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Abstract. We study the hydrodynamic behavior of asymmetric simple exclusions
and zero range processes in several dimensions. Under Euler scaling, a nonlinear
conservation law is derived for the time evolution of the macroscopic particle
density.

1. Notation and Summary

In this 'article, we study the hydrodynamic behavior of certain stochastic particle
systems, such as simple exclusions and zero range processes. These systems consist
of an infinite number of identical particles that move on a multidimensional lattice
according to a Markovian law. Under Euler scaling, the microscopic particle
density converges to a deterministic limit that is characterized as the solution of
a nonlinear conservation law.

Before stating our main results we describe the simple exclusion model and
the zero-range process is more detail.

Let E denote the space of configurations η = (η(u):ueZd), where η(u) is a
nonnegative integer representing the occupation number of particles at site u. Let

(p(z):zeZd) be a probability transition function I i.e. ΣP(Z) = 1 and p(z) ̂  0 1 and

#:N->[0, oo) be a bounded nondecreasing function with 0 = 0(0) < 0(1). The
zero-range processes are defined as Markov processes with state space E and
generator

=Σ P(» -
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where

C η(u) — 1 if z = u

ηuv(z)=\ η(υ)+l if z = v ,

[η(z) if zί=u,v

provided η(ύ) ^ 1 and u φ v\ ηuv = η otherwise.
In the simple exclusion model, there is at most one particle per site (i.e. η(u) = 0

or 1) and the generator is

We refer the reader to [13] and [1] for the existence and construction of the above
processes.

It is known that for any nonnegative p (in the simple exclusion case pe[0, 1]),
there exists a unique translation invariant equilibrium measure vp with density p.
More precisely, vp is a probability measure on E with the following properties:

J &fdvp = 0

for all cylinder functions /,

and

for all ueZd, where τu is the shift operator defined by

/(V/), (1.1)
and

τuη(v) = η(u + v) u, veZd. (1.2)

(For the definition of vp, see the next section.)
Because of Euler scaling, we consider the speeded up generator N<£ for positive

integers N9 and denote the Markov process with generator N<&, by (η(

t

N}(u):ueZd),
and if there is no danger of confusion, simply by ηt. Associated with the particle
configuration ηt, we define the Radon measure

«N(t,dx) = ~ΣδulN(dxϊηt(u) (1.3)

viewed as a random measure on IRA In other words, for any smooth function J
with compact support

The object of this paper is to derive the hydrodynamic equation for the particle
density αN(ί, dx\ as N goes to infinity. Roughly speaking, we initially start with a
distribution μN for η0, whose density profile is some masurable function p( ), i.e.

Urn
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for any δ > 0. We then expect that the distribution of ηt has a density profile p(ί, •)
which satisfies the conservation law

where h(ρ) = § g(η(0))vp(dη) for the zero range process and h(p) = p(l — p) for the
simple exclusion model, and

When h is not linear, then Eq. (1.4) has no differentiable solution. So, it must
be understood in the sense of distributions. Another feature of (1.4) is that its
solutions are not determined uniquely by their initial data. Therefore, we need
some criteria to pick the relevant solutions. These relevant solutions are normally
called entropy solutions and they are characterized by the following criteria:

for all constant celR, where

q(p\ c) = sign (p - c)(h(p) - h(c)).

Here the inequalities (1.6) are interpreted in the sense of distributions, and we refer
to them as the entropy inequalities. Kruzkov's uniqueness theorem asserts that the
entropy solution of Eq. (1.4) is unique, providing

lim J \p(x,t)-p(x)\dx = Q (1.7)
'->o, x,£ k

for every constant k.
In order to prepare for the statements of our main results, we formulate several

assumptions. These assumptions are of two types: on the initial distribution μN

and on the transition probability function p(z). We will assume throughout this
paper:

Assumptions 1.1.
(a) p( ) is of finite range, i.e. p(z) = 0 if |z| > r0 for some r0.
(b) (For the zero range process) p is irreducible, i.e. £ p*"(z)>0 for all zeZd,

where p*" denotes the nih convolution of p. π>0

(b') (For the simple exclusion model) p(z) + p( — z) is irreducible, i.e.

£(p*"(z) + P*n(-z))>0
w > 0

for all zeZd.
See the next section for the motivation behind assumptions (b) and (b').

Notation 1.2. Let μN be a sequence of probability measures on E, and let p be a
bounded measurable function on IRA We then write μN ~ p if the following condi-
tions hold:
(a) μN is a product measure,
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(b) there exists a sequence pu^N such that

μ»(η(u) = k) = vp»>N(η(u) = k) ueZd, /ceINf,

for every positive /c([xJV] denotes the integer part of xN).

Note that if p is continuous, we may choose pu N = pi — } for all ueZd.
\NJ

We are now ready to state our main result. Let PN denote the distribution of
the process ηt with the initial distribution μN.

Theorem 1.3. Suppose peL°°(Rd) and μN ~ p. Then for every ί>0, every smooth
function J of compact support, and each δ > 0,

where p(t,x) is the unique solution of (1.4) satisfying (1.7) and the entropy
inequalities (1.6).

Actually we will show the following stronger result: if QN is the law of α ί̂, dx)
with respect to the probability measure PN

9 then QN converges weakly to a
probability measure Q that is concentrated on the single path p(t,x)dx (see
Theorem 5.1).

The key idea that will be used in the proof of the above theorem is the
monotonicity or attractiveness property of the process ηt. That is, if certain
inequalities initially hold between configurations, then they continue to hold at
later times. Section 2 will be devoted to the precise definition of attractiveness,
and some of its consequences that will be used frequently in the rest of the paper.

In Sect. 3, we will show that the inequalities (1.6) hold if we replace the
macroscopic density p(x, ί) with the average density of particles in large microscopic
blocks. We then need to verify that the microscopic particle densities of macro-
scopically close blocks do not fluctuate. This will be done in Sects. 5 and 6, using
two different approaches.

Theorem 1.3 will be established in Sect. 5. The proof of Theorems 1.3 and 5.1
presented in Sect. 5 uses DiPerna's uniqueness theorem for measure-valued solutions
(see Sect. 5 for the definition of measure-valued solution and see Lemma 5.3, for
DiPerna's theorem).

In Sect. 6 we will give an alternative proof of Theorem 1.3 under the stringent
assumption p(l) + p(— 1) = 1 (i.e. nearest neighbor jumps) that does not use
DiPerna's theorem. The proof of DiPerna's theorem presented in [9] relies on the
existence of the entropy solutions to (1.6). Our proof of Theorem 1.3 in Sect. 6
does not use any existence theory, therefore establishing the existence of entropy
solutions using probabilitic arguments.

Section 7 is devoted to some of the implications and refinements of Theorem 1.3.
If p(ί, •) is continuous at x, we expect that the distribution of (^([Nx] + u):ueZd)

converges weakly to the equilibrium measure vp(ί'x). Results of this type have been
recently proven by Benassi, Fouque, Saada and Vares [17] for the one dimensional
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zero-range processes with monotone initial densities. Some of the earlier references
in this context are [2-5, 12, 13 Chap. VIII, and 14].

2. Monotonicity and Its Consequences

The Markov processes described in the previous section are attractive (or monotone).
The primary purpose of this section is to present some of the consequences of
attractiveness that will be used frequently in the succeeding sections.

We start with defining a class of Markov processes that includes simple
exclusion and zero-range processes.

Let b:N x N->[0, oo) be a bounded function with the following properties:

(i) fe(0, ) = 0, }
(ii) n\-+b(n,m) is a nondecreasing function for each w, > (2.1)

(iii) m\-+b(n,m) is a nonincreasing function for each n. J

Given such b we define the process (η(

t

N\u):ueZd) as the unique Feller process
with state space E ~ Nzd (endowed with the product topology) and the infinitesimal
generator NJ£ where & acting on cylinder functions is defined by

&m = Σ p(» - «)fcfoM Φi)(f(*n - mi
u,v

Note that the factor N in front of & represents the effect of Euler scaling, since
the process (η[N\ t ̂  0) in law is the same as (η(

t^, t ̂  0), where η(ί) is the Markov
process generated by «£?. We find it more convenient to deal with η(

t

N) instead of
η(

tx
} in the succeeding sections. But this may appear a bit confusing in this section

since N plays no role in the following discussions. When there is no danger of
confusion, we drop the superscript N, and denote the process η(

t

N} with ηt.
It is known that for any ηεE, there exists a unique probability measure Pη on

the Skorohod space /)([0, + oo); E) that solves the martingale problem associated
to J2?. Let St be the corresponding Markov semigroup. That is,

for / a bounded and continuous function on £, and we define μSt by

for any probability measure μ on E.
An important problem concerning these processes is to characterize the set of

invariant measures «/,

μe./ if μSt = μ for all ί^O.

Let τu, ueZd, be the shift operators acting on E by (τuη)(v) = η(u + t;). They also
act on functions by (τuf)(η) = f(τuη\ and on measures by

for any measurable function / on E. Let &* denote the space of probability measures
invariant under (τu;ueZd).

An important implication of the monotonicity assumptions 2.1 on b is the
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monotonicity or attractiveness of the process ηt. For this we first define the following
partial order on E\η ^ ζ if η(u) rg ζ(u) for all uzTLa. This in turn defines an order
between probability measures on E\μ^ ^μ2 if there exists a coupling measure μ
on £ x £ such that μ(A x E ) = μ^(A\ μ(E x A) = μ2(A) and μ{η, ζ)\η ^ ζ} = 1. The
process ηt is attractive in the sense that μ1 ^ μ2 implies μ1St ^ μ2St for all ί. This
is easily shown by constructing a coupled process (ηt, ζt) on the space E x E such
that the evolutions of ηt and ζt are governed by NJ&, and if η0 ̂  C0 then 77, ̂  ζt

for all ί. The generator of (ηt, ζt) is given by N&, where

0 =

, 0 - /(ι;, 0)

Λ b(ζ(ul ζ(v)))(f(η9 ζuv) - f(η, 0).

Let 3 denote the space of invariant measures of & and let ̂  denote the space
of translation invariant measures on E x E.

Note that if we choose b(n, m) = g(n\ we obtain the zero-range processes, and
if we choose

Ί if n = l , m = 0,
b(n, m) — -

[0 otherwise,

and restricting the process to {0, l}zd , we then obtain the simple exclusion model.
Both of the above examples have the following properties that would be

essential for our arguments.

Properties 2.1.
(a) For each density pe[0, oo)(pe[0, 1] in the simple exclusion case), there

exists a unique product measure vp in ,/n^ such that §η(Q)vp(dη) = p.
(b) For μe./n^ with J η(Q)μ(dη) < oo, there exists a probability measure β on

[0, oo) such that

(c) For every μe«/n«^ we have

In the simple exclusion model the measure vp is characterized by the relation
v"(f,(ιι)=l) = p.

To construct vp for the zero-range process, we first define the following
probability measure Θλ on N, for each λG[Q,supkg(k))\

1 λ"

1

Z(λ)

if11

if B = 0,
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where Z(λ) is the normalizing factor. Set

n=ί

Then ^:[0,sup0(/c))->[0, oo) is strictly increasing, and lim ψ(λ)= + 00. The
k λ->supk0(fc)

inverse of ψ is denoted by λ( ) and let

&p=&w
The probability measure vp is obtained by taking the product of <9p's, i.e.
vp(dη)= Π &p(dn(n)\ so that

ue%d

vp(η(u) = k) = Θp(k).

The expectation with respect to vp will be denoted by < >p. We certainly have

Properties 2.1 were shown by Ligget [13], for the simple exclusion model and
by Andjel [1] for zero-range processes.

There is another class of examples for which Properties 2.1 hold. This class
was introduced by Cocozza [6], and it includes the class of zero-range processes.
We refer to this class as Processus des misanthropes. It is characterized by further
assumptions on b:

b(n, m) > 0 n ̂  1

b(n, m) b(

fc(m+l,n+l) b(m+l,0)b(l,n-l)

b(n, m) — b(m, n) = b(n, 0) — fc(m, 0) n, m ̂  0.

The measure vp is a product measure characterized by relations

vp(η(u) = n) vp(η(u) = 0) b(n + 1,0)

for n ^ l .
We end this section with the following definition:

Λ(p):=<6(ι/(0),ιy(z))>p, z^O. (2.2)

Since vp is a product measure, the right-hand side of (2.2) is independent of z.
Indeed h(ρ) = p(l — p) in the simple exclusion case, and h(p) = λ(p) in the zero-range
case.

3. Entropy Inequalities in Microscopic Form

Motivated by the work of Guo, Papanicolaou and Varadhan [10], we introduce
an intermediate space scaling into our problem. While macroscopic regions have
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size of order JV, in microscopic space scaling, we will take averages over microscopic
regions of size /, where / increases to infinity only after N has already tended to
infinity. In this section we will prove the entropy inequalities (1.6) with p(t,x)
replaced by the average density of particles in large microscopic blocks.

Let Tl be the cube of length 21 + 1 in TLά, centered at the origin:
d:u = (uΐ > ud) with \ u t \ ^ l f σ τ l^ί^

and let T,(z) = Γ< + z, ze%d. Define

for any ΓgZd, where |Γ| denotes the total number of sites in T. We now state
and prove the following version of the entropy inequalities:

Let J(ί, x) be a smooth test function with compact support in (0, oo) x IRA Let
μN be a sequence of probability measures. For each N9 P

N will denote the law of
the process ηt with the infinitesimal generator N£? and with the initial distribution
μ".

Theorem 3.1. Suppose that there exists a positive density p0 such that μN ^ vpo for
all N. If J ^ 0, ε > 0 and c is any constant, then

/-o

Proof. Step 1. The constant V can be obtained as the density of a Markov process
that is generated by NJ£ and distributed initially as vc^With this in mind, we
consider the coupled process (ηt, ζt) with the generator N& and initial distribution
μN x vc. We denote the law of this process on D([0, oo) x E2) by PN.

Set A(s, η, ζ) = —-Σ J\ s9 — 11η(u) — ζ(u)\. Since J( , u/N) has a bounded support

in the open interval (0, oo), we have

ί Γ- Λ "I

ί̂ = ί —A(s9ηs9ζs) +N3?A(s9ηs9ζs) Ids

is a martingle for large ί, and 5f

2 — <5>t is also a martingle, where

o

In order to compute Bt and <£>ί? we start with

&\η(u) - f(ιι)| =

- p(u - v)(b(ζ(υ), ζ(u)) - b(n(v\ η(u)m Fu,v(η, ζ)

+ Σ [p(« - »)Wί(»), C(«))
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- p(v - u)(b(ζ(u),ζ(v)) - b(η(u),η(v))]'FUtυ(ζ,η)

- Σ [p(v - M)Ife(£(w)> CM) - b(n(u\ n(v}}\
V

+ p(u - v)\b(ζ(v\ζ(u)) - b(η(υ\η(u))\] Gu,Ό(η,ζ)9 (3.2)

where

J1 if η(u) ̂  ζ(u) and η(v) ̂  ζ(υ)

|θ otherwise,

and GUtV(η,ζ) = 1 - F U t V ( η , ζ ) - F u , v ( ζ , η ) . Formula (3.2) follows from a straight-
forward computation on 3? using monotonicity properties of b. Note that in (3.2)
the third sum in the right-hand side is nonpositive, then if J ^ 0,

ί ~d Σ P(» - u)js,~b(ζM £,(»)) - b(ηs(u), ηs(v)))Fu,v(ηs,

- Σ P(« - o) j s, (&(α»X £,(«)) - ftfe(f),
o-ίV u,v \ Λ r /

+ ί ΐ Σ P(« - v)j(s, £)(WM Cs(u)) - &(»»,(»), ηs(u)))Fu,υ(ζs, ηs)ds
0 ̂  u,v \ TV /

- ί ̂  Σ p(» - «) J(s' ̂ )(&(c.(«λ c.(»)) - &ω«λ v WMί1 ...(c,, »ί,)ώ.
o ΛV u,υ \ Λr /

In the third and fourth term we interchange w with i? and then we add up the
second with third, and the fourth with fifth terms,

' N ( ί u

oNd

u>v \ \ ' N

ί v\\

\ 9 N J J s s u'v

Since p is of finite range, we have

p(υ-
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H(η, 0 = - fe(C(0),

Σ PWJWf, , η(z)))z.

(Here, we use vector notation: ze2Zd and /ί(f/,ζ)eIRA)
Now (3.3) can be written as

In Lemma 3.2 we will show

, = 0

(3.4)

(3.5)

where EN means the expectation with respect to PN. Since β,2 — <β>, is a martingale,
(3.5) implies EN sup B? = 0(l/Nd). From this and (3.4) we conclude

O g s g r

s,-η,(u)-ζt(u)\dslim

l. (3.6)

Step 2. Let / be a fixed positive integer. Since J is smooth, in (3.6) we can replace
\ηs(u) — ζs(u)\ and τuH(ηs,ζs) with their space averages over sites in a box of side
length 2/+ 1 and center w. Therefore to go from (3.6) to (3.1), it suffices to show
that for any k> 0,

lim lim sup EN\ j
l->ao N->w LO I Tk

- Γ'lim lim sup EN\ J
JV-*oo LO

ds = 0. (3.

(3.7)

8)

We only show (3.8) because (3.7) can be treated in the same way. Remember
that (ηt, ζt) is generated by N&, and initially distributed as μN x vc. Let St be the

1 tN 1
semigroup associated to &. Let μf = — j ^ (μN x vc)τuSsds. Then (3.8)

can be written as tN ° 'Γfe]vl ueΓkίV

lim lim sup J
UeΓ/

τuH(η,ζ)~q(MTl(η) c)y μ»(dη,dζ) = 0. (3.9)

Since vc is an invariant measure of ζt, the ζ-marginal of μ^ is always vc. On
the other hand μN ^ vpo, therefore the ^/-marginal of μf is always (stochastically)
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less than vpo. Thus, the sequence {μf} is tight. Let si be the collection of all limit
points of {μf}. From the way we defined μf, we clearly have
(a) Marginals of any μ in j/ are less than vc+po

(b) j/gJn^.
(c) C-marginal of any μ on j/ is vc.
Thus, (3.9) would be implied by

lim supj
1-* oo

1

\Ti\ueT,

τJI(η,ζ)-q(MTl(η) ,MTl(ζ)yϊ μ(dη,dζ) =

where we have used the following conclusion of Ergodic Theorem

\imvc(\MTl-c\>δ) = Q
/->00

to replace c with MTl(ζ) in (3.9).
Properties 2.1(c) guarantees

(3.10)

(3.11)

for all μestf. Now we break the integral in (3.10) into two pieces, one over
configurations (η, ζ) with η ̂  £, and the other over configurations with ζ ̂  η. We
now write one of these two integrals,

ί
1 _

YτuH(η,ζ)-
\ *l\ueTι

= I
η^ζ

1

\Tι\ueTι z

q(MTl(η);MTl(ζ))y

(b(ζ(u\ζ(u + z}}-l

μ(dη,dζ)

-b(η(u)9η(u + z)))z

-(h(MTl(ζ))-h(MTl(η)))y μ(dη,dζ).

Thus, it suffices to show

ίim ™PJ Ϊ Γ Ϊ '
(3.12)

Using Properties 2. l(b), any β in,/ n £f of finite expectation can be written as

for some probability measure α. Since β ̂  vpo, α is concentrated on [0, p0]. Therefore
we only need to show (3.1) with β replaced by vp and with supremum over

Since every vp is a product measure and translation invariant, we have

= %)y.
/ P

Thus, by Ergodic Theorem,

1
l imf

\Ti\ueTi

X p(z)b(η(u\ η(u + z))z - h(p)y (3.13)
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Since h is bounded and using (3.11), we have

lim J \h(MTl(η)) - h(p)\v<>(dη) = 0, (3.14)
f->00

for any p ^0. Convergence in both of (3.13) and (3.14) is uniform in p. (To see
this for the first one, take the second moment of the integrand. For the second
one, first truncate η and then do the same thing.) This completes the proof of
(3.12). Π

Lemma 3.2. £"<£>, = θ(

Proof. Recall A(s9η9ζ) = ±-Σ j(s±\η(u)- ζ(tι)|, and

s) - 2NA(s)&A(s))ds.
o

A straightforward computation yields

N&A2 - 2NA&A

(v- u)(b(η(u), n(v)) Λ b(ζ(u\ ζ(v)))(A(s, η"υ, ζu») - A(s, η, ζ))2

U,V

V- u)(b(η(u\ η(v)) - b(η(u\ η(v)) Λ b(ζ(u), ζ(v)))(A(s, η"», ζ) - A(s, η, ζ))2

u,v

V- u)(b(ζ(u), ζ(v)) - b(η(u), η(v)) Λ b(ζ(u), ζ(v)))(A(s, η, ζ"") - A(s, η, ζ))2.
U,V

From the definition of A it follows that the first term is zero. We now focus on
the remaining terms.

Suppose b(η(u\η(v)) > b(ζ(u\ ζ(v)) and η(u) ̂  1. Then

s9η™9ζ)-A(s,η9ζ) = d j s ^
N \ N

d I - \η(v) - ζ(υ)\)
Nd V N

where F, G are as in the proof of Theorem 3.1. Similarly, we can treat the case
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b(ζ(u\ ζ(v)) > b(η(u\ η(v)). Therefore, for some k

ι

/ ^ u,veTkN

-b(ζ(u\ζ(v))\GUtυ(η9ζ)

(because J has compact support).
The proof is complete if we can show:

Lemma 3.3. For every positive k,

EΊ~d Σ P(v-u)\b(ηs(u),ηs(v))-b(ζM^v))\G^ (3.15)
0 ™ u,veThN

Proof. Take f(η, ζ) = -̂  X | φ) - ζ(«)|. Then
•W ueTkN

ENf(η0, Co) - EVfo,, Q = - £ } Λ^/fo, C.)ds.
0

The left-hand side is uniformly bounded in N9 because μN ^ vpo and η is integrable
with respect to vpo. The right-hand side is almost equal to the left-hand side of
(3.15), except some error coming from the terms corresponding to the sites on the
boundary of TkN. The number of sites on the boundary of TkN is of order Λ/^"1

and this multiplied by N/Nd is uniformly bounded. Π

4. Tightness

In this section we will prove a preliminary lemma that will be used in Sects. 5 and 6.
Let μN and PN be as in Theorem 3.1, where PN is viewed as a probability

measure on the Skorohod space D([0, oo),£). Let ^(Rd) denote the space of
Radon measures on IR/*, endowed with the topology of vague convergence. For
each trajectory (ηt:te[Q, oo)) in D([0, oo),£), we define

The law of αN with respect to PN, will give us a probability measure QN on the
Skorohod space

Lemma 4.1. Suppose that for some p0,μ
N ^ vpo for all N. Then the sequence {QN}

is tight. Moreover ifQ is any limit point of {QN}, then for almost all α(v) wΐίΛ respect
to β, α(ί, •) is weakly continuous in t.

Proof. For the tightness of {QN}, and the continuity of α(ί, •), it suffices to show

limlimsupE* sup |J J(x)aN(t,dx)- j J(x)α*(s,dx)| =0 (4.1)
δ-^oo ]V-^oo | f - s |<(5
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for any test function JeCJ(Rd). Let f(η) = ~Σ j( -\/(4 Then

0

where Wt is a martingale. On the other hand
t

ENWf = EN I (JVJ2?/2 - 2Nf&f)(ηs)ds.
o

A direct computation shows that the right-hand side is of order 0(l/Nd). Therefore

EN sup W2

S = θ( -ί). Thus
os s, \ΛfV

(4.2)

where the second term is obtained after calculating N&f(ηs), summing by parts,

and replacing Jl — 1 — J( — 1 with — (w — u) VJ( — 1. rN is the error coming from
W V^v/ ^v V^v/

such a replacement, and since p is of finite range, the error rN is uniformly of order

of - ). Clearly (4.2) implies (4.1). Π
\NJ

5. Hydrodynamic Limit and Measure Valued Solutions

In this section we derive the hydrodynamic equation by showing that the averages
MTl in Theorem 3.1 will coincide with the macroscopic densities (as / tends to
infinity), if the initial distribution μN satisfies certain conditions. Let QN be as in
Sect. 4.

Theorem 5.1. Suppose μN ~ p for some peL°°(lRd). Then the sequence {QN}
converges weakly to β, where Q is concentrated on the single path α (ί, dx) = p(t, x)dx
that satisfies

f f ^(t,x)\P(t,x)-c\dxdt+ f j r V J ( t 9 x ) q ( p ( t 9 x ) ; c ) d X d t Z Q (5.1)
0 Rd Ot 0 Rd

and

lim f \P(t,χ)-p(x)\dx = Q (5.2)
-

for each positive fc, every ceR, α?td any nonnegative function JeC^((0, oo) x Rd).

The first step is to prove the above theorem when the initial density is integrable.
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Lemma 5.2. The conclusions of Theorem 5.1 hold ι//)GL°°(Rd) n L1^). Moreover

l imf|p(f,x)-p(x)|dx = 0. (5.3)
t-»0

In order to prove Lemma 5.2, we appeal to more machinery from P.D.E. First
we consider a more flexible notion of solutions, measure-valued solutions. We will
also consider measure-valued solutions that satisfy the entropy inequalities (they
will be called mve solutions in this paper).

Definition 5.3. Let π(ί, x; dλ) be a measurable map from [0, oo) x JRd into the space
of probability measures over some bounded interval [0,p0]. Then we say π is a
mve solution if

00 (dJ po po 1
J J \—(t,x) $π(t,xιdλ)\λ-c\+rVJ(t,x)$π(t,x;dλ)q(λ;c)\dxdt^Q
0 Rd I dt 0 0 J

for any nonnegative test function JeC0((0, oo) x IRd) and all ceR. Any
distributional entropy solution is also a mve solution. To see this choose
π(f, x; dλ) = δp(ttX)(dλ), where p(ί, x) is a distributional entropy solution (i.e. satisfying
(5.1)). The converse is also true if, in some sense, π does not oscillate for small t.

Lemma 5.4. Suppose π is a mve solution satisfying the following conditions:
ΓPo ϊ

(1) sup j \ J π(t,x;dλ)\λ\ \dx < oo,

rpo }
(2) lim f < j π(ί,x;dλ)μ-p(x)|

i - * O R « « U J

for some pel/nL00. Then π(ί,x;dλ) = δp(ttX}(dλ\ where p( , ) is the unique entropy
solution satisfying (5.1) with initial condition p(0,x) = p(x).

We refer the reader to [9] for an excellent account on mve solutions and for
the proof of the above lemma.

Let X denote the space of measurable maps from [0, oo) into Jί^ά x R+)
(the space of Radon measures endowed with the vague topology). As before ηt is
the Markov process generated by N<&, with initial distribution μN. We assume
μN«g VPO for some pQ >

Associated with a configuration ηt, we define the Young measure πN'1 by

f F(x, λ)πN'l(t, dx\ dλ) = —- Y
J Nd u

ana the measure OCN by

Nd u \N

for any FeC0(Rd x R+). (See also [15] where the Young measures in the above
form were introduced.) Note that π^' is related to OCN by the formula

J J(x)λπN\t', dx, dλ) « j J(x)α*(ί, dx), JeC^R"), (5.4)

where the error is uniformly small in N and /.
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The map ηt)-+(πN'l,(xN) induces a probability measure RN'1 on the space X. It
is not hard to show that the sequence {RNtl} is tight as a sequence of probability
measures on the space X. So we can take limit points of {RN*1} as N goes to
infinity. If {R1} is a sequence of these limit points, we can further take their limit
points as / tends to infinity. Let R be any limit point of {R1}. Our main steps
towards the proof of Lemma 5.2, are the following lemmas.

Lemma 5.5. For almost all (π, α) with respect to R, we have
(a) For some measurable functions ρ(t,x) and π(t,x;dλ), we have

<x(t9dx) = ρ(t,x)dx9 (5.5)

π(ί, dx; dλ) = π(ί, x; dλ)dx9 (5.6)

;Aί) = p(ί,x), (5.7)

(b) π(ί,x;R-[0,po]) = 0,

(c) π is a mve solution.

Lemma 5.6. Suppose μN ~ p, where p is a Lipschitz continuous function, with compact
support. Then for almost all (π, α) with respect to R, we have

ΓPO *\

(a) lim f M π(t9x;dλ)\λ - p(x)\ \dx = 0,
'-"OR" (.0 J

(b) π(t,x;dλ) = δp(t

Before proving these two lemmas, we first show how they imply Lemma 5.2.

Proof ®f Lemma 5.2.

Step 1. By Lemma 4.1, the sequence {QN} is tight, and Q lives on α(£,dx) with α
being weakly continuous in t. If we choose an initial density p( ) a smooth function
with compact support, it certainly satisfies the assumptions of Lemmas 5.6. A
combination of Lemma 5.5 (c) and Lemma 5.6(b), proves (5.1), and Lemma 5.6(a)
implies (5.2).

Step 2. Suppose p( )eL°°(Rd) is any integrable function. Then, we may pick a
sequence of {ρε(-)} g CJ(Rd) such that

$\pε(x)-p(x)\dx<ε

for any ε > 0. For each ε, let μNyε be defined as

Recall that μN ~ p. We also have μN'ε ~ pε. For each ε, we construct a coupling
juN'ε of μN and μ*'ε such that

η(u)£ζ(u) if puN^pε~ and η(u)*ζ(u) if Pα.N^
\NJ

for all u€%d and with probability one with respect to μN'ε. Let PN'ε be the law of
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the process (ηt, ζt) generated by N&, with initial distribution μN'ε. Define

We first show FN(η, ζ) is finite with probability one with respect to PN'ε. In fact

EN F( C ) = — Y

Nd^

where the first equality follows from (5.8), the second equality follows from μN ~ p,
and rN(ε) is an error that goes to zero as N tends to infinity. On the other
hand

' / 1 ~ \
FN>εF(tι ί } — FN>εF(n Γ } 4- ί I V NFN*ε&\n — Γ \ Ids^ r\rit^t)~rL Γ wo>so; ̂  J I ,,d Zj Z V C| -̂  I '/s Ssl lαλ

^EN>εF(η0,ζ0) (5.10)

because if we add up the right-hand side of (3.2) over M, the first two sums cancel,
and the third sum is always negative. Therefore, by (5.9)

^NfC^d Σ MU) - Cί(w)l ^ ε 4- rN(ε). (5.11)

Step 3. Let Q^'6 be the law of the pair (α^,α^'ε) with respect to P^'ε, where

Let βε be any limit point of {QN'ε}, as AT goes to infinity. Then for almost all pairs
(α, αε) with respect to βε,

where pe(ί,x), by Step 1, satisfies (5.1) and (5.3). On the other hand, using (5.11),
we have

for any ί ̂  0. This is because the functional αi— > || α || is lower semicontinuous with
respect to the vague convergence ( || || denotes the total variation). The α-marginal

of Qε is β, therefore

because pε(ί,x) is uniquely determined by (5.1), (5.3) with p replaced with pε.
According to Theorem 1 of [11], pε(v) converges in L1 sense, as ε-»0, to the
unique solution satisfying (5.1) and (5.3) with initial condition p( ). Thus, Q is
concentrated on that unique limit, and this completes the proof. Π
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Proof of Lemma 5.5. Let / be a bounded function. Then for any positive JeC0(lRd),
we have

J J(x)f(λ)πN'\t, dx; dλ) 5Ξ || / 1| „, (-1 £ j(~}\
\JM u \</V / /

This implies (5.6) and hence (5.5). Relation (5.7) follows from (5.3). To prove part
(b), it suffices to establish

lim lim sup -^Σ j(^\PN(MTι(u)(ηt)>Pl) = ̂  (5.12)
ί^oo N^^ Aί u \A '/

for any p^ > p0, and any test function JeC0(IRd). This can be shown by first
coupling ηt with ζt9 where ζt is initially distributed as vpo and ηt ̂  ζt, then replacing
η with ζ in (5.12).

Finally, part (c) is nothing but a restatement of Theorem 3.1.

Proof of Lemma 5.6. Part (b) follows from part (a), using Lemmas 5.4 and 5.5, and

E* J ]λπN'\t,dxM) = EN^η,(u)
R" 0 N „

= J p(x)dx < oo,
R<*

where the second identity is because the total number of particles is conserved,
and the last identity follows from μN ~ p.

We now turn to the proof of (a). It is enough to show

lim lim sup lim sup EN = 0. (5.13)

The proof of this is carried out in several steps:

Step 1. For every ueZd, let C" denote the Markov process generated by N<£ and
initially distributed according to vp(ulN\ For any pair u,veTLd, we construct a
coupling measure μ^v on E3

with the following properties

^/-marginal of μ^v is μN,

C"-marginal of μ^ is vp(u/N\

("-marginal of μ£υ is v^(υ/N),

μ^ίC^ΓorC^D^l, and

<,(C"M = Φ) and Π^) = Φ))=1. (5-14)

Such coupling can be constructed in the following way: for each we2£d, construct
a coupling Θw*uv of Θp(wlN\ Θp(ulN} and Θp(v/N} with the above properties at site
w, and then take the product of Θ™ u'v over weZd.



Hydrodynamic Limit for Attractive Particle Systems on TLd 435

Next we couple the processes ηt, C", ζv

t such that (η0, (0, ζv

0) distributed according
to μ*v, and every two component of (ηt,ζ",ζv

t) is generated by N&. The generator
of this three-process coupling is defined in a manner analogous to the definition
of & (the particles of three coordinates at each site jump together as much as
possible), and we omit its formal definition. The law of this coupling will be denoted
by P*υ and expectations with respect to P%υ will be denoted by E^v. We also write
E" for the expectations involving coupled process (ηt, ζ").

We are now ready to rewrite (5.13) as

lim lim sup lim sup ±- £ EN

U\ MTι(u}(ηt) - MTl(B)(£)| = 0, (5.15)
'^° f-x» N-+OO Λ/ u

because by the Ergodic Theorem, MTι(u)(ζ") can be replaced with p(u/N). Note
that such replacement is uniform in u because p has compact support, and the
convergence in (3.11) is uniform in bounded c-intervals.

Step 2. We would like to replace ζ"(v) with ζv

t(v) for every veT^u), and for this we
need to show

lim lim sup lim sup ~Σ~ Σ ClW-£(»)l = ° (5 16)
ί~"° 1-κjo N-+OO >/V u I lι\ veTι(u)

Without loss of generality, we may assume pi — ) ̂  p( — 1. This in turn implies
\NJ \NJ

Co = Co almost surely and therefore ζ" ^ ζv

t for all t ̂  0, because (C",ζv

t] is generated
by N&. Hence

(5.17)

because ζv

t and ζ" are separately at equilibrium. Now (5.16) is clear because p is
uniformly Lipschitz continuous and it has a bounded support.

Step 3. Because of (5.16), we only need to check

lim lim sup ̂  £ E^\ηt(v) - ζ»(v)\ = 0.

First we start with the basic identity
t

o

By our assumption (5.14), the first term on the right-hand side vanishes. For the
second term, we can use (3.2) to write

\η(v) - ζv(υ)\ ^ Σ [p(w - tOWmΠw)) - b(η(υ)9η(w)))
w

- p(υ -
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where

Therefore

1

Σ [P(» - w)(fr(Πw), C») - b(η(w),
\V

p(w - v)(b(ζ"(v\ ζ») - b(η(v), η

1 if η(v)^ζ(v) and

0 otherwise

d ί-^ V ' ' t\ '

^-ίJΣ£Λ

- Σ Oί>
v,\v

+ Σ <»tp

-YE" ΓP/ j v^wl-r

-̂
7K

Our goal is to show the left-hand side goes to zero. For this we only prove I + 11
goes to zero, because III + IV can be treated in the same way.

First we exchange v with w in // to obtain

Π =

- Σ <.

Further, we use the estimates

and

ds.

Cw(w)|,

to write

4 II 6 II c

,—ΣP(^-W)
iV y YV

ds

)
w

-pi —
1 N

where for the last equality we have used (5.17).
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Finally since p is of finite range, and p is uniformly Lipschitz continuous

JV-»oo

for some c0, and this goes to zero as t tends to zero. Π

Proof of Theorem 5.1. For any positive integer /c, let pk be an integrable function
such that pk(x) = p(x) for |x| ̂  k. We also choose a probability measure μN'k and
a coupling μN'k, with the following properties:

(a)μ«~pΛ

(b) ^/-marginal of μN'k = μN, (-marginal of μN'k = μN'k, and
(c) μN>k{(η,ζ):η(u) = ζ(u) for all \u\ ̂  kN} = 1.

Let (ηt, Cί) be the process generated by N&, and initially distributed as μN'k.
According to Lemma 5.7 there exists a constant c0 such that, ηt = ζt on
[— kN + c0tN, kN — c0i7V] with probabilities close to 1.

Let pfc(ί, x) be the unique entropy solution of the hydrodynamic solution with
pfc(0, x) = ρk(x). If β is as in Theorem 5.1, we then have g(p(ί, x) = pfc(ί, x) for
|x| ^ k — c0t) = 1. On the other hand pfc(ί,x) converges to the unique solution of
the hydrodynamic equation satisfying (5.1) and (5.2), and this completes the
proof. Π

Lemma 5.7. Suppose

then

Km P»(ηt(u) = ζ,(u) for\u\^(k- c0ί)
+N) = 1, (5.18)

JV-^oo

where c0 is a constant independent of N, k and t.

Proof. We would like to estimate how far ηt stays equal to £,. For this we label
η and ζ particles with superscript indices. For each geN,^ (respectively ζ*) is the
position of the qίh particle at time t. In particular

with a similar relation between ζq and ζ. The labels q are chosen so that

ιβ = £S if | > / S | o r | ζ « | ^ f c N

with probability one with respect to PN. Suppose ωN(t) is a suitable random variable
such that

\ηq

t\,\ζ*\>ωN(t) if \ηl\or\ζl\>kN.

Then, from the way the coupled process is defined, we certainly have

ηt(u) = ζt(u) if \u\^ωN(t).

Thus, our task is to show that there exists a constant c0 such that

lim PN(ωN(t) ^(k- c0t)N) = 0. (5.19)
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We can view ηq

t and ζq as continuous time random walks in random media,
whose holding times have rates bounded by | |b(v)l loo and whose transition
probabilities are p(v — u). Therefore we can couple (ηq, ζq) with a continuous random
walk yq with the following properties.

(1) The jump rate of / is 2 1| fe(v) II αo,
(2) yq - yq_ is either 0 or r0,
(3) Itf-if

where r0 is a bound on the range of p. It is not hard to see

for every AeR. This will guarantee the existence of a constant a0 such that for
every a > aϋ,

P >a\<e — ta

(use Chebyshev's inequality). Thus

Set c0 = α0 + 1. Then

P(\tft\£(k-cQt)N,\tf0\ZnN)£P(\η -η 0\Z(n-k + c0t)N)

^exp(-(n-k + c0t)N). (5.20)

Define

AΛ = {#q:nN<\rf0\£(n+l)N}.

Then, by (5.20)
00

PN(\η<t\^(k-c0t)N,\ηl\>kN)^EN £ Anexp(-(n - k + c0t)N). (5.21)
n = k

Since the initial distribution μN is less than vpo with p0 = \\p\\ao, we can easily
estimate

ENAn^p0(nNY.
Thus

00

lim EN X AnG*p(-(n-k + c0t)N) = Q.
N-oo n = k

Therefore the left-hand side of (5.21) converges to zero. (5.21) also holds if we
replace η with £, and this will complete the proof of (5.19). Π

6. Hydrodynamic Limit and Two Block Estimates

In this section we give a second proof of Theorem 5.1 under the following
assumptions.
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Assumption 6.1. d=l and p ( l ) + p(— 1) = 1.
In words, particles move on the one-dimensional lattice ΊL, and they only jump

to nearest neighbor sites.
The following lemma is the crux of our approach in this section.

Lemma 6.2. Under Assumption 6.1, and supposing μN ~ p for some peL°°(R), we
have

l imlimsuplimsup-J- £ PN(\MTι(u}(η,)- MTNιM(ηt)\ > <S) = 0 (6.1)
fi->° J-+00 JV-+00 A/ ueTkN

for every k,t,δ> 0.

Before proving the above lemma, we discuss how a combination of Theorem 3.1
and Lemma 6.2 will imply the validity of the hydrodynamic limit. According to
Theorem 3.1, the entropy inequalities hold for quantities involving averages over
microscopically large blocks. For the hydrodynamic limit, however, we need the
entropy inequalities with averages over macroscopically small blocks. The role of
Lemma 6.2 is to fill the gap by showing that these two averages are close.

Our strategy for the proof of Lemma 6.2 is as follows: we first prove (6.1) for
a class of functions p, that includes functions of bounded variation. We then extend
the result to the class of bounded measurable functions.

We first start with some definitions.

Definition 6.3. Let c be any positive value. We then call c a finite cross value of p( )
on an interval (x, y), if there exists a finite sequence x = XQ<XI < ••• <xr_ί <xr = y
such that for any 0 ̂  i ̂  r — 1 either p ̂  c or p ̂  c on the interval [xf,xί + 1].

Definition 6.4. We say a function peL°°(R) is admissible on an interval (x, y), if there
exists a countable dense sequence {cn} such that every cn is a finite cross value of p
on (x, y).

For any two configurations η, ζ, we let ^(η, ζ) denote the number of changes
of sign of the sequence (η(u) — ζ(u):ueZ). In other words, if Λ^(η, ζ) ̂  n -f 2, then
there exists a finite sequence ui<u2< -<un such that on each interval
[Mί,M ί + 1]nZ, and (— oOjHjnZ, [un, + oo)nZ, either η ̂ ζ or ζ^η.

For any bounded continuous density p(\ define μN by

μN(dη) = Π Θp(u/N\dη(u)). (6.2)
ueZ

For any constant ce[0, oo), let μNtC denote a coupling of μN and vc for which the
following relations hold:

η(u)£ζ(u) if p

and

u u i f
N

Let PN C denote the law of the coupled process (ηt, ζt) generated by N& and initially
distributed as μN'c. If c is a finite cross value of p, we then have
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for some bound r independent of N. Next we show that Jf(v\t, ζt) does not increase
in ί:

Lemma 6.5. PN>c(^(ηt, Q ̂  ̂ (ηθ9 ζ 0 ) ) = 1.

Proof. Suppose that our process (ηt9ζt) starts from a configuration (^0»Co) f°Γ

which ^(f/o, ζ0) = ro + 2. Therefore, there exists a sequence of sites — oo = u0 <
u1 < < uro < uro+ 1 = + 00 such that η0 — ζ0 is of a definite sign over every block
[ui9 u ί+ x] nZ. We call a block positive (respectively negative) if ηQ — ζ0 is positive
(respectively negative) on that block. When we start the evolution, these blocks
either shrink, or expand, or stay unchanged in length (while keeping their sign
unchanged), but no new block will be created. This follows from the way the
coupling process is constructed. Of course it is possible that a block shrinks to
zero, thus ^(ηt9 ζt) could decrease.

One can make the above argument rigorous by showing &F(η9 ζ) rg 0, where

>r0 + 2). D

Lemma 6.6. The conclusion of Theorem 6.2 holds if μN is defined as (6.2), and p( )
is continuous and admissible on R.

Proof. Let {cn} be a countable dense subset of [0, oo) such that every cn is a
finite-cross value of p. For each n, there exists a constant rn such that
μNt€n(^V(η9 ζ) g rπ) = 1 uniformaly in N. By Lemma 6.5, we have

t)^rn)=ί. (6.3)

In particular, for every positive /c, there exists some fn(k) such that

— {#z:Je[-fcN,/cN] such that ηt ̂  ζt or ζt ^ ηt over [i - Nε,i + Nε]} ^ rπ(fc)ε,

(6.4)

with probability one with respect to PN>Cn. This is because, by (6.3), there are at
most [2Nε] rn intervals of the form [i — Nε9i + Nέ] that fail to satisfy ηt^ζt or
ζt ^ ηt9 providing i is not close to ± kN. Taking into account such Γs, we may
choose rn(k) = 2(3rn + 4)fc.

The inequality (6.4) implies that if ε is small then for most intervals
[i — Nε, i -h Nε], we either have ηt ̂  ζt or ζt ^ ηt. In every such interval, we take
the averages MTN((i)(ηt), MTNε(i}(ζt) and MTl(ί)(f/t), MTι(ί}(Q. The same relations hold:

MΓl(l,ω^MΓι(l,(g and MTN^(ηt)^MTNtW(ζt)

or

AfΓ l ( 0(ι/r)^AfΓ l ( 0(C t) and Af Γκf(l)(ι,t) ̂  Af Twι(ί)(W,

where / ̂  Nε. Since ζt is initially distributed according to the equilibrium measure
vc", we can replace both MΓι(i)(Cf) and MTN e(ί)(ζt) with cn9 providing N and / are
sufficiently large. Thus, for any positive δn

l imliminfliminf- Σ PN(MT (i}(ηt\ MTNε(i)(ηt) ^ cn -h δn, or
e-»0 /-»oo Λ^^oo N ieTkN

MTl(i)(ηt), MTfft(i)(ηt) ^cn-δn)=L

Fix δ > 0. In any bounded interval [0, A]9 we can find a finite set of finite-cross
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values cnι,cn2, . . . , cnq, and suitable δnι, . . . , δnq such that for any pair x,ye[0, A], if
either x,y<*cΛι + δn. or x,y^.cnι + δnι for i= !,...,#; then |x — y\^δ. This is
certainly possible, because {cn} is dense. Thus, for any positive A we have

lim lim inf lim inf —Y PN(\ MΓι(ί) - MTm (ί) | > 5, or MΓ|(ί) > X, or MTNε(ί) > 4) = 1 .
£-^0 l^co N-+CO J\ieτkN

(6.5)

Since ρ( ) is bounded, we

lim lim inf lim inf - £ PN(MTl(i} > A or MΓNε(ί) > 4) = 0,
ε-»oo ί->oo JV->oo JV ι<=7kN

providing ^ > H p H ^ . This and (6.5) imply (6.1). Π

Proof of Lemma 6.2. So for we have shown (6.1) for admissible p's. Using the
coupling introduced in the proof of Lemma 5.2 (Step 2) we can extended the result
to any peL1. Using the coupling introduced in the proof of Theorem 5.2, we can
extend the result to any peL00. Π

Remark 6.7. It is not hard to see that our results in the previous section will imply
(6.1), but only if we integrate the sum in the left-hand side over a finite ί-interval.
This is because our probability measures RNtl in the previous section only converge
weakly as probability measures on the space X.

We end this section by giving a proof of (5.1), under Assumption 6.1, using
Lemma 6.2:

By Lemma 6.2, we can replace MTl(u) with MΓ]Vε(u) is (3.1). Thus

+ ί Σ 7 ~ v " w > / s ) ; c ) ^ -e= 1. (6.6)
0 „

From the definition of αN, we have

We then consider the functional

α(ί,[u/N-ε,u/N + ε])

2ε
\ / ,

u

— c

2ε

and

ds

- c \ds

2ε

2ε
, Λ-,c \dxds.
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We now restate (6.6) as

limliminfβ"{α:Kc(JV,ε;α)^ -ε} = 1.
ε-*0 N->oo

Since VC(N, ε; α) converges to Fc(ε; α), we can use Fatou's lemma to deduce

ε-* 0

for any limit point Q of QN. Finally we can use (5.5) and pass to limit ε->0 and
this completes the proof of (5.1). Π

7. Local Equilibrium

For any cylinder function / (depending only on (η(ύ) : | u \ ̂  r) for some fixed r), let

In this section we will establish the following theorems:

Theorem 7.1. Under the assumptions of Theorem 1.3, we have

Jim EN~Σj(j^τuf(ηt) = \J(x}f(p(t,x})dx (7.1)

for every JeC0(Rd), any cylinder function /, and each t.

Theorem 7.2. Under the assumptions of Lemma 6.2, we have

tim^EN^Σj(^\τuf(η,)-$J(x)f(p(t,x))dx = 0. (7.2)

Theorem 7.3. Suppose d=l, UN ~ p with puN = p\ — I, and that p is locally of
\Nj

bounded variation. Then for any cylinder function /, each k> 0 and every t

lim J \ENτlNx]f(η,)-f(p(t,x))\dx = 0. (7.3)
JV~>0° |χ|^fc

We start with the following lemma which is essential for the proof of Theorem 7.2.

Lemma 7.4. Under the assumptions of Theorem 1.3,

lim lim sup sup EN

JV-»oo \N = 0 (7.4)

for every positive ί0 and s0.

Proof. Let St be the semigroup associated to Jδf . For any positive /c, set
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Since J is continuous and it has compact support, (7.4) would follow if we can show

1
lim lim sup sup f — Y τuf(η) — f(MT.(ή\) μ, (dw) = 0, (7.5)

J. A J rj-, I ί^j US \ I / J I I

for every k.
The sequence {μf'fc} is tight because μf'k^vp o for all N. Let so denote the

space of the limit points of {μf'fc:s0 ^ ί ̂  ί0} as N-* oo. Then for (7.5), it suffices
to show

lim sup J
-

μ(dη) = 0. (7.6)

We certainly have μ g vpo for all μej/, and we will show in Lemma 7.5 that
jtf ϋ J c\^. We then can repeat the proof of Theorem 3.1 after (3.12) to conclude
(7.6). Π

The proof of the following lemma is very similar to the proof of Theorem 3.9 in
[13] Ch. VIII, or Proposition 5.1 in [1].

Lemma 7.5. si £ J n Sf.

Proof. Let μestf. We certainly have μe^. According to Lemma 3.6 of [13]
Ch. VIII, μ is also in ./ if we can show that for every equilibrium measure vc, there
exists a coupling μc of μ and vc such that

μc{(>?,C):^Corζ^} = l. (7.7)

We choose μc to be any limit point of the set {μf;k:s0 rg t ̂  ί0} as N -> oo, where

kN

Here 5 denotes the semigroup associated to &. The rest of the proof is devoted
to showing (7.7) holds and it will be carried out in several steps.

Step 1 . The object of this step is to show

μc{(η, ζ):η(u) > ζ(u) = 0, η(v) < ζ(v)} = 0

for all M, veZd with p(v — u) > 0. For this it suffices to show

lim/*(ί) = 0 (7.8)
N-+OD

uniformly in ίe[s0,ί0], where

Σ
k J V l u,weΓkN(u)

Here, as before (ηt, ζt) is the process generated by N& ana initially distributed as
μN x vc. Set

Σ E»\ηt(v)-ζt(v)\
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Using (3.2), we can write

gN(t) ~ ff*(0) = - N I fN(s)ds + f aN(s)ds9 (7.9)

where §aN(s)ds represents the errors coming from terms corresponding to the
o

boundary sites of TkN(ύ), and aN(s) is uniformly bounded in N and s (see the proof
of Lemma 3.3).

By applying N& once more, it is not hard to see

(7.10)
S ^"

Next we write

J^~^ (9N® ~ 0N(s)) = ~ ̂  ί fN(θ)dθ + —ί—-} M0)d0 (7.11)

and we choose s = t — δ/N for some <5 > 0. On the other hand

— ί fN(θ)dθ =fN(t) + ~fN(s*)(t - s)
t-ss 2ds

for some s*e[s,ί]. So by (7.10)

1
lim lim sup

ί-s
lfN(θ)dθ-fN(t) = 0. (7.12)

Therefore, (7.8) follows from (7.11), if we can show that the sequence (gN(t)} is
equicontinuous. This will be shown in Lemma 7.6.

Step 2. Next we prove

μc{(η,ζ):η(u) > ζ(u)9η(v) < ζ(v)} = 0 (7.13)

for all M, υzΊL* with p(v — u) > 0. Let /m(?/, ζ) denote the indicator function of the set

We then prove $Im(η,ζ)μc(dη,dζ) = Q, by showing

uniformly in fe[s0,ί0]. This will be proved by induction on m. For m = 0, we
proved it in Step 1. Suppose it is true for m — 1. By Semigroup Theory

ί

s

A simple computation shows

Therefore
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for every positive integer n. Thus, our task is to show

lim/N(ί) = 0. (7.15)
ΛT-oo

Set ΰN(t) = $Im-ιdμ"'c. Hence (7.14) can be written as

9N(t) ~ $N(s) = N\fN(Θ)dθ + N\άN(θ)dθ, (7.16)
s. s

where

^(0)

It is not hard to see

\άN

for some constant c0, therefore by induction hypothesis lim άN(θ) = 0. Next we
choose s = t — δ/N for some positive δ, and we write ~* °°

fN(θ)dθ + — ί άN(θ)dθ.
jN(t-s) t-sj

s t-s

By induction hypothesis, the left-hand side tends to zero, as ΛΓ->oo. The second
term on the right-hand side also converges to zero. On the other hand, since

sup — fN(s) = O(N), we have (7. 12) with fN replaced with fN. Thus we can let <5 -> 0,
s ds

in order to complete the proof of (7.15).

Final Step. So far we have shown (7.13) for u,v with p(v — «)>0 (reviewing the
proof reveals that for the simple exclusion model we only need p(v — u) + p(u — v)> 0).
Let M, v be two arbitrary sites. By irreducibility of p, there exists a sequence w0 = w,
ul9...,un = v such that p(ui+1 — w, ) > 0 for i = 0, . . . , n — 1. To prove (7.13) for w, v
we use induction on n. We omit the rest of the proof which is almost a repetition
of Step 2 (see also the proof of Lemma 4.7 of [1]). Π

Lemma 7.6. The sequence (gN(t)} is equicontίnuous.

Proof. We prove the equicontinuity by showing that any subsequence of (gN(t)}
( t Ί

has a uniformly convergent subsequence. Since < J aN(s)ds > is equicontinuous, it

is enough to check the equicontinuity of ^° ^
ί

&v(0:= 9n(t) ~ 0jv(0) - f aN(s)ds.
o

Because of (7.9), each gN is nonincreasing in ί. Therefore, by Helley's selection
theorem, we can always pick a subsequence of {gN} that is pointwise convergent,
and the convergence would be uniform, if we can show that the limiting function
is continuous. For this, it suffices to check that any limit of the sequence {gN} is
continuous in t.

It follows from (3.7) that

EN\MTl(v)(ηs)-c\ds] = Q,
) J
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and then by Lemma 5.6(b), we can replace MTl(v)(ηs) with p(s, v/N). Therefore

t i t
lim $gN(s)ds = -—- j $\p(s,x)-c\dsdx.

N^°° o (2k) \x\ίk

Thus if a subsequence of gn converges to g^, then

1
J \p(t,x)-c\dx.

Since any solution of the hydrodynamic equation (5.1) and (5.2) is L^-continuous

in ί I i.e. lim j \p(t,x) — p(s,x)\dx = 0 J, the limiting function g^ is also conti-
\ *-+* \ x \ Z k /

nuous and this completes the proof. (The L1-continuity of solutions is mentioned
in [7] under the assumption p( )eίA If p is merely bounded, we can cut it off
outside a bounded set to get an integrable function, and use Kruzkov's comparison
theorem (Theorem 1 in [11]) in order to obtain L^-continuity). Π

Corollary 7.7. The sequence AN(i) = ]Γ EN\MTl(u)(ηt) — c\ is equicontinuous
ίn t. I -* fcJVI "eΓjcΛΓ

Proof. It follows from the proof of Lemma 7.4 that sup \gN(t) — ΛN(t)\ ->0 for

every s0, ί0 > 0, where gN is as in Lemma 7.5. By Lemma 7.6 the sequence gN is
equicontinuous, and this completes the proof. Π

We are now ready to prove our theorems:

Proof of Theorem 7.2. In view of Lemma 7.4, we only need to verify

lim lim sup EN ^ΣJ(^}f(Mτl(u}(ηt)) -\J(χ)f(p(t,χ}}dχ -0.

By Lemma 6.2 we can replace f(MTl(u)(ηt)) with f(MTNp(u}(ηt)). Moreover

i -.. Λ; 1 v^ / w
hm lim sup E ~ z^ M

that follows the discussion at the end of Sect. 6. Π

Proof of Theorem 7.1. Step 1. In view of Lemma 7.4, we only need to show

limlimsup£N —^Σ /ί — }f(MTl(μ)(η$) \ = J J ( x ) f ( p ( t , x ) } d x . (7.17)
L M \ / I

Set

It follows the proof of Lemma 5.5(fe) and Theorem 5.1
t t

lim lim sup J FNtl(s)ds = J J J(x)f(p(s, x))dxds.
/->oo N-+OO 0 ' 0
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Note that the integration in time is necessary, because our probability measures
RN'1 and Rl they only converge as probability measures on the space X. This
technical problem can be taken care of if we can show that the sequence {FNtt} is
equicontinuous. Then we can drop the time-integral and recover (7.17).

Step 2. Our goal is to show {FNίl} is equicontinuous in the following sense:

lim lim sup lim sup sup | FNl(t) — FNJ(s) | = 0 (7.19)
(5-»oo /->oo N-+OO |ί-s|<<5

so^ί,s^to

for every s0, ί0 > 0.
Let c0 > \\ρ Ha,. Then by coupling ^-process with a C-process that starts from

vc°, we can show

lim lim sup sup EN

N-+CO
rι(ιι)fot) > co -0.

Thus we may assume / has compact support, without loss of generality. Let &
denote the space of all pairs (J, /) with /:[0,c0]-»IR, for which (7.19) holds.
2F is certainly a linear space, and it is closed with respect to the uniform topology.

We would like to show 2? => C^R**) x Cb9 and for this we only need to check
(Ja^bJc}E^ for every c and /c, where Ja\x)= l[βffc] and fc(p) = \p-c\. This is
because every piecewise linear continuous / can be written as a linear combination
of /c's and constants, and every piecewise constant J can be written as a linear
combination of Jα'b's. Finally, (Jα'b,/c)eJ* because this is exactly the content of
Corollary 7.8. Π

Proof of Theorem 7.3. Step 1. From the proof of Theorem 5.1, in particular formula
(5.18), we conclude that we only need to prove (7.3) for initial densities p that are
of bounded variations.

Step 2. (the arguments of this step are taken from [16]).

Suppose p is of bounded variation. Then there exists a coupling μN of μN and
μNτλ such that

N u

The proof of (5.10) implies

where EN denotes the expectation with respect to the process generated by
and initially started from μN. As a result

Σ I ENτJ(ηt) - ENτu + , f(η,) | < oo. (7.20)
U

Final Step. Set

φN(x) = ENτ[Nx]f(ηt).

Let Var((/>Λr) denote the total variation of φN. Then (7.20) means sup Var (</>#) < oo.
N
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The sequence {φN} has the following properties:
(a) sup \\φN || m< oo,

N

(b) Every subsequence of {φN} contains a further subsequence that converges
everywhere,

(c) lim
N-χχ>

where (b) follows from Helley's selection theorem, and (c) follows from Theorem 7.1.
It is not hard to see that (a), (b) and (c) imply (7.3). Π
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