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Abstract. Extending the results of a previous work, we consider a class of discrete
lattice gas models in a finite interval whose bulk dynamics consists of stochastic
exchanges which conserve the particle number, and with stochastic dynamics at
the boundaries chosen to model infinite particle reservoirs at fixed chemical
potentials. We establish here the local equilibrium structure of the stationary
measures for these models. Further, we prove as a law of large numbers that the
time-dependent empirical density field converges to a deterministic limit process
which is the solution of the initial-boundary value problem for a nonlinear diffusion
equation.

1. Introduction

We continue our study of the hydrodynamics of stochastic lattice gas models in
a finite interval, with stochastic dynamics at the boundaries chosen to model the
interaction with infinite particles reservoirs at fixed chemical potentials, which we
began in our earlier paper [ELS] (hereafter referred to as I). We remind the
reader that the model under consideration is a continuous-time Markov process
on the finite state space Ω = {0,1}Λ, where A = [ - M, M] nZ is a lattice of (2M + 1)
sites. The components ηx,xeλ of the state vector ηeΩ denote the occupation
numbers of the sites x (1 = occupied, 0 = vacant). We refer the reader to I for an
explicit definition of the stochastic dynamics, only pointing out here that
finite-range, translation-invariant, non-degenerate rates are required, satisfying
local detailed balance conditions and the technical "gradient" condition.

* Supported in part by NSF Grants DMR89-18903 and INT85-21407. G.E. and H.S. also
supported by the Deutsche Forschungsgemeinschaft
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In I we studied the unique stationary measure of the lattice gas for large M
on a hydrodynamic scale. In particular, we proved that the empirical density field
obeys a law of large numbers with respect to the stationary measures με

ss (ε = M ~ 1 ) ,
converging weakly as ε -• 0 to a deterministic limit, which is given as the solution
of a stationary transport equation. More generally, we showed that every extensive
field defined by a bounded, local quantity obeys such a law of large numbers,
converging to a deterministic limit which is an appropriate function of the local
density. The proofs of these assertions were based on an entropy production
argument of Guo, Papanicolaou and Varadhan [GPV], adapted to the situation
with stochastic boundary dynamics.

We improve the analysis of the stationary measure, by showing that the
strongest result obtainable by the GPV type of argument is a pointwise version
of the local equilibrium property (LEP) for the stationary measure με

ss (a stronger
result than the L2 version we claimed in I). By this we mean the assertion that for
any bounded, local function g(η\

for every qe(— 1,1), where p is the solution of the stationary transport equation
with boundary conditions p(± 1) = ρ(λ + ) = p + and < >p is the expectation with
respect to the infinite-volume Gibbs measure (for Hamiltonian H) at density p.
Therefore, the stationary measures have the property that the expectations of any
local function at a fixed position q on the macroscopic scale converge to the
corresponding equilibrium expectations with the local value of the density p(q).
The original argument of GPV does not yield this result, since their proof depended
upon establishing small entropy production for space-time averaged measures.
Our argument relies upon having sufficiently good local bounds on the entropy
production (i.e. bounds on the entropy production of marginal distributions in
local blocks, going to zero as ε->0) which follow automatically in the
one-dimensional case from the global entropy bound and monotonicity of the
entropy production. A further element of our proof is a local form of the two-block
estimate of I which permits one to "tie together" neighboring blocks. Local
equilibrium was obtained previously for the special case of symmetric simple
exclusion dynamics by a duality argument [GKMP].

Next, we turn our attention to the time-dependent behavior of our stochastic
dynamical system. In particular, we study the relaxation of initial local equilibrium
distributions to the final steady state on the hydrodynamic scale. The goal here
is to verify that the time-dependent empirical density field is given, in the
hydrodynamic limit, by the solution of the initial-boundary value problem for the
nonlinear diffusion equation: that is, by p(q, τ) which solves

dτp(q,τ) = dqlD(p(q9τ))dqp(q,τ)l (<?,τ)e[-1,1] x [0, Γ ] , (1.9)

P(q,0) = p0(q), qe[-l,ll (1.10)

p(±l9τ) = p±9 τe[0,T] (1.11)

for specified initial data po(q) and boundary values p±= p(λ±). As in the static
case, D(p) is the bulk diffusion coefficient for the dynamics, given by a G r e e n - K u b o
formula (see [ S p , D I P P ] ) .
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The proof of the local equilibrium property for the stationary measures is the
content of Sect. 2. The hydrodynamic relaxation to the steady state is discussed
in Sect. 3. We freely borrow notations and definitions from I (e.g. we refer the
reader to Sect. 2 of I for the definition of entropy production for our models). The
results of Sect. 2 of I, in particular the fundamental Proposition 1 and its
consequence Lemma 4, are the core of our present arguments, as they were of the
static law of large numbers in I. We also continue the numbering of propositions
of I, for the ease of reference of the reader.

2. Local Equilibrium Property of the Stationary Measures

Our goal is to prove the local equilibrium property of the stationary measure in
the following precise form:

Theorem 3. For any bounded, local function g(η\

q) (2.1)
ε->0

for all qe(— 1,1) (where <•> denotes expectation with respect to the infinite-volume
Gibbs measure at density p). Further, for any g supported in Έτ, if </>J denotes
expectation with respect to the Gibbs measure on the semi-infinite domain ΊL + with
free boundary conditions and asymptotic density p,

Proof. We consider first the case (2.1), where we have the inequality

\s(A(g,lε'ι(q-ϊ),e,-ι(q + / ) ] ) ) - - J dq'g(β(q'))

q + l

2 l [ dqfg(p(q'))-g(p(q)), (2.3)

and we employ the notation from I that

1

Έ<J^ Σ gM {2A)

for any interval B, and

g(p) = <g>P (2.5)

Clearly, for each qe(— 1,1), the last term on the right-hand side of (2.3) goes to
zero as /-*0. On the other hand, the middle term goes to zero as ε->0 by the
weak convergence of the extensive functions, established in I, and the boundedness
of g(η) and, consequently, of the averages A(g,B).

Finally, we prove for the first term that, for each qe(— 1,1),

Jim Jim \με

ss(glε-ιq}) - με

ss(A(β> ^'(i ~ lU'Hq + 0]))l = 0,
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which yields the first statement of the theorem. To obtain this result we shall
modify the strategy of the proof for Proposition 1. We observe the inequality

% , ] ) ) l + ^ r Σ με

ss(\A(g,B0)-A(g,Bj)\), (2.6)
ZL, j= -L

L

where [ε" ι{q - /), ε" ι(q + /)] = [j Bj9 L = {l/εk}, and the 2L B/s are blocks of
J=-L

k sites each, disjoint, with [ε~ ιq\ at the center of Bo. We introduce also the blocks
Bj of k — 2R sites, obtained by removing the R border sites at the ends of each
Bj (R the range of the interaction). We see that it suffices to prove

i) lim \με

ss(gίε-lq]) - μl(A(g,Bo))\ = 0, (2.7)

ii) lim Kmlϊmsvφμl(\A{g9Bo)-A{g9Bj)\) = 0. (2.8)
fc->oo f-»0 ε->0 j

For i), we will use the fact that the limiting canonical Gibbs measures as ε -• 0
are translation-invariant (in the infinite-volume limit, i.e. as fc-» + oo). To make
the argument precise, introduce a block of r spins B'o => Bo, r> fc, and let με

q r be
the marginal of με

ss on B'o, considered as a measure on configurations in a fixed

[ r r\
— , - .By the main entropy production bound and monotonicity,

2 2 J Z

σB,Lμlr-]^cε. (2.9)

Hence, any weak limit point μ*r of με

qr as ε -• 0 must be a convex combination of

Γ r r~\
the canonical Gibbs measures ^ c on — , - . In particular,

L 2 2J
J o))l = Πm |μjfΓto0) - μ ^ t o , Bo)) I

^ sup |vNto0)-vN(>lto,B0))|, (2.10)
iV = 0,...,r

where vN is the canonical Gibbs measure on B'o with iV particles (actually, we
should also specify the fixed occupancies ηB in the boundary regions oϊBr

0 of width
R, as vNrjB - for simplicity, we have neglected this.) Because, for each r, the sup is
realized for some Nr and since there is the bound 0 ^ Nr/r ^ 1, a subsequence (ry)
may be chosen so that r7 | + oo and

^ ( 2 . 1 1 )

It follows that for each fc,

δ iVr to0) - vNr (A(g,Bo))\
j J

= 0, (2.12)

the latter by the translation-invariance of the Gibbs measure. This gives i).
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For ii), we employ a modified version of the argument for the two-block estimate
in Theorem 1. For each ε, / the supremum in (2.8) is achieved for some j ε l . For
each ε, / we define με\ to be the joint marginal of με

ss in the two blocks Bo and
Γ (k \ k Ί

B. , considered as a measure on the fixed set {0,1} x —I — R I , — R\
Γ ίk \ k 1 L \2 / 2 J z

consisting of two copies of —I — R L — R , denoted Bo and Bt. Define,
L \2 / 2 J z

then, as in Theorem 1, the Dirichlet form

£oi(/)—-L Σ Σ <c(x,y;η)U(ηxy)-f(riΏ2>P (2.13)

for / the density of a measure on BQΌB^ Furthermore, introduce

(2-14)

As a consequence of the main entropy estimate and the Lemma 2 of I, we have that

^ o u ^ C / ^ 3 ^const.ε + const./. (2.15)

Therefore, any limit point f*k of p£k as ε->0 and then /->() must have
σ B o U β i [ / * k ] = 0. Note, however, that the functional σBoKjBi has the same essential
properties for BouBί as σBo has for Bo alone: it is a positive, convex function,
which is strictly convex on the set of /'s which have fixed occupancies on the
boundary regions of each block and fixed total (combined) number of particles in
the two boxes. Hence, there is a unique value / m i n in that domain where the
minimum value σ β o U β i [ / m i n ] = 0 is attained and it is easy to verify that / m i n is
the finite version of a canonical Gibbs measure on BouBι with specified
occupancies outside. Therefore, the limit points /* f c are in the set of convex
combinations of such extremal elements. Hence,

lΐm lim sup με

ss(\Λ(g, Bo) - A{g, Bj)\)
ί->0 ε-"0 j

ί sup vN(\A(g,B0)-A(g,B1)\). (2.16)
N = 0,...,2fc-4K

We may argue as before that for each fe, the supremum is actually achieved for
some Nfce{0,...,2k — 4R} and then, since,

0 ^ — ^ 1 , (2.17)
2k

along any subsequence for which vNk(\A(g,B0) — A(g,Bι)\) converges, a further
subsequence kj may be chosen so that

Ί1 .^ r - . - , - ] • (2-18)

Then, by the L1 law of large numbers for the canonical ensemble,

ϊimvNk(\A(g,B0)-A(g,B1)\)^:hmvNk(\A{g,B0)-g(p)\)
j-HX) J J-+CO J

+ foivNk(\A(g,B1)-g(p)\)
j-*O0 i

= 0, (2.19)
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so that the subsequence of vNk(\Λ(g,Bo) — A(g,fiJI) necessarily converges to zero.
Thus,

lϊm ϊΐm ϊϊm sup με

ss(\A(g,Bo) - A{g9B1)\) = 0, (2.20)
k-+0 ί->0 ε->0 j

which gives ii).
The second part of the theorem, embodied in (2.2), is somewhat easier to prove.

Consider the right endpoint. We may write

for every r for which suppg £ [— r,0], where f\ r is the density with respect to
the Gibbs measure vp of the marginal of με

ss in the interval [M — r — R,M~\π,
considered as a measure on configurations in a fixed interval [— r — Λ,0] z . In the
proof of Proposition 1 in I, it was shown that, for each r, the limit / * r of f\ r as
ε->0 exists and equals the density of the Gibbs measure at density p+ on the
interval [— r — Λ,0] z , with free boundary conditions at the right endpoint and
specified distribution in the left boundary interval [— r — R, — f]π. Therefore,

μi(0M) < / * r 0 > p . (2.22)
£-•0

Since r is arbitrary, we may take subsequently r-+ + oo. Since the system of
conditional distributions of μ* r converge in this limit to a consistent set of
conditional distributions on the subsets of the semi-infinite interval [— oo,0] z,
satisfying the lattice DLR equations with chemical potential λ(p + ) and free
boundary conditions at the right end, and since the Gibbs measure is unique in
one dimension (e.g. see [G]), it follows that

\imμε

ss(gM) = (g};+. (2.23)

This completes the proof of Theorem 3. •

We remark that the local equilibrium property is a stronger result than the
weak convergence of the extensive fields. A relatively simple argument using the
Chebyshev inequality gives the convergence in probability to a deterministic limit,
which, with tightness, gives the weak convergence (see [DIPP], Proposition 4.1).
However, local equilibrium does not apparently follow from the weak convergence
result alone (but, rather, as above, from its proof).

3. Relaxation to the Steady State

For the model introduced in I, we will now consider the stochastic process
^ J c ε - 2 r , 0 ^ τ ^ T , x = — ε ~ 1 , . . . , ε " 1 , ( ε ~ 1 = M ) with the initial measures με required
to satisfy for each δ > 0 and φe@([- 1,1]),

1

limμf

X°0(φ)- I dqφ(q)po(q)
- 1

>δ = 0 (3.1)

for some fixed pQeJiu where, as in I, Jίγ = LJ°([— 1,1]) is the set of non-negative
measurable functions on [—1,1] essentially bounded by one. In this section, Pε

denotes the path measure for the process and Eε the corresponding expectation.
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We regard τi—>pε, with pε

τ(q) = η^ε- i^ ε-2 τ, as an element of D([0, Γ], Jίx\ the space
of right continuous trajectories, with left limits equipped with the Skohorod
topology. The path measure P ε induces a path measure on D([0, T~\,Jίx)\ without
risk of confusion, this measure is again denote by Pε, expectations by Eε.

We define ρeL™([ — 1,1] x [0, T]) to be a weak solution of the initial-boundary
value problem (4.1-3) if,for every </>eC2([- 1,1]) with (/>(+l) = 0anda.e.τe[0, T],

1 1

J dqφ(q)p(q,τ)- J dqφ(q)po(q)
- 1 - 1

= ]dσ\ J dqφ'\q)h{p{q,σ))-φ\ + l)h(p + )-^ φf(-l)h(p~)\ (3.2)
o L-i J

For every poeJί1 and p + E [ 0 , 1] there exist solutions of (3.2), which are furthermore
unique under an additional regularity assumption, such as peL2([0, Γ] ,Hj + p)
with HQ the Sobolev space of functions with L2 derivatives which vanish at q = ±1
(see below). Given poeJ(l9 we define the measure P = δp on Z)([0, T\Jix\ where
p is the unique weak solution corresponding to initial data p 0 .

The main result we claim in this section is:

Theorem 4. P is the weak limit of Pε as ε->0.

As for the static result in I, the proof of Theorem 4 requires an estimate on entropy
production which is provided by

Proposition 4. Ifμε = fεvε

p is an arbitrary measure on {0, \}Λand με is its time-average
over the interval [0, ε~ 2τ], with density given by

4rI
ε τ o

(L* denotes the adjoint ofL with respect to vp), then, for σ ε [/ ε ] the entropy production
defined in (I; 2.1),

W Λ (3.4)

for some c>0; in particular, μεeS(ε) = {/ |σ ε[/] ^cε, f ^ 0 , < / > ε = 1}.

This proposition allows again the application of the fundamental Proposition 1
and its consequence Lemma 4 of I to the present situation. The proof of Theorem 4
itself requires the verification of two key statements:

(1) (Pε |ε > 0) is a tight family.
(2) If P* is any weak limit of the family as ε->0, then P* is supported by
C([0, T]9J(ι)nL2(l09Γ\9Hl + β) and for every φeC\- 1,1] with 0 ( ± 1 ) = O and
every τe[0, Γ],

dqφ(q)lp(q,τ)-po(q)~]
- 1

= }dσ\ J
o L-i

-a.s . . (3.5)
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The proof of Theorem 4 is then completed by showing that the weak solution
given by (3.5) is unique under the stated regularity properties. The plan of the
following is to first establish Proposition 4, then to prove the statements (1) and
(2) for Theorem 4 and, finally, to conclude the proof of Theorem 4 by establishing
the regularity and unicity of the profiles in the support of limiting P*.

Proof of Proposition 4. We define the relative entropy

^ + Σ ^<ff x /% (3.6)

where λx = j(λ++λ-) + j(λ+— /l_)(εx) is the linear profile interpolating between
λ+ at x = + M and λ- at x = — M. Observe that Hε is extensive in the sense that
it satisfies a bound of the form

\Win\^cε-\ (3.7)

for some c>0 uniformly for all fε. Furthermore, by particle conservation

x=-M 2- x=-M

= - μ + -

+ \(λ+-λ_)ε X
2 x:\x±M\^R

(3.8)

where the gradient condition (1.7) has been used in the second equality.
Let f\ = eL*'fe. Then, with fε

0 = fε,

+ l-(λ+-λ_)ε Σ <ji(x)/e>', (3.9)
^ x:\x±M\^R

(compare with (I; 3.16)), so that

+ O(β-t) (3.10)
0

by boundedness of hx and j^x). Since the entropy production is convex,

\%ps\ (3.11)
t o

with/ε the time-average over [0, t] of/ε. From (3.11), (3.10) and (3.7) it follows that

~ + c ε, (3.12)
ε ί
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and, in particular,

( \ (3.13)

with t = ε~2τ. This is just the conclusion of Proposition 4. •

We now verify the key statements (1) and (2) for Theorem 4.

Ad (1): This can be accomplished by a standard machinery. We note that for
φe@{\_- 1,1]) and ε sufficiently small (so that φ(εx) = 0 for |x ± M| g R)

ε~ 1

ε~2LXε(φ) = ε £ ε~2(φ(εx + ε) + φ(εx - ε) - 2φ(εx))hx(η)
x=-ε~ι

= Xε(h;φ") + O(ε) (3.14)

and

ε ~ 2 ( L X \ φ f - 2X\φ)-LX*{φ)) = X (φ(εx) - φ(εx + ε ) ) 2 φ , x + l η)
x=-ε~ι

= εXε(c;(φ')2) + O(ε2). (3.15)

Let
ε~ ι

Xε

t(Φ) = ε Σ Φ(εx)ηε^τ(x)- (3 1 6 )
x= — ε~ x

The associated martingale, M\(φ\ is given by

X°τ(φ) - Xl(φ) = J dσε-2LX\φ)(ηt^σ) + M'τ(φ) (3.17)
0

with the quadratic variation

E%M*τ(φ)2) = ε~2]dσE*(LX*σ(φ)2 -2X*σ{φ)LX*σ{φ)). (3.18)
0

Let

fUτ(φ) = ε-2LX*(φ) (3.19)

and

f2yt(φ) = t-\LX*τ(φf - 2X](φ)LX'τ(φ)). (3.20)

Then, by (3.14) and (3.15), there exists a constant c, independent of ε and φ, such that

E'(γ\<t(φ)2)£c J ά ? < W (3.21)
- 1

and

Eε(7lτ(φ)2) ^ M Ĵ  dqφ\q)2Y. (3.22)

This implies tightness of the family (Pε |ε > 0) [M, DIPP].
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Furthermore, any weak limit P* is supported on the set of continuous
trajectories C([0, T\J(^) because X\(φ) changes in a jump at most by H^'ILe2.

Ad (2): It is useful here to consider the fields Xε'k(φ) "cut-off" a finite microscopic
distance k from the boundaries:

φ(εx)ηx. (3.23)
x=-ε~ι+k

If we consider φeC2([- 1,1]) with φ(± 1) = 0 but permit φ'{± 1) φ 0, then (3.14)
must be replaced by

s-2LXε>k(φ) = ε ε~2(φ(εx + ε) + φ(εx - ε) - 2φ(εx))hx(η)

- sk)hM_k + 1 - φ{\ - εk + ε)hM_ J

Defining as above

y$*(φ) =

we find similarly the bound

= X%h;φ") + 0'(l)[(/c - l)fcM.k - khM_k+ J

M + J k _ 1 - ( f c - l ) Λ _ M + J + O

f (φ)2 - 2X<-k{φ) LXΐk(φ))9

<kΦ'(q)

(3.24)

(3.25)

(3-26)

It is important here to observe that this bound is independent of k. Since the
quadratic variation of Mε*(φ) vanishes as ε ->0, we have, by Kolmogorov's Lemma,
that

(3.27)

ε - 0
lim EH sup I X?(φ) - Xf{φ) - j dσ[_Xf{h; φ")

- l)hM_k(ηε-2σ) -

uniformly in keΈ+. Hence, we also have, for each keZ+, that

lim£Ί sup
0<τ<T

X?(φ)-X?(φ)-}dσ\x**(h;φ»)
o L

1 k ! 1 w 1

'(1): Σ - Σ (0-1)
K m = R Wl j = R

b'(-i)1- y ~mγ\jh

with

1 m'ί

Σ - Σ χtAΦ\
m=Rmj=R

= 0 (3.28)

(3.29)
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In terms of the average με of the initial measure με over the time-interval [0, ε 2 T],
we have the bound

Eε[ sup

Λ k-l

— Σ
χ=-ε-ι+j

τί ε ^

- 0 ' -
j fc-l , m - l ε - ' ( l - ί )

r Σ - Σ « Σ
K t t l

Σ I,

m = R

1

kΣ -"Σ
m = R Wl j = R

fc-1 fc- 1 4 m ~( 2 4 m ~ ^

— Σ (Λ-^-t-SίP-M + r Σ - Σ
(3.30)

using the summation by parts identity

j m—1 /j m-1

~ Σ Λ
m j=R

(3.31)

We see that this upper bound gives zero as first ε->0 and then fc-» oo, by using
Proposition 1 and 4 and as well that

lim hmμ'
fc 0

Λ+ ( M_Λ-Λ(/>±) (3.32)

which follows from Proposition 4 and the argument used to establish Proposition 1.
We infer that

sup Xτ(φ)-X0(φ)-]dσ\ j dqφ"(q)h(p(q9σ))
o L-i

= 0. (3.33)

This implies immediately the main statement (3.5) of (2).
The regularity peL2([0, Γ], i/* 4- p) in the support of P* can be inferred from

1^0

dq(p'{q, τ))2)^ const. Γ,

hi

(3.34)

(3.35)
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and
/T /« - l + ί \ 2 \

lim£*(\dτ - f dqp(q,τ)-p\ =0, (3.36)

which are the consequences of Lemma 4 for a general μεeS(ε).
Finally, we complete the proof of Theorem 2 by demonstrating the uniqueness

of weak solutions of (3.5) under the above regularity assumptions. Define R, for
any p e L ? ( [ - 1 , 1 ] ) , by

R(x,y) = ]dqp(q). (3.37)
X

1 1

We introduce the notation (F,G)= j dx j dyF{x,y)G(x9y).ΊhQn>iϊ peDdQ.T^Jί^
- 1 - 1

Z1 ([ — 1,1]2), and R(τ) is associated to pτ{q) = p(q, τ) via (3.37), it follows that

l i p η
(R(τ), Φ ) = f ^ f <iy jdqp(q,τ) \Φ(x,y)

-i - i Lx J

= J dqp(q,τ)φ(q)9 (3.38)
- 1

with

= J dxfdyΦ(x,y)-fdx f dyΦ(x9y). (3.39)
- 1 9 q - 1

Observe that φ e C 2 ( [ - 1,1]), </>(± l) = 0 and

0'te)= J dyΦ(q,y)- J dχφ(x^) . (3.40)
- 1 - 1

If p is in the support of P*, it then follows that
1

(R(τ),Φ)= I dqφ(q)Po(q)
- 1

+ }dσ\ J dίr(ί)Λ(p(ί,σ)) + 0'(-l)Λ(p-)-^(l)Λ(p+)l (by (2))
o L-i J

= ί d«0(ί)po(ί)-ί<iσ ί dqφ'(q)h(Py(q,σ), (3.41)
- 1 0 - 1

by an integration by parts and the regularity assumption on p. Exploiting (3.40)
gives finally

τ 1 1

(R(τ),Φ) = (R0,Φ) + fdσ f dx J dyΦ(x,y)[Λ(p)Ό;,σ)-*(/»)'(*.σ)], (3-42)
0 - 1 - 1

i.e.

τ

, y; τ) = R0(x, y) + J A7[fc(py(y, σ) - h(p)'(x, σ)] (3.43)
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in the L2-sense. Clearly, R(τ) is absolutely continuous in τ as a map into

L 2 ( [ - l , l ] 2 ) a n d

^R{x^τ) = h{p)\y,τ)-h{p)\x,τ\ a.e. τe[0,T], (3.44)
dτ

with identity in the L2 sense.

Now consider for two weak solutions pγ and p2 of (3.5) the quantity

= Rί(τ)-R2(τ). (3.45)

From what we have shown above it follows that

^\\W(τ)\\2

2 = 2 j dx j dy(Rι(x,y;τ)-R2(x,y;τ))
dτ -1 -1

• [(ft(Pi)'to τ) - h(P2)'(y, τ ) ) " (Λ(Pi)'(x,τ) - Λ(p2)'(x, τ))]

= - 8 f dMPi(y,τ)-p2(y,τ))(Λ(Pi(y,τ))-h(p2(y,τ)))^0. (3.46)
- 1

the latter equality obtained by an integration by parts and the inequality by the

monotonicity of h. Since W(0) = 0, we conclude that for all τe[0, T]

W(τ) = 0 (3.47)

in an L2-sense; in particular, for all τe[0, T], a.e. (x9y)e[— 1,1]2,

)]=0. (3.48)

Therefore, p1= p2-
This concludes the proof of Theorem 2. •
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