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Abstract. We consider random walks on Zd with transition rates p(x, y) given by a
random matrix. If p is a small random perturbation of the simple random walk, we
show that the walk remains diffusive for almost all environments p if d>2. The
result also holds for a continuous time Markov process with a random drift. The
corresponding path space measures converge weakly, in the scaling limit, to the
Wiener process, for almost every p.

1. Introduction

Random walks are probably the most extensively studied models of non-
equilibrium behaviour. On a lattice Zd, a random walk is defined by a matrix
p(x, y\ x,yeZd giving the probability of jumping from x to y at each time. The only
constraints on p are

(1)

) = l V x . (2)
y

Usually one considers walks on homogeneous environments, which means that

p(χ,y)=p(χ-y) (3)
For a random walk in a random environment (RWRE), p is a random matrix. The
randomness models the effect of impurities on a physical system, and one would
like to study properties of the walk (e.g. its long time asymptotics) for almost every
sample p.

Apart from its obvious interest in the study of diffusion in non-homogeneous
media, RWRE may be considered as a simple model related to various other
physical situations. These include Anderson's tight-binding model for disordered
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electron systems, deterministic motion among random scatterers (the Lorentz gas),
or the time evolution of disordered systems.

In this paper we consider a RWRE, where p is a small short range random
perturbation of a homogeneous walk. We can deal with rather generic such
perturbations, but the most interesting is the one where the environment is
asymmetric: p(x,y) and p(y,x) are independent. For such walks we show that
normal diffusive behaviour takes place iϊd>2: the diffusion constant is non-zero
and independent of p for almost all p. Also, the (long time) scaling limit of the walk
is the Wiener process.

The continuous time analog of random walk is Brownian motion. The analog
of RWRE is the Markov process (on the state space Zd), with generator

A+!>•?, (4)

where fΓis random. Thus, the transition probability P(x, ί) in time t from origin to x
satisfies the Fokker-Planck equation

dtP = ΔP-V (ζP}. (5)

Our results extend to such Markov processes for a distribution of S whose
covariance equals

E(bΛ(x)bβ(y)) = ε2δΛβδxy (6)

with ε small, and d>2.
One of the first results on asymmetric RWRE is due to Sinai [1]. He showed

that, in one dimension, the effect of the asymmetry in the environment is drastic:
the mean square displacement is typically of the order (logί)4, instead of t in the
homogeneous environment.

This result prompted investigations and some controversy about the behaviour
in higher dimensions. Some numerical work [2] indicated logarithmic behaviour
in d = 2, for strong disorder. Subsequently, perturbative renormalization group
computations were performed [3-5] which gave support to diffusive behaviour in
d^2. The argument showed that the zero disorder (homogeneous) fixed point is
stable: upon scaling space and time, the effective disorder renormalizes to zero. On
dimensional grounds this is easy to understand for d > 2. If we define P'(x, ί)
= LdP(Lx, L2t\ where P solves (5), then P' solves (5) with a new noise ff = LdS(Lx'). If
we replace the state space by Rd and if S is white noise, then

E(b'a(xWβ(y}} = ε2L2~dδΛβδ(x - y). (7)

Of course, to make sense of this argument one has to regularize the delta
function and replace scaling by a renormalization group (RG) analysis. In d = 2, a
second order computation in the disorder reveals the irrelevancy of the disorder
[3]. Of course the perturbative RG can be argued to be reliable at most for small
disorder. However, in [3], it was argued that the large disorder fixed point is
unstable under the RG, and, thus, this gives plausibility to the claim that the walk
is diffusive for all (local) disorder.

This claim was subsequently challenged [6,8] by explicit counterexamples. In
[6], environments with long-range correlations were constructed which have
logarithmic behaviour like the one found by Sinai in d = 1. These models do not fit
into the framework discussed above due to the non-localities. However, they can
be understood in the RG framework [7] at least heuristically.
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An important problem in the asymmetric walk is the presence of traps, i.e.
regions where the walk can remain trapped for long times. Such traps will occur in
all distance scales and, if too abundant, they may produce sub-diffusive behaviour.
These traps occur in local models and were used in the counterexample of [8].
However, as we explain below (see also [7]), such counterexamples again fit very
well in the RG picture.

The trapping properties of the asymmetric environments are absent in models
of RWRE in symmetric environments, where e.g. p(x,y)=p(y,x). For continuous
time, this means that the random force S is the gradient of a stationary random
potential &= Vv. If v is white noise, then, in the formal scaling argument (7), the
power of L is replaced by — d, i.e. the noise is irrelevant in all dimensions. This is
indeed the case: in [9 and 10] it was shown that the diffusion is normal in all
dimensions and without our restriction on ε being small. These results were
subsequently extended to various lattice models [11-14].

Our proof is outlined in detail in Sect. 3. It is based on a RG analysis, somewhat
similar to the one in [15]. The RG transformation consists of decimation in time,
combined with the scaling of space and time. This transformation maps a RWRE
to another RWRE, with local transition probabilities, but weaker randomness, as
in (7). Iteration of the RG drives the system to a fixed point, given by the Wiener
process, which describes the long time asymptotics of the original RWRE.

The method should extend to d = 2, where a more detailed study of the RG in
the small disorder region is required. The proof given below works, formally, in
d = 2 + ε for all ε > 0. We hope to be able to use the method to study the emergence
of stochastic (diffusive) behaviour in deterministic models such as the Lorenz gas
and lattice versions thereof.

In Sect. 2, we state our results. The ideas of the proof are explained in detail in
Sect. 3, where the outline of the rest of the paper is given.

2. The Model and the Results

A random walk on Zd is described by the transition probabilities p(x, y) from x e Zd

to yeZd:

p:ZdxZd-+[0,ϊ] (1)

satisfying

Σpί*, jO=ι. (2)
yeZd

p allows us to define measures μτ, TeN on the space Ωτ of walks
ω: {0,1,..., T}^Zd starting from ω(0) = 0:

μτ(ω)=Hp(ω(i-l),ω(ί)). (3)
ί=l

We will study in this paper the large T properties of such measures. It will be
convenient to realize them as measures vτ on C([0,1]), the space of continuous
paths ω: [0,1] -»Rd, by rescaling the time in a standard way. Thus, given an ω e Ωτ,
we obtain a piecewise linear path

ω(i-l))), (4)



348 J. Bricmont and A. Kupiainen

where i — 1 = [Tί] and [ ] denotes the integral part. vτ is the measure induced by
(4) on C([0,1]), and we will study the limit

lim vτ (5)
Γ-»oo

also called the scaling limit, and its properties. For convenience, we will consider
below times given by T=L2π for neN and L a fixed integer chosen later. We will
denote vL2n by vn for short.

A random walk in a random environment is a random walk for which the
probabilities p(x,y) satisfying (1) and (2) are random variables with a given
probability distribution. We then investigate the existence of the limit (5) almost
surely with respect to this distribution.

Let us now specify precisely the properties of p which we impose. For simplicity,
we consider nearest neighbor walks (see, however, Remark 1 after Theorem 2):

1
^+b(x,y) \χ-y\ = l

ί Λ 2d ίt\
p(x'y)= 0 |χ-y|Φi. ( )

For b = 0, (6) defines the simple random walk. From (2) we see that

3>) = 0. (7)

The b = {b(x, y)}x^eχd is a family of random variables whose distribution 0* we now
describe.

(PI) Independence. We take b(x,y) and b(x',y') to be independent if x + x': order
the unit vectors in Zd in some arbitrary way: (el,e2, ...,e2d). Put

b(x) = (b(x, x + ej,..., b(x, x + e2d)) e R2d. (8)

We take [b(x)}X€Zd to be independent, identically distributed random variables with
mean zero

Eb(x) = Q (9)

satisfying (7) and (1) for p of (6). Note, in particular, that b(x,y) and b(y,x) are
independent: the environment is asymmetric

(P2) Isotropy. Let R e 0(d) be a rotation of Rd fixing the lattice Zd. This induces a
permutation π e S2d of the e/s, and thus a permutation of the coordinates of b(x),
π*b(x). Then, we require that

b(x) and π*b(x) (10)

are identically distributed (note that this and (7) imply (9)).
We next require that b in (6) is a "small" perturbation in the following sense.

(P3) The generating function of b satisfies

Eetb(x>y)^et2ε\ (11)

Finally, we impose a condition on the probability that the p(x, y)'s are near zero:

(P4)

(12)
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This is designed to avoid the walk getting "trapped" in some region of Zd, see the
discussion in Sect. 3; ε in (11) will be taken small and Γ in (12) large.

We now state the main result concerning the limit (4). Let us denote by

(13)

the transition probability density for the Wiener measure VD with diffusion
constant D. The scaling limit of our walk is given by VD for almost all environments.
The convergence takes place in at least in two senses: first of all, as Theorem 1
shows, suitable correlation functions converge, and this implies convergence of the
diffusion constant and of the finite dimensional distributions (take f(x) = eίkx

below, and use Theorem 7.6 in [16]). We consider the following class of smooth
functions:

9 = {/ε C«(Rd)\ I/Ml + 1 Vf(χ)\ £ Ce^/2} .

Then,

Theorem 1. Let & satisfy (P1)-(P4) and d>2. Then there is anε0>0 and Γ0 such that
for ε < ε0, Γ > Γ0 there exists a D > 0 such that the limit

exists and is given by

for any /x ... /ke J*, and ίx ... ίke [0, 1] ^-almost surely. Moreover, D satisfies

|D-l|^cε2. (15)

Let us define the diffusion constant in time T= L2n by

A^)=^ΣMω)ω(Γ)2 (16)
I ω

and

D(p)=limD ϊ l(p). (17)
w-> oo

Then,

Corollary. The limit (17) exists ^-a.s. and equals

where D is given in Theorem i.

Indeed, (16) equals

whereas
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Actually, the convergence to the Wiener measure also holds for all bounded
continuous functions on the path space, not only facίorisable ones, as in
Theorem 1 :

Theorem 2. Under the assumptions of Theorem 1,

VT-+VD (14)

weakly, ^-almost surely. D is the same as in Theorem 1.

Remark 1. Theorems 1 and 2 hold for a much more general class of RWRE's than
described above. While the general case is described by our inductive assumptions,
our results extend, for example, to the following class of models: we assume

p(x,y)=T(\X-y\) + b(x9y) (18)

with

and

y

The random fields b(x) = {b(x,y)}yeZd satisfy
(a) b(x), b(x') are independent, identically distributed.
(b) G(/) EE E exp ft 6(0, y)f(y)\ ^ expε2 £ e~ ^f(y)2.

(c) (Isotropy) G(/)=G(R*f\ where ReO(d) fixes Z4.
(d) Prob(p(Q,y)>l-e-

N)<e-NΓ; JV^l.

Remark 2. The analysis covers also a continuous time version of RWRE. Let
P\x, y, β) be the solution of

dPt

— ̂ -p./ϊ)/*, po(Xjyfβ) = δχy (20)

with A the Laplacian on Zd, V the finite difference operator and let /?.(χ), ί = 1,..., d,
x e Zd be independent identically distributed random variables with mean zero
and

IA(χ)l<β (21)
This problem essentially reduces to the previous ίeN case by putting

p(χ, y)—eΛ v β(χ> y). (22)
Clearly Σp(x,y) = l and p(x,y)^Q. Furthermore, p is analytic in {βi(x)}itX in the

y
polydisc (21) (as a bounded operator on /2(Zd)) with

A 0p f ! , (23)

where n^ are the multiplicities of β£x)'s, and d(X), for Jf cZd, is the length of the
shortest connected graph on X; (23) may be obtained via a repeated application of
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DuhameΓs formula and of

Therefore

p(x,y) = Ep(x9y) + £ M*,3>) (24)
YcZd

and

IV*, y)\ ̂  (cε)'y| exp [ - d(xuyu F)] .

These p(x, y)'s fit into our inductive assumptions. Here bγ collects terms in the
Taylor series of p with β£x\ xeY. Thus the ί?y.'s are independent for disjoint l?s.

3. The Renormalization Group - Outline of the Proof

1. The RG Transformation

The RG will allow us to replace the analysis of long time properties of the walk by
the study of a map, the RG map, relating transition probability densities of
successive scales.

Given a matrix p(x, y) satisfying (2.1) and (2.2) and thus defining a random walk,
choose an integer L>1 and set

fl p(ω(i-l\ω(ί))^LdpL2(Lx9Ly) (1)
ω i =Ί

for x,ye(L~lΈf. In the sum, ω(0) = Lx, ω(T) = Ly and we write |ω|=L2. Let
Pτ(x, y, p) be the probability, in the random walk defined by p, to go from x to y in
time T. Explicitly

PΓ(x,^pHΣΠ«-l),ω(0) (2)
ω i= 1

v/ithω(Q) = x,ω(T)=y.
With definition (1) and T=L2", we have

PT(x,y,p) = L-<PT*(L- 'x, IT V.Pi)

= L-« Σ L-^'-^ΠpΛωίi-lί.ωO )), (3)
ω:ω(i)e(L-1Z)d ί=l

where (̂0) = L~1^:, 6^(Γ1) = L~1j;) ^i =L~2T. The powers of L in (1) are of course
chosen because we expect the long time limit to be diffusive. The ones in (3) become
very natural, provided we note that, since ω now are walks in (L" 1Z)d, due to the
scaling involved in p1? it is natural to replace £ by an "integral." Therefore, we will

ω

shift to the following notation:

ldafx.y= ί Π dω(i)δ(ω(Q)-x)δ(ω(t)-y), (4)
L~lZd t = 0

where

j dω(ί) = L~d Σ (5)
(L-1Z)d ω(i)e(L-1Z)d
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and

(6)

Equations (4-6) will shortly be used with L replaced by L", neN. Thus (3) reads

(7)

(8)
i = l

Equations (2) and (3) are of course nothing but a convenient rewriting of Pτ. It is
obvious that we may iterate this operation, to obtain

Pτ(x,y,p) = L-ndPL-2nτ(L-nx,L-ny,Pn), (9)

where the right-hand side refers to walks on L~nZd with transition probabilities
pπ:L~/IZdxL~wZί/-»[0,l]. Indeed, we have the recursion

ypn(ω), (10)

where the right-hand side involves (4-6) with L->L". Clearly, the property

(11)

is preserved under the map (10); (10) is the Renormalίzation Group map. It maps an
"environment" pn to another pn+1. Thus pn, π^l, are random variables, being
functions of p. The meaning of (10) is that the rescaled long-time transition
probabilities for our RWRE are given as the transition probabilities in the rescaled
time of a RWRE with renormalized p's. Given (11), it may be useful to think of
pn(x, y) as a transition probability density, in Rd, which is constant on cubes of side
L~nd. To solve for the scaling limit we need to solve for the p'ns.

Consider for example the diffusion constant (2.16). We get from (2.16) and (9)

Dn(p) = D0(pn) = $dypn(0,y)y2. (12)

Thus the long time behavior is reduced to a time 1 problem for pn, as n->oo.
The next step consists in dividing pn into a "deterministic" and a "random" part :

pn(x,y)=TH(x-y) + bn(x,y), (13)

where

Tn(x-y) = Epn(x,y), (14)

bn(χ, y) = pn(χ, y) - Epn(χ, y) , (i 5)
and we used the translation invariance of the distribution of ft. Evidently, by (11),

jdyTJ(y) = l, (16)

!dybJίx>y)=0=EbJίx,y). (17)

The bulk of this paper consists in showing that bn tends to zero as n->oo,
whereas Tn tends to (2.13). Let us consider Tn first. Thejteration (10) is very easy to
solve if ft = 0: we have a convolution and denoting by f the Fourier transform of T,
we have

ίk\L2

fn+l(k)=fn , (18)
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i.e.

/ £ \ L2»

fn(k}=f(— j , (19)

where, from (2.6)

1 ί
^ cos/cα. (20)

a α=ι

Hence, as n-»oo,

where

Of course b is not zero and, at each scale, bn will modify the diffusion constant.
Since bn goes to zero, we shall obtain a sequence of approximations Dπ, given by

)1(pn)), see (12), to the true diffusion constant D.

2. The Flow of the Disorder

Now, let us see in what sense bn goes to zero. The recursion (10), written for b, reads,
using (15)

bn + !(x, y) = (Rbn) (x, y) = lί f dω£Ly[(ΓΛ + ftj (ω) - E(ΓM + fej (ω)] . (23)

Equation (23) defines the renormalization group map R for the stochastic
part b oϊp. The main difference between bn and b of (2.6) is that bn(x, y), bw(jc', /) are
no longer independent. Indeed, we have

bn(x, y) = Lnd J datfrxLny{(T+ b) (ω) - £[(T+ 6) (ω)] } , (24)

which shows that foM(x, y) depends on b(x, y) for

|Lwx-Jc| + |Ln>;-Jc|^L2w. (25)

Also, pn are not strictly local: pn(x,y) = Q only if

(26)

Of course, we expect bn(x, y) and bn(xf, y'} to be only weakly dependent if |x — x'\ is
large, and be exponentially small if \x — y\ is large. The third difference is that bn

lives on L~"Zd, i.e. we have a proliferation of variables: obviously bn(x,y) and
bn(x',y'} should be "almost the same" if |x — x'| and \y — y'\ are very small; in
particular, they will not be independent but, rather, strongly correlated.

These problems are solved by localizing bn(x, y) in terms of which b(x, j)'s it
depends on. We write

bn(*,y)= Σ bnγ(x,y), (27)
yczd
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where bnY(x, y) are random variables that are functions of b(x, y) for x e L"Y (more
precisely, in a neighborhood of this set, see below). Y denotes the union of unit
cubes in the lattice of spacing L~n centered at y e Y. An expression like (27) would
result from (24) upon expanding the ft's:

= Σ Σ T^(Lnx-x1)b(x
("i) (χi)(yt)

(28)

and letting bnY(x, y) be the sum of the terms for which Y is the smallest set of cubes
such that uXfCί/Ύ. We cannot however proceed to straightforwardly. There are
two reasons for this.

First, the expansion (28) is not a good thing to do, if some ft(x, y) is not small, i.e.
in particular if T+ b is near 0 or 1. This is the problem of traps: configurations oϊb's
that will cause the walk to be trapped in some region in Zd.

Second, even if all the b's are typical, i.e. of order ε, the expansion (28) turns
out to be uncontrollable, due to multiple scales. This means that even small initial
ft(x, y)'s can give rise to a bn at some later scale, which is not a small perturbation of
Tn: traps can occur in longer scales as a collective conspiracy of small ft(x, y)'s. This
mechanism was exploited in [8] in order to provide examples of RWRE with
subdiffusive behaviour.

We now describe these two problems in turn and the ways we deal with them.
First, consider the RG map (23), for n = 0 (the first step) and all ft(x, y) entering in

ftι(x,y) small:

\b(x9y)\<S9 (29)

where <5<O Provided δ>ε, (29) is probable. Then, to first order in ft,

y}. (30)
x,y 1 = 0

Let us localize (30) in b as indicated above. We define, for u e Zd,

bίu(x',y') = Ld Σ Σ Σ T\Lx'-x)TL2-\Ly'-y)b(x,y), (31)
JceLu y t = 0

where Lu is the Ld-cube centered at Lu (note that ftltl is taken to be localized in Lu
due to the scaling by L). Clearly, ftlttl and b2t42 are independent if uίή=u2

Let us inquire the variance of (31). We will study later in great detail the
linearized RG map (30), so let us now just get a qualitative picture of it. The free
walk part T* satisfies

r(x)SϊJϊexp[-2|x|/ί1/2]; ί>0 (32)

(the 2 is arbitrary: the true behavior is rather as exp[ — cx2/t] but we won't need
such accuracy here). Consider for example the case x' = y' = u = 0. Then, we walk
freely from 0 to x in time t and from x back to 0 in time L2 — t. The walk, in time
s L2 predominantly stays near the Ld-cube LO, hits a particular x with probability
LΓ d at a given time t and 0 again with probability L~ d. Altogether, summing over L2



Random Walks in Asymmetric Random Environments 355

times, we have

(3ί)~CL2~d Σ Σ K(x,y)b(x9y) (33)
xeLQ \y-x\ = l

with

Being the sum of Ld independent random variables, (33) then seems to have
variance

EMO,0)2~CL4-V. (34)

This calculation seems to indicate that the randomness becomes more relevant
'in longer scales if d < 4. However, we have ignored a very important property of b,
namely (2.7): £ b(x, y) = 0. We may take advantage of this in (31) by replacing

ΓL2-'(L/-;y) there by

TL2-\Ly'-y)- TL2-\Ly'-x} (35)

for the terms with L2 - 1 φ 0. But, since | j; - x| = 1 , (35) equals VXT
L2 ~~ \Ly' - x) and it

is not hard to bound it by (see (32))

_d+l

|F,ΓL2-'(L/-x)|£C(L2-ί) 2

 e-2U*'-*l/<* a-')1/2. (36)

Hence, for most t ((i.e. L2 — t> αL2, for some constant α), we gain a factor of L~ 1 in
(33) and therefore an L~2 in (34): The contribution to Eb10(Q, O)2 from the terms in
(31) with t<(l-a)L2 is bounded by

C(α)L2-V, (37)

i.e. the randomness is irrelevant (in the RG-sense) ind>2. We would then expect
the variance of bn to run down as (CL2~d)n (with C an L-independent constant,
CL2~d can be taken less than one for a suitable L). It is also clear from (32) and (31)
that, for general u,x',yr, the bound (37) will be multiplied by a factor

expj;-|x'-wH/-w|L (38)

i.e. bί remains local with exponential tails.
There is, however, a slight catch in the above analysis that will cause us a lot of

technical headache: namely the subtraction (35) will not help us for t near L2; we
have stressed this by the α-dependence in (37). As an example of the problem,
consider the t = L2 term in (31), again for x' = y' = u = 0; this is just

β^Ld £ TL\x)b(x,0) (39)
l*l = ι

whose variance is

Eβ2 = 2d(LdTL\x))2Eb(x, O)2 (40)

for any x, with |x| = 1. From (32) we see that no power of L is gained in (40), in any
Γ ddk ί d Y/2

dimension! Actually, as L->oo, LdTL2(x)->J e~k2/2d-— Ί = (^-) , so the pre-
L R (2π) \2π/

factor in (40) is greater than one in high dimensions! Hence, pointwise, in x, y, we
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cannot expect

Ebjx,y)2 (41)

to become small. Actually, we will later see that (41) stays bounded, as w-»oo, but
only by 0(ε2), if yen (the precise bound is slightly weaker, see (61) below). The
reader should realize that we have here a real problem for the whole RG scheme. If
(41) does not contract as n-> oo, then, Tn, given by (14), does not contract either: it is
recursively given by

, (42)

where the first term tends to stabilize to the fixed point (22), whereas the effect of the
second term would be to change D by 0(ε2) at each iteration step. Hence we could
not control the diffusion constant, in particular, keep it away from zero.

The way out of this problem is to realize that the random variable (39), if we
reinsert the / ( = 0 in (39)), satisfies £ /?(/) = 0. Therefore, although bnu(x, y) will not

y'
be smaller than $(ε2) with high probability pointwise, it actually will be highly
oscillating, and, when smeared with smooth test functions (what this means on a
lattice, see below), actually has a variance running down as L~κnε2. We will see that,
as a consequence, Tn will be smooth enough, such that when bn is smeared with Tn,
the E@(b2) in (42) actually will be @(L~κnε2). Thus, once smeared with "nice
enough" functions, bn has small variance, which inductively will guarantee that Tn

stays "nice enough."
To deal with such oscillations, Fourier transform is a natural tool. Recall that

bn:L-nZdxL-"Zd-*R (43)

and we expect bn(x, y) to have exponential falloff as \x — y\ becomes large, whereas it
will not be very smooth in y. Hence, it is natural to introduce a "mixed"
representation for such functions: retaining the lattice description for scales ^ 1
and using Fourier transform for smaller distance scales. Thus, denote by ξ a pair

ξ = (u,k)9 ueZd,ke 2πZd, \kμ\ < Lnπ . (44)

Then, given

/:ίΓ"Zd-^R

we put

(45)

where u, for ueZd, denotes the unit cube in L~"Zd centered at u.
Now, the random variables bn will be split into

bn = sn + rn, (46)

where sn will be the "small-field variables," ones describing randomness on scale n
outside the "trapping region" (see below), whereas rn describes the effect of the
traps. rn will be "large" (albeit they are very improbable, see below) whereas sn will
be "small" in the following sense.
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3. The Small Fields

We shall have

5π:L-nZdxL"nZd->R (47)

with

sn(x,y) = Σ sny(x9y). (48)
YcZd

The snY satisfy the following properties.

(A) Independence. snY(x, y) is a function of b(x, y) for L~nx in a neighbourhood of Y,
where Y is defined, like u in (45), as the union of unit cubes centered at points of Y.
In particular, 5nYl(x1,y1), snY2(x2,y2) are independent if

dist(y l 9y2)^2. (49)

(B) Deterministic Bounds. The random variables snY will be deterministically
"small," but, as explained above, the smoothness enters in these bounds in a non-
trivial way. It will be convenient to introduce the following norms on sn:

\\Snr\\ i = Σ sup sup \snY(x, ξ}\βd^^ A(%)~ ί/3 (50)
ueZd xeu ξ

Let us explain the notation. First, snY(x, ξ) is given by (45) applied to the y variable.
Remark that ύ localizes the y variable. Next, by d(X\ for X a finite set of points in
Rd, we will denote the length of the shortest connected graph on X and possibly
other points. Finally, A(k) describes the smoothness:

A(k)= Π [1 + l fcμlΓ 1 - (51)
μ = l

From now on we set d = 3. For d > 3 the exponent in (50) is different. While the flow
of the disorder is easy to express for any d (see (68) below), the UV singularities,
controlled by powers of A(k\ tend to make formulas complicated in general
dimension. The choice of the power 1/3 in (50) is due to a scaling argument that will
become clear in the proof of Lemma 5.1.

Now, in terms of (50) and (51), we have

_ (52)11- "r= (53)
and

δϊ-L-v-2*^, (54)

δ2

0 = ε2 K (55)

with K large and α small.
Let us understand what (52, 53) mean. sn is the main part of the randomness in

scale L", and this part will be deterministically bounded by (52, 53). In particular,

. (56)

For general d, we have, in (54), ~L~n(d~~2} (up to α), but the Fourier transform has
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poor falloff: (56) implies, using Schwartz' inequality and Plancherel theorem:

fMx,y)|dy^δB7e-^βυ^fΣ^)2/3Y/2 (57)

« \k J

and, from (51) and (44),

(V1 Λ/7/\2/3\ 1/2 s~<τn/2 f^Q\2^A{K,) \ ~ \^Ju . Ipo/

Thus, from (54) and (58),

/ - (L - —} \

i.e. (59) is small, but

<5ML"/2~L««, (60)

which is large.
(52,53) thus mean that, except for |7| = 1, the snY have L1-norms in the second

variable tending to zero as w->oo, uniformly in x. Consider then |7| = 1. These are
the terms we already addressed in the linear analysis and which, as we saw, did not
contract with n, pointwise in x and y. This is reflected in the blow-up of our bound
(60). A more careful analysis will show that

(61)
U — 1

i.e. the leading term in sn is snu(x, y) with y near u and this has an integral that stays
small for all n, but will not contract with n. Note that these would be the terms in
(31), linear in b, localized near the end point of the walk. The effective transition
probability densities pn thus have a stochastic part that becomes small with n, when
smeared with smooth functions, but stays just bounded when smeared with L00

functions.

(C) Stochastic Bounds. The sn are random variables, deterministically bounded by
(52, 53) and (61). We need also bounds for them as random variables. The reason is
very simple. As argued before, the variance of bn should contract with n (modulo
the smoothness problems). However deterministically the bn may be large: this we
saw already when studying the linear RG [see (31)]. Actually, (33), improved by the
L"1 discussed in (36), says that b t is roughly a sum of Ldb's, multiplied by l}~d.
Hence, b^ may be as large as

(62)

Therefore, Rsn will not satisfy (53), with n-+n + 1, and we want to show that the
event that (53) is violated is unlikely. sn + ί will then be the random variable
conditioned on the likely event, and the rest is put into rn+ί. On the other hand,
(52) will hold deterministically, due to the exponential decay in (38), and the
rescaling involved in the renormalisation group transformation (see
Proposition 5.2).

We will prove bounds for the generating function of sn. Let

(63)
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and

(64)

for ξ2 = (u2,k2). Then

|Ctt(x1? ξ2)
2 (65)

with

ε2 = L-(1-α)"ε2. (66)

Note that (65) means that the variance of sn is

Eφjxi, ξ2)
2 £ Cge-Ww^AW* (67)

which will ensure that Rsn violates (53) with small probability, using the fact that
we have α in (66) and 2α in (54).

For general d, (66) is replaced by

The power f in (67) is consistent with what we said before about εn: (67) yields an
L°°-bound in y, on sn(x,y),

1/3
_ Λ W
fc

,2

Γ2n

killing all the contraction (and more!) in ε2.

4. The Large Fields

We will now turn to the "large field" variables rn. As we already mentioned, these
arise because the expansion (28), which is used to localize fe1? is meaningless for b
not small enough. This is the problem of traps in our model which, in particular,
give rise to the assumption (2.12) on the probability of the p(x, y)9s being near zero.
To see this, consider the following configuration: p(x,y)~p(y,x)~l,

p(x,z),p(y,z')~Q, zφj;, z'Φx, and p(z,x),p(z',j;)~^— j τhe set D = {x,y} is a

trap: it is easy for the walk to enter D, but hard to leave. Note that such a
configuration would be impossible in a symmetric model where p(x,z) = /?(z,x).

The condition (2.12) is now easy to understand: if a walk enters our trap, it will
stay there for time T such that (1 - G(e ~N))T~ l/2d, i.e. T~ eN. In this time, without
the trap, the walk would have diffused a distance T1/2~eN/2. Hence, we want the
mean distance between the traps be larger than this. If P(N) is the probability

then we want

P(JV)-1/d^N/2 (69)

which is guaranteed by (2.12). Note that, for Γ in (2.12) too small, we would expect
the walk not to diffuse.
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We now face two problems. The first is how to separate the s and r variables
from each other, i.e. how to localize the traps. The second problem concerns more
complicated traps, namely the traps that can occur in arbitrary distance scales.
Indeed, even if we started with a model where the random variables \b(x, y)\ < δ0 for
all x9 y, large b'ns will be generated, see (62), and, hence, arbitrary traps.

The separation (46) is straightforward in the first RG step. We define the
"trapping region"

D = {x: \b(x, y)\ > <50, some

y,\y-x\ = l } (70)

and simply put

s(x9y) = b(x9y)χ(xφD)9 (71)

l(x9y) = b(x9y)χ(xeD). (72)

Next, we compute

(73)

using the expansion (28) and look for a region RcZd, where the bound (53) is
violated for Rs (and n = l). We then define, roughly, the trapping region Dl9 on
scale 1 as

(74)

where IT1!) is the rescaled D set:

L~lD = {xeL-^d\LxeD} (75)

(see Sect. 4 for precise definitions). rί will then have an expansion

rι(x,3θ = Σ^γ(*>J>) (76)

We will need two kinds of bounds for r ι y:

(A) Lower Bounds for pn. This is the crucial bound: the inductive, scale L", version
of (2.12). This will tell us that a strong trap is unlikely on all scales. We introduce
random variables, "the trapping density variables" Nnu for ueZd. For rc = 0,

ueD, NOU = mm{kε(l-2(ήN\p(u,υ)>L2-kVv, |ιι-ϋ| = l}, (77)

uφD, N0u=-π. (78)

In this definition, 2 and α are put for bookkeeping purposes.
Now, NΛ9 n^l, is defined recursively, in terms oίNn_1 and new traps, coming

from the region JR, where Rsn. ̂  violates the bound (53). Rather than spell out this
recursion in detail here, we explain its main features (see Sect. 6 for details). Thus,
consider the typical event, where there is a single trap, say at the origin, and no
others within a distance eN°°Γ. Hence, the probability of escaping from 0 is

Σ ,
|y| = ι

(79)
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In the next scale, in case no new traps are created at 0 ( = 1 -block in LΓ 1 T? at 0), the
probability of escaping from 0 is given in terms of the original walk, in time L2 :

min ίpi(x,y)dy= Σ p(ω)^CL2L2~NθΌ (80)
xeO Oc |ω|=L 2

since we have $(L2) times to exit the trap. Of course, (79) holds only when the right-
hand side is much smaller than 1, since the left-hand side is less than 1. Here, we
only show how the flow of the large field goes; for precise bounds, see Sect. 8.

Thus

(79)^L2-*00+(2~2a), (81)

i.e. the "trap strength" at 0 went down roughly by 2 units. This, of course, is nothing
but a recursive way to see that, once we "wait" long enough, the trap is harmless, as
discussed above. Thus, ignoring new traps, and possible old traps nearby, we may
put

JV1 0 = JV0o-(2-2α) (82)

whereby, for Γ large,

Prob(Λ% = N)~LdProb(N0o = N + 2-2α) (83)

~e-
NΓέΓΓ(2-2β) (84)

and, iterating this,

= N)~e-(2-2φΓe-NΓ. (85)

Once Nnu~Q, this will signal the absence of a trap at u. This does not mean that
we may completely forget about such traps yet. As random variables, the transition
probabilities connecting to such u's are not of the form Tn + sn, with sn small in the
sense discussed above. We then proceed as follows: Note first that, starting with
ΛΓ0 0φO, Nn0 becomes zero much before (84) gets any significant corrections, i.e.
much before the Lπd box at 0 is likely to contain any other u with N0ίίφO or new
traps generated by Rs. This was the argument leading to (69) [see also (87) below].
Therefore, we may "wait" much longer still. It is easy to see what this means, if we
go back to the starting scale. Then rn(x, y) is collecting walks, in time L2", from L"x
to L"y, which visit 0, our trap. Since there are no other traps, these are roughly free
walks. Therefore, rn(x, y) becomes very small unless y is very close to 0 (the end
point problem discussed above). Roughly, for x near 0,

L-<»-"'» (86)
o

where ri is the scale s.t. iVπ,0~0, i.e., see (81),

Thus, (85) becomes $(εM), i.e. of the order of the (variance)1/2 of sn when d(n— ri)
~n, i.e. when

At this point, rπ(x, y) satisfies similar bounds as the sn and may be absorbed to
them. Our original trap has disappeared (the estimates above will be slightly
modified, since we want rn to satisfy the Fourier bounds (52, 53), see Sect. 7). From
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the argument above, see (84), we learned that, throughout the iteration

Pτob(ueDn)^e-cnΓ (87)

with stronger bounds if Nnu is large. Equation (86) will not be modified much by the
traps in higher scales. These are generated when Rsn violates (53), which has
probability, using (65)

exp( - cδ2Jε2

n) < exp( - cL«nδ2/ε2) (88)

which is super-exponential in n, in contrast to (86). To summarize: we need to keep
lower bounds for pn in regions where Nnu > 0. These are, when the right-hand side is
small, of the form,

min min J d ypn(x, y)^L(2~ """> . (89)
|tt — y| = 1 3ceu v

(B) Upper Bounds for pn. Two sorts of upper bounds need to be proven for the rnY

of(75)withl->n.
First, if Yn{u\Nn(u)>Q}ή=φ there are "real" traps in Y. rnY(x,y) will have

exponential fall-off

where d(X; Y) denotes the length of the shortest graph on X and possibly other
points, which becomes connected when each connected component of Y is shrunk
to a point. This is obvious: outside the traps, rn should behave as sn. See Sect. 6 for
details. Secondly, it is convenient to let Nnu become negative, after it reached the
value zero, by the same iteration (81):

ΛUι.o=tf»o-(2-2α) (91)

(again under the assumption that traps are isolated, which is likely). Then, rnY will
carry factors of LNn° and e~

d(χ^y^γ\ and will be absorbed into snY once these factors
are small enough. Due to the Fourier transforms, this is slightly tedious, albeit
straightforward, and we refer the reader to Sects. 6 and 7.

5. Outline of the Paper

The goal of Sect. 4 is still to explain the method: we perform explicitly the first RG
step, but do not prove anything, since the propositions stated there are special
cases of Proposition 6.1.

In Sect. 5, we do two kinds of estimates: first, we prove all the necessary
properties of Tn, defined in (14). Then, we get the deterministic and probabilistic
bounds on s(x, y) (see point 3 above).

Sections 6 and 7 are devoted to the upper bounds on rn. These bounds will be
expressed in terms of the random variables N; The net result being that rnY = 0
whenever Nnu= — oo, for all ue Y. So, if, in some region, we have Nnu= — oo, we
know that b = s there, and we may use the deterministic bounds (52,53). In Sect. 6,
we get L1 bounds on rnY. Once these bounds are small enough, we show, in Sect. 7,
using the arguments that led to (85), that a few more iterations produce Fourier
bounds like (52,53). Then we may, in the next step, add rnY to snY, and set the new rnY



Random Walks in Asymmetric Random Environments 363

equal to zero. These sections are the most technical of the paper; to shorten Sect. 6,
we have put most of the proofs in an appendix.

An essential ingredient of Sect. 6 consists of an upper bound on r(x9 y) for x
inside a trap. However, this upper bound follows itself from a lower bound on the
probability of escaping from a trap, roughly given by (88). This lower bound is
proven in Sect. 8. This is the part of the paper where a non-perturbative argument
is needed, since traps can be arbitrarily bad.

The net result of Sects. 6-8 are bounds on the large fields in terms of the trap
strength variables Nnu. These satisfy a recursion relation given by (6.10-6.14). Nnu

decreases, see (90), unless several JVntt's fall in the same L-cube, or new large fields
are produced. Moreover, when Nnu becomes sufficiently negative so that the
corresponding rΠM's can be reabsorbed into 5, we set the new Nnu = — oo. It remains
to show that the event Nnu = — oo is likely. This is done in Sect. 9. The proof is easy
to understand: the bound (87) shows that new large fields are increasingly
unprobable. So, we have mostly to control the possibility that several Nnu φ — oo
fall in the same L-cube. This is where Γ large in (2.12) is used. By (69), we see that,
for Γ large, the typical distances between large fields are so big that these will be
reabsorbed in the small fields much before two of them have a significant
probability to fall in the same L-cube.

Finally, in Sect. 10, we prove Theorems 1 and 2. Using the estimates of Sect. 9,
we know that the event bn(x, y) = sn(x9 y), for all x, y visited by the walk, is very
probable for n large enough. Then, we may use the deterministic bounds (52,53) to
prove convergence to the Wiener measure.

6. Notation and Choice of Constants

There are two notational difficulties in the paper: one is that we work with a
"running" lattice (L~nZ)d, and an ordinary Zd lattice. The other has to do with a
proliferation of constants and their relation to ε0 and Γ0 in Theorem 1.

To deal with the first problem, we shall generally denote by x, y, z the variables
in the running lattice and by u, v9 w those in Zd. This lattice is always imbedded in
the finer one. Boldface symbols such as u or x, denote the unit cube centered at w, or
containing x, more precisely the intersection of that cube with the running lattice.
Similarly, Y, for Γc Zd, is the corresponding union of unit cubes. Often, we shall
not distinguish between a set of cubes and the corresponding union. Symbols such
as Lu, L~ V LY denote the sites or the sets rescaled in the indicated way [see (74)].
[L~ IM] is the point in Zd whose coordinates are the integer parts of those of L~ V
and similarly for sets. We use the Euclidean distance, so that two cubes u, v are
adjacent iff they touch iff \u — v\<2 (in three dimensions). For X9 Y subsets of
(L~"Z)d, d(X) is the length of the shortest connected graph whose set of vertices
contains X, and d(X; Y) is defined similarly, except that the graph becomes
connected when each connected component of Y is contracted to a point. \E\ is the
volume for a set in (L~nZ)d, and the cardinality for one in Zd. For a constant α, we
let B(a) = (j {u, such that d(u,0)^a} and E + B(α) denotes the obvious union.

For the second notational problem, we let c, C denote a generic constant, so
that 2c < c is allowed. The point is that those constants are independent of our
choice of the renormalisation scale L. It is convenient to introduce constants that
depend on L (but not on the scale n): c(L) denotes a generic function of L. We shall
also use specific constants, U,lf,U, where we let y<ζβ<ζα2 and α^l. These
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relations will constantly be used without mentioning them: for example, we
assume that (87) is small, and at the same time, we use δ%2 <^επ, which holds for α
small and L large. Actually, we choose L so large that c<ζϋ and IP<^exp(Z7), for
some large p. It is also convenient to call the original scale rc0, instead of 0. Doing
that, we may write <5§ = ίΓ(1~2α)ϊl° and <$* = ίΓ(1~2α)I1, see (54,55). Of course, with
this choice, the running lattice becomes (L~(n~"o)Z)d. We write n — n0 = n.

The logic leading to the choice of ε0, Γ0 is as follows: First, pick α, /?, γ as above.
Next, choose L large enough to control various constants. Then, take n0 large
(depending on L); this determines e0. Γ0 is taken equal to Ln^ see Sect. 9.

4. The First RG Step

We start from (3.70)-(3.71). The analysis of (3.72), i.e. the perturbative small field
analysis is presented in Sect. 5. Here we just take as input the region R where $s is
"large," i.e. violates the bound (3.53). This is defined precisely in (5.90) and enters
the definition of the new large field region, which is a union of LΓ* cubes.

D, = ((BvR) 4- B(2J7))uiΓ \D + B(U)) (1)

with

D = {u\ueZd;lv;\v-u\<2, \DnL\\>Lβ}. (2)

Let us explain this complicated-looking definition. Our goal is to derive for

bfa jO = L3 f dωί(T+ b) (ω) - E(T+ b) (ω)] (3)

with dω — dω^^y, a splitting into "small" and "large" fields, as in (3.71). LD is a
region where (or near to where) there is a relatively high density of traps (^ Lβ ~3).
In (1), we put a "corridor" of width ~ L1 + y around L(Z)uK). The rest of D is given a
smaller corridor of width ~ Lα. These corridors mean that a visit to D starting from
outside LD1? i.e. LxφLD^ will be quite unlikely.

We write

bι(x9y) = si(x9y) + e1(x9y)9 xφD,, (4)

where ̂  collects such visits to D (and LK), see below. We expect ̂  to be small due
to small hitting probabilities, although not necessarily as small as s^. e therefore
denotes "expandable."

For x e D j we write

bi(x9y) = si(x,y) + el(x9y) + l l ( x 9 y ) 9 (5)

where lv will be the new large field variable (e +1 was called r in Sect. 3). It collects
the trapped walks; as a random variable it is dependent on b in a neighborhood of
the connected component of LD1 to which Lx belongs. e1 collects visits to traps not
localized to one component and therefore expandable, because, due to the
corridors, hitting probabilities are small.

We now define eί and llt We expand s in (3) [b = s + l, where / in the first
inductive step is given by r defined in Eq. (3.71)] and localize the walks according
to visits to D. Let first xφD^. For each veD we define a set W(v):
(a) if veLD, W(v) = LD^(v\ the connected component of LDt containing υ,
(b) if veD\LD, W(v) is the connected component of D + B(L") containing v.
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We decompose the walks ω in (3) according to the first visit to D, at vl9 the first
exit of W(v^ at ul9 the next return to D at v2 and so on. The reason for defining W(v)
as we did, instead of just as connected components of LD± is that, because of the
corridors, a small piece of D may fall inside a large component of LD±. Inside W(v)9

we just resum all walks and keep crude bounds. We thus get

fdω[(T+6)(ω)-(Γ+s)(ω)]=Σ Σ Σ Σ' Π
k^2 ίtίi vτeD UiφWi i = l

k u ά - ( b ^ s ) , ( 6 )

where uQ = Lx, vk = Ly, and W{=W(v^. The ί ί 9ίj satisfy Σ (*i + *ί) = ̂ 2» ^ 1̂ = ̂
ϊ = l, . . . ,/c — 1, and ίfc^0. Σ' refers to the tk = 0 case: then, vk = uk^^ = Ly and the
constraint %_ ! ^ W f c_ x is not applied (Ly may belong to Wk_ J. We also introduced
the notation

(Γ+ s)U", v) = f dωUΓ+ s) (ω) 'fl «) e Dc) . (7)
i = l

In (6) we subtracted on the left-hand side the pure 5 contribution (which is treated
perturbatively in Sect. 5). (b-*s) means that we have the same expansion but with b
replaced by 5. In (6), the factors (T+b)l

w are localized, as random variables, in W
(see definition below). But (T-f sJDC is not localized because of the characteristic
function on Dc, and because of s. Since s(x, y)χ(x e Dc) = s(x, y) [s vanishes on D, see
(3.71)] we have

(Γ+ sMu, v) = Σ Σ Σ Π ϊSK*/- 1, vύ ΐί ̂  ̂  » (8)
fc^l Π f ^ O 1^-^1 = 1 i=l i=l

where XQ = U, yk = v. The next thing to expand is the constraint on Dc in T£c in (8)
(this is not a localized random variable!): write, in (7), χ(ω(i) e Dc) = 1 — χ(ω(ί) E D),
and expand the product,

ίι = 1 vieD

Then, as in (6), we sum over the first exit from

(9)

T£(v^y) = Σ Σ ^nD^i^JT^-^t/^y)
f'l ίi ιeϊΓι

with m = n — tl. Using (9), we iterate the procedure to get

iMχ,y)=Σ Σ Σ Γ Π n^-i-^/Π [(-1)̂ ,̂̂ ] (io)
fe^l tlίi t^eD Ui^Pfi ί = l t = l

with ι;0 = x, rfc = 3;, and the notation is as in (6).
Now we insert (10) into (8) and (8) into (6) to get

j dω((T+ b) (ω) -(T+s) (ω)) - Σ Σ Σ' Π ^(u, ̂ -vt)
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where α, = l,2,3, t,£0, i = l ...k, ί';^l, i = l ...fc-1, £i;+i; = L2,

eί(»,«) = s(», «)•*,.. o (12)

β'2(I;,t/) = (Γ+fc)'>)u)) (13)

e'3(»,«)=-#mΛ»,«). (14)

The subtraction of (b->s) means that, for each term in (11),

3i:at = 2. (15)

Finally, £' means vt e D, ut φ W(vt)9 for αf φ 1 , unless i = k — 1 and ίfc = 0, in which case
uk-ι = Ly.

The final rewriting of our expansion deals with these constraints in £'

(ii) = Σ Σ Σ Σ ΓT (fai e wSnD)χ(M< ̂  w^(w, e Eb))
k^2 ti,t'i,ai,bi (Wt)i:ai = 2,3 «i,»i i :a f = 2,3

x π nwi-i-p/ffeL ί^^-ίfr-^s). (i6)
i=l i = l

We have the same notation as before. The sum over W runs over all connected
subsets of Zd. The sets Eb are

; W=W(v)}, (17)

E2 = {W\3veLΰ, W=W(v)}9 (18)

where W(v) has been defined in (a) and (b) above. Now the u,v sums are
unconstrained, the previous restrictions being in the characteristic functions, f]'
means that there is no constraint onuiφWiiΐi = k—l and tk = 0 (uk _ ί = Ly then).
The point of (16) is that the summand is now a localized random variable.

Definition. A function F(b) is a random variable localized in the set ScL~(n}Zd at
scale I?(n = n — HO), if F(b) is measurable with respect to the σ-algebra generated by

(19)

Lemma 1. The summand in (16) is localized in

uΛu(^i^ + B(3L1 + y)) (20)

at scale 1.

Proof. Qι(v, u) is localized in v and β2(f, u) in W(v)9 χ(We Eb) is localized, at scale 1,
in

W+B(3Ll + γ ) . (21)

Indeed, consider 6 = 2, which is the most delocalized. We E2 means that W is a
connected component of LD1 intersecting D. This gives a constraint, due to (1),
that

dist (L(Su JR)\ PW) ̂  2L1 ~ y .

From (2), we get another constraint, up to a distance L from LDί9 i.e. (21)
holds. Π

We can now, using (4) and (16), define e1. First, we set

(22)
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where Δeΐ=TAeί γ collects the terms for which (3.53) is violated, i.e. the
y

.R-contribution. This is defined and analyzed in Sect. 5 (see Proposition 5.5). Next,
we collect terms in (16),

L3 j <fo[(Γ+ b) (ω) - (T+ s) (ω)] = £ eγ (23)
y

with

Y=[L-1(uivίuί^)], (24)

and put

eιY = eγ + AeίY — Eeγ. (25)

We have

Proposition 1. Let xφD±. Then eiγ is localized in Y at scale L and satisfies

eίY = εγ + Eγ (26)

with

Σ ί dy\εγ(x, y)\ed(x^γϊ ^ L~α/2 , (27)
y

L\ (28)

and

EY = Q if YnD = φ, (29)

where

(30)

Proposition 1 will be proved in Sect. 6 (it is a special case of Proposition 6.1),
but note that the localization follows from Lemma 1. The bounds (27) and (28) are
easy to understand too. εγ collects terms in (16) with bt = 1 Vi, i.e. no visits to the
dense trapping region. For xφLD^ the collar Lα in (1) guarantees smallness via a

Green's function bound — — -— ~L~a. Eγ collects terms with bt = 2 for some i, i.e.

with visits to D. Now the corridor 2L1+r yields (28).
For x ^D1 we again get (16), with the modification that tί =0, i.e. v 1 =Lx, and

H î is the connected component of LDV containing Lx (note that Lx e LDi need not
belong to D). Then, l^y) collects terms with

[,L-\^iuWy]CDl(x) + B(2U)9 (31)

where D^x) is the connected component of D! containing x; eίγ is as before for
Y £ D 1 ( x ) + B(2U), and zero otherwise. Now e1=εifW1eE1 and eί=EiϊW1e E2.
Again, the bounds (27) and (28) follow since (31) means that the walks contributing
to ε or E have to cross the corresponding corridors. For Ii9 we will prove

Proposition 2. ̂ (x, y) = 0 unless xeD^ and is localized in D1(x) at scale L. It satisfies

(32)



368 J. Bricmont and A. Kupiainen

5. The Small Disorder Analysis

In this section we analyze the RG map R defined in (3.23) in the small field region.
Thus, given a map

s:L-*Z3xZΓ*Z3-»R, (1)

(n = n — n0, and we suppress n in sn and other variables, and put sn+1 = s')

Rs:L-*-lZ*xL-n-lZ*-+R (2)

is given by

(Rs) (*', /) = L3 J dω[_(T+ s) (ω) - E(T+ s) (ω)] , (3)

where

dω = dafc,Ly, (4)

is the path measure (3.4). s' is then given in terms of Rs by (4.22), see (67) below. The
inductive properties of the T and s that we establish are the following.

Proposition 1. Under the assumptions of Theorem 2.1, Tn may be expressed as

Tn = ̂ a + τn, (5)

where

\ (6)

α = l

and

cos/cα, (7)

(8)

τn is analytic in Σ = {k\\lmkμ\<3}, and, for keΣ,

\τ(k)\<^l2A(k} (9)
™=U3/W far |Reiy<logL". W

(A(k) is defined in (3.51).)

Before we embark on the proof of Proposition 1, let us make the following
technical remark. The nearest neighbour walk (2.6) has the property that the
matrix p has, apart from the eigenvalue 1 corresponding to constant functions, an
eigenvalue — 1 corresponding to the eigenfunction eιπx'(it l f 1}. This could make the
analysis below more cumbersome and so we will circumvent the difficulty by doing
the first step of the iteration as follows. We choose L even, and first replace p by p2.
Note, that for p2 the eigenvalue 1 is degenerate, reflecting the fact that the Markov
chain is now reducible. Indeed, p2 maps the set of functions on the sublattice of Zd

generated by the vectors ±eμ±ev into itself. This means that we may restrict our
Fourier transform variables k to "half of the Brillouin zone, i.e., say, \k^ \ <^πLn. In
particular, ^0(k) in (7) satisfies the bound |̂ o(ΌI < e ~ck2 (f°r re^ ̂  and w = 0) in that
region leading to (21) below. Without further mention, all the momenta are
assumed to lie in this reduced Brillouin zone.
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Most of the bounds for sn have been stated in Chap. 3. Let us gather them here:
First, the Fourier bound

Ikrlli^r (10)

[see (3.50) for the norm] and then the L1 -bound

and finally the stochastic bound (3.65):

1? ξ2)\2 , (12)

where φ = Res or Ims. Actually, to prove (1 1) we need to introduce yet another pair
of bounds, for the double Fourier transforms sn(ξl9ξ2). Defining the norm

-1/3 (13)
«1 fcl ξ2

we shall prove

\\SnY\\ 2^nγ (14)

and furthermore that

Efexp Σ MMφJίξM} £expfi*( Σ \f(kl9k2)\CJiξl9ξ2)}2

9 (15)
V kιk2 J \kik2 J

with

CJίξi, ξ 2 ) = e-2d^^^A(k1)
2^A(k2)^ . (16)

Equations (14)-(16) are needed to control convolutions s * s, for the proof of (11).
Given (5)-(16) for Tn9 sn9 we now proceed to prove them foτT' = Tn+l9s' = sn+1.

Proof of Proposition 1. Separate first the s-contribution to T':

Tf = L3$dωE(T+b)(ω) = L3$dωE(T+s)(ω)+T3 (17)

and expand s

ΣJrfω£ f\ Tnismi

nm i= 1

) (18)

with £m ;^l and obvious constraints for n,m. Γj is a multiple convolution

Now

'' (20)

k\
and f I — j is analytic for k in LΣ. Since, for k e Σ9 (6) and (7) imply

(21)
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we get from (21) and (9) that, for fceΣ, |Re/g<logLπ+1 for all μ,

|Γ(fc)| ̂  CL- 2<53/ W < δϊ+\(kk)2 (22)

and, for |Re/cμ|>logL"+1 for some μ,

Z2

l* Σ
m=ι

with

α = Oι2(logL)L-2. (24)

Easily then (n > n0 is large),

(25)

Now, consider T2 in (18). Since s has poor falloff for large k in both variables
separately, we use the translation in variance of T2 to combine the falloff from both
of them:

T2(k) = $dx$dyT2(x — y)e~ik(x~y) = Σ Σ K(k — k1)K(k + k2)T2(ξl9ξ2)eikU2

9 (26)

where ξ1 = (ίc1,0), ζ2 = (k2,u2). In (26) and frequently below, we use the following
easy identities for the Fourier transform (3.45):

(27)

(28)

with

$dq = (2πΓ3 J d*q (29)

and

_ π Sm(2*?μ)
11 Tn o<*-«/1 T—ft/~ι \

Thus, we need to estimate T2(ζ^ξ2) in (26). T2 is given by

(31)

with

and y=(71,...,yfc)c(Z3)k, n^O,
From (28),

(32)

ι - q)K(k2 + q)f(q)ne^~^ . (33)

By analyticity of f in Γ and the bounds (9) and (21), upon shifting

q-^q^ris(u2-ul)\u2-ulΓ
v (34)

with 0^s^2, we obtain (rc>0)

ly ξ 2 ) ̂  cecns2e-s^-^I(kly k2) , (35)
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where

/(*!, k^ = ίdqA(kί - q)A(k2 + q)A(qf1 +α> . (36)

We used

(37)

(38)

(39)

Here, we use part of <>3/2 in (9), and \q\ ̂  cL" to get the extra α, which will only be
used later. Equations (37-39) hold for \q0\^2. 1 can be bounded by Schwartz and

ίA(k-q)2A(qγdq£CA(Kf, 0^ί^2 (40)

as

I(kί,k2)^CA(k1)
2i3A(k^i3. (41)

Combining (35) and (41) with (14) and (13), and doing the k sums (\k\<*cLa)

Σ A(k)2l3A(k)1/3 ^ C(logL")d (42)
k

we get

i = l / o i

χy g-si |Mi-t>ilg-d(t>iut;2uri) ^-sk+ ι |υk+ 1 -u2|

K

where we used the following identity: let

Λ(x)=/(Lx), (44)

then

ueLu'

We will use (43) later in a more substantial way when we estimate Sy, but now
just take s~% and note that Esγ = Q (see Proposition 2 below) means only fcΞ>2
contribute to (32):

ft, ξ'2)\ ^ V " 1 " 1 ι)2/3^(fc2)1/3 (46)

with

(47)

Inserting (46) into (26) we get, for ke—Σ,

\f2(k)\ίλnA(k). (48)

Finally, we consider Γ3 in (17). This is the trap-contribution:

Γ3 = L3 J dωE((T+ b) (ω) -(T+s) (ω)) . (49)
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In Sect. 8 we show that

Eίsup $\rn(x,y)\dy\k^e-\u-vle-cnrυ2 (50)

for k ̂  L2. Whereby, expanding b = s + r in (49) and using (1 1) for the //-norm of s,
and Schwartz inequality repeatedly for several r's,

(51)

which, for Γ large, gives, in fee— Σ,

(52)

T2 and T3 will "renormalize" the effective diffusion constant Dn. To do this,
recall that

(53)

(54)

(55)

whence f(0)= 1 = f '(0) and so

f4(

By the isotropy assumption (PI) in Sect. 2,

3μί4(0) = 0, dμdv

for some y. By Cauchy's theorem (u is a unit vector) and (48), (52),

(56)

and, since dμdvdρf4(0) = 0 by isotropy, we get

|f4(/c)-y/c2|=4 dtΓ5t4(tk)
\t\=(ϋk)2

for feel", |RefeJ^logLπ+1, using (48) and (52). We may now put (d = :

so, by (56)

\Dn+

and

with

(58)

(59)

(60)

(61)

Equations (61), (48), (52), and (25) give the first part of (9) forn + 1, and (22) and (57)
yield the second inequality in (9). Indeed, the quadratic part of r(k) is exactly
cancelled by y/c2, coming from (55). This explains the "renormalisation" of D.
Equation (8) follows from (59). Π
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Definition of sn+ί. Let sn satisfy the bounds (10) and (14). Rsn will violate these
bounds with small probability. We want to define sn+ΐ such that (10) and (14) are
true again, for n-+n + \. It turns out that it suffices to make restrictions only in
terms of the linearized RG map (3.31). Let us formalize this. We set

<?s = Σ (&s)0. (62)
v'eZd

by

x)Tlf-t-1(Ly'-y)sJ(x,y) (63)
t eLv' ί = 0

and look where <£s violates (10) and (14). Let

χv = χ(\\(^s)v\\i^δf,i = l,2) (64)

and set

ρv = (l-E)(£>s)vχv, (65)

where (1 — E) means that we subtract the average. Note, that E&sΌχΌ^Q is non-
zero because of the χv. Then,

\\Qv\\i<W> (66)

and we define (s' = sn+1)

s' = ρ + (Rs-&s) + As, (67)

where As is the reabsorbed trap contribution

W, (68)

see Sect. 7. It is convenient to localize (67) in the following way. Consider jRs given
by (3).

We expand both terms as in (18) and (31), to get

Y

We put

(Rs)v = £' (<7y - Eσr)n(!) ~1 (70)
r

with u^cLv, or Y=Yl9 i.e. fe = l in (32) and diam(71)<iL, ^nLvφφ, i.e. we
gather to (Rs)v, the local part, all Y s that touch Lv and are allowed to extend up to

distance — from Lv. This will guarantee that (Rs)Y for | Y\ > 1 will contract strongly.

n(Y) is the number of L-cubes for which Y contributes to the sum. To complete the
definition, we collect the rest of Y to (Rs)Y:

Σ/(σγ-Eσl) (71)
Y

with y=[L-1ulf]. s'Y is now defined. We proceed to discuss its properties.

Proposition 2. s'Y is localised in Y. Moreover, s'Yl, s'Y2 are independent, if d(Y^ Y2) ̂  2.
0, Es'Y = 0 and

Q. (72)
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Proof. By induction, (71) satisfy the claims, as do the (&s)Ό, and χ's. For (70), let

\v1 — v2\^2. Then, if Yl contributes to svι and Y2 to sV2, d(Yί,Y2)> — and the

localisation and the independence hold for (70). Asγ are constructed (see Sect. 7)
such that the claims of Proposition 2 hold. Then Es'Ύ = 0 by construction, and (72)
holds since by induction it is true for sγ and then, using j T(x)dx = 1, it holds for σγ

and ρ. Π

Proposition 3. We have the bound

KΊIi^'y. (73)

Proof. We use (43), where we insert sί = 2(nί + l)~1/2. (Recall: S;6[0,2].) Using

(74)

and easy estimates, we get

MM)l^(logi!1)k-1Lck Π δγΛ(W3A(k'2)
1/3e-d(»'^u'^L-ίγ>lle-ίd(Y'> (75)

i= 1

with Y=uYt.

Let first \Y'\ > 1. Then, only k> 1, or Y1 with dian^Y^ — contribute to (75),

and, for L large,

|s'r(^,£yi^~CL£~α|Y'^ (76)

We used [L" 1 7] = Γ to deduce

(77)

and controlled the sums over k and Yi by e~*d(Ύi} and powers of δ. Equation (76)
yields (73), i = 2. For \Y'\ = l,(Rs — £?$}„> is second order in sv or involves sy, | Y | > 1 .
Thus

KKs-J^sU^,^)!^^^ (78)
Together with (66) and (68), (73) follows again, for i = 2. For i = 1 the analysis is
parallel, starting from the bound (76) without A(k\)2β for σγ(x\, ξ'2). Π

Proposition 4. Equation (11) holds for n-*n + 1.

Proo/. Equation (68) and (78) yield

J \(Rs -&s + As)v,(x', y'}\dy' ^ L~n«δ"ne-d(u'uv>uxΊ (79)
u'

by virtue of (3.59), for all u', v'. Thus (79) is negligible and we turn to ρ in (67).
We decompose it as

ρ,,(x',/) = L3 Σ $dxTL2-\Lx'-x)sv(x,Ly') + ρ2

v,(xe,y')^Ql

v, + ρ2

v>. (80)
υeLv'

In ρ2, a T factor appears having L/ as its second argument, so we get, using (10),

-d^v'"x\ (81)
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For ρ1, if \u' —1/|^2, we get

~ «™™*> (89)
\ ί = ι /

and (11) is proven. Π

ueLu'ueί/v'
u

where (11) was used. Thus, the first inequality in (11) follows for n-+n + l.
For the second inequality, let us denote by σu the random variables

'su(x,y), ye\, \u-v\<2,

otherwise.

We wish to prove (11) for σu. Equations (81) and (82) yield

<*n +ι«'(*', y) = (XΛλΛ*', y) + σ^x', y') (83)

with σM/(x',j/) = 0 if j/ev', \u' — v'\^.2, and

v'

and «β/π is the operator

ί rd re \ ( vf \J\ T 3 X"1 f xJv-T' k2 ~ I/ J v-' -vΛ Λ ^v 7 ιιf\ {Qζ\\ύΦ nu tι)u'\'λ' •> y ) — -«-' / , J t i Λ J [ n ^J-/Λ —Λ^O ntt^Λ, J-/y ^ . V® /
weLu'

Equation (83) is solved by

with σ0 = σ0 = s0. We need to estimate

with -1- -**-*«• *•> - ueLkΏ,

= μqί...dqke
i^Lx'-ί'"<xδ(qί-Lq2)

x <5(ςf2 - ̂ 3) <5(fl* -1 - ̂ t) Π tL-Γ Hίi)
ί

k
L»'-L'-*x) p f^ii-iqf-i, (86)

whence

L3tB(x', x) = J dge^*' ~ L ~kχ} l\ t, - i(L~ lqf -ι<;Ce-^x'-L~kχ\, (87)
i = l

and thus, for \υ' — u'\<2,

...^n_kσn-k)u{x',y'}\

lΓ3" Σ jdxe-* l*'-I "It3e|e-<l(*υ"υ''>

ke-d(x'^u'^ (88)

except for w = /c, where we have δ*_k replaced by <50. Hence, altogether
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For future reference, we remark that the following analogue of (1 1) for s(ξ, y) are
proven in the same way:

J I s J i t L -

To finish with the deterministic part of the proof, we define the region R of (3.73) as

Λ,+ ι = {n|χ. = 0}. (90)

Then

Proposition 5. Define Ae by

Rs + As = s' + Ae. (91)

Then

(92)

and

Aeγ(x,y) = Q unless Y=v,\eR. (93)

Proof. We have, see (67),

(\-Iυ}}. (94)

The dominant term contributing to (92) is TL2~ lσ as in (85), yielding the bound.
Equation (93) follows from (94) and (90). Π

We turn now to the stochastic bounds (12) and (1 5) on s', given by (67). The crux
of the small field analysis is the study of the linearized RG j? defined in (62) and
(63).

Lemma 1. Let s satisfy (12) and (15). Then &s satisfies the same bounds with £„
replaced by L~1(logL) lcε^.

Proof. Let us use J su(x, y)dy = 0 to rewrite (63):

&S = Sl+S2+S3 (95)

with

L2-2

Sι«'(*Ί>*2) = ί<3 Σ Σ ldx1dx2su(xi,x2)r(Lx'1-xi)
ueLu' ί = l

u)), (96)

weLu'

(97)

XiKίXi.Lxy. (98)
ueLu'

Each st is rewritten, using the formulas (27), (28), and (45). The result is

Uft,&)= Σ Σ Rtf'itMtiite (99)
ueLu' ξιξ2
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with
L2-2

Rι(ζ'9ζ>u) = L £
f = l

ί=l

377

(100)

K(k'2-q)e

R3(ξ', ξ, u) = L' 3χ(v2 e k
L 2

\

(101)

(102)

To bound jR l 5 we note that the integrand is analytic in \lmq\ < 3. In that region
(37) holds and furthermore we have

(103)

(104)

(105)

where we put

Since, from (30),

we get

= δk0, ke2πZ", \kft\<2πL",

which combines with (103), to

(106)

(107)

The sum over t is bounded as [see (39)]

r 2 _ 2 / \ί /

Σ 11) f (I
(108)
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and, combining with (107), we get

'T ΓΓΊ I- -
(109)

for n = 0, 1. Altogether, (107-109) yield, after shifting the q-contour as before,

\Rί(ξ',ξ,u)\^cL-2γie-2l"'-L~lv<le*lu-v^rί(k',k), (110)
ΐ

where

r^/c', fc) = $dqιdq2γ\ A(k\ - qt)A kί + - δk2, + ̂  k2 +

(Ill)

L

r3(fc', k) = L~ Mfci J dgα ( —) A(fcΊ - fl)A I fcj + —). (113)
zΓ^ ^VL

Now we use Holder's inequality in the following form

Lemma 2. Let (y(x)}xez
d ^β random variables with

(114)

/or any a > 0, c = c(a).

Proof. Let first {σj?=1 be random variables with Eetσί^et2βi. By Holder,

Apply this first to

flr>%|eΣ

to get (take p = rd~1 so qn^C)

| x |e[r,r+l)
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Next apply (115) to

Σzj(x)=Σoβ(r), (118)

getting

/ 00 \
E®φ(tΣy(χ)\ ^eχp( cpt2 Σ rd~y Σ I^MIj (H9)

Taking in (119) <? - e^\ say, (114) follows. Π

Let now R = Rί+R2 + R3. We want to estimate

E exp ( Σ WMft, &)/(*Ί, ftifi - £ exp ( Σ Σ ̂ ι? ^2)^ (120)
\k'lfc'2 / yuCLu' V\V2 J

with

σu(Vl>V2)== Σ /(fclJ^W^^W^iiί^lJ^)- (121)

By induction

F/V tΛyι' ι ;2)>l<pγnp2 Γ V I / Y f r ' k'MlPίF' F u\\C (P F \\2 (1 99^-/->^c: i^expc > I / v / v i ? / v 2 / l l *^ \s 5 ζ> ^/l^uvd? si/ \\^^)
ikίki J

Use now (110)-(113) and (16) to estimate the [-] in (122):

x Σ I/(*Ί, KMK, k)A(ktfi3A(W3 . (123)
fcίki

Now, the fersums are bounded, and we get:

where we also used: (124)

a gCX(9)
1+ (125)

1/3 (126)

and

A{ — \A(qL)^A(q) (127)

to get

A(qL)pa( — ) ^ A ( q ) p A ( — } (128)
\L/ \LJ

for p = 1/3 or 2/3.
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The ^-integrals are controlled by

ldqA(K-q)A(qfA(l)a ^(\ogL)cA(kJ , t<\. (129)
w/

Thus, finally
13 . (130)

For the r2 term,

(K \2/3

I — 1 J dqA(q) l+ ΛA(k'2 — q)^ CA(k\
\ L /k

and for r3,

\ l / 3

.I V

Here, we see the scaling that motivates the powers ofA(k): we gain LΓ1 or L~2,
which dictates the allowed power of A. Thus, (122) is bounded by

l9 v2) ̂  expB(f)Du(v'9 v)

with

and

We now apply Lemma 2, first to get

E exp (Σ σtt(t;1? t;2Λ ^ exp \CB(f) Σ DM^, φ* '" ~ "Π
\yι / L "i J

[we took y(x) = σM(x — w,u2)], and then

Eexpf Σ σ ^ ^ ^
\V\V2

where

-C = 4d(u'uv'1vv'2)-C (131)
^ /

was used.
Finally, coming to (120), note that σuι and σU2 are independent, if \u1 — u2\^2.

Thus, divide Lu' into (9(1) subsets P^ such that σ's within a fixed W{ are
independent. Letting

2 4
Σ 41^— L 1vi\^ ~

i=ι L
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we get, using Schwartz' inequality a few times, and |J^|~L3,

£exp((logL)<L- VE l/ίfcΊ^IC.-ίίi^)]2 (132)

which proves Lemma 1 for (1 5).
The proof of (12) is very similar. Let us indicate the main differences. We start

with the splitting (95), and write

Φ'iu i*', ξ') = Σ J dx Σ Rtf, ξ', *, ξ, u)φίu(x, ξ) (1 33)
with " «

ί.2-2

Σ

(134)

(135)
V W /

0\L 2 -1 -iq(v'-L\ f n\

7-1 e v L;K fc+^ Kί/c'-^f). (136)
vL/ V LJ

We need an estimate for Γ:

Thus

iL2

and so, using (110),

(139)

( / \\

δto + A(k+^}), (140)
\ Lι/ /

(141)
V

= δ(Lx'-x)R2(ξ',ξ,u), (142)

(143)

(144)

(145)
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To estimate (12) for &φ, put

*Jίx,v)= Σ Σ f(k')Ri(x',ξ',x,ξ,u)φu(x,ξ), (146)
i = l , 3 f c ' , f e

<Φ) = Σ f(k')R2(ξ', ξ, u)φu(Lx', ξ), (147)
k',k

which allows us to express

Σ (f dxσj(x9 v) + σtt(ι;)). (148)
k'

Also, by induction, we know, that

Vf^Ύinίt/Ύ ( Y IΊ\\ "̂  PYIΛP t I ^s"* "S"1

ί-ί \/Λ.LJ I IsU j ^Λ, I/ 11 -^ V/Λ.L* o t [ / ^ / ;

\fc',fc i = l , 3

= expt2Gu(x,ϋ), (149)

£exptσu(t))^expε2ί2ίΣ \f(k')R2(ξ',ξ,u)\Cu(x,ξ)\2 = ̂ pt2Gu(v). (150)

The main difference with respect to the analysis of (15) now lies in the \dx in
(148). We write

ίdxσJix,v)= Σ $σu(x,v)dx=Σ<ru(w,v), (151)
weZ d w \v

and apply repeatedly Schwartz' inequality to get (put L = 2m, some w):

E exp ίσM(w, t?) = E exp ίL~ nd Σ σt/(*> ϋ)
X

^Π(£expίσtt(x^))L""^expί2 J Gu(x,v). (152)
X W

Then, using Lemma 2 and Schwartz' inequality, we get

E exp Σ (J <f xσM(x, ι>) -f σtt(υ))

(153)

The analysis of the ^-integrals and fe-sums is identical to what we did for (15).
Collecting terms we find (we shift the contour slightly more)

)-2. (154)

Thus,

γ. (155)

The leading term in (155) is

(156)
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We get then

Π (1 53) ̂  exp [>2(logL)cL- 1 fc \f(K)\Cu{*9 ξ'))2 , (1 57)
weLu' \fc '

yielding (12) from (153) upon using independence in subsets as before. Lemma 1 is
proven. Π

Now we are ready to prove (12) and (15) for s'. First, we have

Lemma 3. Let ρ be given by (65). Then the conclusion of Lemma 1 holds for Reρ and
Imρ.

Proof. The only difference with respect to & s in ρ is the χυ,. Denote Reρ or Imρ by ρ
again, and the exponents in (12) or (15) by (f,φ). Put ω = (f,&φ\ Lemma 1 is
summarized by

(158)

Then, using Holder's inequality E(ωχ)p^E(\ωχ\p), we get

m). (159)
n=2 n\ m^n

Equation (158) implies

(160)

whereby,
oo

E(\ωχD^G(fr + 2 £ (nG(f)r^pL-in2^(ml)^(CG(f)Γ, (161)
«=1

and thus

(162)
n = 2

yielding the claim. Π

Proposition 6. Equations (12) and (15) hold for s'.

Proof. We use Schwartz' inequality and the notation of Lemma 3,

(f'e))ll2(Ee2(f'r))112 (163)

with

In the bounds (68) and (78) (consider e.g. i = 2) we could have obtained on the left-
hand side the exponential factor exp(2d(...)) in the norm (13). Hence

|(/, r)| ̂  C(L)δn

3'2 Σ 1/ίfeι, k2)\C(ξi9 ξ2) , (164)
fci

and
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Let / be such that the right-hand side of (164) is ^ 1. Then

n = 2

(£ f(kl9 k2)C(ξi9 f 2)Π . (165)

For / such that the right-hand side of (1 64) = x > 1 , we have x2 > x and (1 65) holds
again. Equation (163), (165) and Lemma 3 yield the claim. Π

6. Traps-Upper Bounds

In this section, we state and prove the upper bounds for the variables en and /„
describing the effective transition probabilities affected by the traps on previous
scales. Thus, given an environment b:Z 3xZ 3-»R, we will inductively define the
trapping region Drt, at scale L", which will be a union of L~ i cubes, and the effective
environment

6,, = s. + eI1 + /11:L-"Z3xL-»Z3->R. (1)

The traps are described by the trap density variables

NM:ZMl-2α)Zu{-oo}, (2)

and the connection to Dn is by

un/> B Φφ=>3t7, |n-ι?|<2, N w Φ-oo. (3)

[— oo is just a convenient way to signal when ln,en become small enough to be
absorbed in the small fields, see below.] Nn are random variables that take the
value — oo with large probability, see Proposition 1 in Sect. 9. To define D
inductively (we drop n, put Dn+1=D' and use primes to refer to scale rc + 1), we set
first

(4)

with Of being a union of unit cubes and Ds a union of L~ l -cubes and, for n = n0,
Dj = D\ Df is the "dense trap" region and we put

D', = (β'uR') + B(2Π) , B' = {u\ φ, DO < 2} , (5)

where

and

n = n0,N = D; R' is given by (5.90). We define

Df = D'^L- \(D + + £(Lα))u(D _ \L0')) (6)

and D's = Df\D's. In (6) we have put

D+= U D(x), D-=D\D+ (7)

with D(x) the connected component of D containing x.
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Finally, 2' is the region of traps, at scale Et+ί that are absorbed. To describe 3)' ,
we need to give the inductive definition of N. For n = n0, we have defined N in
(3.76-3.77).

For the induction, we define variables that signal the nearby presence of "dense
traps" in the old and new scales:

nu = χ(Lun(L(D', + B(U))v(D, + £(Lα)) φ φ) . (8)

Let us also, for YcZd, set

N( Y) = min (max N(u), 0\ . (9)
\ ueY

Then, if JV(Lu)Φ oo, i.e. if there are traps in Lu, we define

Nu = N(Lu)(l-nu)+ Σ+Nv + c0nu-2 + 2x if ΛΓ(Lu) Φ - oo, (10)
veLu

where £+ is over positive NJs. c0 — c0(L) > 2 — 2a is a constant which will be
specified in Sect. 8.

If there are no traps in Lu, but nearby there are plenty, we set

if JV(Lu)=-oo, nu = ί , (11)

and finally

Nu = — oo otherwise . (1 2)

Now, we can define &:

(13)
I \ ^-rc*/j

and N':

N, if

-oo lf N<-2n(l 2*+*-\ ™u- H( α +2 + α/

Let us try to give some motivation for these complicated, and somewhat
arbitrary definitions. D is divided into ΐ>f and Ds, and also into D_ and D+. The
first division is made according to the size of the traps and the second according to
their strength, which is measured by N. One sees that, because of the scaling by
L~1, the size of the D set tends to contract. In D^ which is very unprobable, we put a
large corridor [how unprobably Ό£ really is will become clear when we do the
probabilistic estimates (see Lemma 9.1b)]. Also, we show below that connected
components of Ds are made of few L"1 cubes (see Lemma lc,d). We use the
corridors to get good Green's function bounds on the probability of hitting a trap.
For Df, we have a large corridor, so that the hitting probability is very small, and a
smaller corridor around the part of D + which is in Ds; but here, we use the fact that
we deal with few LΓ1 cubes to control the hitting probability. Around D_, we do
not need a corridor, since there is no f there, only e remembering previous traps. If
we neglect, for a moment, nu in (10), N tends also to go down, as discussed in Sect. 3,
unless several N's fall in the same cube. When N becomes negative, we absorb ί
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into e, and when N becomes as in (13), we absorb e into s. Then, that part of D
disappears, and N is set to — oo. The role of n is, first, to set Nή= — oo in the
corridors, so that (3) holds, but it is also used to prove the lower bounds on T+ fr, in
Sect. 8, which imply the upper bound on £, (28) below, which, itself, is needed to
reabsorb f into e. Of course, since n increases N a lot, we must pay a price, in the
probabilistic estimates. But, here, we can use the fact that nu Φ 0 is very unprobable
(see Lemma9.1,d).

We collect now some facts, proven in the Appendix, implied by our
construction of D and N.

Lemma 1. a) Equation (3) holds, i.e.

Dc{v|3n, |0-tt |<2,NMΦ-oo}. (15)

Also,

DeCD+. (16)

(17)

c) V», |Dsnv|^IΓ2-2α. (18)

Moreover, if uφ £)'.

|DsnLu|^L-2 (19)

while, if uφ&, |Ds

d) Let D(x) be the connected component of D containing x. If D(x)cDs,

(20)

(21)

e) D;CD+, and, if xeZ)_u(Z) + nLD'_),

D(x)CDs. (22)

f) If xφLD', then

(23)

The functions e and f in (1) have the following properties.

Proposition 1. eγ is a random variable localized in Ύ and /(x, j;) is localized in D(x).
We have eγ = εγ + Eγ,

f dyejx, y) = f dyEY(x, y) = J dyt(x9 y} = 0, (24)

Σ ldy\εy(x9y)\έΛ(x"y"γ>L-—£L-*i29 (25)

N(Y) Φ - oc

\ (26)
Ύ

and EY = Q if YnD = φ; εy = 0 if N(Y)= -oo. φ,y) = 0 if xφD+,

(27)
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and, for xeu

J dy\t(x,y)\£l-βu + L*, (28)
DS\LD

where

βu = L2-N«/(l+L2-N«). (29)

We will prove (24)-(27) in this section. Equation (28) will be a consequence of
the lower bounds for t proven in Sect. 8.

Expansion ofb'. Coming back to (1), we now define en+l and /„+ ί inductively. We
have

(*', /) = L3 J dω£L/ [(Γ+ 6) (ω) - E(T+ b) (ω)] (30)

and 5' is defined by (5.67), (5.69).
Let first x'φD'+. Define

D = LD'v(LD'+r\D+). (31)

Note that, if xφD, then, by Lemma le, D(x)cDs and (21) holds. D is the region
where we cannot expand b in (30). This is because the D region in LD can be very
large and then e turns out not to be expandable due to lack of falloff on D^ see (26),
or because f in LZ)'+nD+ has no smallness, see (27). One might think that, in
D + \LD'+, there is also a problem. However, it turns out that /, in that region, is
small enough to be expanded, due to (28, 29).

We now proceed as in (4.6), only replacing D by D:

$dω(T+b)(ω)-(T+s)(ω)=Σ £ Yu
k^2 t,t',v i=l

fc-1

> Π '
i = l

We have the familiar constraints: x0 = Lx\ yk = Ly', ίeNfc, ί/e(N+) f c~1,

-^ ) JΊ (Γ+&&(,l)(yί>xl)-(&->s). (32)

Xi = *Π' fat Φ W(yd)tiyt e v;nD) (33)
i = l

with no constraint on xk^1 if tk = Q. W(y\ for yeD, is given by

c.c.ofLD' if yeLD'
w c.c. of(D++B(L"))uD if yeD\LD' l ;

such that yeW(y).
As before, we localize the various terms in (32). First, write

Σ*(vCD)= Σ Σ χ(^eE6)χ(vCDnW), (35)
v b=l,2 W,v

where

)9 yED\LDf(yεLDf)}, (36)

and the sum over W runs over connected sets in Zd. Then, combine (33) and (35):

Σ χ(v C Dn W) j dyχ(y e vnD) = J dyχ(y e WnD) . (37)
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Next, expand

Wx, jO = Σ Σ Σ Ϊdxdyχ2 Π ϊ&to-^ Qavfoxd, (38)
k,t Y «,v i=l i=l

Yt are unions of unit cubes and it is convenient to use the notation

^ = 8, Q2 = E, Q3 = s (39)

and

Q4Y(y,χ)=t(y,χ)χ(Y=D(y)). (40)

Finally,

7.2 = IT fat e «Λ%0>, e vΛ/5) . (41)

In (38), we further expand

H4χ,y)= Σ z'ffxftcDMdxifyd Π Γ^-y/π (- .̂(y,,*,)) (42)
fc,ί,ί ' I? i = l i=l i=l

.
Now consider (T+ b)w in (32). This has terms in b that are not localized near W.

We still expand them. Let

Xxy(Y I W) = χ(φuj;u 7; HO > Π) (43)

and denote it by χ(Y) when no confusion can arise. Set

^(x, y) = φ, y) + Σ βίy(*, y) (1 - *W) (44)

[i = l,2,3, see (39)], whence

(45)

Lemma 2. Gfoen WeElvE2, f>w(*>y) is localized in W+B(ϋ\ if xeW.

Proof. By construction, WOD(x) for all xe FF and £(x,y) is localized in D(x), by
Proposition 1. The Qίy's are localized in Y and, by (43), the Fs contributing to (44)
are in W+B(U). Π

Using (45), we get

ί=l

(46)

with α—1,2,3, and standard constraints.
It is convenient to collect in (46) terms with \jY~Z, and write

(*>)0 (47)
z

Q'5Z is localized in
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We may now localize (32). Insert (35) and (37), (38) and (42), (46) and (47) into
(32):

L3 J dωί(T+ b) (ω) - (T+ s) (ω)]

=tf Σ Σ Σ Σ Σ' Π yWteEbl)Sdsdyx3 π r .̂,-^
k^2 t,t' a,b Z u,υ,W ai>4 i = l

xie^O^Mfc-s), (48)

where the various constraints are: ίeNfc, t'eN+'S α~l, ...,6, Zί9 are unions of
unit cubes, Wt connected subsets of Z3 and, in £', we sum over w/? t>4 for α, rg4, J^
for 0f>4. χ3 is given by

χ3 = Π' fa e uA^ta e v\J5) Π' XUΊ e Wίn^χίx, φ WJ . (49)
fl< ^ 4 αt > 4

<25 is given by (47), and

)δz,φ. (50)
In (48), we have a^3 for at least one i, because of the subtraction (fc->5).

Equation (48) is the desired expansion. We will now collect terms to define ε' and E'
(recall, that x'eD'+ so /' = ()). We write

, (51)
y

where %/ collects terms with

r^L-'^ψV UW^ZΛl (52)

such that, if at = 2 or 5,

ZίD~Z^ U {Lu\\LunN\ >l!} =0 (53)
and H

hi = l if at>4. (54)

£r, collects terms with (52) such that

3 i : f l ~ 2 o r 5 , Z ί D Φ 0 o r α f > 4 , &i = 2. (55)

Finally, we put

ε'r(x', /) - εr(^ /) - T'(x' - yf) f dzβr(x', z) + zlεr(x', /) -4sr(^ /) ,
(56)

where [see (5.93), (5.94)],

l-^)); ^β = 0 if |r|>l

and zls is defined in Sect. 7. We define £' similarly, without the Aε, As.
To complete the induction, let now x' e D'+ . We modify (48) slightly: now t ^ = 0,

aί = 5, and W(Lx') = LD'(xf). Let 7(x\y') collect all the terms with

'ίx') + 5(2Ly)) (57)

and define {' by

tf = S'-T'Sdz?( 9 z ) . (58)
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ε' and E' are defined as above, for

(59)

and set to zero otherwise.
The inductive definition of V is completed.

Proof of Proposition 1. We first establish the localization properties of e' and Λ
Note that, in (48), QaZ are localized in Z for a ̂ 4 and in Zv(W+B(U)) for a>4
[recall (47) and (50)]. x(WteEb) is localized in Wt + B(3L1 + γ): because of the
corridors (5), (6), the statement We Eb is only localized in such a neighbourhood of
W (see Lemma 4.1). Similar statement hold for the other χ's in (48), (49). Therefore
each term in (48) is localized in

(UU UV U W UZ;) + B(3l} + *) . (60)

Thus, since L~1(3L1 + y + 6I7)<6Ly [see (4.19)] e' is properly localized. For /', we
use (57) and LΓ ^L1 + y + 2L1 + γ + 617) < 6U.

Also, observe that (1) holds: we have, from (30, 48, 50),

(61)

for x1 φ D'+ . But J s' = J V = 0. Hence j (ε + E) = 0 and the subtraction in (55) (and for
E') may be done without spoiling (1). Next, we see that (24) follows readily, due to
the subtraction in (55) and (58), since JT"(x)dx = l. Moreover, $Aε = $As = Q (see
Sects. 5 and 7). Therefore, f e'y/ = JEy = 0 as claimed. For x 'eD+ the argument is
similar.

Now, observe that (55), (53), (36), (34), and (52) imply, by construction, Eτ φO
only when Y'nD'Φφ. For εr, we shall show in Sect. 7 that, if N(Y')= — oo,

εγ,(x', y') - T'(xf - y') j dzgγ,(x'9 z) = Δ sγ.(x', y') ,

and, since Aεr φ 0 only when Y = u e R, Asγ, φ 0 implies N(Y') φ — oo. So, εr = 0 if
N(Y') = — oo. We turn now to the proof of (25-27); we shall start with some general
facts and then divide the proof as follows:
A. Proofof(25)forx^jD r

+.
B. Proof of (26) for x'φD'+.
C. Proof of (25-27) for x' e D'+.

All our bounds will be proven for ε,£,?. It is easy to deduce (25-27) from
similar bounds on ε, £, 7 and (55), (58) using the exponential decay of T(x — y) and
the trivial bound

where we use notation,

da(x,y,Y) = d(xvy<jY), α = l,3, (62)

d2(x, y, Y) = φ uyu Y; YnDe), (63)

d4(x,y, Y) = d(y,D(x))(Y=D(X) for α=4),
(64)

/ " x

<,v,y)=min V
\ i=l
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n

where the minimum is taken over all families (Zt )"= λ satisfying (J Zf = 7,

d6(x, y, Y) = d(y, W(x))(Y= 0 for a = 6).

In the next lemma, proven in the Appendix, we shall bound the distance factors
in (25-27) in terms of the variables appearing in (48).

Lemma 3. a) For each term of (48) contributing to εr i.e. satisfying (52-54), we have

(65)

b) For each term of (48) contributing to Er, i.e. satisfying (52,55), we have

„,(>>;, X .zA (66)

c) For each term of (48) contributing to 7(x', y'\ i.e. satisfying (57), we have

(67)
i = l i = l /

It will be useful to have bounds on the integral over x of the <2J,z(y, x) factors in
(48). These can be summarized in

Lemma 4.

r- f l/2 π _ι
l-j , (Λ — 1

exp(-IT), α^2,
ί Z

c,

or α>4 αnrf χ(x) = l, /or α^4.

For α^4 (ί = 0, then) this lemma follows from (25-27) and (5.11), using
(-U). For 0 = 5, 6, the proof is given in the Appendix.

A. Proof of (25) /or x' φ D'+ . The proof of (25) follows from the following estimates.

9y)\έ«™y»V£9 (68)

N(Y)
2

y
=t=o, -oo

Proo/ o/ (68). Using (48), (51-54) and Lemma 3a, we get

where

fc^2 tt' a Z

x Π T ί l(x ί_1-j; ί)eL"1|Xί-1")><1

i= 1

x *Π IQiUίyί, x^le"- 1- .<" " z > + 1(̂ 5)| , (70)

Π' fai Φ fyxtit Φ D) Π X(yt e B\Lΰ')x(Xi Φ
α f ^4 α t > 4
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k
Also, here, dy = [] dyt and we used Ld J ̂ /(Ly) - f dykf(yk). The factor 2 in (70)

comes from the subtraction of the expectation value in (51); we shall consider only
the first term in (70), the (fr~>s) term being treated similarly. It will be convenient to
bound (70) in terms of the following quantities:

(71)
z

and AI(X, t) is defined similarly without L~N(Z}/2,

4fo 0 = Σ f dydzχ(y φ D) T\x - y)e2L ~^x~yl\ QaZ(y, z)\e*da(y> z>Z), (72)
z

for α = 2,3,4,

Z,ί'
χ \Qaz(y>z)\£* (73)

for α = 5,6, and

L2

ί = 0

for all a. For the ^4's we have the bounds:

Lemma 5.

a) ΆfaQ^LΓ*12, (74)

ίφO, (75)
L + L-«, (76)

c) 44(x,0)^cχ(x6D+\β), (78)

l, ίφO, (79)

\D) + L~α), (80)

d) ^(xJ^cL^XjD^ + lJ'^L"*, α = 5 56. (81)

To control the fact that we do not have a small factor in c) and d) above we
introduce

y)e2L'^-^Qa2{y,z)\eL-^'^Aa,(Z) (82)
Z,ί

for a ̂  4 and

*«•(*) =Σ Σ ί dydxχϋ' e /5\Lff)jrfz # ̂ ωίΠ* - y)
Z ί,ί'

x ̂ ^^^'leiz^^l^^'2'^'^) (83)

for a = 5, 6.
The Fs satisfy better bounds:

Lemma 6.

a) J8ee,(x) ̂  L~α/3L2^ wn/ess α = 5, 6 and α' = 4 , (84)
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b) Bla,(x)^L-^(d(x,D() + lΓl + L-" for α' = 5,6, (85)

Baa,(x)^cL-" for αφl, α' = 5,6, (86)

c) B^x^cL-^o for α,α' = 5,6. (87)

We may bound (70) in terms of A's and B's:

(70) ̂  Σ ̂  Σ Aaι(Lx') Π sup Batai + ,(x) Π sup XJx) , (88)
fc^2 e ίel x iφl x

where / is the largest subset of {2, . . . , fc — 1} such that (αί9flί+1)Φ(5,4), (αί?αί+1)
Φ (6, 4) Vi e / and |z — j\ ̂  2 for zj e /. The reason behind this complicated definition
is that (84) gives a bound L~α/4 on each Ba.a. + ̂ x) for ί e /. Also \ί —j\ ^ 2 implies that
pairs (z, z' + l), (/j'H-1) are disjoint so that (88) holds. Since only every other pair

(ab at + J can be of the form (5, 4) or (6, 4) and since we get from Lemma 4, sup Aa(x)

^cLβ, for all α, and since β<^oc, the sum over k and a in (88) is bounded by cLβ.
However, to prove (68) we need to bound (88) by ^L~a/2. This requires a careful
case by case analysis.

First, let us assume that Lx' φD+ + B(Lα). Since D^ C D + , by Lemma 1 , e, we have

d(Lx', D,) ̂  d(Lx', D +) ̂  Lα (89)

and trivially, χ(Lx'eD
Using this and (76, 77, 80, 81), we get

Aaι(Lx')^L-«cI/ (90)

for all Λ!. Inserting (90) in (88) gives the desired bound.
Now, let Lx' e D + + B(U\ still with x' φ D'+ . First, observe that, by (77), we are

done if a single a~2 or 3 [we may modify (88) so as to put this i in Γ without
spoiling the convergence]. So we assume from now on at φ 2, 3. If α t = 5, 6 we may
use (88) and (81) since x' φ D'+ implies that d(Lx\ Df) ^ Lα (see 8, 10-14, 7). If α2 = 5, 6
we may use (85) or (86): modify (88) so as to have Baιa2(Lx/) as the first factor and
use d(Lxf, Dj) ^ Lα in (85). Finally, if a3 = 5, 6 but al9a2e{l, 4}, we consider several
cases: if a2 = 4, use (88) and (86) for B4a3. Iϊa2=l and a1 = 1, use simply (76) for each
A factor:

So consider av = 4, a2 = 1, and α3 = 5, 6. If tv φ 0 we use (79), so, let ̂  = 0). We have
to consider

I dx\Q4Z(Lx', x)\Bla,(x)e2L-^Lx''x'V (92)

with a' = 5, 6.
We want to use (85) and d(Lx\ D^) ̂  Lα to control (92). So divide the integral in

(92) into \x-Lx'\^U and \x-Lx'\>U. For \x-Lx'\^ϋ we have, d(x9D^ y

and we may use (85). The integral over x is bounded by a constant using Lemma 4.
For \x — Lx'\>U, Lemma 4 gives a bound cexp( — Φ(Ώ}}:

d4(Lx', x, Z) = d(x, D(Lx')) ^ ϋ - 1
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because diam(D(Lx'))^l. To see this, use Lemma 1, d and e; here, xf φD'+ so if
Lxf e D + , Lx' e D + nLD'_ and we may use Lemma 1 (if Lxf φ D + , Q4Z = 0).

So the only cases to consider for fc^4 in (88) are:

£ = 2,^ = 1,4,

fc = 3,(α1,α2) = (l,4),(4,l)or(44), (93)

fc = 4, (α1,α2,α3) = (l,4,4), (4,1,4), and (4,4,4).

We rule out two at = 1 because (76) gives bound L~α/3 for each of them and we
use (91). In a similar way, we may exclude k ̂  5 : (84) gives a bound L~ α/3L2/? for each
pair (αl5 α2) (α3, α4), provided αx <£ {5, 6} for i = 1 or 3. But we have already discussed
«! = 5, 6, and % = 5, 6. So we turn to (93). Again observe that, if a{ = 4, t{ must be
zero, otherwise we are done by (79). For these, we shall go back to (48) i.e. not put
absolute values on QαZ, as we did in (70).

Consider first k = 2, aί=4, tί=Q. We have

J dxQ4Z(Lxf, x)TL2 - *(x, Ly')χ(\Lx' -x\£Π) (94)

since, if \Lx' — x\>Lγ we use Lemma 4 to get a bound exp( — Θ(U). Now, use

$dxQ4Z(Lx',x) = 0

to write (94) as

J dxQ4Z(Lx', x) (TL2 ~ i(χ - Ly'} - TL2 ~ \Lx' - L/))χ(|Lx' - x\ ̂  U) . (95)

Then use the bound

L^dy'\r(x-Ly'}-r(Lx'-Ly'}\e2L~^χ-Ly'^cΓ^2ϋ (96)

which holds for

Inserting (96), for t = L2 — 1, in (95) and controlling Q4 with Lemma 4 gives the
desired bound on (94). We proceed in the same way for /c = 3,4, and α~4, all ϊ,
when ίi = 0, for all i and use (79) otherwise.

Now consider k = 29 al = 1. We write, going back to (48),

Z,ί

V / V= Σ/ Σ
z f

+ Σ ^Xdyχ(xφD)Tt(Lx'-x)Qlz(X,y)TL2-'-1(y-Ly')), (97)

where z is the first point (in some order) in Z. To get (97), we used j dyQlz(x, y) = 0.
To control (97), we use (96) for the sum over ί^L2/2 and \z-y\^ϋ. If

|z — y\>U, then d^x.y.Z)'^.!} and we can use Lemma 4 to get a exρ( — Ly/2)
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L2

bound. For t > —- we use (75) and

All other terms in (93) can be treated similarly since we may assume t{ = 0 for a{ = 4.

2) Proof of (69). First observe that, if N(Y') φ 0, for each term in (48) contributing
to εr, i.e. satisfying (52-54), we have at e {1,_3, 4} for all i. Indeed at = 2 would mean
Z nDφ φ for some Zt in (52) (Eγ = 0 if Ύr\D = φ). But D CDf CLD'+ by (5, 8, 10-14).
Similarly, if α^>4, we have W(yi)r^Dή^φ and W(yt) contributes to (52). But
jD'CD^CDV, hence W(y^r\D^φ implies W(yi)r^LD/

++φ.
We have to bound LΓN(YΊ/2 in (69). For that, we use (10), which gives

-N<y )/

where the minimum is taken over all Zf in (48) with a{ Φ 3. As we noticed after
Eq. (50), there is always at least one i with αt φ3. Also, remember that, if
JV(Γ)= -oo, εr = 0 (by Proposition 1).

Using (48), (98), and Lemma 3, we get

t a Z i=l

.)|e2L-idαι.(,ί,,l,Zί) L-*(Z,)/2

(99)

where Σ* means α,- 6 {1,3, 4} all i, and we used: min —N(Zί)^ —^N(Zi), since

)^0. We also used $dxk-ιQaZk_ί(yk-ί,xk-1) = Q in order to subtract
T^Zfc-! — yfc), where z k _! is the first point of Z,̂ . The term exp(— (9(U)) comes
from

for α = l,3,4. For α = 4, we use Z k_ 1=D(y k_ 1) and diam(D(yk_1)<l, which
follows from Lemma ld,e and the fact that χ4 in (99) means yk^^eD+r^LDf for
α^! =4 [see (70) and (31)].

L~α/L

To bound (99) by — - — we use Lemma 5: we may combine (74, 75, 77, 79) into

Aa(x,t)^L-«l3(t + \Γ312 (100)

for t ̂  L2, and a e {1, 3, 4} unless α = 4 and t = 0, for which we have only (78). But if
α. = 4? αt + 1 = 4 we may use (84) to obtain a small bound. So, since the t and Z sums
in (99) can be bounded by products of Aa's and B44's when at = ai+i = 4,
ίί = ί.+1=0, we get

Σ Π
i,Σtl=L2-k-l i=l

(101)
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where we used (96) for the yk integral. The sum over (^)f=1 is less than
((L2 — k— l)1/2 + l)~ r. Then the k sums is bounded by cL~l and we have finally

r-α/2

ί7^ — — which finishes the proof of (69).

B. Proof of (26) for x'φD'+. Thej>roof uses the large corridors B(2Ll + y) in LD'f
[see (5)] and the fact that, by (55), E'γ collects only terms which have to "cross" these
corridors and are thus small due to exponential decay.

Fix a term in (48) contributing to EΓ. Let

Then we have

Lemma 7. a) Let j e J, j φ 0, and f = max k. Then,
k<k
fceJ

Ϋ^O^Z H Σ to-x-ttl^L1^. (102)
; = ;' i = j' + l

b) For a = 2, 5, yφLD' and ZD*φ (see (53)), da(y,x,Z)^ ~.

Using (48), Lemma 3b and Lemma 7, we get

n' βb Z

k-1

where

and

ls= Π ^iΦD)χ(yίφD) ft χ(yieD\LD')
«ί ̂  4 α f > 4

bi=l

x γ\'χ(yίeLD') tf χ(xtφW(yd).
Ui > 4 «f > 4
bi = 2

The constraint (55) means that n2 -f m(Z) ̂  1 for each term in (103). Thus we get
a pref actor exp( — Ώ) which gives the upper bound in (26) and all we need to do is to
bound the sum. For this, we use Lemma 5 and 6 as in the bound on (88); we need a
bound on the factors which are similar to Aa with a = 5, 6 [see (73)] but with bt = 2.

We have, using the remaining factor expί -- — - ) in (103):

e~^~ Σ Σ$dydzχ(yeLD')χ(zφW(y))r(x-y)
t,t' Z

xe2L~> \ * - y \ ί z)\eά°^ Z)/4 ̂  cL2e ~ Lv/2 £e~ Lv/4 ^ 04)
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using Lemma 4 for the z integral and for the Z and t' sums, and bounding by L2 the
sum over t. The y integral is bounded by a constant, because T has exponential
decay. This concludes the proof of (26) for x'eD'+

C. Proof of (25-27) for x' e D'+ . We use (48), modified for xf e D '+ , and the corridor
B(2U) in (57, 59). First consider (27). We can use Lemma 3c to bound

fd/IA^/)!^'1*^ z

x%(*ι^ι)Mxι,}>)^, (105)

where j c(xl9 y)dy is bounded by one plus a sum of products of A's and £'s, as in (88).
To get (105), we use ίx = 0, aί = 5 in the modified (52). Also, in (105), W1 = W(Lxf)
= LD'(x') Divide the x t integral into φc1? W(Lx'))^Z7 and φc1? ^(Lx')^iΛ

In the first case we have <2(x1? D +) ̂  Lα/2 because LD'(x') is connected and there
is a corridor of size Lα in (6) around D + . This and d(x1,D<f)^d(x1,D+), see (89),
inserted in (76), (80), (81), allows us to bound $c(xl9y)dy in (105), using Lemma 5
and 6, by 0(1). Then, Lemma 4 controls the xl integral and the sum over Z in (105).

For d(xί9 W(Lx')) ^ Ly, we get a bound Q(Lf) on J φcl5 y)dj;, from Lemma 5 and
6, but a factor e~cLV from Lemma 4, since, then, d5(Lx,xίyZ)^U, again
because d(dW(Lx), Όf] ̂  d(δFΓ(Lx), D +) ̂  Lα.

The proof of (25 -26) is similar to the one of (26) for xf e D'+ , using the following
lemma.

Lemma 8. Let x' e D'+ . Then, for each term of the modified (48) contributing to ε -KE,
i.e. such that (59) holds,

(106)

7. Reabsorption of the Traps

Here, we define inductively As, see (1 7, 24, 33) below, and show that it satisfies (5.68)
(and Proposition 5.2). Moreover, its definition will imply that εy = 0 when
N(Y)= — oo, as we claimed in Proposition 6.1.

Let now

(1)

i.e.

This means, in particular, that

f lε (x,y)\dy<l7N^ζ\γ\e~d ( χ ( J v^γ^ (3)
V

for C = L~a if (2) holds. To get (3) from (6.25), note that, if (2) holds for F, then only
εγ with YnDj = φ and sγ are involved in the expansion (6.48) for ε:

ε'r(x; /) = L3 Σ ί dω£,Ly, Π T"<(εYi + sγ) -(ε = 0)~ average. (4)
0,Y

Moreover, for u' e T such that N'u. Φ — oo, N'u, ̂ 0 we know that (see Lemma 6.1)
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u'φB'9 ILn'nDlgctfand

^ = maxNtt-2(l-α), (5)
ueLu'

Thus, from (6.10)

j |εr.(x, y)\dy^cL>N'(Y">+(i -«>ιr°</ V^"^-'. (6)
V

Now we may estimate (4) as we estimated sy in Sect. 5. The linear term in ε,

(^ε)r(x',/) = L3Σ Σ'ί n^'-xMx,^2-'-1^/), (7)
t

where £' is as in (5.70,5.71), once integrated, has the bound

if I Y'| > 1, where e~CL|y ' l comes from the scaling. For | Y'| = 1, we obtain the bound

CL~ίL*N'(Y')+ΐ~"L~*l2e~d(x'"JV'^YΊΣe~*d(Y) (9)
Y

with YnD Φ φ, [L~ * Y] = Γ. The Y-sum is bounded by Clf ί(9) is very generous:

actually the term in (7) having only L~ 1 is the one with t = 0, which has the factor
e-d(LX'uY) to controj Σ\ Equations (8) and (9) yield (3).

Now we want to show that, as N decreases from (2), the RGT brings additional
contraction, enabling us to gradually reach the Fourier bounds valid for sy.
Looking at (4), we see that terms where n0 > 0 or nk > 0 automatically satisfy our
Fourier bounds at least in ξ1 or ξ2. The same holds for terms with sγ. at the end or
the beginning of the walk ω. The other terms have ε's tied to the end or beginning of
ω, and will contract strongly under JL This motivates us to split ε in three pieces,
defined below, depending on where Fourier-bounds with A(k)2/3 or A(k)1/3 hold:

εy = ε ιy + ε2y + ε3y. (10)

Let us introduce a convenient index counting how much smaller than (2) N is:
put

2α), (11)

i.e.

N

L2=L-«'δ2. (12)

Then we have, for Y as in (2), that είγ satisfy (3) and (/ = /(Y))

ί \siY(^y)\dxdy^cδ4L-(3+a^~^e~d(v^V2^ζlY], (13)
V i X V 2

I \ε2Y(ξ,y)\dy^cδ2L-(ί+a)(A(k)2i3e-d{VίUV2^ζm, (14)
V2

I \ε3Y(x,ξ)\dχζcδ2L-(2+*)(A(k)ίi3e-d(Vί"V2"Y)ζm. (15)
V l
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To prove (13)-(l 5) iteratively is now only a matter of book-keeping. To define εf

from ε, let t' = Q and note, first, that all the terms ί of the form (T+s) (anything)
(Γ-hs)have

\\tγ\\i^cδ2ζW (16)

due to the bound (3) [recall (1)] and the fact that at least one ε has to occur in the
(anything). Thus, we put

e'ιy, = L3[j dω[_ε(T+ b)L2 ~ 2ε]]r - average, (18)

ε'3r = L3[j dω[_ε(T+ b)L2~ 2(T+ s)]]y, - average, (20)

with obvious notation: we expand b = s + ε and collect terms as in (5.70,5.71). The
bounds (13)-(l 5) for f = 0 follow readily from the bound (3) for ε, see also below. To
iterate (13)-(15), let /'(Γ)>0. We put

-ε2)]γ'-av., (21)

-2(ε1+ε2))]r-a.v., (22)

ε

/

3r=zL3[Jί/ω(ε1+ε3)(T+fc)L2~2(ΓH-s + ε3)]r-av., (23)
2ε3]r-av.. (24)

Δs'y satisfies (16) again, ε'ιy- has as leading term ε3(T+b)L2~2ε2, which is
ε1 -independent, so (13) holds.

Y

+ L3 Σ f dxTLl - '(Lx' - x)ε2r(x, LjO , (25)
y

where Jεr(x,j;)dj = 0 was used. Also, for each 7cZd choose a preferred point w.
Using ε2y(Lx/,x) and

L ' A(k\ - q)A ίk2 + f ) , (26)
\ ^/

we get, with similar estimates as in Sect. 5 (see proof of Lemma 5.1),

ί \(^e2)γ{ξ', y'}\dy' ^ C(L'2

Y

where 7nDΦ0. Now (5) and (11) give

^(IW(r')-l, (28)

which, with

(29)
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let us conclude

(27)^CL~α+v(5/2L-(1+α)Γ(^ (30)

Equation (30) together with the much smaller nonlinear terms in (22) (s is also
negligible) gives (14).

To prove (15), consider the linear part of (23),

(JS?ε3)r(xy) = L3 Σ J dxε3Y(Lxf, x)TL2 ~ \x - L/) . (31)
y

This is readily bounded by

e-
v'2 Y

(32)

which gives CLΓ0ί+β times the bound (15). The nonlinear terms can be absorbed
into this and (15) is proven.

Finally, if L-(2+^(Y^L~2n we have

and εγ satisfies the Js-bounds:

Asγ = εγ. (33)

Note, that this happens (see 11) if - - - ̂  -N(Y) + n(l-2oc) i.e. when N(Y)
/ Λ \

^ — 2n I 1 — 2α -I- - - ), which proves that εγ = 0 when N(Y) = — oo.

8. Traps - Lower Bounds

Our goal here will be to prove (6.28). This will be a consequence of the following
lower bounds on T+b:

Proposition 1. There exists a constant ci such that, for all weZd,

min mm$dy(T+b)(x,y)^c^u, (1)
\v-u\ = l xeu v

where
γ = v if veDj

= v\DifvφD, (2)

and

βu = L2-N»/l+L2~N», (3)

with Nu defined in (6.14). Moreover, if nH = 0 (see (6.8)), then

min f dy(T+ b) (x, y) ̂  (\ -\L 3} βu. (4)
X6U Dc

The only goal of this section is to prove (6.28). This will use (4), while (1) is only
used to derive (4). As one sees, (1) gives a lower bound on the probability to go to an
adjacent block, while, in (4), one controls the probability to escape from D. The
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main distinction in the proof will be between nu = 0 and nu = 1 . In the latter case, we
can only prove (1); that is the region where D is dense, and all we use is a kind of
lower bound through ballistic motion. When nu = 0, we may use the fact that D is
sparse so that, once one escapes from D, the probability of returning to it is small,
see (23, 25). The flow of βu was discussed in Sect. 3, for βu small; the denominator in
(3) gives the correct behaviour for βu close to 1.

Now, we shall prove (6.28), using (4). We write S = (T+b)-T-s-e, so,

(x, y) + T(x -y) + |s(x, y)\ + |φc, y)\ . (5)

Since J dy(T+ b) (x9 y) = 1 , we have, by (4),

f (T+b)(x,y)^Sdy(T+b)(x,y) = l-$dy(T+b)(x,y)^l-βu+±L (6)
DS\LD' D Dc

since β^l, by (3),

J dyT(x-y)= Σ ί dyT\x-y)£ Σ e-\χ-Lu'\\DsnLuf\^cL~* . (7)
DS\LD' u'φD' DsπLu' u'φD'

Using Lemma 6.1c. Finally,

ldy(\e(x9y)\ + \s(x9y)\)£2L-*i2. (8)

This follows from (6.25), (6.26), and (5.11). Combining (5-8) proves (6.28).

Proof of Proposition 1. We proceed by induction: (1) holds for n = n0 by (3.76)
(D = Dj for n = n0). We shall first prove (1 ) with primes when nu> = 1 . Choose a self-
avoiding nearest neighbor walk ω on Zd, with |ω| = L2, Lx' eω(0), ω(OCLu', ω(L2)
CLy'. This is possible, since \u' — v'\ = 1, Lu' contains L3 ̂ >L2 sites and there are at
least L2 — cL?ΛLβ sites in Ltx that are adjacent to Lu' if v' φ D'f (by construction of
D'\ By definition,

J dy'(T + 60 (x', /) = J dy' J dω£^Γ+ 6) (ω) (9)
v' Lv'

and this can be bounded by:

J dy(T+b)(x9y) (10)

using the positivity of (T+b)(x,y).
Using (1) inductively, since |ω(z) — ω(i + l)| =

Using

βu^L~Nu (12)

for Nu ̂  0, and

β^ for Nu<0 (13)

we have

/„ \L2

Π L~Nu, (14)
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where we used the fact that ω is self-avoiding. From (3) and (6.10-6.14) we have (for
7V = 1)

(14)̂ 1?-^^ (15)

for any cx g 1 and a suitable choice of c0 in (6.10) depending only on L. The choice
of c1 < 1 will come from the proof of (1) when nu> = 0, to which we now turn.

If nM, = 0, it means [see (6.8), (6.5)] that

Lu'n((LD'uiJr) + £(3LX + y)) = 0 (1 6)

and

Lu/n(D<f + ΰ(Lα)) = 0. (17)

We bound (9) from below by

minb(x')Φ',ι/), (18)
x' en'

where
L2_

*>(*')= Σ ί dy\dω'Lx,y rίχMOewnDMT+bXω), (19)

where w = unit block containing Lx',Sw = <yφwnD, \y — w | fg— >, the product

equals one for ί = l, and ^ ^

c(α/,t?/)= min min J dy' $dω%Γt(T+b)(ω)χ(ωnD = φ). (20)
Lv'

To prove (18), we write, for /
L2_

)^ Σ Jί=l Sw

(Π χ(ω(OewnD). (21)

This means that we keep only, in the right-hand side, those ω's which leave wnD
L2

before time — . We sum over the first exit time t (these are disjoint events) and,

furthermore, we keep only the walks where the step which leaves wnD does not go
Lα

at a distance from w larger than — . To get (18), we take also the minimum over
L2

t ̂  — - and y e Sw to factorize (21) and insert 1 ̂  χ(ωnD = φ) in the lower bound. To

go from (18) to (1) we shall use the

Lemma. There exists a constant cί such that, if nu> = 0 and Lx'ew,
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and
Φ'X) = 2cι (23)

To prove (1), insert (22), (23) in (18). Then, we use,

r2 r2
^ r_β ^ _.Γ2-ΛΓ W

-L~2 + 2α) min

(24)
L2 _ cLΓN

which follows from Ci — + 1 ̂ L2"2α and the fact that c-> - - r^y is increasing
inc. 2 1+cL

cL~N

Since N^^ - pr^ is decreasing in N, we get from (6.10)-(6.14) that
J. ~t~ C-/-/

because N'u, ̂  max ΛΓW - 2 + 2α. So, from (18), (22-24), we get (1) with primes.
weLu'

Let us prove (4). We get, in the same way as we got (18),

mm J
x'eu' (D')c x'eu'

where φ', (£')c) is defined by replacing Lv' in (20) by (DJ. We use (22) as before and

φ',(£')c)^l-f£~J (25)

which will be proven with the lemma. The proof of (4) is then similar to the one of
(1) above.

Proof of Lemma. We have

L2̂ ί-1 ί-2

b(xf}^c±βw Σ J Π dω(ί)χ(ω(i)ewr\D) f] (Γ+fc)(ω(ι*),ω(ϊ'+l)) (26)
ί=l i=l i=0

with ω(Q) = Lx', and where we used (1) and (17), which implies that w jtD^, Vw,
|vv — vv| = 1 since Lx' e w C Lu'.

Now,

/? WY'^ (ΊΊ\iPw r\ υ\^ ) > l^';

where

(0 e wnD) π (T+ b) (ω(0, ω(i +1)).
i = l i = 0

Equation (27) holds because

ldy(T+b)(x9y)=ί. (28)

We shall prove that

e-cL°. (29)
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Equation (22) then follows from (26-29). To prove (29), we use (28):
ίi id_!

1 = f Π <MO (χ(ω(0 6 wnD) + χ(ω(ι) φ wnD)) 'π (Γ+ 6) (ω(ι), ω(i + 1)) (30)
ί=l i = 0

withω(0) = L.x',
L2.

= 5iX) + Σ ί dyχϋ> * wnD) f dωL', ΓI xMO e wnD) (τ+ b) M - (31)
ί=l i = l

To get (31), we expand the product of characteristic functions in (30), we resum, and
use (28). From (31) we get,

) + . max μχτ+6)(x,y)χb-w|^y (32)
2- xewnD \ 2.)

which proves (29), using the exponential decay of T and b. For fe, this follows from
(6.25)-(6.27), the fact that D^ is far from w because of (17) and the bound diam

'))^l coming from D(Lx')cDs (see Lemma 6.1).
We prove now (23). We write

c(u',t/)^ min fmin f dy'TL2-\y-y'}-Fy\ (33)
VΦD

' L 2 -
LV

- j - 2

where

Fy=Σ ί dyT(y - y) + f dy&r(y - y) (|s(y, z)| + |ε(y, z)| + |£(y, z)|) . (34)
(=0 D

This lower bound comes from first expanding

J *B£Γ'(Γ+ &) (ω)χ(ωnD = φ) ̂  J dω^Γ'TL2 -ί(ω)χ(ωnD = φ)

- Σ f^τt'(y-jθ|6(y,z)|χϋ'<§D),
ί' = 0

where we use (28) to bound the factors after ί'. Since yφDwe have no t(y, z) in (34).
L2-t

We also expand χ(ωnD = φ)= f] (l-
ί' = 0

t' =

(35)

The first term in (35) gives the first term in (33) and the sum over t' gives the first
term in (34).

To get a lower bound on (33), observe that

ί dy'TL2-\y-yf}^c, (36)
Lv'

Lα\ L2

for some cl9 uniformly in yeLu' + B{ — \9 f^-yS indeed \u' — v'\ = l, and |Lv'|

(37)

^L3/2, since \WnLD'\£clf + **, by (16) and (6.6).
We shall prove
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Lα

for all yφ D, \y — w| 5Ξ — . This then proves (23). To prove (37), consider the first term
in (34): 2

Σ ίdyTty-fiχ(\y-y\£%} ^c Σ l^nLv'l^iT2 (38)
ί D \ ^/ | t/-w' |<2

using (6.19) and (16), (17) (|y-w|^Lα, hence, by (17), yeDs).
Moreover,

Σί^Πy-ykf^ly-yl^^1+r)^ Σ ί dyΓ(y-
tD \^ / zφD',t \Dr\Lτ.\

^cLβL-«Σe ~'Γ ~Zl^cLβL'Λ (39)
z

using (16), (A.22) and (6.17). Finally,

Σ frf/ny-XML1^!/-}-!)^-^ (40)
ί

using (A.22). The s and E terms in (34) are easy to control, using (5.1 1), (6.26), and
L2<exp(cZ7). For ε(y,z), we use

fdyώΓ(y-fll<#^ (41)

since εy = 0 unless 7V(7)Φ — oo, i.e., using Lemma 6.1a, unless d(Y,D)<2.
Then, by (6.25)

Σ(41)^cL-α/2ΣJ^Tί(y-^~d(5>'jD)^^"α/2^, (42)
ί ί

reasoning as in (38-40) and using (A.22), with E = DnLu for uφD'. Combining
(38-42) proves (37).

We have only (25) left to prove. This is similar to the proof of (23). We have the
bound (37) on Fy and it is enough to show:

min min J dy'TL2~\y-y'}^\-L~^
yeSw ί^L2/

or

J dy'TL \y-y'} ^L'1 (43)
LD'

r l + y Γ1 + V

with y, t as above. Divide the integral into \y' — y\ ̂  —r— and \y—y'\ > -y- The

second part is negligible, by (A.22), and the first is bounded by

cL~3 Σ \LD'nL\'\e~lτ~vl^cL~2,

L2

using f <; — to get cL~3 [see (A.20)], and (6.18) to bound |LD'nLv'| = L3|D'nv'|

9. Probabilistic Estimates

We shall show that the probability that Nm Φ — oo is bounded by exp( — &(n)). This
will be used in Sect. 10. It also implies (5.50), as we show below.



406 J. Bricmont and A. Kupiainen

Proposition 1. For any sets A, Be Zd, any numbers

and for all n ̂  n0,

where & is the probability defined on the set of {b(x,y\ x,yeZd}, f = Γ1/2, and

If one forgets about qv, the flow is as explained in Sect. 3, up to — /?, and can be
understood on the basis of (6.10-6.14). We introduce qv because it enters in the
definition of N9 see (6.10,6.8). The bound (1) remembers that D^ i.e. qυ = \ is
unlikely. We shall also have a contribution from R, for which we use the results of
Sect. 5. To control the occurrence of several N's in a box, we shall use the fact that
we have a small factor, in the right-hand side of (1), for each site in A. We have also
to control negative N's. Here, we use the fact that large fields are reabsorbed long
before they are likely to meet, which is reflected in the lower bound on allowed
values of N. This bound implies that negative N's are controlled by the small factor
in (1), see (14, 15) below.

First, we show how to get (5.50) from Proposition 1 . Since r = e + £, we get, from
(6.25-6.27),

YCN

Here, we use c £+ Nu^d(Ύ^D£) since D^eD + . Then, (5.50) follows easily, for
ueYr\Dt

Γ>L4, from ^(ΓcΛΓ)^exp(- cnΓ\Y\\ which itself is a consequence of (1) [see e.g.
inequality (14) below].

Proof of Proposition 1. We proceed by induction: For n = n0, (1) follows from our
assumption (2.12) on the probability of large b(x, y\ since we take Γ = Ln$. Define
mnv = χ(υeRn + B(3n)). Then, it is clear that {ΛfM + l M '}M 'eΛ'> {qn + iV'}veB' are

determined through (6.5, 6.10-6.14) by

and by {mw+lt/,i/e,4'u£?'}. So, we may write

+ι,' = lW')> (2)

where P is the probability that the indicated events occur and that Nnu = — oo for
we^'uF) + B(3ί7))V4, qnv = 0 for veL((A'uB') + B(3U))\B and mnu, = Q for
u'e(A'vB')\C'. The sum runs over all sets A, B, and C such that

(3)

(4)

and over all values of Nu e (1 — 2α)Z, u e A such that {Nn +ιu 9qn + ι,v }9 determined
by (6.5, 6.10-6.14), take the values given in the left-hand side of (2). Note that the
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values of nu,, for u'eA'vB', are also determined, for each term in £*, see (6.8).
For each u' e A'vB', there must be a u e L(u' + B(3U)) with JVΠM + - oo or 4ΠU = 1

or m n + l l l / = 1. Therefore, for each term in (2),

- 3 (5)

Now we want to bound (2) by the right-hand side of (1) with primes and
w->n + 1. First, we have an upper bound on (2) if we replace P by ̂ , i.e. if we do not
specify the values of N9 q, m outside A, B, C, but still keeping the constraints on the
sum, so that, in particular, (5) holds.

The next step is to use Holder's inequality to separate the estimates on JV, q and
on m:

'}«' eC')

^^'^^"3. (6)

To bound the last factor, we use the results of Sect. 5: (5.12) and (5.15) imply,
using Tchebychev's inequality, and the fact that one has at most cL6n values of ξ,
that the probability that ueRn [see (5.90,5.64)] is less than

using (3.54) and (3.66). So,

^(K+ι«'}u'ec')n"3^exp(-LηCΊ) (7)

follows, using Schwartz' inequality a few times and the independence of sπu, snv for
\u-v\^2.

Inserting (7) and (1) in (6) and then (6) in (2), we have

J, (8)

where Γπ = f(l-τΓ3).
We have to prove that

Σ* exp ί - U"\C\ - Γn(2 - 2α - β}n(\A\ + U\B\)

. . _ ., (9)
ueA u'eA' J

We shall first simplify the argument of the exponential with the following

Lemma.

a) \A'\£\[L-1A\\ + Σ «.', (10)
u'eA'

b) Γ(2-2a.-β)(n+ί)U\B'\^2UΓn\C'\ + Γnnγ Σ (|Λ.nLu'|-l),

M'e-4' M6.4 we-4

Σ+ nu,-Γ(2-2a)\A'\, (11)
ueA u'eA'

d) Σ nu,^2\C'\ + y Σ (|XnLu'|-l) + y|B|. (12)
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Using this lemma, we bound the left-hand side of (9) by

x Σ nu,-Γn(2-2a-2β)n Σ
u'eA'uB' \Ar>Lu'\^2

-/Xl+n'1) ^~ Nu-Γ(2n2Γl Σ+ Nu-ΓnU\B\ . (13)
ueA ueA _j

To get that, we inserted (12) in (10) and in (11), for the term Σ nu,. We used the
easy bounds:

- Lyn + 2LyΓn + 2Γ(2 - 2α - β) (n +1) + 6nΓ + 4Γc0 ̂  - Lyπ/2

for the |c'| term

(remember that Γ = L«o, so that Lyn dominates)

and μ| = |[L-M]|+ (MnLu'|-l) for the |[L"M]| term.

for l^nLu'l. Here we use
Finally,

- Γn(2 - 2α - j3)rci7 + Γ(2 - 2α - )8) (n + l)y + 2Γc0y + 3nyΓ ̂  -

for the |B| term.
To show that (1 3) is bounded by 1 , consider first the sum over { Nu}M6Lv,, for each

v' e[LΓlA~\. For any fixed w, we use

Σ" expί-ΓO+n-^JVJ + Σ
Nu> -n(2-2α-3/3) Nu

where the constraint Nu> — n(2 — 2α — 3j5) comes from (6.14) and /Mα2. For the
sum in LV, let /v = |^4nLv'|. If pv, = 1, then Nu is determined, via (6.10-6.14) by the
values of N'v,9 nv,, so there is no sum over Nu in that case. However, there are
L3 = |LvΊ possibilities for the single w, with JVUΦ — oo, in Lv'. Also, if pυ^2 but
JV(Lv') < 0, the largest value of JVtt, for u e Lvr, is determined, via (6.10-6.14), by #'„/,
ifn υ , = 0. So, if n^ = 0,

Σ Σ expΓ-Λl+n-^Σ'^u-^n2)-1 Σ+^u
AcLv' {Nu}ueΛ |_ ueA ueA

ί L3 + Σ ΦΦ(A(2 - 2α - 3jί)w) + 2)) +

2

— exp(-ΓM(2-2α-2j8)n(p-l))^cL3. (15)
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In the first inequality, we used (14) for the p — 1 sums over NU9 where Nu may be
en2 /L3\

negative; —- bounds the remaining sum over NM^0; I counts the possible
Γ \PJ

locations of w's in Lv' with Nu+ — oo. The second inequality follows because the
sum over p is controlled by exp(—βΓn(p — \}\ which is the leading term.

If nv, = 1, the only change is that we have a sum over p NJs instead of p— 1 and
the left-hand side of (15) is bounded by

cL*exp(nn,Γ2n). (16)

Using this bound to control, in (13), the sum over {Nu} and over A in each Lv'
for v' e [L~ 1A]9 we have

)^ Σ ^p\-Un'2\Cf\-^Γ\A\-ΓnΠ\Bn(cLψ^ (17)
A,B,C' |_ 2 J

where £' runs over Άc(A'uB') + B(3U)) (18)

and over B, C as before, such that

(19)

A= — before, since we have summed over A in Lv'. The nv> in (16) is
l_ J

controlled by the corresponding term in (13); (19) is simply a rewriting of (5). To
bound (17) by 1 is easy:

Using (19), each term of the sum is less than exp( — ΓLΓ4y(\A\ + |B'|)), so we can
take out of the sum the square root of each term. The remaining sum is bounded by

_ r

using (3, 4, 18) and (l + e 4 ) <c.

This finishes the proof of the proposition, so we are left with the

Proof of Lemma i. a) If Nn + lu, φ — oo, then either AΓ(Lu') φ — oo, i.e. ur e [L" 1A] or
nu> = 1 (or both).

b) \ff\ = Σu,q'u, ί Σu,(m'u,

because if u' e D'^ then either u' e Rf + B(2U\ i.e. m'u, = 1 or there exists a ι/, with

|t;'-w'|^2Ly and μtnLv'l^ [see (6.5)]. Using Σ l^cL3y and

cL3yL~β<ζγ, we obtain b).
c) Consider first u' such that ΛΓ(Lu') = 0.

Then using (6.10-6.14) and

for π^n0, we get from (6.10),

) Σ+

ueLu'nA

x Σ+ Nu + 2Γc0nu,-Γ(2-2α). (20)
ueLu'n.4
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To get (11), we use also

Σ + NU = ΣNU-Σ~NU. (21)

Now let W(Lu')<0, then

JV^cΛ,-(2-2α). (22)

Combining (20), (21), and (22), gives (11).
d) This is similar to b) above; nu> = \ means

uΈD't + B(U) or Lu'r^(D^ + B(LΛ))ή=φ.

u'eD's + B(IJ) is controlled by the first two terms in (12), as in the proof of b). If
Lu'n(Df + B(LΛ))=tφ, then there must exist a ι/, with \v'-u'\<2 and |D^nLv'|
^cL3v, because each connected component of Όf contains at least $(L3y) unit
blocks, by construction. So,

£ |D,nLv'| ,
\υ'-u'\<2

since qv = Q in L((A'uBf) + B(3U))\B, £ |Lv'ni5,|^|J8|, and (12) is
v':d(v',A'vB')<2

10. Proof of Theorems 1 and 2

First we define the set of measure one on which the convergence holds:

» = {b|3m(b)| such that Nnu = - oo, Vrc ̂  m(b), Vw, \u\ ̂  Ln} . (1)

The reason for introducing 3d is that it contains environments such that bn(x, y)
= sn(x,y) for all |x|, |y|^L" and n^m(b). This follows from Proposition 6.1 and
Lemma 6.1 a: e and { are zero away from D, and D is empty if Nnu= — oo. Besides,
note that in time T^ L2n the walk cannot move at a (rescaled) distance larger than
L" [see (3.26)] so, for b in (1), the walk only "sees" small fields for all times larger
than L2m(b). For small fields, we may use the deterministic bounds (5.10, 5.1 1, 5.14).

Lemma.

Proof. This follows directly from Proposition 9.1. The latter implies

9 \
by summing (9.1) over Nu^ — 2n 1 — 2α+ - - j, and using β<ζα2. Thus,

and the lemma follows, for Γ large enough. Π

Proof of Theorem 1. Since f{ and the paths ω are continuous, it is enough to prove
Theorem 1 for tt in the dense set uL~ 2ZN. We have, for tt e LΓ 2ίN, Vi = 1, . . ., k and
forn^/,

ί ^vn(ω) Π Λω(ίι)) = ί ̂  ί d<'(Γm + 6 J (ω) Π /(IT ̂ (L2it,)) (2)
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with m = ΠQ + n — I (in Sect. 2, we started with n = 0, while in the right-hand side of
(2), we start with n = n0). Let now b e ̂ . Thus, for m large enough, bm = sm. Write

Tm+sm = Tg + sm (3)

with Tg given by (3.22). We see that the right-hand side (2) consists of a fixed time
( = L21) problem with sm tending to zero as n-κx). Now,

J dvD(ω) Π f(ω(tύ) = \dy$ da%Tg(ω) Π /(IT ̂ (L2ltt)) .
i i

Moreover, for any /e J*, an integration by parts gives

and, we have

^^ (4)

For (4), we used Theorem 5.1 for Tm— T£, (5.14) for sw, and the bound
y e-\Uί-U2\e(p+l)\U2\^2^e((p+l)\Uί\

ί/2+c(p+l)2) ^

M 2 eZ d ~"

We get, expanding sm in (2), and using (5.27) and (4),

for some α>0. The claim follows. Π

Proof of Theorem 2. This follows from Theorem 1 and the fact that the sequence
(vr) is tight. To prove tightness, we use a moment condition (see e.g. [16,
Theorem 12.3]): We show that 3α > 0, such that Vb e ̂ , 3X, such that Vί, s e [0, 1],

$dvτ(ω)(ω(s)-ω(ή)^K\s-t\1+«. (5)

Since \ω(s) - ω(t)\ ^Tίl2\s-t\ [see (2.4)] for [sT] = [ί T], i.e. for |s - 1\ ̂  T ~ \ (5)
is trivial in that case. For [sT] Φ [tT]9 we rewrite (5) in terms of lattice walks. For
those, it is enough to show:

J^Γ(ω)(|ω(0-ωO )| + 2)4^XT1-α|/-7Ί1+α, (6)

where i = [tT], j = [ίT] e N, \i-j\ φO, and ω are now lattice walks.
We write « «

i=ΣίkL
2k, j=ΣhL2k (7)

fe=0 fc=0

with 0 ̂  iΛ, jk^ L2 - 1, and n = max {/c : L2k ̂  T}. Let

i'= Σ hL2k, j'= Σ A^2fc

? (8)
k = m k = m

where m = m(b) — min {m | Nnu = — oo Vrc ̂  m V|w| ̂  L"}.
Using |ω(ΐ) — ω(i-f 1)| = 1, we have

NO - ω(/)| ̂  NO - ω(/')| + 2L2w . (9)

Inserting (9) in the left-hand side of (6), we get

j dμτ(ω) (MO - ω(/)| + 2)4 ̂  c(m) (1 + J dμτ(ω) (ω(0 - ω(/'))4) , (10)

where c(m) is a constant dependent on m(b), i.e. on b.
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Now, let/>ι';

$dμτ(ω)(ω(i')-ω(jT = ί Π

Π (Tk + skγ*(xk,xk+,) L\xk+l-xk) (11)
k = m

where we use bh = sk for fc ̂  m, and write / — i'= £ τfcL
2k.

k = m

Now, use (3), and expand the product over T£ + sk and the ΛΛ 4: obviously, for
W

Moreover, this integral vanishes if p is odd, or if τ = 0. We get, using (4),

_k_

The net result is ' ~~

\2

τkL
2k\ £c\ΐ-f\2. (13)

From (7), (8),

(14)

usng ί— j
Combining (10), (11), (13), (14), we get (6), i.e. (5), and tightness holds.

Appendix

We prove Lemmas 1 and 3-8 entering the proof of the upper bounds in Sect. 6.

Proof of Lemma 1. a) The proof of (6.15) is by induction. For n = nQ, D = N [see
(3.76-3.77)]. Assume that unD'Φ0. We shall prove that there must be a υ, with
\v — u\ < 2 and N'Ό φ — oo. If nu = 1, then N'u φ — oo follows from (6.10-6.14). Assume
nu = 0, so unD^ = (/>. If Lun(D+ +B(L*)) + φ, then clearly, using (6.15) inductively,
JV+nLv must be non-empty for some v, with \v — u\<2 and N'v+ — oo. Now, if
Lun(D_\L^)Φ</>, we must have ]V(Lw)φ — oo otherwise, Nu=— oo (because
nu = 0) and ue®. But, N(Lw)Φ — oo imply Λ^φ — oo unless, again, if ue^. So,

^ = 0, Lun(D++£(Lα)) = φ and Lun(D_\L^) = φ. From (6.6), we get

Equation (6.16) is proven inductively, using (6.10), (6.11), where all terms are
positive, when nu = \, since we chose c0>2 — 2α.
b) Equation (6.17) follows from (6.15) and the definition of Df.
c) For (6.18), we proceed inductively, with Ds = φ when n = n0. Assume vjtD^,
otherwise D'sr\y = φ. So

|D;nv| ̂  LΓ 3|LD'nLv| ̂  cL" 3L3αI/ ,

because from (6.6) and (6.17) we conclude that LD'nLv contains at most elf boxes
of side 2Lα + 1, since v j££^; (6.19) follows from (6.18) and (6.17). For u φD', we get,
instead of (6.17),
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because, using (6.1 5) and (6.5), DnLu contains, by definition of D, and by (6.1 5), cLβ

unit boxes, plus, possibly, all those on the boundary of Lu, i.e. cL2. Then, we use
(6.18).
d) Equations (6.20), (6.21) follow easily from (6.18) [for (6.20), we use the fact that
D(x) is a union of cubes of volume L~ 3], if we show that D(x) cannot intersect two
non-adjacent cubes, (u, v are adjacent iϊ\u — v\< 2). Let us prove this by induction. If
D'(x)nu Φ φ, D'(x)n\ Φ φ with \u — v\ ̂  2 then, since D'(x) is connected, there must
be a w, with \u — w| < 2 and |LD'(x)nLw| ̂  L, or |D'(x)n w| ̂  L~ 2 which contradicts
(6.18) since D'(x)cD's.
e) We already showed in the proof of a) that ΐ>£ C D + , so D _ c Ds and, since D + , D _
are unions of connected components of D, the conclusion holds for xeD_. If
xeD+nLDL then we must show D(x)r\D^ = φ. But, if unZ)^ Φ0, then, from (6.8),
nv = \ϊoΐv = [IT lu\ and v C £'+ by (6.10, 6.1 1). So, if D(x)nLv Φ φ for v C £'+, D(x)
GLD'(ι ), by construction of D'(xeD+, so £>(x)e£+). But then, D(x)cLD'+ which
contradicts x e LD'_ .
f) This follows from (6.15) and the definition of D': if xeLv, vjtS', then

l^ί/ for all |u-ϋ|<2. So |(;x + β(L))niV|^cif Then, use (6.15).

Proof of Lemma 3. a) Using (6.48), (6.52) and the bound d([L" 1X~\] ^ L~ ld(X] + c,
we have

(1)

, (2)

where D7 are the connected components of DΛ By (6.53),

j) ̂  CLβd(lL~ 1Z$ ^ CL\L~ ^(x^y^Z,) + c) (3)

We need to analyze the αf = 2, 4, 5, 6 terms.
For 0f = 2,

j

which yields
φc U^uZ;) ̂  2d2(xb yb zt) + cL^ . (4)

Inserting (4) to (1), the cLβL~l contributes to the ck.
For a{ = 4, we have

d(xvyuD(x)) ^ d(y9 D(x)) + 1 = d4(x9 y, D(x)) + 1 . (5)

In (5) we used diamD(x)<l which_follows from Lemma Id if D(x)cDs and this
holds by Lemma le, since, for xφD, as in (6.48), /(x,y)Φθ only if xeD + nLDL.

For a{ > 4, we have

φu^uZu WO ̂  Σ Γφcuy u ̂  ( 7, nD^)u W(y)) + Σ dίZn^) + d(W(y)]\ . (6)
* L j J

Now Σd(ZnDj) is controlled as above using (6.53) for ZΦφ, i.e. for a = 5. Next,
j

+β (7)
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since b = 1 [see (6.34), (6.36)]. Indeed, W(y) cannot extend over two non-adjacent
L-cubes, since otherwise we would have an L-cube Lw' with w'el)' and |DnLw'|
^ cLLΓ α > If, as in the proof of Lemma 1 d. Thus (7) holds. Since cL3α + β < L1 " α, we
get for α>4, (6)^2da(x,yίz) + L1~<x and a) follows.
b) We have

φ'u/uF; Y'nD'J

^ ck + IT 1 Γ \Xi _ ! - yt\ + Σ d(x,uyίu y, ^n(L^πD))l , (8)

where ϊ^ are Zt or Wi9 see (6.52). To get (8), we used the fact that there is a corridor of
width 2L1+y between (LDtf and LD'^D. This implies that

d(X';X'nD't) ^

if [L~ 1X] = X'. Now, bound in (8), the second sum by

X d(xίuyίuZi)+ Σ
ΛI = 1 , 3 βi = 2

+ Σ d(yί,D(x))+ £
«i = 4 α j > 4

x £ d(Z^D^LD's) Σ (dφίx^nLD;) + d( ̂ (x^nLDa) . (9)

Now proceed as in a). Since D'sr\D' = φ, we get

Σ d(ZinDjnLDf

s) g cL^ (IT 1 Σ d(YJ'nD^ + ή , (10)

where YJ are the c.c. of T. Similarly the right-hand side of (10) bounds the two last
sums of (9). Since

; Y'nD',)

we get the claim of b)
c) We have

\P\ (11)

for any path P joining LD'(x') to L/, and not intersecting LD'(x'), except at one
point. Now, because of the corridors around LD' in (6.5), and because D'(x') is
connected,

L/5'n(L(D'(;c') + B[2U))\LD'(xf)) = φ .

So

|Pn(D + E(Lα))nL(D'(x') + 5(2 )̂1 ̂  cL3α + β(L~ 1 |P| + c) , (1 2)

and, using |P| = |P\E| + |PnE|

|P| ̂  2|P\((D + £(La))nL(£'(x') + B(2U)))\ + cL3α +β. (13)

Inserting (13) in (11) and using the definition of da we have (6.67) because W(Lx')
C LD'(x') [see (6.34)] and all the other terms after the semicolon in da, a = 2, 5, 6 and
D(xi\ for α = 4, are contained in
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Proof of Lemma 4. Consider a = 6 first. It suffices to bound

Σ J dxT^Dc(y,x)e«x>w^c (14)
ί=l Wc

with yeW. We get an upper bound by replacing T^^c by 7 .̂ Define
π:Z 3xZ 3-+R by π(x,y)=T(x-y) if x,yeW, π(x,y) = δxy if x,yφW, π(x,y)
= T(x, y)ed(y> W} if y φ W, x ε W and π(x, y) = 0 otherwise. Then the left-hand side of
(14) is bounded by

ldxπL\x,y}. (15)

Since $ π(
w

we get

^sup f dyT(x-y)elχ-yl^c, (16)
xeW Wc

a = 5 remains to be proven. Recall (6.46) and (6.47) and consider first the k = 1 term.
This is similar to the a = 6 case above, the only change being that T is replaced in
(14) by Γ+£ We claim that, if φcuyuY; W)>U [see (6.43)], then

φ uyuY; (Yr\Dc)vW)>U. (17)

Assuming this, we get, for a = 1, 2, 3,

Σϊdx\QaY(y,x)\χ(Y)e^d(x^γ''(Y^D^w^e-Ly/2. (18)
a,Y

Indeed, using (17),

(ynD,)uϊP)

and φuyu 7; (7nD^)u WQ ̂ dfl(x, 3;, 7) for α = 1,2,3 (18) follows from the induc-
tive bounds (6.25,6.26) and (5.11).

(18) and $(T+b)(x,y)dy = l implies
2 (19)

Also we have, for xeW,

because we may use (16) for the T part and (6.25-6.27) for the B part. Then, for
k = 1, we argue as we did above for a = 5. The bound we just proved replaces (15),
while (19) replaces $π(x,y)dy^l; in the modified bound on (15), we get a factor
(l+ce-Lγ/2)L2<c.

For fe> 1 , we use (1 8) : this controls the L2 coming from the sum over tt and the y
integrals are bounded using (19).

To prove (17) we observe that, by definition of W, (6.34), W is at a distance at
least Lαfrom D+\ W because Wis a connected component of ((D+ -f#(Lα))u/)) or of
LD'. But Όf CD+, hence W is at a distance at least Lα from D^\W. So, (17) holds.

Proof of Lemma 5. We shall use the following Green's function bounds on T(x — y),
all of which follow from the Fourier transform bounds of Proposition 5.1.
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Let £ be a set of L"1 cubes and let ί^L2. Then,

^dyTt(x-y)e2L~llx~yl^c\E\(t + l ) ~ 3 / 2 Q x p [ ^7^) (20)
and E V * J

-y)e2L-i|,-^-^.£)/4^c|E|(ί+1Γ3/2eχp^_^^Y (21)

Note that we get |E| here instead of |£| and E is, by definition, a set of unit cubes.
Summing over ί, we get

and similarly for the sum over t of (21), with |£| replaced by |E|.
The proof of the lemma reduces to a combination of Lemma 4 and the Green's

function estimates above.
a) Equation (6.74) follows immediately from (6.25). For (6.75), we use

which holds for N(Z)ή= -oo, by Lemma la. Since Qιz = 0 if N(Z)= -oo (by
Proposition 6.1 and Lemma 6.1), we may insert (23) in (6.71), and get

ΛteO^cΣ Σ $dydzχ(yφD)r(x-y)e2L~llχ-yle~d(y>N"LuV2

Z ueZd

x Iβizto z)|ed(xuyuZ)L-N(Z)/2 . (24)

Using (6.25), the z integral and the Z sum are bounded by L~α/2. Use (21) with
E = NnLu, to get

( - Ξ._ -L - fϋ._ \
£ |NnLu|e L "+ Σ |NnLu|e 4e L " , (25)

uφD' ueD' J

where we use the fact that dfflJLa) ^LiίueD' and yφD. Now, using |NnLu| ̂  If,
by definition, for u$β'9 and |NnLu|^L3 for we/5', we get (6.75).

For (6.76), we proceed in a similar manner. Write in (6.71)

Σ= Σ + Σ - (26)
Z Z n D + Φ φ Z n D + = φ

For the sum over ZnD + φ φ9 use the analogue of (23) with d(y, D + nLu) instead of
φ,NnLu) and use (22) instead of (21): this gives the first term in (6.76). For the
sum over ZnD+ = φ we use JV(Z)<0 and the fact that QιZ = 0 if N(Z)= — oo. If
]V(Z)<0, N(Z)£l +2α since N0e(l-2α)Z. So, in that sum we may insert

l^L~2+αL~~2~. (27)

Now, reasoning as above we get a bound L~ i+αcL^(d(x,D_)-hl)~1 which is
smaller than L~α.
b) is obvious,_given Lemma 4 and L2 <^ £Lr/2.
c) If xeD+VD, (6.78) follows from Lemma 4. IfxφD + \D, we have x = y in (6.72)
because ί = 0(T°(x-3;) = φc-}>)). In (6.72), yφD, so x = yφD+. But

) = 0 for
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For rΦO, we bound the z integral and the Z sum in (6.72) by a constant, using
Lemma 4. The y integral in (6.72) is controlled by the fact that yφD but
otherwise Q4Z(y, z) = 0. We bound it by

Σ
weZ d

(28)

using (20) with £ = (D + \D)nLu, and using D + \D = D +_# LD'_ C Ds, which follows
from (6.31) and Lemma le. Moreover, we used (D +\D)nLu = φ if w e 5'.

By Lemma le,

, (29)

which proves (6.79). (6.80) is obtained from (6.78, 6.79) by summing over t.
d) Since D\LD' = LD'+nD+ cD, we may write in (6.73),

uφ

The z integral and the Z, ί' sums in (6.73) are bounded by a constant, using
Lemma 4. Lemma Ib and c give

I A, nLu| ̂  cLβ , |DsnLu| ̂  L~ 2

(for uφB').
Then, using (22) with E = Df nLu or £ = DsnLu for the y integral in (6.73), we get

the two terms in (6.81).

Proof of Lemma 6. a) For a' = 5,6 (6.84) follows from (6.85) (6.86) to be proven
below. If a or a' = 2, 3 (6.84) follows trivially from Lemma 4. So we have only to
consider α = l,4, and α' = l,4 or α = 5,6 and α' = l.

Consider first α, 0' e {1,4}. If 0 = 4, α' = 1 we may use (6.76) to bound AΛ(z) by
2L~α/3. The z integral and the Z sum may be bounded by

cχ(yeD+)

using Lemma 4 and <z = 4.
The sum over t and the 3; integral in (6.82) are bounded using (28) [plus 0(1) for

t = 0] . Combining these, (6.84) holds in that case. If α = 1 , α' = 4, we get a constant as
a bound on Aa,(z) from (6.80) and the rest is bounded by 2L~α/3 from (6.76); 0 = 1,
α7 = 1 is treated similarly.

Finally, consider 0 = 4, α' = 4. Insert in (6.82),

For zφD+\D we get a bound cL~α on Aa{z) from (6.80) and we are done. For
zeD + VD, we bound Aa,(z) by a constant and we notice that D + \D = D
CDS\LD' because of Lemma le and D'cD'fcD'+. We write

= e ί <fe|β4Z(y, z)|χ(z e DS\LD\ φ, fl(y)) ̂  U) + exp( - cL^) , (30)

where we used (6.27) for the integral over d(z, D(y)) > L2y. We claim that

(30)^cZΓα/3 (31)

for yφD, yeD+.
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To show this, we use (6.28) : if y φ D but y e D + , it means that N'u < 0 for u' such
that Lu'ey. So, from (6.10) we see that

Ny^N;-f2-2α^-l-h2αH-2-2α^l for yevCLu' .

This implies βv^i-L~l and, using (6.28), proves (31). We use (28) [plus 0(1) for
ί = 0] to control the t sum and the y integral. This gives (6.84) for a = 4, a' = 4.

Now let α = 5, 6, a' = 1. Here we combine (6.76) for Aa{z) and (6.81) for the rest
which is just Aa(x) for a = 5, 6. This yields (6.84).
b) For (6.85), we use (6.81) on Aa(z). We get

Bla.(x)£ Σ $dydzχ(yφD)r(x-y) principle

x e2L~ *}x~yl\Qlz(y, z)\eL~γd(y(JZ"z\cLβ(d(z, De] + 1)~ 1 + L~α) . (32)

Divide the z integral into \z — y\ ̂  17 and |z — y| > 17. The second part contributes
to L~α in (6.85). For the first, we have trivially

ΐ - i

Now insert (23) and bound the resulting z integral and Z sum, using Lemma 4,
by L~α/2. So we have only to bound

ί,«eZd

by L 3(ί/(x,Dzf) + l))~1 which follows, arguing as in (25), from

φc, D,) ̂  (φ, NnLu) + l)e^'NnLu)/4(φ, D^) + 1)

and (22) with E = NnLu.
For (6.86), we consider α = 4, ̂  = 5,6. Divide the z integral into d(z,D(y))<>Ly

and d(z, D(y}) > U. For the latter, we may use Lemma 4. Since y e D + \Z>, D(y) C Ds,
and diam (£>(>;)) < 1 by Lemma le, d. So, y e D + \D and φ, D(y)) ^ ϋ imply φ, D ,)
^Lα-L?, since D( fCLD/

+nD+, yίLD+ (since yeD+\D) and LD'+ has, by
Lα

construction, a corridor of width Lα around D + nLD'+. Now, using d(z,Dj)^ -— ,

the bound (6.81) on Aα{z) and (6.80) for the rest, we get (6.86).
c) Divide the z integral in (6.83) into d(z,W(y))^U and d(z,W(y))>U. By
construction, d(dW(y)9D+)^L*9 see (6.34). Since zφW(y), d(z,W(y))^U implies

Lα

d(z,D+)^LΛ — U^ --. Since DjCD+, we may use (6.81) on Aα.(z) and then again.

(6.81) for the rest. If d(z, W(y))>U, we use the exponential decay coming from
Lemma 4.

Proof of Lemma?, a) Notice that J collects indices where bj = 2, i.e.
= connected component of LDf and y^eLD or 7 = 0. We shall use the fact that, in
order to connect W(y^r\LD' to W(y^LD for/ +7 the path has to cross a corridor
of size 2L1 + γ [see (6.5)], where, by definition D is sparse (the corridors are not in D).
This is true also for7 = 0, since x' eD' and even if W(yj]=W(y^, i.e. if the walk
revisits the same set, because of the condition Xj e W(y^ in (6.49): the walk has to
leave W(yr) before revisiting W(yr)r\LD.

So, let G be a connected graph joining LD'r\W(y^ to W(y^f. The (possibly
disconnected) graph G\(D + B(L")) becomes connected when connected compo-
nents of D + β(Lα) are contracted to a point.
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First, observe that the minimum of \G\(D + B(La))\ overt all such G is less than
the left-hand side of (6.102). This is obvious, given what we said above, because, for
all dα's in (6.103), the sets after the semicolon that are inside W(y^ are also inside
D + B(LΛ): by definition for all z, with/<i<j, we have b~ί and therefore WtcD
+ B(U). Next, we claim that

|G\(D + £(Lα))|^!L1+' (33)

which, then, yields (6.102). Certainly \G\^2Lί + γ because of the corridors in (6.5).
Write

|G| = \G\(D + B(L«))\ + |Gn(/> + B(L«))\ .

But G is in W(y )\L&, hence

since, for each uίn[τ]

(34)

(35)

|DnLu| £cLβ by Lemma Ib. Now,

(36)

This and (34), (35) proves (33).
b) This uses the corridor of size L in LD', around LD'. Consider a connected graph
G joining x, y and Z. Again, the minimum of |G\(D + B(L*))\ for such graphs is less
than da(y, x9 Z) for a = 2,5. But since ZnL/5' Φ φ9 y φ LD' and G is connected, there
must be a uφD' with |GnLu|^L. Since uφ6'9

^ L - cLβ + 3α,

because D contains cLβ boxes in Lu, except possibly on the boundary of Lu. This
concludes the proof of b).

Proof of Lemma 8. This is similar to the proof of Lemma 7, using the corridor
B(2U) in (6.60). Let G be a connected graph joining LD'(x'} to (LDf(xf) + 2B(U + *))c.
The minimum of \G\(D + B(L*))\ is larger than the left-hand side of (6.106), and,
obviously, |G|^2L1+y. But in Jhe corridor (LD'(x') + 2B(L1+γ))\LD'(x') there
cannot be any Lu, with utD' because D(x'} is connected, see (6.5). So

G ' and using (34), (36), we get (6.106).
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