
whereas
D=[dvP(w)w(1)*.
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Actually, the convergence to the Wiener measure also holds for all bounded
continuous functions on the path space, not only factorisable ones, as in
Theorem 1:

Theorem 2. Under the assumptions of Theorem 1,
vp—vP (14)
weakly, P-almost surely. D is the same as in Theorem 1.

Remark 1. Theorems 1 and 2 hold for a much more general class of RWRE’s than
described above. While the general case is described by our inductive assumptions,
our results extend, for example, to the following class of models: we assume

p(x, y)=T(Ix—yl) +b(x, y) (18)
with
0ST(x)SCe ™,  |b(x,y)<Ce 7, (19)
Y T(x)=1
and

Eb(x,y)=0 =Z b(x, ).

The random fields b(x)= {b(x, )}, za satisfy
(a) b(x), b(x') are independent, 1dentlca11y distributed.

(b) G(f)=Eexp (Z b(0, y)f (y)> Sexpe Z e If(y).

(c) (Isotropy) G(f)= G(R*f), where ReO(d) fixes Z“.
(d) Prob(p(0,y)>1—e " My<e M N2>1.

Remark 2. The analysis covers also a continuous time version of RWRE. Let
P'(x, y, B) be the solution of

dpt . o
= ATBPL Py p=d, (20
with 4 the Laplacian on Z, ¥ the finite difference operator and let f(x),i=1, ...,d,

x€Z* be independent identically distributed random variables with mean Zero
and

IBix)<e. (21)
This problem essentially reduces to the previous teN case by putting
plx,y)=e""""A(x, y). (22)

Clearly } p(x,y)=1 and p(x, y)2 0. Furthermore, p is analytic in {(x)}, , in the
polydisc (21) (as a bounded operator on 1%(Z) with
ALRT Es]

where n, are the multiplicities of B(x)’s, and d(X), for X CZ4, is the length of the
shortest connected graph on X'; (23) may be obtained via a repeated application of

ScVexp[—d(ux,uxuy)]1ng!, (23)
B
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Duhamel’s formula and of

e4(x, y) S ce” XTI
Therefore

p(x, y)=Ep(x, y) + YCZZd by(x,y) (24)
and

[by(x, I (ce)™ exp[—d(xuyUY)].

These p(x, y)'s fit into our inductive assumptions. Here by collects terms in the
Taylor series of p with f(x), x € Y. Thus the by s are independent for disjoint ¥;’s.

3. The Renormalization Group — Outline of the Proof
1. The RG Transformation

The RG will allow us to replace the analysis of long time properties of the walk by
the study of a map, the RG map, relating transition probability densities of
successive scales.

Given a matrix p(x, y) satisfying (2.1) and (2.2) and thus defining a random walk,
choose an integer L>1 and set

L2
Pilxy)=L'T T] plali—1),w(@)= L'p(Lx, Ly) 6y
for x,ye(L™'Z)". In the sum, w(0)=Lx, o(T)=Ly and we write |w|=I2 Let
P7(x, y, p) be the probability, in the random walk defined by p, to go from x to y in
time T Explicitly
T

PY(x,y,p)=Y. ,l;ll plw(i—1), w(i)) 2

with w(0)=x, w(T)=y.
With definition (1) and T=IL?", we have

PT(x,y,p)=L""P™ (L™ 'x,L" 'y, p,)

LS e e), O

w:oi)e(L-1Z)4

where w(0)=L"'x, o(T;)=L"'y, T, = L™ *T. The powers of L in (1) are of course
chosen because we expect the long time limit to be diffusive. The ones in (3) become
very natural, provided we note that, since w now are walks in (L™ !Z)?, due to the
scaling involved in p,, it is natural to replace Y by an “integral.” Therefore, we will

shift to the following notation:

fdol,= [ | 1T dofdb(0)~ 930 -), @
where
dol)=L7* 5 ®

(L-1Z)d w(i)e(L~1Z)4



352 J. Bricmont and A. Kupiainen

and
o(w(0)—x)= Ldéww), x (6)
Equations (4-6) will shortly be used with L replaced by L*, ne N. Thus (3) reads
PT’(x1>pr1)=jdw£11ylpl(w), (7)
|o]
pi(w)= .1;[1 pi(w(i—1), w(i). ®)

Equations (2) and (3) are of course nothing but a convenient rewriting of P”. It is
obvious that we may iterate this operation, to obtain

PT(x,y,p)=L""P~" " T(L™"x,L™"y,p,), ©9)

where the right-hand side refers to walks on L™ "Z¢? with transition probabilities
pn:L"Z% x L""Z°—[0,1]. Indeed, we have the recursion

Dn+ l(x’ y)=Ld.(dw£;Lypn(w)’ (10)
where the right-hand side involves (4-6) with L— L. Clearly, the property
[dy p(x,y)=1 a1

is preserved under the map (10); (10) is the Renormalization Group map. It maps an
“environment” p, to another p, .. Thus p,, n=1, are random variables, being
functions of p. The meaning of (10) is that the rescaled long-time transition
probabilities for our RWRE are given as the transition probabilities in the rescaled
time of a RWRE with renormalized p’s. Given (11), it may be useful to think of
p.(x, y) as a transition probability density, in R?, which is constant on cubes of side
L™, To solve for the scaling limit we need to solve for the pis.

Consider for example the diffusion constant (2.16). We get from (2.16) and (9)

D,(p)=Dy(p,) = dy p.(0,y)y*. (12)

Thus the long time behavior is reduced to a time 1 problem for p,, as n— co.
The next step consists in dividing p, into a “deterministic” and a “random” part:

Pu(%, y)=T(x —y) +by(x, y), (13)

where
T(x—y)=Ep,(x,y), (14
bn(x’ y)=pn(xs y)_Epn(xa y)a (15)
and we used the translation invariance of the distribution of b. Evidently, by (11),
[dyT)=1, (16)
[dyb (x,y)=0=EDb,(x, y). 17)

The bulk of this paper consists in showing that b, tends to zero as n— oo,
whereas T, tends to (2.13). Let us consider T, first. The iteration (10) is very easy to
solve if b=0: we have a convolution and denoting by T the Fourier transform of T,
we have

K\
nak=1(5) 19
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ie.
R R k L2n
T(k=T (E) ; (19)
where, from (2.6)
d
T(k)= 2 Y. cosk,. (20)
a=1
Hence, as n— oo,
A~ k? -
T,(k)—~exp [ - 53] =Tk, (21)
where
D —df2
TH(x)= <27z E) e 42D (22)

Of course b is not zero and, at each scale, b, will modify the diffusion constant.
Since b, goes to zero, we shall obtain a sequence of approximations D,, given by
E(D(p,)), see (12), to the true diffusion constant D.

2. The Flow of the Disorder
Now, let us see in what sense b, goes to zero. The recursion (10), written for b, reads,
using (15)

bus 1(X,¥) =(Rb,) (x, y)= L | dof o, [(T, +b,) () — E(T, + b) ()] . (23)

Equation (23) defines the renormalization group map R for the stochastic
part b of p. The main difference between b, and b of (2.6)is that b,(x, y), b,(x’, y') are
no longer independent. Indeed, we have

bu(x,y)=L" [ donn{(T+b) () — E[(T+b) (w)]}, 24
which shows that b,(x, y) depends on b(X, ) for
|C'x —X|+ |y —%| < *". (25)

Also, p, are not strictly local: p,(x,y)=0 only if
|x—y|>L". (26)

Of course, we expect b,(x, y) and b,(x’, y') to be only weakly dependent if |x — x'| is
large, and be exponentially small if [x — y| is large. The third difference is that b,
lives on L™"Z* i.e. we have a proliferation of variables: obviously b,(x,y) and
b,(x',y") should be “almost the same” if |x—x'| and |y— )| are very small; in
particular, they will not be independent but, rather, strongly correlated.

These problems are solved by localizing b,(x, y) in terms of which b(%, j)'s it
depends on. We write

bn(xa y) = YCEZ"’ bnY(xa y) b (27)
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where b,4(x, y) are random variables that are functions of b(X, y) for X € L'Y (more
precisely, in a neighborhood of this set, see below). Y denotes the union of unit
cubes in the lattice of spacing L™" centered at y € Y. An expression like (27) would
result from (24) upon expanding the b’s:

(T+b)(@)=[](T+Db)(w;-1, )

=(Z) ; % ) T"(L'x—x1)b(x1, y ) T"(y; — X2)b(x32, ;) ... b(x;, L'y)
n; Xi) (Yi
(28)

and letting b,(x, y) be the sum of the terms for which Y is the smallest set of cubes
such that Ux;CL"Y. We cannot however proceed to straightforwardly. There are
two reasons for this.

First, the expansion (28) is not a good thing to do, if some b(X, 7) is not small, i.e.
in particular if T+ b is near 0 or 1. This is the problem of traps: configurations of b's
that will cause the walk to be trapped in some region in Z°.

Second, even if all the b’s are typical, i.e. of order ¢, the expansion (28) turns
out to be uncontrollable, due to multiple scales. This means that even small initial
b(x, y)'s can give rise to a b, at some later scale, which is not a small perturbation of
T,: traps can occur in longer scales as a collective conspiracy of small b(x, y)'s. This
mechanism was exploited in [8] in order to provide examples of RWRE with
subdiffusive behaviour.

We now describe these two problems in turn and the ways we deal with them.

First, consider the RG map (23), for n=0(the first step) and all b(X, ) entering in
b,(x,y) small:

Ib(%, 9 <6, (29)
where 6 <1. Provided 6 >¢, (29) is probable. Then, to first order in b,
L
by(x,y)=L'Y ¥ T(Lx'—x)T" Ly —yb(x,y). (30)
x,y t=0

Let us localize (30) in b as indicated above. We define, for ue Z¢,

b, y)=I T ¥ T T(LxX —x)T ~(Ly — phix, ), (31)

xeLu y t=0

where Lu is the [*-cube centered at Lu (note that b, is taken to be localized in Lu
due to the scaling by L). Clearly, b,,, and b,,, are independent if u, +u,.

Let us inquire the variance of (31). We will study later in great detail the
linearized RG map (30), so let us now just get a qualitative picture of it. The free
walk part T" satisfies

Ti(x) < td%exp[—lel/t”Z]; >0 (32)

(the 2 is arbitrary: the true behavior is rather as exp[ —cx?/t] but we won’t need
such accuracy here). Consider for example the case x' =) =u=0. Then, we walk
freely from O to x in time t and from x back to 0 in time I* —t. The walk, in time
< I? predominantly stays near the I’-cube L0, hits a particular x with probability
L™ “%atagiven time t and 0 again with probability L™ % Altogether, summing over L*



Random Walks in Asymmetric Random Environments 355

times, we have
By~Cc2™ ¥y ¥ K(x,y)b(xy) (33)

xeL0 [y—x|=1
with
IK(x, y)l <1.

Being the sum of I? independent random variables, (33) then seems to have
variance
Eb,4(0,0)>~CL* %2, (34)

This calculation seems to indicate that the randomness becomes more relevant
‘in longer scales if d < 4. However, we have ignored a very important property of b,
namely (2.7): Y b(x,y)=0. We may take advantage of this in (31) by replacing

TE YLy —y) there by
T Ly —y)—T" Ly —x) 35)

for the terms with I? —t 0. But, since |y — x| = 1, (35) equals ¥, T** "Ly’ — x) and it
is not hard to bound it by (see (32))
d+1

P, TR Ly | SCU2—g) 2 e~ 2 —sia=o, (36)

Hence, for most ¢ ((i.e. I* —t > al?, for some constant a), we gain a factor of L™ ! in
(33) and therefore an L™ 2 in (34): The contribution to Eb, 4(0,0)? from the terms in
(31) with t<(1 —a)L? is bounded by

Cla)[? %2, 37
ie. the randomness is irrelevant (in the RG-sense) in d >2. We would then expect
the variance of b, to run down as (CI2~ )" (with C an L-independent constant,

CI?~“can be taken less than one for a suitable L). Itis also clear from (32) and (31)
that, for general u, x', y', the bound (37) will be multiplied by a factor

exp[—Ix"—ul =y —ul], (38)

i.e. b, remains local with exponential tails.

There is, however, a slight catch in the above analysis that will cause us a lot of
technical headache: namely the subtraction (35) will not help us for ¢ near ?; we
have stressed this by the a-dependence in (37). As an example of the problem,
consider the t=I? term in (31), again for x'=y =u=0; this is just

IS'EL"I Y TH(x)b(x,0) 39)

x[=1
whose variance is
EB?=2d(I*T"(x))*Eb(x, 0) (40)

for any x, with x| =1. From (32) we see that no power of L is gained in (40), in any

, 5 ddk dj2
dimension! [Actually, as L—oo, T (x)— !( e k2 o = <%> , so the pre-

factor in (40) is greater than one in high dimensions! | Hence, pointwise, in x, y, we
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cannot expect
Ebnu(xa Y)2 (41)

to become small. Actually, we will later see that (41) stays bounded, as n— oo, but
only by 0(¢?), if yeu (the precise bound is slightly weaker, see (61) below). The
reader should realize that we have here a real problem for the whole RG scheme. If
(41) does not contract as n— o0, then, T,, given by (14), does not contract either: it is
recursively given by

T,+1(x'—y)=EL'[dok. AT, +b,) ()
=I*T"(Lx' —Ly)+E0O(b?), (42)

where the first term tends to stabilize to the fixed point (22), whereas the effect of the
second term would be to change D by ((¢?) at each iteration step. Hence we could
not control the diffusion constant, in particular, keep it away from zero.

The way out of this problem is to realize that the random variable (39), if we
reinsert the y' (=0in (39)), satisfies Y f(y')=0. Therefore, although b,,(x, y) will not

be smaller than @(¢?) with high pryobability pointwise, it actually will be highly
oscillating, and, when smeared with smooth test functions (what this means on a
lattice, see below), actually has a variance running down as L™*"¢2, We will see that,
as a consequence, T, will be smooth enough, such that when b, is smeared with T,,
the EO(b?) in (42) actually will be O(L™*"¢?). Thus, once smeared with “nice
enough” functions, b, has small variance, which inductively will guarantee that T,
stays “nice enough.”

To deal with such oscillations, Fourier transform is a natural tool. Recall that

b,:L"Z¢x L™"Z'>R (43)

and we expect b,(x, y) to have exponential falloff as [x — y| becomes large, whereas it
will not be very smooth in y. Hence, it is natural to introduce a “mixed”
representation for such functions: retaining the lattice description for scales =1
and using Fourier transform for smaller distance scales. Thus, denote by & a pair

E=(w,k), ueZ’ ke2nZ’ |k,)<L'rn. (44)
Then, given
f:L"Z*>R
we put
f(&)={dxe™""f(x), (45)

where u, for ueZ¢ denotes the unit cube in L™"Z¢ centered at u.
Now, the random variables b, will be split into

b,=s,+r,, (46)

where s, will be the “small-field variables,” ones describing randomness on scale n
outside the “trapping region” (see below), whereas r, describes the effect of the
traps. r, will be “large” (albeit they are very improbable, see below) whereas s, will
be “small” in the following sense.
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3. The Small Fields

We shall have

$,:L"Z4x L™"Z >R 47)
with

$u(%, y)= . ;Zd Sny(X, ). (48)

The s,y satisfy the following properties.

(A) Independence. s,y(x, y) is a function of b(%, j) for L™ "X in a neighbourhood of Y,
where Y is defined, like u in (45), as the union of unit cubes centered at points of Y.
In particular, s,y (X, 1), Sy (X2, ¥,) are independent if

dist(Y,, ;) =2. (49)

(B) Deterministic Bounds. The random variables s,y will be deterministically
“small,” but, as explained above, the smoothness enters in these bounds in a non-
trivial way. It will be convenient to introduce the following norms on s,:

> sup supls,(x, et MAR) 1. (50)

I$ayll 1=
ue xeu &

Let us explain the notation. First, s,y(x, &) is given by (45) applied to the y variable.
Remark that i localizes the y variable. Next, by d(X), for X a finite set of points in
RY, we will denote the length of the shortest connected graph on X and possibly
other points. Finally, A(k) describes the smoothness:

A(k)=u]i[1 [(1+k,17 . (51)

From now on we set d = 3. For d > 3 the exponent in (50) is different. While the flow
of the disorder is easy to express for any d (see (68) below), the UV singularities,
controlled by powers of A(k), tend to make formulas complicated in general
dimension. The choice of the power 1/3 in (50) is due to a scaling argument that will
become clear in the proof of Lemma 5.1.

Now, in terms of (50) and (51), we have

e = @

and
Sr=L"1"2m52 (54
82=¢2-K (55)

with K large and o small.
Let us understand what (52, 53) mean. s, is the main part of the randomness in
scale I, and this part will be deterministically bounded by (52, 53). In particular,

I8,7(x, )| < 8,y ~4=VIOD 4(R)1/3. (56)

For general d, we have, in (54), ~ L™"¢~2) (up to «), but the Fourier transform has
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poor falloff: (56) implies, using Schwartz’ inequality and Plancherel theorem:
[ Isy(x, )ldy < 6,ye =470 (Z Ak 3)” 2 (57)
[ k

and, from (51) and (44),

@ A(k)2/3)”2 ~CLM?, (58)
Thus, from (54) and (58),
S22 =0 (L_ (%‘%)"l (59)
i.e. (59) is small, but
S, L~ 1, (60)

which is large.

(52, 53) thus mean that, except for |Y|=1, the s,y have L!-norms in the second
variable tending to zero as n— oo, uniformly in x. Consider then |Y|=1. These are
the terms we already addressed in the linear analysis and which, as we saw, did not
contract with n, pointwise in x and y. This is reflected in the blow-up of our bound
(60). A more careful analysis will show that

o fju—v[22

88 lu—v|<2, (61)

flsutr )y s

v
ie. the leading term in s,, is s,,(x, y) With y near u and this has an integral that stays
small for all n, but will not contract with n. Note that these would be the terms in
(31), linear in b, localized near the end point of the walk. The effective transition
probability densities p, thus have a stochastic part that becomes small with n, when
smeared with smooth functions, but stays just bounded when smeared with L®
functions.

(C) Stochastic Bounds. The s, are random variables, deterministically bounded by
(52,53) and (61). We need also bounds for them as random variables. The reason is
very simple. As argued before, the variance of b, should contract with n (modulo
the smoothness problems). However deterministically the b, may be large: this we
saw already when studying the linear RG [see (31)]. Actually, (33),improved by the
L~! discussed in (36), says that b, is roughly a sum of I?b’s, multiplied by L! ¢
Hence, b; may be as large as

|b1(x, )= CLd, (62)

if |b| < d,.

Therefore, Rs, will not satisfy (53), with n—->n+ 1, and we want to show that the
event that (53) is violated is unlikely. s,,,; will then be the random variable
conditioned on the likely event, and the rest is put into r,, ;. On the other hand,
(52) will hold deterministically, due to the exponential decay in (38), and the
rescaling involved in the renormalisation group transformation (see
Proposition 5.2).

We will prove bounds for the generating function of s,. Let

¢,=Res, or Ims, (63)
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and
Clxy, E5) =™ Hirimai gk ) 13 (64)
for &, =(u,, k,). Then
E (exp % Jk3)bnx1, € 2)) <expe, (g |f(RICulx4, & 2))2 (65)
with
gl=L"(1"2mg2, (66)
Note that (65) means that the variance of s, is
E (X1, &2)* < Cege™ 24C10nu gf )23 (67)

which will ensure that Rs, violates (53) with small probability, using the fact that
we have o in (66) and 2« in (54).
For general d, (66) is replaced by

g2 =L U2 emg2 (68)

The power % in (67) is consistent with what we said before about ¢,: (67) yields an
L”-bound in y, on s,(x,y),

. 'Z A(k)”"" ~ CI2"
[

killing all the contraction (and more!) in &2.

4. The Large Fields

We will now turn to the “large field” variables r,. As we already mentioned, these
arise because the expansion (28), which is used to localize b,, is meaningless for b
not small enough. This is the problem of traps in our model which, in particular,
give rise to the assumption (2.12) on the probability of the p(x, y)’s being near zero.
To see this, consider the following configuration: p(x,y)~p(y,x)~1,
p(x,2), p(y,2)~0, z%y, zZ’*x, and p(z, x), p(z, y)~§al—T The set D={x,y} is a
trap: it is easy for the walk to enter D, but hard to leave. Note that such a
configuration would be impossible in a symmetric model where p(x, z) = p(z, x).
The condition (2.12) is now easy to understand: if a walk enters our trap, it will
stay there for time T such that (1 — @(e ™))" ~1/2d, i.e. T~ e". In this time, without
the trap, the walk would have diffused a distance T2 ~¢e"/2, Hence, we want the
mean distance between the traps be larger than this. If P(N) is the probability

P(N)=Prob <p(x,y)e% [e ¥ 1,e‘"]>,

then we want
P(N)™ V> Ni2 (69)

which is guaranteed by (2.12). Note that, for I in (2.12) too small, we would expect
the walk not to diffuse.



360 J. Bricmont and A. Kupiainen

We now face two problems. The first is how to separate the s and r variables
from each other, i.e. how to localize the traps. The second problem concerns more
complicated traps, namely the traps that can occur in arbitrary distance scales.
Indeed, even if we started with a model where the random variables |b(x, y)| < 8, for
all x, y, large b,s will be generated, see (62), and, hence, arbitrary traps.

The separation (46) is straightforward in the first RG step. We define the
“trapping region”

D ={x:|b(x, y)|> o, some

i ly=x|=1} (70)
and simply put
s(x, y)=b(x, y)x(x ¢ D), (71)
I(x, y)=b(x, y)x(x € D). (72)
Next, we compute
Rs=Y (Rs)y (73)

Y

using the expansion (28) and look for a region RCZ‘, where the bound (53) is
violated for Rs (and n=1). We then define, roughly, the trapping region D,, on
scale 1 as

D,=L"'DUR, (74)
where L™ D is the rescaled D set:
L™ 'D={xeL 'Z%LxeD} (75)

(see Sect. 4 for precise definitions). »; will then have an expansion
r1(an7):;71Y(x:J’)~ (76)

We will need two kinds of bounds for r,y:

(A) Lower Bounds for p,. This is the crucial bound: the inductive, scale L', version
of (2.12). This will tell us that a strong trap is unlikely on all scales. We introduce
random variables, “the trapping density variables” N,, for ue Z%. For n=0,

ueD, Ny,=min{ke(1—20)N|p(u,v)>L*"*u, u—v|=1}, (77)
u¢D, Noy,=—00. (78)

In this definition, 2 and « are put for bookkeeping purposes.

Now, N,, n=1, is defined recursively, in terms of N,,_, and new traps, coming
from the region R, where Rs,_, violates the bound (53). Rather than spell out this
recursion in detail here, we explain its main features (see Sect. 6 for details). Thus,
consider the typical event, where there is a single trap, say at the origin, and no
others within a distance eV°°. Hence, the probability of escaping from 0 is

Y p0,y)z L. (79)

lyl=1
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In the next scale, in case no new traps are created at 0 (= 1-block in L™ 1Z¢ at 0), the
probability of escaping from 0 is given in terms of the original walk, in time L?:

min | py(x,y)dy= Y p(w)= CI?[*~Noo (80)
xe0 0c lo|=L2

since we have O(L?) times to exit the trap. Of course, (79) holds only when the right-

hand side is much smaller than 1, since the left-hand side is less than 1. Here, we

only show how the flow of the large field goes; for precise bounds, see Sect. 8.
Thus

(79)gL2—N00+(2—2a), (81)

i.e. the “trap strength” at 0 went down roughly by 2 units. This, of course, is nothing
but a recursive way to see that, once we “wait” long enough, the trap is harmless, as
discussed above. Thus, ignoring new traps, and possible old traps nearby, we may
put

Nio=Ngo—(2—20) (82)
whereby, for I" large,
Prob(N,y=N)~ L Prob(Nyo=N+2—2x) (83)
~e Nlp—T(2-2a) (84)
and, iterating this,
Prob(N,o=N)~e~ (2720~ NI (85)

Once N, ~ 0, this will signal the absence of a trap at u. This does not mean that
we may completely forget about such traps yet. As random variables, the transition
probabilities connecting to such u's are not of the form T, + s,, with s, small in the
sense discussed above. We then proceed as follows: Note first that, starting with
Noo*0, N,, becomes zero much before (84) gets any significant corrections, i.e.
much before the I box at 0 is likely to contain any other u with N, +0 or new
traps generated by Rs. This was the argument leading to (69) [see also (87) below].
Therefore, we may “wait” much longer still. It is easy to see what this means, if we
go back to the starting scale. Then r,(x, y) is collecting walks, in time L*", from I"x
to L'y, which visit 0, our trap. Since there are no other traps, these are roughly free
walks. Therefore, r,(x, y) becomes very small unless y is very close to 0 (the end
point problem discussed above). Roughly, for x near 0,

[ Ira(x, y)ldy ~ L™= (86)
0

where n’ is the scale s.t. N,.,~0, i.e., see (81),

1 ~Noo/2.
Thus, (85) becomes 0O(e,), i.e. of the order of the (variance)/? of s, when d(n—n’)
~1n, ie. when

n=0(1)No, .

At this point, r,(x, y) satisfies similar bounds as the s, and may be absorbed to
them. Our original trap has disappeared (the estimates above will be slightly
modified, since we want r, to satisfy the Fourier bounds (52, 53), see Sect. 7). From
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the argument above, see (84), we learned that, throughout the iteration
Prob(ueD,)<e™ T (87)

with stronger bounds if N, is large. Equation (86) will not be modified much by the
traps in higher scales. These are generated when Rs, violates (53), which has
probability, using (65)

exp(—cd?/e?)<exp(—cL™62/e2) (88)

which is super-exponential in n, in contrast to (86). To summarize: we need to keep
lower bounds for p, in regions where N,,, > 0. These are, when the right-hand side is
small, of the form,
min min [dp,(%, 7) 2 L2 N, (89)
lu—v|=1 Xeu v
(B) Upper Bounds for p,. Two sorts of upper bounds need to be proven for the r,y
of (75) with 1—n.
First, if Yn{u|N,(u)>0}+¢ there are “real” traps in Y. r,y(x,y) will have
exponential fall-off

e—d(xuqu;D) , (90)
where d(X; Y) denotes the length of the shortest graph on X and possibly other
points, which becomes connected when each connected component of Y is shrunk
to a point. This is obvious: outside the traps, r, should behave as s,. See Sect. 6 for
details. Secondly, it is convenient to let N, become negative, after it reached the
value zero, by the same iteration (81):

Nn+1,0=Nn0—(2—2a) o1

(again under the assumption that traps are isolated, which is likely). Then, r,, will
carry factors of LN and e~ %*»“Y) and will be absorbed into s,y once these factors
are small enough. Due to the Fourier transforms, this is slightly tedious, albeit
straightforward, and we refer the reader to Sects. 6 and 7.

5. Outline of the Paper

The goal of Sect. 4 is still to explain the method: we perform explicitly the first RG
step, but do not prove anything, since the propositions stated there are special
cases of Proposition 6.1.

In Sect. 5, we do two kinds of estimates: first, we prove all the necessary
properties of T, defined in (14). Then, we get the deterministic and probabilistic
bounds on s(x, y) (see point 3 above).

Sections 6 and 7 are devoted to the upper bounds on r,. These bounds will be
expressed in terms of the random variables N; The net result being that r,, =0
whenever N,,= — oo, for all ue Y. So, if, in some region, we have N,,= — oo, we
know that b=s there, and we may use the deterministic bounds (52, 53). In Sect. 6,
we get L' bounds on r,y. Once these bounds are small enough, we show, in Sect. 7,
using the arguments that led to (85), that a few more iterations produce Fourier
bounds like (52, 53). Then we may, in the next step, add r,y to s,y, and set the new r,y
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equal to zero. These sections are the most technical of the paper; to shorten Sect. 6,
we have put most of the proofs in an appendix.

An essential ingredient of Sect. 6 consists of an upper bound on r(x, y) for x
inside a trap. However, this upper bound follows itself from a lower bound on the
probability of escaping from a trap, roughly given by (88). This lower bound is
proven in Sect. 8. This is the part of the paper where a non-perturbative argument
is needed, since traps can be arbitrarily bad.

The net result of Sects. 6-8 are bounds on the large fields in terms of the trap
strength variables N,,. These satisfy a recursion relation given by (6.10-6.14). N,
decreases, see (90), unless several N,,’s fall in the same L-cube, or new large fields
are produced. Moreover, when N,, becomes sufficiently negative so that the
corresponding r,,’s can be reabsorbed into s, we set the new N, = — co. It remains
to show that the event N,, = — oo is likely. This is done in Sect. 9. The proof s easy
to understand: the bound (87) shows that new large fields are increasingly
unprobable. So, we have mostly to control the possibility that several N, & — co
fall in the same L-cube. This is where I large in (2.12) is used. By (69), we see that,
for I' large, the typical distances between large fields are so big that these will be
reabsorbed in the small fields much before two of them have a significant
probability to fall in the same L-cube.

Finally, in Sect. 10, we prove Theorems 1 and 2. Using the estimates of Sect. 9,
we know that the event b,(x, y)=s,(x, y), for all x, y visited by the walk, is very
probable for n large enough. Then, we may use the deterministic bounds (52, 53) to
prove convergence to the Wiener measure.

6. Notation and Choice of Constants

There are two notational difficulties in the paper: one is that we work with a
“running” lattice (L™ "Z)", and an ordinary Z¢ lattice. The other has to do with a
proliferation of constants and their relation to ¢, and I in Theorem 1.

To deal with the first problem, we shall generally denote by x, y, z the variables
in the running lattice and by u, v, w those in Z°. This lattice is always imbedded in
the finer one. Boldface symbols such as u or x, denote the unit cube centered at u, or
containing x, more precisely the intersection of that cube with the running lattice.
Similarly, Y, for YCZ, is the corresponding union of unit cubes. Often, we shall
not distinguish between a set of cubes and the corresponding union. Symbols such
as Lu, L™ 'u, LY denote the sites or the sets rescaled in the indicated way [see (74)].
[L™ 'u] is the point in Z¢ whose coordinates are the integer parts of those of L™ u,
and similarly for sets. We use the Euclidean distance, so that two cubes u, v are
adjacent iff they touch iff ju—v|<2 (in three dimensions). For X, Y subsets of
(L™"Z), d(X) is the length of the shortest connected graph whose set of vertices
contains X, and d(X;Y) is defined similarly, except that the graph becomes
connected when each connected component of Y is contracted to a point. |E| is the
volume for a set in (L™"Z)%, and the cardinality for one in Z*. For a constant a, we
let B(a)=|) {u, such that d(u,0)<a} and E + B(a) denotes the obvious union.

For the second notational problem, we let ¢, C denote a generic constant, so
that 2¢ <c is allowed. The point is that those constants are independent of our
choice of the renormalisation scale L. It is convenient to introduce constants that
depend on L (but not on the scale n): ¢(L) denotes a generic function of L. We shall
also use specific constants, 1% I? I7, where we let y<f<a? and a<1. These
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relations will constantly be used without mentioning them: for example, we
assume that (87) is small, and at the same time, we use 62> <e¢,, which holds for a
small and L large. Actually, we choose L so large that ¢ < L? and I? <exp(L’), for
some large p. It is also convenient to call the original scale n,, instead of 0. Doing
that, we may write 63 =L~ 2@ gnd §2 = L~ 729" gee (54, 55). Of course, with
this choice, the running lattice becomes (L™ "~ "Z)". We write n—n,=1.

The logic leading to the choice of ¢, I, is as follows: First, pick «, §, y as above.
Next, choose L large enough to control various constants. Then, take n, large
(depending on L); this determines ¢,. I is taken equal to LnZ, see Sect. 9.

4. The First RG Step

We start from (3.70)—(3.71). The analysis of (3.72), i.e. the perturbative small field
analysis is presented in Sect. 5. Here we just take as input the region R where #s is
“large,” i.e. violates the bound (3.53). This is defined precisely in (5.90) and enters
the definition of the new large field region, which is a union of L™! cubes.

D,=((DuUR)+ BQ2L))UL™ YD+ B(L%) (1)

with
D={ulueZ?; v; lv—u|<2, |DALv|>L}. )
Let us explain this complicated-looking definition. Our goal is to derive for
by(x,3)= L [ do[(T+b) () — E(T+b) (@)] 3)

with do=dwf},,, a splitting into “small” and “large” fields, as in (3.71). LDis a
region where (or near to where) there is a relatively high density of traps (= I ~3).
In (1), we put a “corridor” of width ~ L' *? around L(DUR). The rest of D is given a
smaller corridor of width ~ I, These corridors mean that a visit to D starting from
outside LD,, i.e. Lx¢ LD,, will be quite unlikely.

We write

bi(x,y)=s,(x,y)+ei(x,y), x¢Dy, ©

where e, collects such visits to D (and LR), see below. We expect ¢, to be small due
to small hitting probabilities, although not necessarily as small as s,. e therefore
denotes “expandable.”

For xe D, we write

bl(x’y)=sl(xsy)+el(x’y)+ll(x’y)’ (5)

where [; will be the new large field variable (e 4/ was called r in Sect. 3). It collects
the trapped walks; as a random variable it is dependent on b in a neighborhood of
the connected component of LD, to which Lx belongs. e, collects visits to traps not
localized to one component and therefore expandable, because, due to the
corridors, hitting probabilities are small.

We now define e, and [;. We expand s in (3) [b=s+1, where [ in the first
inductive step is given by r defined in Eq. (3.71)] and localize the walks according
to visits to D. Let first x¢ D;. For each ve D we define a set W(v):

(a) if ve LD, W(v)=LD,(v), the connected component of LD, containing v,
(b) if ve D\LD, W(v) is the connected component of D + B(L%) containing v.
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We decompose the walks w in (3) according to the first visit to D, at v, the first
exit of W(v,) at u,, the next return to D at v, and so on. The reason for defining W(v)
as we did, instead of just as connected components of LD, is that, because of the
corridors, a small piece of D may fall inside a large component of LD,. Inside W(v),
we just resum all walks and keep crude bounds. We thus get

[do[(T+b)(@)=(T+s)(@)]= 3 3 by :1(T+S)“'c(ui—1,vi)

k=2 tty vieD ui¢W; i

X T1 T+ b o) — (>3, ©

where uy=Lx, v,=Ly, and W,=W(v;). The t,t} satisfy ¥ (t;+t)=1L% t;, t;=1,
i=1,...,k—1,and 1, =0. }' refers to the t,=0 case: then, v,=u,_ =Ly and the
constraintu, _ , ¢ W, _, isnot applied (Ly may belong to W, _,). We also introduced
the notation

-1

(T+ 8)pe(u, V) = [ dwi, ( T+ 5) () 11 x(e(i)e D). ™)

In (6) we subtracted on the left-hand side the pure s contribution (which is treated
perturbatively in Sect. 5). (b—s) means that we have the same expansion but with b
replaced by s. In (6), the factors (T+ b)}, are localized, as random variables, in W
(see definition below). But (T+ s)p. is not localized because of the characteristic
function on D¢, and because of s. Since s(x, y)y(x € D)=s(x, y) [s vanishes on D, see
(3.71)] we have

k

k-1
T+fplur)= L £ ¥ T [Ls0ux), @

21 m20 |x,—yi|=1i=

where x,=u, y,=v. The next thing to expand is the constraint on D¢ in T}. in (8)
(this is not a localized random variable!): write, in (7), y(w(i) € D)=1 — y(w(i) € D),
and expand the product,

T ) =Ty~ T ¥ THx—0) T3 (s ). )

t1=1 vyeD

Then, as in (6), we sum over the first exit from W(v,):

T3u)=Y Y T, npdvs, ug) Tpe ™ "(uy, )

thueWy
with m=n—t,. Using (9), we iterate the procedure to get
k

k-1
Tﬁv(x,J’)=kZ Y2 X Il Tti(ui—1_0i)il=_[1 [(—1)Tvtl;mD°(Uiaui)] (10)

21 6t v,eD u;¢W; i=1

with vy=Xx, v, =y, and the notation is as in (6).
Now we insert (10) into (8) and (8) into (6) to get

JAo(T+D) @) —(T+)@)=F T T [] T, —v)

k22 tith,a; viu; i=1

k-1
x [T Q50n )~ (b=s), (1
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where a;=1,2,3, ,20, i=1...k, t;=21,i=1... k—1, Y, + ;=12

Q'i(v,u)=5(v,u) 6,1, (12)
2(0,u)=(T+b)y(v, u), (13)
Q4(v,u)=— Ty, p(v, ). (14)
The subtraction of (b—s) means that, for each term in (11),
Jdiza;=2. (15)

Finally, Y means v;€ D, u; ¢ W(v;), for a;+ 1, unless i=k — 1 and t, =0, in which case
uk -1 = Ly.
The final rewriting of our expansion deals with these constraints in )
m=3 ¥ DY H; 3(X(Uie W.nD)y(u; ¢ W)x(W; e Ey )

k22 ti,ti,ai,bi (Wiiza;=2,3 uiv; ita;=

=

k=1
T'(u;— 1 —vy) .1;[1 Qi (v, u) —(b—s). (16)

X
i

1

We have the same notation as before. The sum over W runs over all connected
subsets of Z?. The sets E, are

E,={W|3veD\LD; W=W(v)}, (17)

E,={W|3ve LD, W=W()}, (18)

where W(v) has been defined in (a) and (b) above. Now the u,v sums are

unconstrained, the previous restrictions being in the characteristic functions. [T’

means that there is no constraint on u; ¢ W, if i=k—1 and ¢, =0 (4, _, = Ly then).
The point of (16) is that the summand is now a localized random variable.

Definition. A function F(b) is a random variable localized in the set SCL™™Z? at
scale I (fi=n—n,), if F(b) is measurable with respect to the o-algebra generated by

{b(x, y)ld(LL™"x], S)<6L} . (19)
Lemma 1. The summand in (16) is localized in
v, u(u; W+ BGL' 7)) (20)

at scale 1.

Proof. Q(v,u) is localized in v and Q,(v,u) in W(v); (W e E,) is localized, at scale 1,
in

W+ B(3L' 7). (21)

Indeed, consider b=2, which is the most delocalized. We E, means that W is a
connected component of LD, intersecting D. This gives a constraint, due to (1),
that

dist(L(DUR)\W, W)= 2L' 7.

From (2), we get another constraint, up to a distance L from LD,, ie. (21)
holds. [

We can now, using (4) and (16), define e,. First, we set
L {da(T+s)(w)=Rs=s,+ de,, (22)
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where Ae; =Y Ae, y collects the terms for which (3.53) is violated, ie. the
Y

R-contribution. This is defined and analyzed in Sect. 5 (see Proposition 5.5). Next,
we collect terms in (16),

L {do[(T+b)(w)—(T+s)(w)]= ; éy (23)
with
Y=[L"Y(vwu W], (24)
and put
e,y =8y + de y—Eé,. (25)
We have

Proposition 1. Let x¢D,. Then e,y is localized in Y at scale L and satisfies

ely=gy+EY (26)
with
Y fdyley(x, y)le™ D < L2, (27)
Y
Y [ dy|Ey(x, y)e?®oroiPunh) < =17 (28)
Y
and
Ey=0 if YnD=¢, (29)
where
D,,=(DUR)+BQL). (30)

Proposition 1 will be proved in Sect. 6 (it is a special case of Proposition 6.1),
but note that the localization follows from Lemma 1. The bounds (27) and (28) are
easy to understand too. &y collects terms in (16) with b;=1 Vi, i.e. no visits to the
dense trapping region. For x ¢ LD, the collar I* in (1) guarantees smallness via a
Green'’s function bound d(%l)) ~ L™* Ey collects terms with b;=2 for some i, i.e.
with visits to D. Now the corridor 2L' *7 yields (28).

For x e D, we again get (16), with the modification that t; =0, i.e. v; =Lx, and
W, is the connected component of LD, containing Lx (note that Lx € LD, need not
belong to D). Then, [,(x, y) collects terms with

[L™ Y (uwuW)1CD,(x)+B2L), (1)

where D,(x) is the connected component of D, containing x; e,y is as before for
Y ¢ D,(x)+ B(2L"), and zero otherwise. Now e; =¢if W, e E, and e, =E if W, € E,.
Again, the bounds (27) and (28) follow since (31) means that the walks contributing
to ¢ or E have to cross the corresponding corridors. For [,, we will prove

Proposition 2.1,(x, y)=0unless x € D,, and is localized in D,(x) at scale L. It satisfies

[dylly(x, y)le’® P <C. (32)
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5. The Small Disorder Analysis

In this section we analyze the RG map R defined in (3.23) in the small field region.
Thus, given a map

s:L"Z3x L"Z35R, 1)

(i=n—ny, and we suppress n in s, and other variables, and put s,, ;=5

Rs:L " 'Z3x L " 'Z35R 2
is given by
(Rs)(x', y')=L? [ dw[(T+s5) () — E(T+s5) ()], G)
where
do =do. 1, @

is the path measure (3.4). s’ is then given in terms of Rs by (4.22), see (67) below. The
inductive properties of the T and s that we establish are the following.

Proposition 1. Under the assumptions of Theorem 2.1, T, may be expressed as

L,=7,+1,, )
where
T (k)=To(L "Dy k)", (6)
3
Tok)=% ¥, cosk,, (7
a=1
and
|D,—1|<conste?. ®)
t, is analytic in X ={k||Imk,| <3}, and, for ke X,
5312 A(k)
t RIS
UL {53/2(%)2 for |Rek,<logl”. ©)

(A(Kk) is defined in (3.51).)

Before we embark on the proof of Proposition 1, let us make the following
technical remark. The nearest neighbour walk (2.6) has the property that the
matrix p has, apart from the eigenvalue 1 corresponding to constant functions, an
eigenvalue — 1 corresponding to the eigenfunction e (1D This could make the
analysis below more cuambersome and so we will circumvent the difficulty by doing
the first step of the iteration as follows. We choose L even, and first replace p by p*.
Note, that for p? the eigenvalue 1 is degenerate, reflecting the fact that the Markov
chain is now reducible. Indeed, p?> maps the set of functions on the sublattice of Z4
generated by the vectors +e, +e, into itself. This means that we may restrict our
Fourier transform variables k to “half” of the Brillouin zone, i.e., say, |k,] <3nL". In
particular, (k) in (7) satisfies the bound | (k)| < e ~*** (for real k and n=0)in that
region leading to (21) below. Without further mention, all the momenta are
assumed to lie in this reduced Brillouin zone.
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Most of the bounds for s, have been stated in Chap. 3. Let us gather them here:
First, the Fourier bound

“SnY” 1 één}’ (10)
[see (3.50) for the norm] and then the L!-bound
_ 0%, lu—v|=2
< d(xvuuvv) ns =
glsnu(x, yldy=se { 5 ju—v|<2, (11)
and finally the stochastic bound (3.65):
E (eXp z Jk3)pplx1, éz)) <expe; (kZ |f(k)ICxy, éz))z ; (12)

where ¢ = Res or Ims. Actually, to prove (11) we need to introduce yet another pair
of bounds, for the double Fourier transforms s,(¢,, £,). Defining the norm

ISyl 2=2 S}(‘P sup |s,y(¢1, 62),ed(ulwzuy)A(k1)_ 23 Aky) ™13 (13)

we shall prove
l[Snyll2 < Ony (14)

and furthermore that
E(@XP ) f(kl,kz)%(él,éz)) éeXps,?( > If(kl,kz)ICu(fl,fz)>2, (15)
kiko kikz

with
Cu &y, &)= e 200D 4(k )23 A(k,)' 2 . (16)

Equations (14)—(16) are needed to control convolutions s * s, for the proof of (11).
Given (5)-(16) for T,, s,, we now proceed to prove them for T'=T,, ,, 5 =5, 4.

Proof of Proposition 1. Separate first the s-contribution to T":
T'=1?[{doE(T+b)(w)=L* {dwE(T+s) (w)+ T; 17)

and expand s

k
D [ dwE(T+s)(w)=IPTY(Lx' — Ly)+ I3 ¥ {doE ] T"s™
i=1

=T )+ Ty(x —y) (18)

with Y m; =1 and obvious constraints for n,m. T, is a multiple convolution

won (KN (k KNV _ (kY- | (K
to-1(5) = (7(2)(2)) =2 (0) )}
Now
K\ i
f(f) =T oL, 2l (20)

~k
and t(f) is analytic for k in LX. Since, for ke X, (6) and (7) imply

1T (k)| S ce™ 7, 21
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we get from (21) and (9) that, for ke X, |Rek,|<logL'*! for all p,

|t(k)| < CL™263/2(kk)> < 5,/2, (kk)? (22)
and, for |[Rek,|>logL**! for some g,
s 3, (2)| ema(y) [fewren @3
Twsi\m) " L
with
a=Cn?*(logL)L" 2. (24)

Easily then (n>n, is large),
| <3030, A(K). (25)

Now, consider T, in (18). Since s has poor falloff for large k in both variables
separately, we use the translation invariance of T, to combine the falloff from both
of them:

To(ky= (j; dx [dyTy(x—y)e *>—V=¥% kzk K(k—k)K(k+k,)To(E,, E,)e™ 2, (26)

where &, =(k,,0), £, =(k,, u,). In (26) and frequently below, we use the following
easy identities for the Fourier transform (3.45):

§dxf(x)g(x) =§ f(©)g(), 27
f©)={dqK(k—q)f(g)e™ ", (28)
with
fdg=02m)~* [ d’q (29)
[— L"m, L"n]3
and
3 in(t
K@= 1 i tova (30)
Thus, we need to estimate T,(&,,&,) in (26). T, is given by
T,=Y Eoy (31)
with !
oy(x,y)=L'Y (TMsy, T™ ... T™sy, T"*)(Lx', Ly) (32)
and Y=(Y,,..., ¥)C(Z3, n,20, k+Y n;=1*~
From (28),
T"(&1, E2)= [ dqK(k, — q)K (k, + ) T(g)"e@ "0 (33)
By analyticity of T in ¥ and the bounds (9) and (21), upon shifting
q—q+isuy—uy) luy—u,| ™" (34)

with 0<s<2, we obtain (n>0)
T"(Ey, E)Sce™ e sl (k,, ky), (35)



Random Walks in Asymmetric Random Environments 371

where
I(ky, k)= dqA(k, — q)Alk, +q)A(q)" ™. (36)
We used
|K(q+1iq,)| = CA(g), (37)
|T(q+iqo)| S e, (38)
T(q+iq0)| < CA(g)* **=alg). (39)

Here, we use part of 622 in (9), and |g| < cL" to get the extra «, which will only be
used later. Equations (37-39) hold for |g,| 2. I can be bounded by Schwartz and

[A(k—q)*A(q)'dg< CA(k), 0=<t=2 (40)
as
I(ky, ky) S CAky )P Ale) ' . (41)
Combining (35) and (41) with (14) and (13), and doing the k sums (k| <cL?)
Ek)A(k)z/ A(k)'® < Clog L) (42)
we get

loy(&y, E) = C(L) <I=I£[1 5Y',> (C IOgL")de n onis? Y 1A(K,)2B A(K,)'3

u;e Lu;

x Ze—sxlul—ulle—d(vluvzuh) e Sewtlvies 1w , (43)
2 .

where we used the following identity: let
Jux)=f(Lx), (44)
then
i%(u—-Lu’)

f@)=L""7% e f(u,%). (45)
ueLu’

We will use (43) later in a more substantial way when we estimate sy, but now
just take s;=% and note that Esy=0 (see Proposition 2 below) means only k=2
contribute to (32):

- Ll -u
T IS he T AR AR (46)
with
A,=C(L)(log L")6% < 62/*. 47
Inserting (46) into (26) we get, for ke%l,
[Ty (k)| < 2,A(K). (48)

Finally, we consider T; in (17). This is the trap-contribution:
Ty=L? [ doE(T+ b)(w)—(T+s) (w)). 49)
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In Sect. 8 we show that

E <sup Flradx, y)Idy)" Selumrlgmen? (50)

for k< I?. Whereby, expanding b =s+r in (49) and using (11) for the L'-norm of s,
and Schwartz inequality repeatedly for several r's,

L

ITy(x, —xp)| e 3 lemenrt (51)
which, for I' large, gives, in ke%Z,
T3k < 52A(K). (52)

T, and T; will “renormalize” the effective diffusion constant D,. To do this,
recall that

JT(x)dx=1=]T'(x)dx, (53)
whence T(0)=1=T"(0) and so
T7.00)=T5(0) + T3(0)=0. (54)
By the isotropy assumption (P1) in Sect. 2,
%,T0=0, 0,0,T0)=29,, (59)

for some y. By Cauchy’s theorem (u is a unit vector) and (48), (52),
2n
W<@m) ™" [ 1T u)ldo< 4, (56)
0
and, since 0”6v697“4(0)=0 by isotropy, we get

1 a4
| Ta(k) —yk?| = % (5) dt (W T4(tk)> 1-0?

<[ 8 die o Tk] Sk

It =G T (57)
for ke Z, |Rek,|<log'*!, using (48) and (52). We may now put (d=3)
D,,y=D,—2dy, (58)
so, by (56)
ID,+1— Dy 24, (59)
and
T'=9 +t+T,+r (60)
with

IF] =|To(L" DR P — L DY2 R S Ae R (61)

Equations (61), (48), (52), and (25) give the first part of (9) for n+ 1, and (22) and (57)
yield the second inequality in (9). Indeed, the quadratic part of A(k) is exactly
cancelled by yk2, coming from (55). This explains the “renormalisation” of D.
Equation (8) follows from (59). [
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Definition of s, ;. Let s, satisfy the bounds (10) and (14). Rs, will violate these
bounds with small probability. We want to define s, , such that (10) and (14) are
true again, for n—n+1. It turns out that it suffices to make restrictions only in
terms of the linearized RG map (3.31). Let us formalize this. We set

Ls= Y, (L3), 62)
v'eZd
by
L2-1
(Z9)Ax,y)=L 3 ¥ [dxdyT(Lx' —x)T" """ HLy' = y)s,(x,y)  (63)
veLv' t=0

and look where #s violates (10) and (14). Let
1o=x(I(L3),ll: =39, i=1,2) (64)
and set
0,=1—-E)(Zs),1,, (65)

where (1 — E) means that we subtract the average. Note, that E¥s,y,+0 is non-
zero because of the y,. Then,

leulli<30", (66)
and we define (s'=s,,,)
S'=p+(Rs—Fs)+4s, 67)
where As is the reabsorbed trap contribution
I(4s)yll;<g632L7, (68)

see Sect. 7. It is convenient to localize (67) in the following way. Consider Rs given

by (3). .
We expand both terms as in (18) and (31), to get

Rs =§(a¥ —Eoy). (69)

We put
(Rs),= ; (oy—Eayn(y)™! (70)
with UY;CLv, or Y=Y, ie. k=1 in (32) and diam(Y,)<iL, Y.nLv+¢, ie. we
gather to (Rs),, the local part, all ¥/'s that touch Lv and are allowed to extend up to
L . .
distance ry from Lv. This will guarantee that (Rs)y for |Y|> 1 will contract strongly.

n(Y)is the number of L-cubes for which Y contributes to the sum. To complete the
definition, we collect the rest of Y to (Rs)y:

(Rs)y = ‘é (oy—Eay) ()

with Y=[L 'UY]. sy is now defined. We proceed to discuss its properties.

Proposition 2. sy is localised in Y. Moreover, sy, sy, are independent, if d(Y;, Y,)=2.
Also, Esy=0 and

§sy(x, y)dy=0. (72)



374 J. Bricmont and A. Kupiainen

Proof. By induction, (71) satisfy the claims, as do the (#s), and x.. For (70), let
[y —v,|=2. Then, if Y, contributes to s,, and Y, to s,,, d(Y;, Y2)>§ and the

localisation and the independence hold for (70). 4sy are constructed (see Sect. 7)
such that the claims of Proposition 2 hold. Then Es} =0 by construction, and (72)
holds since by induction it is true for sy and then, using | T(x)dx =1, it holds for oy
and 0. [

Proposition 3. We have the bound
[lsy-ll; = dy - (73)
Proof. We use (43), where we insert s;=2(n;+ 1)~ /2. (Recall: s;€[0,2].) Using

Y 1
d(v;uv; v Y)=Ld <% v U’E Ly T Y,) (74)
and easy estimates, we get
k
loy(&, E S Uog LY~ L* [T 0y, A(Ky)PA(K)) Pe™ divia T I ] ¢ =340 (75)
i=1

with Y=0UY,
L
Let first |Y'|> 1. Then, only k> 1, or Y; with diam(Y;)= ry contribute to (795),

and, for L large,

ISIY'(éIp élz)lée-CLL-aIY’|53/2A(k11)2/3A(k12)1/3e—d(u’luu’qu’) . (76)
We used [L™'Y]=Y’ to deduce
d,uu, UL YY) 2 du v, Y)—C (77)

and controlled the sums over k and Y; by e” #4*9 and powers of §. Equation (76)
yields (73),i=2. For |Y'| =1, (Rs— ¥s), is second order in s, or involves sy, | Y| > 1.
Thus

(RS — L5), (&1, | S CLISY AP A(K,) e dwivnson (78)
Together with (66) and (68), (73) follows again, for i=2. For i=1 the analysis is
parallel, starting from the bound (76) without A(k})* for ay(x},&,). O
Proposition 4. Equation (11) holds for n—>n+1.
Proof. Equation (68) and (78) yield
[ (Rs— &5+ As),(x, y)ldy S L™"5ze = 4w wv'wx) (79)
by virtue of (3.59), for all «',v". Thus (79) is negligible and we turn to g in (67).
We decompose it as
0,/ (x,y)=L ¥ [dxT" N Lx'—x)s,(x, Ly)+{x’, y) =gy +eb.  (80)
veLv’

In @2 a T factor appears having Ly’ as its second argument, so we get, using (10),
§ lo3(x', y)ldy = Cd,e™ 4o, (81)
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For o!, if |u' —v'| =2, we get

375

—ix’—i o, —duvvux - a, —d(x v v’
[ log(x', y)ldy < dxe et 3 et gomerggemararon) (g

ueLu'veLv’

where (11) was used. Thus, the first inequality in (11) follows for n—»n+1.

For the second inequality, let us denote by o, the random variables

— Su(x>y)a yev, IU—UI<2a
0.X, y)= {0’ otherwise.

We wish to prove (11) for g,. Equations (81) and (82) yield
On+ lu’(xls y/) = (dnan)u’(x(9 y’) + 5nu’(x” y’)
with 6,(x’,y)=01if y'ev, [u'—v'|=2, and

[ 16,0/, Y)Y S 82, e~ 960vom)
J
and 7, is the operator

(‘Mnan)u’(x,7 yl) = L3 Z , f dx TnL2 N 1(Lx, - x)o-nu(xs Ly,) .

ueLu
Equation (83) is solved by
Op=Ay_y...dsGo+Ay_1...46,+...+6,_,
with 6,=0,=s,. We need to estimate
(g oo Ay 1By y) =L ) JdxB(X', )&, —1lx, L*Y')

with
B(x',x)=[dx ...dx,_ TE T Lx' —x,) ... TE 7 Y(Lx;—; —x)
=[dq; ... dge™ T5(q, — Lq,)
X 0(q, —Lq3) ... 0(qx -1 — Lqy) [:[ T;L-zi— Y(a:)
=L—-3(k— l)jdqeiq(Lx’—Ll"‘x) lli[ T:l_i(Ll—iq)Ll-l ,
whence =t

k
L3kB(x', x)=j'dqeiq(x'—L“’<x) H 'T;l_i(L—iq)Lz— 1 < Ce—%lx’—L‘de ,
i=1
and thus, for |v' —u/| <2,

§ Y-y oo Ay )X, V)

v
Scéa_kL-Sk z j‘dxe—a}]x’—L"‘xle—d(xuuuv)
- ! ueLxu’ve Lkv’
écaz_ke—d(x’uu’uv’)

except for n=k, where we have 6% _, replaced by d,. Hence, altogether
n—1
J [0, Yidy < C(ao+ ) 5;‘) e durn) < g mduvrn
v i=1

and (11) is proven. []

(83)

(84)

(85)

(86)

@7)

(88)

(89)
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For future reference, we remark that the following analogue of (11) for s(¢, y) are
proven in the same way:

sy S
To finish with the deterministic part of the proof, we define the region R of (3.73) as
R, ={uly,=0}. (90)
Then
Proposition 5. Define Ade by
Rs+As=s"+Ae. 91)
Then
;j’ |dey(x, y)le™7Vdy < 6 (92)
and
Aey(x,y)=0; unless Y=v,veR. (93)

Proof. We have, see (67),

de=Y (1-E)(Zs)(1 — 1) (94)
The dominant term contributing to (92) is TX* s as in (85), yielding the bound.
Equation (93) follows from (94) and (90). [

We turn now to the stochastic bounds (12) and (15) on s/, given by (67). The crux
of the small field analysis is the study of the linearized RG ¥ defined in (62) and
(63).

Lemma 1. Let s satisfy (12) and (15). Then ¥s satisfies the same bounds with &2
replaced by L™ (log L)¢2.

Proof. Let us use [ s,(x,y)dy=0 to rewrite (63):

35=51+52+S3 (95)
with
L2-2
S1u(Xy, Xy) =1 Z t; Jdx dx,s,(xq, Xx,) T(LX, —xy)
X(T” T Lxy—x)— T 7 HLx, —w)), (96)
Sou(X, X3) = =0’ Z Idxzsu(prxz)(TLz YLxy—x,)
—TLZ YLx,—u)), (97)
S3u(xvx2) L3 z jdx TLZ I(Lxl Xl)S“(Xl,sz) (98)

Each s; is rewritten, using the formulas (27), (28), and (45). The result is
m(&la 52 Z Z R; (é é u S (517 52) (99)

ueLu’ &:&
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with
12-2 4, L2—-t—1
Ry&.E0)=L" ¥ (dadg,T <L> T<L>

2 —l,-vi——
% [T K(ki—qpe ¢ D)
i=1

("—92)
K<k1+%>< (kz L) — 80 I ) (100)

Ry(E, &)=L vy € L))o, e =00

L2-1 =i u’z—v—z
><;qu<%> Kk, —q)e ¢ 1)

( (kz ) e “) (101)

Ry(&, & u)=L"*y(v € LVy)okz el =1eD
L
L1 —ig(vi— b1
) o Bost)

To bound R;, we note that the integrand is analytic in [Img| < 3. In that region
(37) holds and furthermore we have

12 u—vy
IK<k2+%> e LT < K<k2+qLZ> —B1y0] +CL gy e w5,

(103)
where we put <L
— > qdu
(q), { YL, =L (104)
Since, from (30),
K(k)=0xo, ke2nZ?, |k¥<2rL", (105)
we get
(ke 2) ] = (5 2) K] st 41+ ) 0010
(106)
which combines with (103), to
(103) S CL™ gy, |t <(5k20 +A4 <k2 + %)) . (107)

The sum over ¢ is bounded as [see (39)]

- L2-t—1 l—-a (%)%LZ 1L?
(1) ey e(R)e(2) oo
- 1—a<—1>

(108)
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and, combining with (107), we get
172
q 2
1—a < L)
q
1—a ( L>

for n=0, 1. Altogether, (107-109) yield, after shifting the g-contour as before,
IRA&, &, u)| ScL™ 2 [Je 2 tudedlumvzly (1 f), (110)

2 n
< CL ICIL,2
1+1q,)

2-n
lq.I" SCLA(gy) 3 (109)

where

rik',k)=[dq,dq, ] Ak} —q)A <k1 + %) (5k20 +A4 <kz + %))

«(a7oa(g)o ()7 )i+ (A(qu)ma("L—l)Ta("L_z»,

(111)

L2—1
ryk' k)=L" 25%,(1 fdga (%) A(ky—q) <5k20+A <k2+ %) |qu)’ (112)
ki1
g\ ! q
ry(k',k)=L""0k:, [dqa (—> Ak, —q)A <k1 + —> . (113)
L2 L L

Now we use Holder’s inequality in the following form

Lemma 2. Let {y(x)},.za be random variables with
E exp(ty(x)) S exp(*%(x)),
then
Eexp <t§y(x)) <exp (ct“ée“"‘”%(x)l) (114)

for any a>0, c=c(a).
Proof. Let first {5;}?_, be random variables with Ee'” <e"%. By Holder,

thrl-

Ee' g«Eeﬂ“")f‘)((Ee"’?"')qq)

<@y (Eermym ) (Beran)r ) e £ (115)

Apply this first to
Br= ¥ ¥x) (116)

|x|elr,r+1)

to get (take p=r1"! s0 ¢"<C)
Ee?™ <exp (Ctzrd_ oy 1g(x)|>. (117)

|x|elr,r+1)
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Next apply (115) to

> vx)= i B(r), (118)
xeZ3 r=0
getting
Bexp (1504 Sexp <Cpt2 Y ol Y mxn). (119)
x r=0 |xlelr,r+1)

Taking in (119) g=e?9, say, (114) follows. []
Let now R=R; + R, + R;. We want to estimate

Eexp (ka (L)1 S (K, ’z)) =Eexp ( chu' Z o,(vy, Uz)) (120)
with
0,(v1,05)= ka Sk k)R, & u)d (&4, E5)- (121)
By induction

E(e™¥r)) <expe? [ka [f(ky, k) RS, & w)|Cull s, 52)]2 . (122)

Use now (110)—(113) and (16) to estimate the [ —] in (122):

[_] é CL— Ze-2d(uuv1uvz)l—[ e—-2|u',—L‘1v.|e42~|u—vz|
x | f (K, k(K k) Ak )* Alkep) > (123)
kik;i

Now, the k;-sums are bounded, and we get:
Y "1A2/3A1/3 =Cf dq,dq, [TAki—q)

kika
X <A (%)aA(%)ZBA(‘Iz)%M +A4 (%)“ A(g,)" Ag,)* +a> s
where we also used: (124)
a(lﬁz <CA(g)'*® (125)
L = q
lgl=CA(q)~'"? (126)
and
A(%) Alg) SA@) (127)
to get
rg( 4 EAY
A(q,) a<f> <4(q) A(z) (128)

for p=1/3 or 2/3.
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The g-integrals are controlled by
[dgA(k — q)A(9)'A (%) S(logL)’A(k), t<1. (129)

Thus, finally
(124) < (log LY A(k})*3 A(ky)' 2. (130)

For the r, term,
7\ 2/3
2r2A2/3A1/3§CL-2A(%> J dqA(g)+*A(k, — g) S CAK, PP A,
k

and for rj,
K.\ 1/3
Y r A4S CL A (f) AP < CAK, )P A(kY)Y3
k
Here, we see the scaling that motivates the powers of A(k): we gain L™ ! or L™ 2,
which dictates the allowed power of A. Thus, (122) is bounded by
E €xXp Gu(vla UZ) é eXp B(f)Du(UI: U)

with

Du(l)/, v)=e~2d(uuvluv2)n e—4|v'.~L‘ to,|
i

and
B(f)=¢*logL}L™* L‘;Zk; Ak )P A(KY) ] f kS, k’z)l]2 :
We now apply Lemma 2, first to get
Eexp <§; 0. vy, 1;2)> <exp [CB(f) % D,(v',v)et ! ““']

[we took y(x)=0,(x—u,v,)], and then

Eexp (véz 0, vs v;)) <exp [CB(f ) X D] e —.4]

<exp[CB(f)e” * "] =expg,

where

2 4
duov,uv,)+ Y 4l —L |2 Zd(uuLv’luLv’z)
i1

= —d(Lu'VLv, ULV,)— C=4d(u' uv,uvy)—C (131)

™~ &

was used.

Finally, coming to (120), note that ¢,, and ¢, are independent, if [u; —u,|=2.
Thus, divide Lu' into (1) subsets W, such that ¢’s within a fixed W, are
independent. Letting

Gu= Z O'u(vlva)

viv2
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we get, using Schwartz’ inequality a few times, and |W|~ L3,
1/c
Eexp((f,,i”q&)):Eexp( Yy o, ) H( Ee wdv: >
uelLu’

sexp((logL)L™ e’ [Y | f(K1K)|Co(8185)]? (132)

which proves Lemma 1 for (15).
The proof of (12) is very similar. Let us indicate the main differences. We start
with the splitting (95), and ‘write

¢;u’(xly 6/) = Zjdx Z Ri(xl9 é” X, éa u)d)iu(x’ 6) (133)
with “ ¢
L2-2 q L2-t—1
Ry= Y TY{Lx —x)[dgK(k'—q)T T
t=1 A
e L)< <k+ L) 5k0e_if‘“_")>, (134)

L2—-1
R,=(Lx'—x) [ dgK (k' —q)T (%)

~iq - —iLy—y
xe ! L)<K<k+%>—6koe L ’), (135)

Ry=TY " YLx'—x) [dgT <%>L_le‘iq(v L)K<k+ )K(k’ 9. (136)

We need an estimate for T

T (x)=t"3? { et R 2k dk <t 732 exp [ —2|x|/t1?] . (137)
Thus
L2
Y T()<[1+|x|]]""exp[—2L""|x[], (138)
t=1

and so, using (110),

, X ,_v 1 _
2|x E‘ 2|v L|+2Iu v)

IRi|=Ce [L™'[1+|Lx'—x[]™ 'ry(k, k') + L™ 20, (k, k)],
(139)
ry={dgA(K — ) A(qy* > <5k0+A<k+ %)) (140)

or=tdaat-aaaya(L) (sora(kr L)) aan

R, =4(Lx'—x)Ry(&, &, u), (142)
le(f',f,u)léCL—le_Z'”'—L-1”“%‘"_""1(’5,k), (143)
Ryj<CL2%e X T2 T gy (144)

ry=[dqAk'—q)A <k + ) Ag)te. (145)
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To estimate (12) for Z¢, put
0,(x,0)= ¢=21 , ka JK)R(X', &', x, &, u)(x, &), (146)

a.v)= ¥ fKIRS(C, ¢, u)u(Lx', ), (147)

which allows us to express
Eexp}, JENZ $)uAx', &)= Eexp X (fdxo,(x,v)+0,v)). (148)

Also, by induction, we know, that
Eexp(to,(x,v)) S expe’t? (k;k i=21, SRR E x, & w)lClx, é))z
=expt®G,(x,v), (149)
Eexpto,(v) Sexpe’t? (k;k L/(K)R, (&, &, u)Cfx, f))z =expt’G,v). (150)

The main difference with respect to the analysis of (15) now lies in the {dx in
(148). We write

[dxofx,0)= T [o,x0)dx=Y 0,w,v), (151)
weZd w w
and apply repeatedly Schwartz’ inequality to get (put L=2", some m):
Eexpta,(w,v)=EexptL™™Y a,(x,v)

<[1(Eexpto,(x,v)" " <expt’ | G,(x,0). (152)

Then, using Lemma 2 and Schwartz’ inequality, we get
Eexpy. ([dxa,(x,v)+0,0))
<exp [c Y etlmrltdlu=wl 1 G (x, p)dx+cY et "'Gu(v)] ) (153)

The analysis of the g-integrals and k-sums is identical to what we did for (15).
Collecting terms we find (we shift the contour slightly more)

N L Cpl—
x Ll 5lv L|+|u v| — 4d(xLuLv)

Gux,)<Ce” (L A®Y 1]
(L1 +|Lx' —x|]~ ' + L 2(log LY + L% 2. (154)
Thus,

X
Z zeg-lu—u|+§|u—w|fGu(x’v)dxée—‘td(u’ux'uv’)j'dxe I LI
w

uelLu’ v,w
X [L™Y1+4|Lx' —x|)~ '+ L™ *(log L)y + L™3]2. (155)
The leading term in (155) is

L-Zjdxe""'”f'm +|Lx' —x[]72=L"!fdxe ¥ H[L™ 4 |x' —x[] 2<CL 1.
(156)
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We get then
[T (153)<exp[e*(logL)L™" (kZ |fI)Cu(x', &), (157)

ueLu’

yielding (12) from (153) upon using independence in subsets as before. Lemma 1 is
proven. []

Now we are ready to prove (12) and (15) for s'. First, we have

Lemma 3. Let ¢ be given by (65). Then the conclusion of Lemma 1 holds for Reg and
Imop.

Proof. The only difference with respect to #sin g is the y,.. Denote Reg or Img by ¢
again, and the exponents in (12) or (15) by (f; ¢). Put o=(f, £¢). Lemma 1 is
summarized by

Ee'® <60 (158)

Then, using Holder’s inequality E(wy)” < E(jwy|?), we get

@© (2t)"
Be0=Eexpifoy—Bop) S+ %, ) max BorBogr ). (159

Equation (158) implies
Prob(jw|e [nG(f), (n+1)G(f)]) =2 exp[ —4n*] (160)
whereby,
E(jox™) = G(f)"+ 2n§1 (G(f)"exp[—zn*1=(m)"*(CG(f)",  (161)
and thus
Ee9<1 +n§2 (n) " A(CLG(f))' S eV, (162)

yielding the claim. [
Proposition 6. Equations (12) and (15) hold for s'.
Proof. We use Schwartz’ inequality and the notation of Lemma 3,
EeV>9) < (Ee2V-9)1I2(Ee2 n)L/2 (163)
with
r=Rs—Ls+4s.

In the bounds (68) and (78) (consider e.g. i =2) we could have obtained on the left-
hand side the exponential factor exp(2d(...)) in the norm (13). Hence

(05] §C(L)é,?/z;|f(k1,k2)|C(§1,£2), (164)

and

E(f,r)=0.
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Let f be such that the right-hand side of (164) is <1. Then
EeV:"=1+ ¥ () E(f,r)"<1+ CE(f,r)*
n=2

<exp[CL)S* (T fks, k2)C(E1, )] (165)

For f such that the right-hand side of (164) = x > 1, we have x? > x and (165) holds
again. Equation (163), (165) and Lemma 3 yield the claim. []

6. Traps-Upper Bounds

In this section, we state and prove the upper bounds for the variables e, and [,
describing the effective transition probabilities affected by the traps on previous
scales. Thus, given an environment b:Z> x Z3 >R, we will inductively define the
trapping region D,, at scale I, which will be a union of L™ ! cubes, and the effective
environment

b,=s,+e,+1,: L""Z3x L "Z3->R. 1
The traps are described by the trap density variables
N,:Z3>(1—20)Zu{— o0}, ()
and the connection to D, is by
unD, o=, |Ju—v|<2, N, +—x. (3)

[— oo is just a convenient way to signal when [,, e, become small enough to be
absorbed in the small fields, see below.] N, are random variables that take the
value —oo with large probability, see Proposition 1 in Sect.9. To define D
inductively (we drop n, put D, , ; =D’ and use primes to refer to scale n+ 1), we set
first

D=D,uD,, 4)

with D, being a union of unit cubes and D a union of L™ *-cubes and, for n=n,,
D,=D; D, is the “dense trap” region and we put

D,=(D'UR)+B2L), D'={uldu,D)<2}, 5
where
D'={v||ILvoN| = I}
and
N=N_,UN_={u|N,20}u{u| —o0o <N,<0}.
For n=ny,, N=D; R’ is given by (5.90). We define

D'=D,uL™ (D, + B(L*))u(D_\L2") (6)

and D;=D'\D,. In (6) we have put
D,= ) Dx), D_=D\D, ()

xeN+

with D(x) the connected component of D containing x.
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Finally, &' is the region of traps, at scale [ * ! that are absorbed. To describe &',
we need to give the inductive definition of N. For n=n,, we have defined N in
(3.76-3.77).

For the induction, we define variables that signal the nearby presence of “dense
traps” in the old and new scales:

n,= y(Lun(L(D; + B(L"))u(D,+ B(L) * ¢). ®)
Let us also, for YCZ*, set
N(Y)=min (max N(u), 0) . 9
ueY

Then, if N(Lu)=* oo, i.e. if there are traps in Lu, we define
N,=N(Lw)(1—n)+ Y*" N, +con,—2+2« if N(Lu)+— o0, (10)

veLu
where Y " is over positive N,’s. ¢co=co(L)>2—2a is a constant which will be
specified in Sect. 8.
If there are no traps in Lu, but nearby there are plenty, we set

N,=co—2+20 if N@Lw=-o0, n,=1, (11)
and finally
N,=—o otherwise. (12)
Now, we can define 2"
o 20
"= <_ — el
9 {ulN“= 2n<1 2a+2+a>} (13)
and N':
~ e~ 200
N, if Nu>—2n<1—2oc+2+>
N.= v (14)
—w if Nu§—2n<1——2a+ “).
2+

Let us try to give some motivation for these complicated, and somewhat
arbitrary definitions. D is divided into D, and D, and also into D_ and D . The
first division is made according to the size of the traps and the second according to
their strength, which is measured by N. One sees that, because of the scaling by
L1, the size of the D set tends to contract. In D, which is very unprobable, we put a
large corridor [how unprobably D, really is will become clear when we do the
probabilistic estimates (see Lemma 9.1b)]. Also, we show below that connected
components of D, are made of few L' cubes (see Lemma 1c,d). We use the
corridors to get good Green’s function bounds on the probability of hitting a trap.
For D,, we have a large corridor, so that the hitting probability is very small, and a
smaller corridor around the part of D, which isin D; but here, we use the fact that
we deal with few L™! cubes to control the hitting probability. Around D _, we do
not need a corridor, since there is no £ there, only e remembering previous traps. If
we neglect, for a moment, n,,in (10), N tends also to go down, as discussed in Sect. 3,
unless several N's fall in the same cube. When N becomes negative, we absorb £
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into e, and when N becomes as in (13), we absorb e into s. Then, that part of D
disappears, and N is set to —oo. The role of n is, first, to set N+ — oo in the
corridors, so that (3) holds, but it is also used to prove the lower bounds on T+ b, in
Sect. 8, which imply the upper bound on 7, (28) below, which, itself, is needed to
reabsorb ¢ into e. Of course, since n increases N a lot, we must pay a price, in the
probabilistic estimates. But, here, we can use the fact that n, &0 is very unprobable
(see Lemma 9.1, d).

We collect now some facts, proven in the Appendix, implied by our
construction of D and N. ’

Lemma 1. a) Equation (3) holds, i.e.

Dc{v|3u, v—u|<2, N, —o0}. (15)
Also,
D,CD,. (16)
b) If u¢D,
[DNLu|ZcIf. (17)
C) Vo, |D,AV| S L7272, (18)
Moreover, if u¢D'.
ID;~Lu| < L2 (19)

while, if u¢ D', |D,nLu|SL™%.
d) Let D(x) be the connected component of D containing x. If D(x)C D,

D)=L, (20)
diamD(x))<1. (21)

e) D,CD,,and, if xeD_u(D .nLD"),
D(x)CD,. (22)

f) If x¢ LD, then

(oft )

The functions e and ¢ in (1) have the following properties.

<cl?. (23)

Proposition 1. ey is a random variable localized in Y and £(x, y) is localized in D(x).
We have ey=¢y+ Ey,

fdyey(x, y)=[dyEy(x, y)={dy¢ gg »)=0, (24)
L [dyley(e ple™°PL 2 L7, (29)

N{Y)+* — o«
| dy|Ey(x, y)|etFror:Xnbo < o= 17, (26)

and Ey=0if YnD=¢; ey=0if N(Y)= — 0. £(x,y)=0if x¢ D,
[aylt(x,y)le®> P <c, (27)
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and, for xeu
[ dylteey)S1—B,+L 3, (28)
DG\LD

where
B.=L> N1+ 27N, (29)

We will prove (24)—(27) in this section. Equation (28) will be a consequence of
the lower bounds for ¢ proven in Sect. 8.

Expansion of b’. Coming back to (1), we now define e, , ; and 7, ; inductively. We
have

Y(x,y)=L | dofr, [(T+b) (@)~ E(T+b) ()] (30)

and s’ is defined by (5.67), (5.69).
Let first x"¢ D', . Define

D=LD'U(LD'.nD,). (31)

Note that, if x¢ D, then, by Lemma 1e, D(x)C D, and (21) holds. D is the region
where we cannot expand b in (30). This is because the D region in LD can be very
large and then e turns out not to be expandable due to lack of falloff on D,, see (26),
or because £ in LD, "D, has no smallness, see (27). One might think that, in
D, \LD',, there is also a problem. However, it turns out that Z, in that region, is
small enough to be expanded, due to (28, 29).
We now proceed as in (4.6), only replacing D by D:
k-1
[da(T+b)(w)—(T+s) (w) =k§2 l 2 [ x(v:CD)

Wt v i=
k k—1
x | dJ_Cd)’)h H (T+ b)%t(xi— 1Y) 'I=—[1 (T+ b)tv"i/(y,)(yl'a x;)—(b—s). (32)

i=1

We have the familiar constraints: x,=Lx, y,=Ly, teNK teN, )},
Y+ Y t=I12ve(Z% ', and

k-1
1= 11=_[11 2(x; ¢ W(y))x(y; e vinD) (33)

with no constraint on x,_, if t,=0. W(y), for ye D, is given by

c.c. of LD’ if yeLD

W(y)= -
W= e of (D, +BUHUD if yeD\LD (34)
such that ye W(y).
As before, we localize the various terms in (32). First, write
ZX(VCI—))=,J=Z1 , WZ AWeE)y(vCDnW), (35)
where o
E1(2)={W| w=Ww(y), YEE\LEI(VGLEI)} 5 (36)

and the sum over W runs over connected sets in Z¢. Then, combine (33) and (35):
S (vCDAW)[dyy(y evrD)=[dyx(ye WnD). (37
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Next, expand (T+ b)p.:

koo k=1
(T+b)pdlx, Y)=kZL Dyl dxdyya T Tobxi- 1) 11 Qaur v X0 (38)
3 U, v 1= 1=

where teNK, Y t,;=t—k+1,ae{1,2,3,4}*" 1, Y=(Y,,..., Y,_ ), and u,ve(Z3})* "'
Y, are unions of unit cubes and it is convenient to use the notation

Q;=¢, Q,=E, Q3=s (39)
and
Quy(y, x)=2(y, X)(Y=D(y)). (40)
Finally,
x2=ITI 2(x;€u\D)y(y;€v,\D). (41)

In (38), we further expand

k=1 _ k k-1 .
Thoy)= T T T a0 dxdyrs [T Tki-1 =) [T (= T 0 x) (42

with W, = W(y,)nD". .
Now consider (T+b)y in (32). This has terms in b that are not localized near W.
We still expand them. Let

LY W)= yld(xuyoY; W)>L) (43)
and denote it by y(Y) when no confusion can arise. Set
by(x, y)=£(x, )+ 2 Qir(x, y) (1 —x(Y)) (44)

[i=1,2,3, see (39)], whence
b=5w+ .Z}'QiYX(Y)' (45)
Lemma 2. Given We E; UE,, by/(x, y) is localized in W+ B(L), if xe W.

Proof. By construction, W> D(x) for all xe W and #(x, y) is localized in D(x), by
Proposition 1. The Q,y’s are localized in Y and, by (43), the Y’s contributing to (44)
are in W+ B(L?). O

Using (45), we get
k
(T+ bjwlx, y)=kZl ny dxdyy(xs yie W) 11 (T+ W(Xi- 1)
s a, 1=

X T1 Qa0 02(Y) (o

with ¢;=1,2, 3, and standard constraints.
It is convenient to collect in (46) terms with UY;=Z, and write

(50)=2. Q's4(x, ). (47)

Q5 is localized in Zu(W+ B(L)).
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We may now localize (32). Insert (35) and (37), (38) and (42), (46) and (47) into
(32):

I3 [ do[(T+b) (@)~ (T+3) ()]
k
=2y 3 3y ¥ 1 xWieEy) dxdyrs [T T0i-1—y)

k=2 t,t' a,b Z w0, W a;>4
k—1 ,
X 'Hx ez (v x)—(b—s), 48)
i=

where the various constraints are: te N¥, ' eN¥"1, a,=1,...,6, Z,, are unions of
unit cubes, W, connected subsets of Z> and, in Y7, we sum over u,,v; for a;<4, W,
for a;>4. x5 is given by

x3= I1 x(x;eu\D)x(y;€v\D) [T xvie W.nD)x(x;¢ W). 49)

a;<4

Qs is given by (47), and

tGZ(y:r X) =- Tv‘vm‘)c(}’a x)52,¢ . (50)

In (48), we have a;+3 for at least one i, because of the subtraction (b—s).
Equation (48)is the desired expansion. We will now collect terms to define &' and E’
(recall, that x’e D", so £'=0). We write

(48)~E(48)=;(5y'+5y'), (51)
where &y collects terms with
Y = [L‘ 1 (U IAUAAVAAY) Zi)] (52)
such that, if g,=2 or 5,
Zip=Z;uJ{Lu|LunN|>I!}=0 (33)
and u
b;=1 if a;>4. (54)
E,. collects terms with (52) such that
Jica;=2o0r5, Zp*0ora>4, b=2. (55)

Finally, we put
ey(x,y) =8y (X, y) = T'(x' —y) [dzéy (X', 2) + Aey(x', ) —Asy (X', ),
where [see (5.93), (5.94)],
e, =(1=E)(Ls),(1 —x)); dey=0 if |Y[|>1

and 4s is defined in Sect. 7. We define E’ similarly, without the Ae, 4s.
To complete the induction, let now x" € D', . We modify (48) slightly: now ¢, =0,
a,; =5, and W(Lx")=LD'(x’). Let £(x,y') collect all the terms with

v uv,U WU Z, CL(D'(x")+ B(2L?)) (57

(36)

and define ¢’ by
=0 —T [dz/(-,2). (58)
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¢ and E' are defined as above, for
Y’ ¢ D'(x')+ B(2L?) (59)

and set to zero otherwise.
The inductive definition of b’ is completed.

Proof of Proposition 1. We first establish the localization properties of ¢’ and /"
Note that, in (48), Q,, are localized in Z for a<4 and in ZU(W+ B(L?)) for a>4
[recall (47) and (50)]. x(W.€E,) is localized in W+ B(3L'*"): because of the
corridors (5), (6), the statement We E, is only localized in such a neighbourhood of
W (see Lemma 4.1). Similar statement hold for the other y’s in (48), (49). Therefore
each term in (48) is localized in

(Uu;UV,UW,UZ,)+ BGL ). (60)

Thus, since L™ !(3L} "7+ 6L7) < 6L [see (4.19)] €' is properly localized. For £/, we
use (57) and L™ Y+ 21 7+ 612) < 6L.
Also, observe that (1) holds: we have, from (30, 48, 50),

b'=s+&+E (61)

forx'¢D’,. But |s'=[b'=0. Hence [ (§+ E)=0 and the subtraction in (55) (and for
E’) may be done without spoiling (1). Next, we see that (24) follows readily, due to
the subtraction in (55) and (58), since | T'(x)dx =1. Moreover, [ Ae={As=0 (see
Sects. 5 and 7). Therefore, | ¢y, = Ey=0 as claimed. For x"e D", the argument is
similar.

Now, observe that (55), (53), (36), (34), and (52) imply, by construction, Ey.+0
only when Y'nD'# ¢. For &y, we shall show in Sect. 7 that, if N(Y')= — o,

Ep(x',y) = T'(x' —y) [ dzéy (X', 2) = Asy (X', ),

and, since d¢y. +0 only when Y’ =ueR, 4ey. +0 implies N(Y')+ — c0. So, &, =0if
N(Y')= — 00. We turn now to the proof of (25-27); we shall start with some general
facts and then divide the proof as follows:
A. Proof of (25) for x' ¢ D’,.
B. Proof of (26) for x'¢ D',
C. Proof of (25-27) for x' e D',

All our bounds will be proven for  E,Z. It is easy to deduce (25-27) from
similar bounds on &, E, 7 and (55), (58) using the exponential decay of T(x — y) and
the trivial bound

d(x,y,Y)=Sd(X,z, Y)+|x'—)| for a=1,2,4,
where we use notation,
d(x,y,Y)=d(xuyvY), a=1,3, (62)
d,(x,y, Y)=d(xuyLwY; YnD,), (63)

d,(x,y, Y)=d(y, D(x)) (Y= D(x) for a=4), (64)

ds(x, y, Y)=min< i dxuyuZ; (Z,nD,)u W(x)),
i=1
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where the minimum is taken over all families (Z;){-, satisfying () Z;=Y,
‘ i=1
dg(x,y, Y)=d(y, W(x)) (Y=0 for a=6).

In the next lemma, proven in the Appendix, we shall bound the distance factors
in (25-27) in terms of the variables appearing in (48).

Lemma 3. a) For each term of (48) contributing to & i.e. satisfying (52—54), we have
dx'uy uY)<ck+ L1 (él |x;— 1 —yil +2 ’:;1 dy (v, X Z,-)) . (65)
b) For each term of (48) contributing to Ey., i.e. satisfying (52,55), we have
dx' Uy Y’ Y'AD)<ck+ L (i X1 — i +2§11 AoV X zi)>. (66)
c) For each term of (48) contributing to 7(x',y'), i.e. satisfying (57), we have
e

d(yls D(xl))§Ck+L— 1 (il Ixi— 1 —yil +2 _le dal(yia Xis Zz)) . (67)

It will be useful to have bounds on the integral over x of the Q% ,(y, x) factors in
(48). These can be summarized in

Lemma 4.
L—a/2 , a= 1
2 2 Jdxx(x)1Qaz(0, x))etd=D< Y exp(—L), a=2,3
t
c, az4,

where y(x)=y(x ¢ W(Y)) for a>4 and y(x)=1, for a<4.

For a<4 (t=0, then) this lemma follows from (25-27) and (5.11), using
co§ <exp(—L). For a=5,6, the proof is given in the Appendix.

A. Proof of (25) for x' ¢ D',.. The proof of (25) follows from the following estimates.

L—a/2
;fdyl«%(x, ey < 5 (68)
LU s
Y [dylEx y)e>reIL ? S 5 (69)
Y

NY)#0, -

1) Proof of (68). Using (48), (51-54) and Lemma 3a, we get
Sy MmN <D T oFY S Y [dxdyy,
k22 wd Z

Y
k
x I Tt‘(xi—1‘J’i)eL_llxiﬁl—y"l
i=1
k=1 .
x 1104 2. xp)e?t e e Z) 4 |(h )|, (70)
i=1

where
ta= 11 rlxié D)x(y;¢D) 11 e D\LD)y(x;¢ W(yy)).
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Also, here, dy = ﬂ dy; and we used L { dyf(Ly)= [ dy, (). The factor 2 in (70)

comes from the subtractlon of the expectation value in (51); we shall consider only
the first term in (70), the (b—s) term being treated similarly. It will be convenient to
bound (70) in terms of the following quantities:

A (x,0)=Y [dydzy(y ¢ D)T"(x— y)e*= ™ "1*7V|Q, (y, 2)|e* Oz DL~ ND2 - (71)
V4
and A,(x,?) is defined similarly without L™N®/2,
Ax, t)=Y [ dydzy(y ¢ D)T(x— y)e*"~ ¥ 71Q,5(y, 2)|et%>=2), (72)
VA
for a=2,3,4,
Afx,t)= Y. [dydzy(ye D\LD')x(z ¢ W(y)) T (x — y)e?> ">~
Z,t

X |Qaz(y, 2)|et a0 52 (73)
for a=35,6, and

A= 3 A1),

for all a. For the A’s we have the bounds:

Lemma 5.
a) A(x,00S L2, (74)
A, (x, ) SL™ 93732 40, (75)
A(x)SL™*d(x,D )+ 1)~ +L®, (76)
b) A (x)Sexp(—L/2), a=2,3, (77)
c) Ayx,0)<cy(xe D \D), (78)
A, )SL™ 732, t%0, (79)
Ay(x)Zc(x(xe D \D)+ L™, (80)
d) A(x)SclPd(x,D,)+1)"'+L*, a=56. (81)

To control the fact that we do not have a small factor in c) and d) above we
introduce

Boolx)= 3 [ dydz(y ¢ D)T'(x—)e "' 10,5y, 2l 42 4,(2)  (82)
for a<4 and
Bio(x)=Y, ¥, [dydxy(ye D\LD')y(z¢ WO) T'(x~)

x e Ly, 202D 4, (2 (83
for a=5,6.
The B’s satisfy better bounds:
Lemma 6.

a) B, (x)SL*PI* unless a=5,6 and a' =4, (84)
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b) B Ax)SL™3d(x,D,)+1)"*+L™* for d'=5,6, (85)
B, (x)ScL™® for a=+1,d =56, (86)
) By (x)ScL™ %2 for a,d=5,6. 87)
We may bound (70) in terms of A’s and B’s:
(T0)< ¥ e*¥ A,,(Lx') [ sup By, ,(x) [1 sup 4, (), (88)
k=2 a iel x i¢l x

where I is the largest subset of {2,...,k—1} such that (a; a;,)*(5,4), (a;,a;+ 1)
*(6,4)Viel and |i—j| =2 for i,j € I. The reason behind this complicated definition
is that (84) gives a bound L™** oneach B, , , (x)foriel. Also |i—j| > 2 implies that
pairs (i,i+1), (j,j+ 1) are disjoint so that (88) holds. Since only every other pair

(a;, a; + 1) can be of the form (5, 4) or (6,4) and since we get from Lemma 4, sup 4,(x)

<cI?, for all a, and since f<a, the sum over k and a in (88) is bounded by cI’.
However, to prove (68) we need to bound (88) by £L~%2. This requires a careful
case by case analysis.

First, let us assume that Lx' ¢ D , + B(I¥). Since D,C D ,,by Lemma 1, ¢, we have

d(Lx,D,)=d(Lx',D )= I* (89)

and trivially, y(Lx'e D, \D)=0.
Using this and (76, 77, 80, 81), we get

A, (LX)SL %! (90)

for all a,. Inserting (90) in (88) gives the desired bound.

Now, let Lx' € D . + B(L¥), still with x' ¢ D', . First, observe that, by (77), we are
done if a single a;=2 or 3 [we may modify (88) so as to put this i in I° without
spoiling the convergence]. So we assume from now on a;%2,3. If a; =5, 6 we may
use (88) and (81) since x’ ¢ D', implies that d(Lx’, D,)= L*(see 8,10-14,7). If a,=5,6
we may use (85) or (86): modify (88) so as to have B,,,,(Lx’) as the first factor and
use d(Lx', D,) = L in (85). Finally, if a; =5, 6 but ay, a, € {1, 4}, we consider several
cases: if a, =4, use (88) and (86) for B,,,. Ifa,=1and a, =1, use simply (76) for each
A factor:

L 23c[8 <72 91)

So consider a; =4, a,=1,and a; =5, 6. If t, +0 we use (79), so, let t;, =0). We have
to consider

[dx1Q47(LX', X)| By 4 (x)e>" ™ 1445 2) 92)

with a'=5, 6.
We want to use (85) and d(Lx’, D,) = L to control (92). So divide the integral in

(92) into |x—Lx'|< L and |x—Lx'| > L. For |x—Lx'| <L’ we have, d(x, D,)g%

and we may use (85). The integral over x is bounded by a constant using Lemma 4.
For |x— Lx'| > L, Lemma 4 gives a bound cexp(— O(L)):

d(Lx',x,Z)=d(x, D(Lx")) = L’ —1
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because diam(D(Lx'))<1. To see this, use Lemma 1, d and e; here, x' ¢ D', so if
Lx'eD,, Lx'e D, nLD'_ and we may use Lemma 1 (if Lx'¢ D, Q,,=0).
So the only cases to consider for k<4 in (88) are:

k=2, a1=1,4,
k=3a (al’ a2)=(174)> (4, 1) or (44)9 (93)
k=4, (a,,a,,a3)=(1,4,4), (4,1,4), and (4,4,4).

We rule out two a;= 1 because (76) gives bound L™ for each of them and we
use (91). In a similar way, we may exclude k > 5: (84) gives a bound L™ *3*# for each
pair (a,, a,)(as, a,), provided a, ¢ {5, 6} fori=1 or 3. But we have already discussed
a,=>5,6,and a;=5,6. So we turn to (93). Again observe that, if a;=4, ¢; must be
zero, otherwise we are done by (79). For these, we shall go back to (48) i.e. not put
absolute values on Q,,, as we did in (70).

Consider first k=2, a; =4, t, =0. We have

§dxQun(Lx', x)T* = }(x, Ly )y(ILx' — x| S L7) 94)
since, if |Lx'—x|> L' we use Lemma 4 to get a bound exp(— O(L?). Now, use
{dxQ4,(Lx', x)=0
to write (94) as
§dxQu(Lx', x) (TH " (x—Ly) = T "M Lx' = Ly)y(ILx' —x|S D). (99)
Then use the bound
L {dy|T(x—Ly)— T(Lx' — Ly')|e*L” "Wl < ¢t =127 (96)
which holds for
|ILx' —x|SL, t<I*.
Inserting (96), for t=L* — 1, in (95) and controlling Q, with Lemma 4 gives the
desired bound on (94). We proceed in the same way for k=3,4, and a;=4, all i,

when ¢;=0, for all i and use (79) otherwise.
Now consider k=2, a, =1. We write, going back to (48),

5. [yl DTN )0, 06 )T (0~ Ly)
) ( T fdxdyrix¢ D)TH(Lx' —x)Q, A%, y) (T 7~ (y, Ly))

=2

—TEe 1(z—Ly'))>

+ Y [dxdyy(x ¢ D)THLX —x)Q14x, )T '~ (y—Ly'), 97

where z is the first point (in some order) in Z. To get (97), we used [dyQ, »(x, y)=0.
To control (97), we use (96) for the sum over t<I?/2 and |z—y|<D. If
|z—y|> L, then d,(x,y,Z)= L’ and we can use Lemma 4 to get a exp(—L"/2)



Random Walks in Asymmetric Random Environments 395

2
bound. For > % we use (75) and
Y t732<celt.

L2
> =0
>3

All other terms in (93) can be treated similarly since we may assume ¢; =0 for a;=4.

2) Proof of (69). First observe that, if N(Y’) =0, for each term in (48) contributing
to &y, i.e. satisfying (52—54) we have ;€ {1, 3,4} for all i. Indeed a;=2 would mean
Z,nD # ¢ for some Z;in (52)(EY=01f YnD = ¢). ButDCD,CLD' by (5,8, 10-14).
Similarly, if a,>4, we have W(y)nD+¢ and W(y,) contributes to (52). But
b'co,cp,, hence W(y))nD # ¢ implies W(y,)nLD', # ¢.

We have to bound L™¥¥”2 in (69). For that, we use (10), which gives

L~ N(Y")/2 éLl —a min L N(Zy)/2 , (98)
a;¥3

where the minimum is taken over all Z; in (48) with a;%3. As we noticed after
Eq. (50), there is always at least one i with a;+3. Also, remember that, if
N(Y')= — 0, &y.=0 (by Proposition 1).

Using (48), (98), and Lemma 3, we get

(69)Sexp(~OL)+L! " 5 5 S*T fdsdyze T T 1)

I T Gy xfeP Mt 0 [] LN
a,*3
X | T4 _‘Yk)— T2y~ 1 — yole™ ™ ™17 x(lx, —z4|=D),
99)
where Y* means a;€{1,3,4} all i, and we used: min —N(Z,)< —) N(Z)), since

—Ni (Z)aé()- We also used [dx;_Q,z, (V- 1,x,c~11)=0 in order to subtract
T™(z— 1 — yi), Where z,_ is the first point of Z,_ ;. The term exp(— O(L’)) comes
from

df(Xk— 1, Vi-1Zyx- 1) 2 X1 — Y| Z L —1

for a=1,3,4. For a=4, we use Z,_,=D(y,_,) and diam(D(y,_,)<1, which
follows from Lemma 1d,e and the fact that y, in (99) means y,_, €D, nLD’ for
a,_,=4 [see (70) and (31)].

—a/L

To bound (99) by —5 — Wweuse Lemma 5: we may combine (74, 75, 77, 79) into

A, )< L3t +1)7372 (100)

for t<I? and ae{1,3,4} unless a=4 and t =0, for which we have only (78). But if
a;=4,a;, , =4 we may use (84) to obtain a small bound. So, since the t and Z sums
in (99) can be bounded by products of A,s and B,,’s when a;=a;,,;=4,
t;=t;+, =0, we get
-1
(99)§L1 —a Z eckL—a(k—Z)/é(cLy) ;\ I—[ (t +1) 3/2(t +1) 1/2,
k=2 LI, =L*—k—1 i=1 (101)
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where we used (96) for the y, integral. The sum over (t)*~, is less than
((I?—k—1)Y2+1)"1. Then the k sums is bounded by ¢L™ ' and we have finally

—a/2
6= =(10)scL ™ < which finishes the proof of (69).

B. Proof of (26) for x'¢ D',. The proof uses the large corridors BQ2L'*?) in LD
[see (5)] and the fact that, by (55), Ey collects only terms which have to “cross” these
corridors and are thus small due to exponential decay.

Fix a term in (48) contributing to Ey.. Let

J={ie{l,....k—1}, a;>4, b;=2}U{0}.
Then we have

Lemma 7. a) Let je J, j*0, and j'=maxk. Then,
k<k
kel

j—1 Jj
)y dai(yi’ X, Z)+ Y xio =il ;%Ll . (102)
i=j i=7H1

b) For a=2,5, y¢ LD and Z, % ¢ (see (53)), d (v, x,Z)=
Using (48), Lemma 3b and Lemma 7, we get
Y[y Ey(x, y)le?™>o 11020 <2 7 e* Y ¥ 5 exp(—3L(n, +m(Z))
Y . k=2 ' ab Z

L
5

K
x fdxdyys TT T(x; —y et Hxyl

i=1

k-1
x [T 108 2.(yi, xp)lea0 ¥ 204 1 |(b— 5)) (103)
i=1
where
n2=|{i|ai=5: 6, bz=2}| )
m(Z)= |{ilai=2> 5, Z,D#(]b}l
and
xs= 1T x0a¢ D)y(y; ¢ D) 1 e D\LD)
= Z:L
x T1 tneLD) IT #ug WO).

bi=2

The constraint (55) means that n, + m(Z) = 1 for each term in (103). Thus we get
a prefactor exp(— L?) which gives the upper bound in (26) and all we need todois to
bound the sum. For this, we use Lemma 5 and 6 as in the bound on (88); we need a
bound on the factors which are similar to 4, with a=35, 6 [see (73)] but with b,=2.

r .
We have, using the remaining factor exp ( - % in (103):
Ly

e ? ¥ Yidydzyye LDz ¢ WO)T'(x—))

x L™ 1|x—y|lQ;'Z(y, 2)|edal® 0. D14 < o[ 20112 < o= 1714 (104)
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using Lemma 4 for the z integral and for the Z and ' sums, and bounding by L? the
sum over t. The y integral is bounded by a constant, because T has exponential
decay. This concludes the proof of (26) for x' e D’,.

C. Proof of (25-27) for x' € D’,. We use (48), modified for x' € D', , and the corridor
B(2L?) in (57,59). First consider (27). We can use Lemma 3c to bound

Y|, )it PN ST [ |Qs oL, x 2t 450212
z

X x(x1 € W) fc(xq, y)dy, (105)

where | c¢(x,, y)dy is bounded by one plus a sum of products of A’s and B’s, as in (88).
To get (105), we use t, =0, a, =5 in the modified (52). Also, in (105), W, = W(Lx')
=LD'(x"). Divide the x, integral into d(x,, W(Lx")) £ L' and d(x,, W(Lx)= L.

In the first case we have d(x,, D, )= [%/2 because LD’(x") is connected and there
is a corridor of size L* in (6) around D . This and d(x,,D,)=d(x, D), see (89),
inserted in (76), (80), (81), allows us to bound {¢(x,, y)dy in (105), using Lemma 5
and 6, by 0(1). Then, Lemma 4 controls the x, integral and the sum over Z in (105).

For d(x,, W(Lx')) = L?, we get a bound O(L) on { ¢(x,, y)dy, from Lemma 5 and
6, but a factor e Y from Lemma 4, since, then, ds(Lx,x,,Z)=I’, again
because d(0W(Lx),D,)=d(0W(Lx),D )= L%

The proof of (25-26) is similar to the one of (26) for x’ € D', , using the following
lemma.

Lemma 8. Let X' € D',.. Then, for each term of the modified (48) contributing to §+E,
i.e. such that (59) holds,

K k
;lxivl _J’i"f‘;dai(yl" Xy Z)ZFL. (106)

7. Reabsorption of the Traps

Here, we define inductively 4s, see (17, 24, 33) below, and show that it satisfies (5.68)
(and Proposition 5.2). Moreover, its definition will imply that &,=0 when
N(Y)= — o0, as we claimed in Proposition 6.1.

Let now
LY0<e, 0
ie.
N(Y)Z —2n(1 —2a). 2)
This means, in particular, that
[lex(x, y)ldy < N IMlgdexoood) A3)

for {=L"*if (2) holds. To get (3) from (6.25), note that, if (2) holds for Y’, then only
gy with YnD,=¢ and sy are involved in the expansion (6.48) for &:

lx,Y)=L2 Y. [deotr, TT Ty, + sy, — (e =0)—average. @
nY

Moreover, for u' € Y’ such that N, & — o0, N, £0 we know that (see Lemma 6.1)
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wW¢D, |LuwnD|<clf and

N, =max N,—2(1 —a), (5
ueLu’
Thus, from (6.10)
J‘ lgyi(x, y)ldy < CL%N’(Y') +(l—a) —a/2,~d(xuvUYy) ) (6)

Now we may estimate (4) as we estimated sy in Sect. 5. The linear term in e,
(Leyydx',y) =L ; Y THLX —x)ey(x, )T 7'~ Xy, Ly), ()
where Y is as in (5.70, 5.71), once integrated, has the bound

e—CL[Y'|LJZ—N’(Y’)e—d(x’uv’uY’) (8)

if |Y’|> 1, where e~ €“Y'! comes from the scaling. For |Y’| =1, we obtain the bound
CL— 1L§N'(Y') +1- aL- a/Ze —d(x'uv'uY’) z e~ +d(Y) (9)
Y

with YnD=+ ¢, [L™'Y]=Y'. The Y-sum is bounded by CI* ((9) is very generous:

actually the term in (7) having only L™ is the one with ¢ =0, which has the factor
e~ X'V to control z>. Equations (8) and (9) yield (3).
Y

Now we want to show that, as N decreases from (2), the RGT brings additional
contraction, enabling us to gradually reach the Fourier bounds valid for sy.
Looking at (4), we see that terms where ny >0 or n, >0 automatically satisfy our
Fourier bounds at least in £, or &,. The same holds for terms with sy, at the end or
the beginning of the walk w. The other terms have ¢’s tied to the end or beginning of
w, and will contract strongly under Z£. This motivates us to split ¢ in three pieces,
defined below, depending on where Fourier-bounds with A(k)*® or A(k)!/® hold:

8Y=81y+ﬁzy+£3y. (10)

Let us introduce a convenient index counting how much smaller than (2) N is:
put

—o/(Y)=1N(Y)+n(1 —20), (11)
Le.
N
[2=L"%§2, (12)
Then we have, for Y as in (2), that &,y satisfy (3) and (£ =4(Y))
[ lewy(x, y)ldxdy S co* L~ B+ D dervvaoDill (13)
[ le2y(& y)ldy S oL~ 1D A(k)*Pe~derorae i, (14)

v2

[ leax(x, Oldx < c82L 3+ (R3¢ ~doraongin (15)
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To prove (13)—(15) iteratively is now only a matter of book-keeping. To define ¢;
from ¢, let /=0 and note, first, that all the terms ¢ of the form (T+s) (anything)
(T+s) have

Iyl < o™ (16)

due to the bound (3) [recall (1)] and the fact that at least one ¢ has to occur in the
(anything). Thus, we put

Asy = L[[do[(T+s)(T+b)* ~T+s)—(T+5)*"]]y —average, a7

evy=L[[dw[e(T+ by~ ~2¢]]y —average, (18)
ehy = P[[do[(T+s)(T+b)-*~2¢]]y —average, (19)
&5y = L[| do[e(T+ b)Y’ ~ 4T+ s)]]y —average, (20)

with obvious notation: we expand b= s+ ¢ and collect terms as in (5.70, 5.71). The
bounds (13)—(15) for £ =0 follow readily from the bound (3) for ¢, see also below. To
iterate (13)—(15), let £(Y')>0. We put

ey =L[[do(e; +e3) (T+b)* " (e, +¢,)]y —av., (21)

eyy = B[ doey(T+b) " +(T+3s) (T+b)Y " e, +&,))ly —av.,  (22)
gy =L[[do(e; +&5) (T+b) ~T+s+¢;5)]y —av., (23)

Ay =(17)+ L[ do(T+5) (T+b)¥* " 2g5]y —av.. (24)

Asy. satisfies (16) again, &)y has as leading term e5(T+b)Y*~2¢,, which is
&,-independent, so (13) holds.

(ZLe)plx',y)=L 2 [dxeay(LxX, x)(TH ™ (x—Ly)—T" " (u—Ly))

+I3 ; [dxTE " Y(Lx' —X)e,y(x, Ly), (25)

where | ey(x, y)dy=0 was used. Also, for each YCZ* choose a preferred point u.
Using ¢,y(Lx’, x) and

o2l 2
TV~ Yx—Ly)—TY Yu—Ly)| £CL % 2 L‘Jr’“l !
X|PTY "L — )&, &)l
o (VT e q
=Ce fdqa I A(ky—q)A k2+f , (26)

we get, with similar estimates as in Sect. 5 (see proof of Lemma 5.1),
[ (Leyd&, y)ldy S C(L™2+ L7302 A(K 2o~ diova XYl

X Y L+ @ p=3d) 27)
Y
where YNnD = ¢. Now (5) and (11) give
/(Y)z£'(Y)-1, (28)
which, with
Ye HO<CLf 29
Y
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let us conclude
(27) é CL—a+y5/2L—-(1 +a){’(Y')A(k/)2/3C1Y'|e—d(v'luv’qu’) . (30)

Equation (30) together with the much smaller nonlinear terms in (22) (¢ is also
negligible) gives (14).
To prove (15), consider the linear part of (23),

(Lea)ylx'y) =D | dxesy(Lx', )T~ (x—Ly). (1)

This is readily bounded by
f I("ge:&)Y'(x,a é')[dx’ :—<_ CL~ 352{[Y|A(k1)1/3e—d(v;uvqu’)ZL-—(Z +a)K(Y)e—AZLd(Y) ,
vh Y
(32)

which gives CL™**# times the bound (15). The nonlinear terms can be absorbed
into this and (15) is proven.
Finally, if L~ 29" < [72" we have

L—(2 +a)/(Y) é A(k)2/3 and L—(l +a)f(Y) é A(k)1/3 ,

and ¢y satisfies the 4s-bounds:

Asy=¢y. (33)
. . 2an _ 1 .
Note, that this happens (see 11) if — rta = = N(Y)+n(1—2a) i.e. when N(Y)
2
< —2n<1 —20+ 5%)2)’ which proves that ¢,=0 when N(Y)= — 0.

8. Traps — Lower Bounds

Our goal here will be to prove (6.28). This will be a consequence of the following
lower bounds on T+b:

Proposition 1. There exists a constant ¢, such that, for all ueZ*,
min min [dy(T+b)(x,y)2c,p,, (1

lo-u|=1 xeu ¥

where ’
=vif veD
IR )
=v\D if v¢D,
and
Bu=L2 N1+ 127N, ©
with N, defined in (6.14). Moreover, if n,=0 (see (6.8)), then
min | dy(T+b)(x,y)= ( -%L~§> B.- 4)
xeu D¢

The only goal of this section is to prove (6.28). This will use (4), while (1) is only
used to derive (4). As one sees, (1) gives a lower bound on the probability to go to an
adjacent block, while, in (4), one controls the probability to escape from D. The
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main distinction in the proof will be between n, =0 and n, = 1. In the latter case, we
can only prove (1); that is the region where D is dense, and all we use is a kind of
lower bound through ballistic motion. When n,=0, we may use the fact that D is
sparse so that, once one escapes from D, the probability of returning to it is small,
see (23, 25). The flow of f, was discussed in Sect. 3, for §, small; the denominator in
(3) gives the correct behaviour for f, close to 1.

Now, we shall prove (6.28), using (4). We write £ =(T+b)— T—s—e, so,

120, I=(T+b) (x, ) + T(x —y) +[s(x, y)| + le(x, )| . (5)
Since | dy(T+b)(x,y)=1, we have, by (4),
, \fm (T+b)(x,) élf)dy(T-ir b)(x,y)=1 —gc dy(T+b)(x, ) <1—B,+3L 3, (6)

since f<1, by (3),
j AyT(x—y)= [ dyTx—y)< ¥ e D ALu|<cL™. (7)

u ¢D DsnLu’ u'¢D’
Using Lemma 6.1c. Finally,

fdy(le(x, y)l+|s(x, y)) <2L7%2. @®)
This follows from (6.25), (6.26), and (5.11). Combining (5-8) proves (6.28).

Proof of Proposition 1. We proceed by induction: (1) holds for n=n, by (3.76)
(D=D, for n=n,). We shall first prove (1) with primes when n,, = 1. Choose a self-
avoiding nearest neighbor walk w on Z, with |w|=I2, Lx’ € »(0), (i) C Lw’, »(L?)
CLy'. This is possible, since [u'—v'| =1, Lu’ contains L*> L sites and there are at
least I? —cL*I? sites in LV that are adjacent to Lu’ if v' ¢ D, (by construction of
D"). By definition,

(T +b)(x,y)= a4y [dof(T+b)(w) ©)
and this can be bounded by:
L2-1
2 [ min [ dyT+b)(x,y) (10)
i=0 xew() w(i+1)

using the positivity of (T+b)(x, y).
Using (1) inductively, since |w(i)—w(i+1)|=1,

L2-1

(10)20%2 iI=—[0 ﬂw(i)' (11
Using
B z3L ™M 12
for N,=0, and
=% for N,<O (13)

we have

(11)><—1>L M L, (14)
2 uCLu’,N,>0
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where we used the fact that w is self-avoiding. From (3) and (6.10—6.14) we have (for
n, = 1)

19z M ze,p, (15)
for any ¢; <1 and a suitable choice of ¢, in (6.10) depending only on L. The choice

of ¢; <1 will come from the proof of (1) when n, =0, to which we now turn.
If n, =0, it means [see (6.8), (6.5)] that

Lu'n(LD'ULR')+ B3L' *?)=0 (16)
and
Lw'n(D,+ B(L%)=9. 17)
We bound (9) from below by
miq b(x)e(u', V'), (18)
where
L2
2 t—1
b(x)= ; [ dyfdoy,, ,l;ll x(w(i)ewnD)(T+b)(w), (19)

a

L
} the product

where w=unit block containing Lx',S,, = {yéme ly—w| = 5

equals one for =1, and
cw,v)= min min | dy| dco’“2 T+ b)(w)y(wnD=4¢). (20)

x'ew’,yeS,, t<L2/2 LV
To prove (18), we write, for y ¢wnD

2

[dofe (T+b) (@) 2 Py def" w (T+b) ()

X dwl . (T+b)(w) 'I-]1 y(w()ewnD). 21

This means that we keep only, in the right-hand side, those w’s which leave wnD
2

. L oL .
before time 5 We sum over the first exit time ¢ (these are disjoint events) and,

furthermore, we keep only the walks where the step which leaves wn D does not go
. r ..
at a distance from w larger than 5 To get (18), we take also the minimum over
2

L . . .
t< > and ye S,, to factorize (21) and insert 1 = y(wn D = ¢) in the lower bound. To

go from (18) to (1) we shall use the

Lemma. There exists a constant ¢, such that, if n,,=0 and Lx'ew,

clzﬂw

bix)z(1—e™) (22)
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and
', v)=2c, . (23)

To prove (1), insert (22), (23) in (18). Then, we use,

I? )
cl?ﬁw 6171‘2 N LZ—ZaLZ—NW
>(1—L 2" min ——
> l welw 1+ 12722 27 Nw>

L2 - L2
1+c17[3w 1417 NW<c17 +1
24)
L2 —~N
which follows from c, 5+ 1>1?"2* and the fact that c—
in c.

c .. .
——— is increasin
14cLV &
-N

c
i No——
Since N— T3l ™

is decreasing in N, we get from (6.10)—(6.14) that
QH)z(1-L72*29B,

because N, =max N,,—2+2a. So, from (18), (22-24), we get (1) with primes.
weLu’

Let us prove (4). We get, in the same way as we got (18),
min [ dy(T"+b')(x',y") 2 min b(x')c(’, (DY),

x'eu’ (D) x'eu’
where c(/, (D)) is defined by replacing L' in (20) by (D). We use (22) as before and
cw, (DY) 21-3L 3 (25)

which will be proven with the lemma. The proof of (4) is then similar to the one of
(1) above.

Proof of Lemma. We have
L2

bw)2e,f, 3§ T dotidodewnd) T (T+H) o), oi+1) 26

with (0)=Lx’, and where we used (1) and (17), which implies that W ¢ D,, YW,
[w—w|=1 since Lx'ewC Lw'".
Now,
> _
(26)z ¢, blx), 27)

where

2 2
L L*—l

b(x)={ -131 do(i)y(w(i)ewnD) 2.];[0 (T+b)(w(i), w(i+1)).
Equation (27) holds because
fap(T+b)(x,y)=1. (28)
We shall prove that
b(x)+b(x)=1—e L, (29)
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Equation (22) then follows from (26-29). To prove (29), we use (28):
L L2

7 1

2
1=§ iI=—I1 dow(i) (x(w(i) e wn D)+ y(w(i) ¢ wn D)) 'l=_[o (T+b)(w(i),w(i+1)) (30)

with w(0)=Lx/,

L2
2 t—
=b(x)+ :=Z1 fdyx(y¢wnD)fdwi,., ,li y(w(i)ewnD)(T+b)(w). (31)

To get (31), we expand the product of characteristic functions in (30), we resum, and
use (28). From (31) we get,

LB B+ o max [ay(TH)Cs y)x(|y— Wz %) (2)

which proves (29), using the exponential decay of T and b. For b, this follows from
(6.25)—(6.27), the fact that D, is far from w because of (17) and the bound diam
(D(Lx'))£1 coming from D(Lx')C D, (see Lemma 6.1).

We prove now (23). We write

cu,v)= min (min [ dyT Lz“(y—y’)-Fy>, (33)
y¢D t§£f Ly’
|y_W|§T 2

where

F y=t§0 J dyT(y—§)+ [dydzT'(y—5) (53, 2)| +1e(F, )| +|EF, 2)) . (34)

This lower bound comes from first expanding
§dok, " (T+b) (w)g(wnD = §) = [ dwty, " T {w)y(wnD =)
L2
— ¥ [dFT (=) bG (¢ D),

where we use (28) to bound the factors after t'. Since j ¢ D we have no £(J, z) in (34).
L2-t

We also expand y(wnD=¢)= [] (1—yx(w(t')eD))
=0

L2
21— Y ple(t)eD). (35)
t'=0
The first term in (35) gives the first term in (33) and the sum over ¢’ gives the first

term in (34).
To get a lower bound on (33), observe that

[ dyT" (y—y)23c, (36)
Lv’
a 2
for some c,, uniformly in ye Lu'+ B 5 ) t< > indeed |v'—v'|=1, and |Lv/|

=13/2, since |LVNLD'|<cI?*3* by (16) and (6.6).
We shall prove

F,<3L 3 (37
y
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forall y¢ D, |y—w| =< % This then proves (23). To prove (37), consider the first term
in (34):

z;dﬁrt(y—ﬁ)x(w—ﬂg%)g S IDoLviSel  (39)

t D Jv'—u'|<2

using (6.19) and (16), (17) (| —w| < L hence, by (17), je D).
Moreover,

)& b5
;If)dfT‘(y—i)x<5éli—yléL‘”>é Y o dﬂ‘@—f)x(; éli—yi)

z¢D’,t |DnLz|
<c!Loye 'L <L (39)
using (16), (A.22) and (6.17). Finally,
; fdy T'(y—yL "<y —y)se™ (40)

using (A.22). The s and E terms in (34) are easy to control, using (5.11), (6.26), and
I2 <exp(cl?). For &, z), we use

[d§dzT'(y—3)le(F, 2 Scfdy' T (y—Fe ™Dy, [dzley(5, 2)|e’ =", (41)
Y

since &y =0 unless N(Y)=+ — o0, i.e., using Lemma 6.1a, unless d(Y, D)<2.
Then, by (6.25)

Y@ Sy [diT! (y—Fe P <L *2cll, 42)
t t

reasoning as in (38-40) and using (A.22), with E=DnLu for u¢ D’. Combining
(38-42) proves (37).

We have only (25) left to prove. This is similar to the proof of (23). We have the
bound (37) on F, and it is enough to show:

min min | dyTY {(y—y)=1-L"!

yeS,, t<L2/2 (LD')c
or
[ dyT (y—y)<L™ (43)
LD’
1+y 1+y
5 and |y—y'|> >
second part is negligible, by (A.22), and the first is bounded by
P
L ¥y |ILDnLvle 't <er?,

v'é¢ D'UR’

with y,t as above. Divide the integral into |y’ — y| < . The

2

using t< L? to get cL™3 [see (A.20)], and (6.18) to bound |LD'nLV|=L3D' V|

<I3L™? since v € D), by (16).
9. Probabilistic Estimates

We shall show that the probability that N,,, & — oo is bounded by exp(— O(n)). This
will be used in Sect. 10. It also implies (5.50), as we show below.
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Proposition 1. For any sets A, BCZ’, any numbers

20
{N,,e(l —~2w)Z, N,> ——2n<1 — 20+ m)}uEA

and for all n=n,,

t@({I\Inuzl\ru}uefb {qv=1}veB) (1)
éeXP[—f(Q—Za—ﬁ)n(lAl +L1B)—-(1 +n—‘)“eZA N..)],

where 2 is the probability defined on the set of {b(x,y), x,yeZ*}, [=T'?, and
qv=X(v€Dt’)'

If one forgets about gq,, the flow is as explained in Sect. 3, up to — 5, and can be
understood on the basis of (6.10—6.14). We introduce g, because it enters in the
definition of N, see (6.10,6.8). The bound (1) remembers that D,, ie. q,=1 is
unlikely. We shall also have a contribution from R, for which we use the results of
Sect. 5. To control the occurrence of several N's in a box, we shall use the fact that
we have a small factor, in the right-hand side of (1), for each site in 4. We have also
to control negative N's. Here, we use the fact that large fields are reabsorbed long
before they are likely to meet, which is reflected in the lower bound on allowed
values of N. This bound implies that negative N's are controlled by the small factor
in (1), see (14,15) below.

First, we show how to get (5.50) from Proposition 1. Since r =e+ £, we get, from

(6.25-6.27),
fdylr(x,y=c ¥ CXP[—d(xuquHc X Nu]-
YCN ueY

Here, weuse ¢ Y * N,2d(YnD,) since D,e D . Then, (5.50) follows easily, for

ueYnD
I's L}, from #(YC Nﬁ <exp(—cnI'|Y]), which itself is a consequence of (1) [see e.g.
inequality (14) below].

Proof of Proposition 1. We proceed by induction: For n=n,, (1) follows from our
assumption (2.12) on the probability of large b(x, y), since we take I' = Ln3. Define
m,,=x(veR,+B3L)). Then, it is clear that {N,, iy} weas {dn+1voren are
determined through (6.5, 6.10-6.14) by

{Nus @u» 4 vE L(A'UB')+ B(3L)})
and by {m,,,,v' € A'UB’}. So, we may write
g({Nn+ 1w = N;}u’eA% {qn+ lv'}v'eB’)
=Z* P({Nnu = Nu}ueA’ {qnv = l}ueB, {mn+ 1= 1}v’eC’) s (2)

where P is the probability that the indicated events occur and that N,,,= — oo for
ue L((A'UB)+BBD)\4, ¢,,=0 for ve L((4'uB)+BBL)\B and m,, =0 for
u' e(A'UB)\C'. The sum runs over all sets 4, B, and C’ such that

A,BCL((A'UB)+B(3L)), 3)
C'CA'UB (4)

and over all values of N, e(1 —20)Z, u€ A such that {N,,,,,q,+1,,}, determined
by (6.5, 6.10—6.14), take the values given in the left-hand side of (2). Note that the
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values of n,, for u'e A'UB’, are also determined, for each term in }*, see (6.8).
Foreachu' e A'UB', there must be a ue L(uw' + B(3L")) with N,,+ — o0 or g,,,=1
or m,, 1, = 1. Therefore, for each term in (2),
ILL™'AJI+|[L™ ' B]|+|C| Z L™ (4’| +|B). )

Now we want to bound (2) by the right-hand side of (1) with primes and
n—n+ 1. First, we have an upper bound on (2) if we replace P by 2, i.e. if we do not
specify the values of N, g, m outside 4, B, C', but still keeping the constraints on the
sum, so that, in particular, (5) holds.

The next step is to use Holder’s inequality to separate the estimates on N, g and
on m:

g({Nnu=Nu}usA’ {qm}=1}veB’ {mn+ lu’}u’eC’)
ég({Nnu=Nu}ueA= {qnu=1}058)1—n_ag({mn+1u’}u’eC’)n-3' (6)

To bound the last factor, we use the results of Sect. 5: (5.12) and (5.15) imply,
using Tchebychev’s inequality, and the fact that one has at most cL°" values of &,
that the probability that ue R, [see (5.90,5.64)] is less than

exp[(—cdy/es) =exp(—cL™)
using (3.54) and (3.66). So,

‘@({mn+lu’}u’eC’)"—aéexp(—Lynlcll) (7)
follows, using Schwartz’ inequality a few times and the independence of s, s,,, for
lu—v|=2.

Inserting (7) and (1) in (6) and then (6) in (2), we have
'@({Nn+ 1w = N:t’}u’eA” {qn+ 1= 1}0’58')
s=¥* CXP[— L"C| = L2—2a—B)n(Al+ D|B) - L1 +n™") ¥ Nu] )
ucA
where I,=TI(1—n"3).
We have to prove that
£*exp{ — L"IC ~ [~ 2a— B4+ L' B)

+I'(2—2a—p)(n+1)(|A'| +L|B))

—L+n"Y) Y N+ T(1+(n+1)"Y 3 N;,}g. )
ueAd u'eAd’
We shall first simplify the argument of the exponential with the following
Lemma.
a) |A1<SIL Adl+ X g, (10)
u'eAd’
b) I'2—20—p)(n+1)L\B'|<20Tn|C'|+ Ly ¥ (|AnLu'|—1),
u':|AnLu’|2>2
¢ TA+@+1)7Y) T NysLd+n™) Y N,~T(1+n"") YN,
u'eAd’ ue A ucA
—Ir@2n*)™' ¥Y*N,+2lcy Y n,—T(2—20a)|4, (11)
ue A u'eA’

d) Y me=2Cl+y ¥ ([AnLu’|-1)+y[B|. (12)
2

u'eAd’"UB’ uJAnLu’|2
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Using this lemma, we bound the left-hand side of (9) by
Y*exp [ —D"?C'| - gFI[L‘ LAYl —=3nI
x Y n,—IL2-2a—-2fn Y (AnLu'|-1)
|4

u'ed uB’ NnLu’'|22
—Il+n™Y) ¥~ N,—TQn»)~ ' T+ N,,—FnUIBI]. 13)
uc A ueA

To get that, we inserted (12) in (10) and in (11), for the term Y n,.. We used the
easy bounds:

—D"+20Thn+2IQ2—20—B)(n+1)+6nl +4lcy < — "2
for the |¢’| term
(remember that I'=Ln2, so that I* dominates)

—L[2—2a—Pn+T2—20—P)(n+1)—T2—20)< — gr,

and [A|=|[L7'4}|+ Y (AnLw|—1) for the |[L™*4]| term.
|[AnLu’|Z=2

—L(2—20— P+ ILny+2coy +T(2—200—P) (n+1)y+3ynI’
< [2—24—2B)n

for |AnLw'|. Here we use y <f.
Finally,

—L(2—20—Bnl+T'2—20—B)(n+1)y+2lcyy+3nyIl' < —I'nl?

for the |B| term.
To show that (13) is bounded by 1, consider first the sum over {N,},. . for each
v e[L™A]. For any fixed u, we use
exp(—=I'(1+n" )N+ 3" exp(—I'2n*)"'N,)
) N

Nu>-n(2—2a—-38
n2
§ er(n(z—Za—3ﬁ)+2)+F , (14)

where the constraint N, > —n(2—2a— 3p) comes from (6.14) and f <a?. For the
sumin Lv', let p,, =|ANLv|. If p, =1, then N, is determined, via (6.10—6.14) by the
values of N, n,, so there is no sum over N, in that case. However, there are
L3 =|Lv'| possibilities for the single u, with N, = — co, in Lv'. Also, if p,-=2 but
N(Lv') <0, the largest value of N, for ue Lv/, is determined, via (6.10—6.14), by N,
if n,,=0. So, if n, =0,

y exp[—l’(l +n"Y) Y N,~I'2n*)"' YN,

ueA ue A

ACLY' {NuJuea
L(2—2a—2B)n(p, — 1)]
L3 n2 p—1
P+ Yy ( ) <c(exp (IF(2—20—3pm)+2))+ —))
pz2\ P r

cn? 3
X Texp(——l",,(2—2a—2B)n(p—1))§cL . (15)
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In the first inequality, we used (14) for the p— 1 sums over N, where N, may be
2 3

. _«¢n . L .
negative; T bounds the remaining sum over N,=0; » counts the possible

locations of u’s in Lv' with N, =+ — co. The second inequality follows because the
sum over p is controlled by exp(— SI'n(p— 1)), which is the leading term.

If n, =1, the only change is that we have a sum over p N,’s instead of p—1 and
the left-hand side of (15) is bounded by

c? exp(n, I'2n). (16)

Using this bound to control, in (13), the sum over {N,} and over A4 in each Lv'
for v e[L™'A], we have

(13 ¥ exp[—U"/zIC’l— gFIAI—FnLleIjI (cL2)MAl, 17
A,B,C’
Where Z, runs over IZC(A,UB’)+B(3LY)) (18)
and over B, C’ as before, such that
|A|+I[L™'B]|+|C'|ZcL™ (4’| +|B). 19)

“ A . . . .
A= [Z] before, since we have summed over A in Lv. The n, in (16) is

controlled by the corresponding term in (13); (19) is simply a rewriting of (5). To
bound (17) by 1 is easy:

Using (19), each term of the sum is less than exp(— I'L”™ 4V(lA |+ IB’|)) SO We can
take out of the sum the square root of each term. The remaining sum is bounded by

exp(0(1) (4’| +|B)))
B El‘ eL3(1+y)
using (3, 4, 18) and <1 +e 4 ) <c.
This finishes the proof of the proposition, so we are left with the

Proof of Lemma 1{.a)If N, , {,. % — oo, then either N(Lu')+ — c0,i.e.u’e[L™'A] or
n, =1 (or both).

b) IBl=2,q, <X, (m,+L" 5  |JAnLV))

|AnNLV'| 2 L8

lo'—u'|S2LY
because if u' € D), then either v’ e R'+ B(2L), i.e. m;, =1 or there exists a v/, with
|v'—u|<20 and |ANLv|=I? [see (6.5)]. Using Y 1=ZcL* and

|v'—w'|s2LY
c[?'L™f <y, we obtain b).
c) Consider first u’ such that N(Lu')=0.
Then using (6.10—-6.14) and

1+m+1) 'S0 +n" H(1—=n"3—2n*» 7!
for n=n,, we get from (6.10),

FA+@n+1) YN, <LA+n"Y) Y+ N,—I'(Qn?"!

ueLu’'nA

x Y* N,+2Icon, —I(2—2a). (20)

ueLu'nA
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To get (11), we use also
X*N,=ZN,—2"N,. (21)
Now let N(Lu')<0, then
N,Zcon, —(2—2a). (22)
Combining (20), (21), and (22), gives (11).
d) This is similar to b) above; n,, =1 means
wWeD,+B() or Lun(D,+B())*¢.

u' € D,+ B(L?) is controlled by the first two terms in (12), as in the proof of b). If
Lu'n(D,+ B(L"))+ ¢, then there must exist a v/, with |v'—u'|<2 and |D,nLvV/|
=>cL?, because each connected component of D, contains at least O(L*) unit
blocks, by construction. So,

WL n(D,+BL)+P)<cL™® ¥ |D,ALv],
| 1<2

v —u'|

since ¢q,=0 in I((4'VB’)+ B(3L"))\B, Y |Lv'nD, <|B|, and (12) is
proven. v':d(v', A"UB’) <2

10. Proof of Theorems 1 and 2

First we define the set of measure one on which the convergence holds:
2 ={b|3m(b)| such that N,,= — oo, Vn=m(b), Vu, ju| < ["}. 1)

The reason for introducing 4 is that it contains environments such that b,(x, y)
=s5,(x,y) for all |x|,|y|<L* and n=m(b). This follows from Proposition 6.1 and
Lemma 6.1a: e and £ are zero away from D, and D is empty if N,,= — co. Besides,
note that in time T< I*" the walk cannot move at a (rescaled) distance larger than
L' [see (3.26)] so, for b in (1), the walk only “sees” small fields for all times larger
than I2™®, For small fields, we may use the deterministic bounds (5.10, 5.11, 5.14).

Lemma. #(%)=1.
Proof. This follows directly from Proposition 9.1. The latter implies

PN, * —oo)éexp(—l“én)

. 2 .
by summing (9.1) over N,= —2n (1 —20+ 5:%), and using f <a?. Thus,

PEu,[u <L, Ny = —OO)§CL3"eXp(—F§n>,

and the lemma follows, for I' large enough. []

Proof of Theorem 1. Since f; and the paths w are continuous, it is enough to prove
Theorem 1 for ¢, in the dense set UL™2'N. We have, for t;e L”#'N, Vi=1, ...,k and
for n=1,

fdvi(@)[1fle(t)=]dy| dr§y (T + by) () 1AL to(L't) 2



Random Walks in Asymmetric Random Environments 411

with m=ng+n—1(in Sect. 2, we started with n=0, while in the right-hand side of
(2), we start with n=n,). Let now be #. Thus, for m large enough, b,,=s,,. Write

T, +5s,=TE+35, 3)

with T} given by (3.22). We see that the right-hand side (2) consists of a fixed time
(=I?" problem with 3,, tending to zero as n—oo. Now,

Jav(@)[] f(@(t)=[dy { deoty T(@)[] (L™ (L))

Moreover, for any fe &, an integration by parts gives

exp(+[ul'’?)

f@)=c ]

and, we have
czﬁm(«fl, ENS(Ele™ ™ <e(f) expl(p+1) luy|V2 +c(p+ 1)*IL™ ™. (4)

For (4), we used Theorem 5.1 for T,,— T}, (5.14) for s, and the bound

e "l u2l p(p+ 1) luz| /2 < Pt Va2 +e(p+ 1))

ueZd
We get, expanding §,, in (2), and using (5.27) and (4),
v, IT fi— [P T1 fl S elk, fHL™™
for some a>0. The claim follows. []

Proof of Theorem 2. This follows from Theorem 1 and the fact that the sequence
(vp) is tight. To prove tightness, we use a moment condition (see e.g. [16,
Theorem 12.3]): We show that Ja >0, such that Ybe 4, 3K, such that Vt,se€[0,1],

[ v () (w(s)— o) < Kls—' **. )

Since |w(s) — w(t)| £ T *|s—t| [see (2.4)] for [sT]1=[tT],ie.for|s—t|< T, (5)
is trivial in that case. For [sT] = [tT], we rewrite (5) in terms of lattice walks. For
those, it is enough to show:

[ dpr() (jo(i) — ()| +2)* <K T i —j|* *2, (6)
where i=[tT], j=[tT]eN, |i—j|+0, and w are now lattice walks.
We write " n
i=3% ikLZk, =X jkLZk (7
k=0 k=0

with 0< iy, j, SL*—1, and n=max {k: [*<T}. Let
i = Z l-kL?.k, j/_____ Z jkL2k> (8)
k=m k=m
where m=m(b)=min{m|N,,= —co Vn2m Vju|SL'}.
Using |w(i)—w(i+1)|=1, we have
loo(i) — ()| £ (') — ()| +2L7™. ©)
Inserting (9) in the left-hand side of (6), we get
[ dpr(@) (J0(i) — () +2)* < c(m) (1 + [ dur(w) (o) —o()*), (10)

where c(m) is a constant dependent on m(b), i.e. on b.
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Now, let j'>1'; .l
[ dug(w) (o) —o()* =] kIjm dx; | dy, (T+b) (@)

n 4
l__[ (Tic+s0)" (xkaxkﬂ)( ;mLk(ka—xk)) ) (11)

k=m

where we use b, =s, for k=m, and write j'—i' = Z o

Now, use (3), and expand the product over T + sk and the (Z)“ : obviously, for
P= 4, k

2
HIZ)(x—y) (x—yf<ct®.
Moreover, this integral vanishes if p is odd, or if t=0. We get, using (4),

_k
The net result is 1§ 5uCx, y) (x —y)Pdyl el * (12)
n 2
(11)§C< > rkLz"> Sl —jP. 13)
From (7), (8), k=m
li/ _j/lz é(ll_]l + 2L2m)2 §K(m) Il_]|1 +acT1 —a (14)

using |i—j]*0.
Combining (10), (11), (13), (14), we get (6), i.e. (5), and tightness holds. []

Appendix

We prove Lemmas 1 and 3-8 entering the proof of the upper bounds in Sect. 6.

Proof of Lemma 1. a) The proof of (6.15) is by induction. For n=ny, D=N [see
(3.76-3.77)]. Assume that unD’#§. We shall prove that there must be a v, with
[v—u|<2and N,% — o0.1f n,=1, then N, % — oo follows from (6.10—6.14). Assume
n,=0, so unD,=¢. If Lun(D , + B(L")) * ¢, then clearly, using (6.15) inductively,
N ,nLv must be non-empty for some v, with |v—u|<2 and N+ — 0. Now, if
Lun(D_\L2)+ ¢, we must have N(Lu)+ —oo otherwise, N,= —oo (because
n,=0) and ue 2. But, N(Lu)+ — oo imply N, & — oo unless, again, if ue 2. So,
unD,=¢, Lun(D, +B(L)=¢ and Lun(D_\LD)=¢. From (6.6), we get
unD’ = ¢.

Equation (6.16) is proven inductively, using (6.10), (6.11), where all terms are
positive, when n,=1, since we chose ¢y >2—2a.
b) Equation (6. 17) follows from (6.15) and the definition of D'.
¢) For (6.18), we proceed inductively, with D,=¢ when n=n,. Assume v (D,
otherwise D;nv=¢. So

ID.AV| L 3|LD' nLv|<cL 331,

because from (6.6) and (6.17) we conclude that LD’ Lv contains at most gL" boxes
of side 2%+ 1, since v ¢ D,; (6.19) follows from (6.18) and (6.17). For u¢ D', we get,
instead of (6.17),

DA Lu| £ cI?
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because, using (6.15) and (6.5), D Lu contains, by definition of D, and by (6.15), cI?
unit boxes, plus, possibly, all those on the boundary of Lu, i.e. cL?. Then, we use
(6.18).

d) Equations (6.20), (6.21) follow easily from (6.18) [for (6.20), we use the fact that
D(x) is a union of cubes of volume L™ *], if we show that D(x) cannot intersect two
non-adjacent cubes. (u, v are adjacent if |u — v| < 2). Let us prove this by induction. If
D'(x)nu= ¢, D'(x)nv=+ ¢ with Ju—v| =2 then, since D'(x) is connected, there must
be a w, with |u—w| <2 and |LD'(x)nLw| = L, or |D'(x)nw| = L™ ? which contradicts
(6.18) since D'(x)CD..

e) We already showed in the proof of a) that D,CD,,so D_ CD,and,since D ,,D_
are unions of connected components of D, the conclusion holds for xeD_. If
xe D, nLD'_ then we must show D(x)nD,=¢. But, if unD, = ¢, then, from (6.8),
n,=1for v=[L™'u] and vC D', by (6.10, 6.11). So, if D(x)"Lv=* ¢ for vC D’,, D(x)
CLD'(v), by construction of D'(xe D ., so D(x)CD ). But then, D(x)C LD’, which
contradicts xe LD"_.

fy This follows from (6.15) and the definition of D": if xeLv, v¢ D', then
INnLu| < If for all lu—uv|<2. So |(x+ B(L))NN| < cI?. Then, use (6.15).

Proof of Lemma 3. a) Using (6.48), (6.52) and the bound d([L™*X]) < L™ 1d(X) +c,
we have

k
d(X/Uy,UYI)§Ck+L—1<Zixi—1_yz'|+ Y, dxy,uZ)
1 aiZ4

+ X d(inyiUZiUWi))- 1)

a;>4

We need to analyze the a;=2,4,5,6 terms.
For a;=2,

d(x;0y,0Z) Sd(x;0y,VZ;; Z,AD,)+Y d(Z;nD)), 2
j

where D; are the connected components of D,. By (6.53),
YAZ:nD)SCUPA[L™'Z]) < CIAL ' d(x; 0y, v Z) +¢) ©)
j

which yields
d(x;0y;0Z) S2dy(x;, yyy 2,) + L “)

Inserting (4) to (1), the cI’L™! contributes to the ck.
For a;=4, we have

d(xwyuD(x)) Sd(y, D(x))+ 1 =d4(x, y, D(x)) +1. )

In (5) we used diam D(x)<1 which follows from Lemma 1d if D(x)CD; and this

holds by Lemma 1e, since, for x¢ D, as in (6.48), £(x,y)=*=0 only if xe D ,nLD'"_.
For a;>4, we have

dxuyvZUW)<y [d(xuyu Y, (Y;,nD,)uW(y)+Y.dZ~D)+ d(W(y))] . (6)
i J

Now Y. d(ZnD)) is controlled as above using (6.53) for Z+ ¢, i.e. for a=>35. Next,
J

dW(y) sclP**F ™
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since b=1 [see (6.34), (6.36)]. Indeed, W(y) cannot extend over two non-adjacent
L-cubes, since otherwise we would have an L-cube Lw’ with w' € D’ and |DNLw/|
=cLL™*> I?, as in the proof of Lemma 1d. Thus (7) holds. Since c[3**# < L' =% we
get for a>4, (6)<2d,(x,y,z)+ L'~ and a) follows.

b) We have

d(x'vuy'uY'; Y'nDy)
k \
Sck+L71 [Z IX;— 1 =yl + X d(x 0y, 0 Y Y,-m(LD}r\D))] ) ®)

i

where Y, are Z; or W, see (6.52). To get (8), we used the fact that there is a corridor of

width 2 *? between (LD,) and LD,nD. This implies that

dX';X'nDy)<c+ L 'd(X; X(LD,nD))<c+ L 'd(X; X ~(LD,nD))
if [L"'X]=X". Now, bound in (8), the second sum by
d(x;0y,0Z)+ Y d(x;Vy,0Z;; Z,0D,)
3 a;= 2

a.~=1,

+ 24 d(y; D(x))+ 24 Zd(inJ’iU Y (ijDI)U W(x;))
X Z dZ,nD ;NLDY) Z (d(D(x;)"LDY)+ d(W(x;)nLDy)). 9)

Now proceed as in a). Since D.nD'=¢, we get
Y d(Z,nD;,nLD)<cl’ (L‘lzd(Yj’mD;)+c), (10)
i j
where Y] are the c.c. of Y'. Similarly the right-hand side of (10) bounds the two last
sums of (9). Since
Yd(Y/nD)=d(x'uy'vY’; Y'nDy)
Jj
we get the claim of b)
c) We have
d(y, D'(x))<L"'|P| (11)

for any path P joining LD'(x) to Ly’, and not intersecting LD'(x’), except at one
point. Now, because of the corridors around LD’ in (6.5), and because D'(x') is
connected,

LD'~(L(D'(x')+ BRI))\LD'(x'))=¢.

So
[PA(D + B(L))NL(D'(x') + BRL))| L cL>** AL~ |P| +¢), 12
and, using |P|=|P\E|+|PNE]|
[P|£2|P\((D + B(I*))nL(D'(x')+ B2L)))| +cL***# . (13)

Inserting (13) in (11) and using the definition of d, we have (6.67) because W(Lx")
CLD'(x") [see (6.34)] and all the other terms after the semicolonind,, a=2,5,6 and
D(x)), for a=4, are contained in (D + B(I*))nL(D'(x) + B(2Lf)).
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Proof of Lemma 4. Consider a=6 first. It suffices to bound
L2

,;1 vg dx Ty oy, x)e*>M < ¢ 4

with ye W. We get an upper bound by replacing Ty,.5c by Ty, Define
n:Z3xZ*->R by n(x,y)=T(x—y) if x,yeW, n(x,y)=0,, if x,y¢W, n(x,y)
=T(x, y)e’® ™) if y¢ W, xe W and n(x, y) =0 otherwise. Then the left-hand side of
(14) is bounded by

[dxn(x,y). (15)
Since [ n(x,y)dy<1ifxe W, p(x,y)=0if x¢ W, ye W and [ n(x, y)dy=1if x¢ W,
w
we get
(15)=ssup [ dyT(x—y)e*<c, (16)
xeW WwWe
a= S5 remains to be proven. Recall (6.46) and (6.47) and consider first the k=1 term.

This is similar to the a=6 case above, the only change being that T is replaced in
(14) by T+b. We claim that, if d(xuyuY; W)> L’ [see (6.43)], then

dxuyuY; (YnD,)uW)>L. 17
Assuming this, we get, for a=1,2,3,
any dx|Qy (v, X)|x(Y)eFdxor T nD)vW) < o= L17/2 (18)
Indeed, using (17),
71
x(Y)__<_exp<— 5 + Ed(xuyu Y; (YnD,)u W))

and d(xuyuY; (YNnD,)UW)=d,(x,y,Y)for a=1,2,3 (18) follows from the induc-
tive bounds (6.25,6.26) and (5.11).
(18) and [(T+b)(x, y)dy=1 implies

FI(T+8) (x, y)ldy <1+ ce™ 11 (19)
Also we have, for xe W,
[ T+D)(x, e’ Mdy<c
WL‘

because we may use (16) for the T part and (6.25-6.27) for the b part. Then, for
k=1, we argue as we did above for a=5. The bound we just proved replaces (15),
while (19) reglaces fm(x,y)dy =1; in the modified bound on (15), we get a factor
(1+ce P <.

For k> 1, we use (18): this controls the I? coming from the sum over t; and the y
integrals are bounded using (19).

To prove (17) we observe that, by definition of W, (6.34), W is at a distance at
least L* from D, \ W because W is a connected component of (D . + B(L*))uD) or of
LD'. But D,CD, hence W is at a distance at least L* from D,\W. So, (17) holds.

Proof of Lemma 5. We shall use the following Green’s function bounds on T(x — y),
all of which follow from the Fourier transform bounds of Proposition 5.1.
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Let E be a set of L™! cubes and let ¢t <I2. Then,
[dyT(x—y)e*™ ¥ <c|E|(t+1)" ¥ exp ( - ﬂ(j:/_fl) (20)
and E t

o d(x,
fdyT"(x—y)e*" ""y’e"“y’E’/4gclEl(t+1)“3/2exp<—%ﬂﬂ) (21)

Note that we get [E| here instead of {E| and E is, by definition, a set of unit cubes.
Summing over t, we get

v : |E|
< 2 —d(x,E)/L
t;} (20)<cmin (L I B+ 1 B)+1 ) e , (22)
and similarly for the sum over ¢ of (21), with |E| replaced by |E|.

The proof of the lemma reduces to a combination of Lemma 4 and the Green’s
function estimates above.
a) Equation (6.74) follows immediately from (6.25). For (6.75), we use

1 éc Z e—d(y,NnLu)/Zed(yuzuZ)/Z (23)
ueZd

which holds for N(Z)+ — oo, by Lemma 1a. Since Q,,=0 if N(Z)=—co (by
Proposition 6.1 and Lemma 6.1), we may insert (23) in (6.71), and get

Ai(x,t)ScY Y [dydzy(y ¢ D)T'(x— y)e?L ™ 'Ix~vlg~demNnLuy2
Z ueZd

X [Q 17y, )"y AL N, 24)

Using (6.25), the z integral and the Z sum are bounded by L™*2. Use (21) with
E=NnLu, to get

EN L=,
(24)§c(t+1)‘3/2L"“/2< Y INALule E “+ ¥ [NnLule %¢ © > 25)
u¢ D’ ueD’

where we use the fact that d¥ Lu)> L if ue D’ and y ¢ D. Now, using [NNLu|< I,
by definition, for u¢ D', and [NNnLu|< L? for ue D', we get (6.75).
For (6.76), we proceed in a similar manner. Write in (6.71)

Y= 3 + .
z ZnD+ ¢ ZnD+=¢

(26)

For the sum over Zn D, = ¢, use the analogue of (23) with d(y, D . nLu) instead of
d(y,NnLu) and use (22) instead of (21): this gives the first term in (6.76). For the
sum over ZnD , = ¢ we use N(Z) <0 and the fact that Q,,=0 if N(Z)= — 0. If
N(Z)<0, N(Z)<1+2a since N,e(1—2a)Z. So, in that sum we may insert

1 + N2Z)

1<L27°L 7, 27)

Now, reasoning as above we get a bound L™ **%cI#d(x,D_)+1)"! which is
smaller than L™°%

b) is obvious, given Lemma 4 and I? <e'"/2.

¢) If xe D ,\D, (6.78) follows from Lemma 4. If x¢ D, \D, we have x=y in (6.72)
because t=0(T%x—y)=d(x—y)). In (6.72), y¢ D, so x=y¢D . But

0420, 2)=Q4x,2)=¢(x,2)=0 for x¢D,.
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For r+0, we bound the z integral and the Z sum in (6.72) by a constant, using
Lemma 4. The y integral in (6.72) is controlled by the fact that y¢ D but yeD,,
otherwise Q,,(y,z)=0. We bound it by
%, [dyrye(D \D)nLu)Tix—y)e? <2 3 |pLu |2 "]
ueZd u¢D’

using (20) with E=(D,\D)nLu, and using D ,\D=D , % LD'_C D, which follows
from (6.31) and Lemma 1e. Moreover, we used (D, \D)nLu=¢ if ueD'.
By Lemma 1c,

(28)

(28)<t™¥2cL 2, (29)

which proves (6.79). (6.80) is obtained from (6.78, 6.79) by summing over ¢.
d) Since D\LD'=LD', nD, CD, we may write in (6.73),

x(yeD\LD)= Y. x(yeD,nLu)+y(yeD,nLu).
u¢D’

The z integral and the Z,t sums in (6.73) are bounded by a constant, using
Lemma 4. Lemma 1b and ¢ give

ID,nLu|<clf, |D,nLul<L ™2

(for u¢ D").
Then, using (22) with E=D,nLu or E= D, Lufor the y integral in (6.73), we get
the two terms in (6.81).

Proof of Lemma 6. a) For a'=5,6 (6.84) follows from (6.85) (6.86) to be proven
below. If a or a’=2,3 (6.84) follows trivially from Lemma 4. So we have only to
consider a=1,4, and a'=1,4 or a=5,6 and d'=1.

Consider first a,a’' € {1,4}. If a=4, a'=1 we may use (6.76) to bound A4,(z) by
2L~%3, The z integral and the Z sum may be bounded by

cx(veD,)

using Lemma 4 and a=4.

The sum over ¢t and the y integral in (6.82) are bounded using (28) [plus 0(1) for
t=0]. Combining these, (6.84) holds in that case. If a=1, a' =4, we get a constant as
a bound on A4,(z) from (6.80) and the rest is bounded by 2L~ *3 from (6.76); a=1,
a'=1 is treated similarly.

Finally, consider a=4, a’'=4. Insert in (6.82),

1=x(zeD,\D)+x(z¢ D, \D).

For z¢ D, \D we get a bound cL™* on 4,(z) from (6.80) and we are done. For
ze D \D, we bound 4,(z) by a constant and we notice that D ,\D=D_ ,nLD"
CD,\LD’ because of Lemma le and D’'CD,CD’,. We write

§dz|Q 47y, 2)|e" "= PP y(ze D, \D)

<e[dzlQ4,(y, 2)x(ze D\LD', d(z, D(y)) < ) +exp(—cL)), (30)
where we used (6.27) for the integral over d(z, D(y)) > I**. We claim that
(30)scL™? 31

for y¢D, yeD,.
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To show this, we use (6.28): if y¢ D but ye D, it means that N, <0 for v’ such
that Lu’ € y. So, from (6.10) we see that

N,EN,+2-20= —1420+2-20<1 for yevClu'.

This implies f,=1— L™ ! and, using (6.28), proves (31). We use (28) [plus 0(1) for
t=0] to control the ¢t sum and the y integral. This gives (6.84) for a=4, a’'=4.
Now let a=35,6, a'=1. Here we combine (6.76) for A,(z) and (6.81) for the rest
which is just 4,(x) for a=35,6. This yields (6.84).
b) For (6.85), we use (6.81) on A,(z). We get

B (x)<Z [dydzy(y¢ D)T'(x—y) principle
et y‘!le(y Z)le TOVE B X(d(z, D)+ 1) T+ L7). (32)

Divide the zintegral into |z — y| < I and |z — y| > 7. The second part contributes
to L™% in (6.85). For the first, we have trivially

(dz,D)+1)" ' =Ly, D)+ 1)

Now insert (23) and bound the resulting z integral and Z sum, using Lemma 4,
by L™ 2. So we have only to bound

CLETT S AT )t e N D)y, D) +1)

t,ue

by L 3(d(x,D,)+ 1))~ ! which follows, arguing as in (25), from
d(x, D) (d(x, NnLu) + 1)’ Nt/%(d(y, D )+ 1)

and (22) with E=NnLu.

For (6.86), we consider a=4, a’'=5, 6. Divide the z integral into d(z, D(y)) = L7
and d(z, D(y))> . For the latter, we may use Lemma 4. Since ye D . \D, D(y)CD,,
and diam(D(y)) < 1 by Lemma 1e,d. So, ye D ,\D and d(z, D(y)) < I’ imply d(z, D,)
>1*—D, since D,CLD',nD,, y¢LD". (since yeD_ \D) and LD', has, by

o
construction, a corridor of width [ around D, nLD’,. Now, using d(z, D,)= —,

2
the bound (6.81) on A4,(z) and (6.80) for the rest, we get (6.86).
¢) Divide the z integral in (6.83) into d(z, W(y)) L’ and d(z, W(y))>L". By
construction, d(0W(y), D)= L% see (6.34). Since z¢ W(y), d(z, W(y)) <L’ implies

d(z,D,)z'-1'2= %— Since D,CD,, we may use (6.81) on A4,(z) and then again

(6.81) for the rest. If d(z, W(y))> L?, we use the exponential decay coming from
Lemma 4.

Proof of Lemma?7. a) Notice that J collects indices where b;=2, ie. W(yj)
=connected component of LD’ and y;e LD or ] 0. We shall use the fact that, in
order to connect W(y;)nLD" to W(y ,)r\LD forj’ J'+jthe path has to cross a corridor
of size 2L 7 [see (6.5)], where, by definition D is sparse (the corridors are not in D).
This is true also for j=0, since x'e D’ and even if W(y,) W(y;), ie. if the walk
revisits the same set, because of the condition x;€ W(y;) in (6. 49) the walk has to
leave W(y;) before revisiting W(yJ)nLD

So, let'G be a connected graph joining LD'nW(y;) to W(y;\. The (possibly
disconnected) graph G\(D + B(L?)) becomes connected when connected compo-
nents of D + B(LY) are contracted to a point.
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First, observe that the minimum of |G\(D + B(L))| overt all such G is less than
the left-hand side of (6.102). This is obvious, given what we said above, because, for
all d.’s in (6.103), the sets after the semicolon that are inside W(y,) are also inside
D + B(L¥): by definition for all i, with j'<i<j, we have b,=1 and therefore W,C D
+ B(L%). Next, we claim that

|G\(D +B(L)| =3 L' 7 (33)

which, then, yields (6.102). Certainly |G| = 2L! ¥ because of the corridors in (6.5).
Write

|G|=|G\(D + B(L*))| + |G (D + B(L¥))| . (34)

But G is in W(yj)\Lﬁ’, hence
G
[Z:H (33)

G
since, for each u in [ :' IDALu| £ cI? by Lemma 1b. Now,

‘[%]l <L YG|+c. (36)

This and (34), (35) proves (33).
b) This uses the corridor of size Lin LD’, around LD'. Consider a connected graph
G joining x, y and Z. Again, the minimum of |G\(D + B(L"))| for such graphs is less
than d,(y, x, Z) for a=2, 5. But since Z NLD + R y¢ LD’ and G is connected, there
must be a u¢ D’ with |GALu|= L. Since u¢ D,

(G\(D + B(L*))Lu| 2 L—cLf*3,

because D contains cIf boxes in Lu, except possibly on the boundary of Lu. This
concludes the proof of b).

|GA(D + BUI#)| < cLP 13

Proof of Lemma 8. This is similar to the proof of Lemma 7, using the corridor
B(2L7) in (6.60). Let G be a connected graph joining LD'(x’) to (LD'(x")+ 2B(L* *?))°.
The minimum of |G\(D+B(L"))| is larger than the left-hand side of (6.106), and,
obviously, |G|=2[**". But in the corridor (LD’ (64 )+ 2B(L* *))\LD'(x’) there
cannot be any Lu, with ueD’' because D'(x') is connected, see (6.5). So

G
|GA(D + B(L?)| L cIf 3= [Z:' and using (34), (36), we get (6.106).
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