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Abstract. The Neveu-Schwarz-Ramond type II closed superstring is considered to
evolve in a curved space-time manifold. The Krichever-Novikov global operator
formalism is used to construct the generators of a super-conformal algebra on a
Riemann surface Σ. The computation for the quantum algebra of these generators
is explicitly presented. It is shown that the theory is free from super-conformal
anomalies if the target manifold is ten dimensional and satisfies the Ricci flatness
condition.

I. Introduction

The string theories offer the most promising prospect of unifying all fundamental
forces of nature [1]. The first quantized approach has proved to be powerful to
study dynamics of string interactions. Inclusion of surfaces of non-trivial topology
leads to the topological expansion which has one diagram at each order [2].
Furthermore, duality and unitarity are guaranteed at each order in this
perturbation theory (a Riemann surface of a given genus is associated with each
order of the perturbation expansion).

The 5-matrix generating functional for the scattering of massless states of the
string is constructed by considering the evolution of the string in the background
of the corresponding massless excitations [3]. It is well known that the consistency
requirements such as super-conformal invariance impose stringent constraints on
the configurations of the background fields, leading to the so-called equation of
motion of such fields. Indeed, the vanishing of the jS-functions associated with the
background fields ensures super-conformal invariance of the theory [4].

Recently, the application of some powerful mathematical results in algebraic
geometry and complex analysis on Riemann surfaces have led to a detailed
understanding of the multi-loop structure of string theories, in particular in the
framework of operator formulation [5, 6]. The salient feature of this formalism
[5], in contrast to the path integral approach, has been a local description of
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conformal field theories over a disc cut out from a compact Riemann surface and
then relating the states over the disc to states over the Riemann surface without the
disc via Bogoliubov transformations. This procedure of going from a trivial
topology to a nontrivial one is rather involved. We may recall the well known
algebraic approach on the other hand, consists of implementing Kac-Moody and
Virasoro algebras defined on the surface of a sphere, S2, in order to describe the
Hubert space of a closed string, with punctures at z = 0 and z= oo (the north and
south poles are identified as N and S respectively). This approach essentially
describes operator formulation on S2 or CP1. The Fourier modes of the
fundamental fields such as bosonic and fermionic variables on the world sheet,
provide the basis for defining operators acting on the Hubert space of states. As a
consequence, the modes of the energy-momentum tensor of the theory satisfy the
well known Virasoro algebra on S2.

Krichever-Novikov (KN) [7] introduced a natural extension of Virasoro
algebra and also of Kac-Moody (KM) algebra on a higher genus compact
Riemann surface Σ. The relation between KN algebra and the KM and Virasoro
algebra on S2 is explicitly shown in [8]. Subsequently there have been several
attempts to study the dynamics of strings and conformal field theories in this
framework [9-11]. The KN approach has been applied to the evolution of the
closed bosonic string in a flat and a curved space time manifold [9], as well as NSR
superstring in flat [9] and in gravitational background [10].

The purpose of this article is to envisage the evolution of the NSR closed type II
superstring in a gravitational background for a Riemann surface of arbitrary genus
g and to implement KN operator formalism for the super-conformal algebra at the
quantum level and to derive equation of motion for the background field. Recently
one of us in collaboration with Fubini, Roncadelli, and Veneziano [12] has studied
a type II closed superstring in curved background and has derived anomalies
associated with the super-conformal symmetry on S2. It was shown by FMRV that
there exist new operator anomalies in the constraint algebra in addition to the
usual c-number anomalies.

We may mention here that the KN approach has been applied to the type II
superstring in curved background [10]. However in the weak field approximation,
i.e. the target manifold metric is linearized around the flat space time. The
weak field approximation followed in [10] is along the methods adopted by Das,
Maharana, and Roy [13] for the case on S2, where the super-conformal anomalies
and critical dimension was derived from the super-Virasoro algebra.

In the present investigation, the Riemann normal coordinate expansion is
adopted to expand all the generators of the super-conformal algebra and therefore
they are all manifestly covariant. The vanishing of anomalies corresponds to the
critical dimension ten for space time and Ricci flatness of the target manifold,
therefore these are gauge invariant statements. In contrast the results in the weak
field approximation are gauge dependent, i.e. the graviton satisfies the free field
equation in the Lorentz gauge. Moreover, the method of Riemann normal
coordinate expansion provides the procedure to compute the higher order
correction in R to the background equations of motion in a systematic manner. We
may mention here that the super-conformal algebra for Σ exhibits several
interesting features when cast in the global KN operator formulation.

The rest of the paper is organised as follows. The essential features of KN
algebra are presented in Sect. II. In Sect. Ill the constraint algebra for the free NSR
string is obtained in the KN formulation. The propagation of the superstring in a
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curved background is considered in Sect. IV and the quantum KN algebra is
explicitly presented with the anomalies. Section V contains discussions of our
results and conclusions. There are two appendices containing mathematical
details which are used in the main text of the paper.

II. The Krichever-Novikov Formalism

Krichever and Novikov [7] proposed a natural extension of the Virasoro algebra
on S2 to an arbitrary Riemann surface Σ. The Virasoro algebra being the central
extension of the algebra of the meromorphic vector fields on S2, KN generalisation
of this is the central extension of the algebra of meromorphic vector fields on Σ. We
recapitulate below some of the essential features of the Krichever-Novikov
formalism.

The central extension of the algebra of complex valued meromorphic vector
fields on S2 is generated by the basis

is given by

[/n(4U2)] = (n-m)/n + m + ί ^ - ^ , 5 π + m , 0 , (2.1)
n3 —

where [/„,£] = 0. Note that neΈ and zeC. The familiar example is that of the
Virasoro algebra satisfied by the energy momentum tensor T(z)

^ + w , 0 . ( 2 . 2 )

Krichever and Novikov provided a unique definition of the time parameter "τ" on
Σ of arbitrary genus g ̂  1 and constructed bases for the space of meromorphic
forms of weight λ on Σ with punctures at two points, P ± , corresponding to
τ-» + oo, holomorphic away from P±. This is essentially achieved through the
application of Riemann-Roch theorem. Any meromorphic form of weight λ has a
generalized Laurent expansion in the corresponding basis [7,14].

Let LΣ denote the algebra of meromorphic vector fields on Σ holomorphic away
from P+, and Q be an arbitrary point in Σ. z±(Q) are local parameters in
neighbourhood of P± with z±(P±) = 0. The Riemann-Roch theorem ensures the
existence of the basis of the space of meromorphic forms of weight λ (see 14).

We present below asymptotic forms for the basis {/n

(λ)(β)} of the /l-forms as
obtained by Krichever and Novikov for λeΈ, Λ + 0, 1 in the vicinity of P ± ; the
λ = 0,1 case needs special constructions. We also write asymptotic forms for the
basis of these tensors for λ e TL +1/2. For the special case of g = 1, we directly refer
to [17].

(i) ΛeZ,λφO, 1.

fr() φ^i"siλ)ίi(md)±λ, (2.3)
φj = 1. Here s(λ)=g/2-λ(g-l), and « = ..., g/2-1, g/2, g/2 + 1,.... Notice that
the poles at P ± as prescribed by KN are reflected in (2.3).
(ii) 1 = 0.
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The basis for the space of meromorphic functions holomorphic outside P+ is
constructed by specifying the order of the poles at P+. The basis is given by

+ o ( z ± ) ] , \n\ ^ g / 2 + l , α M

+ = 1 , (2.4a)

- ε [ l+Φ ± )L
n + g/2, aπ

+ = l, 8=1/2,

Aβl2(Q)=t. (2.4c)

Equation (2.4b) is the consequence of the Weierstrass gap theorem [8,15].
(iii) λ = \.
The basis for the space of one forms is

ωn(z±) = fln(z+) given by (2.6) in the range |n|^g/2 + l .

(2.6)

j(6) being an abelian differential of the third kind having simple poles at P + with
residue ± 1 and with periods over all cycles purely imaginary. y(Q) defined through
(2.6) is unique [7]. Equation (2.5) provides a basis for holomorphic differentials on
Σ (which can be written as a linear combination of the canonical basis),
(iv) AeZ + 1/2.
We can construct the basis, in this case, with prescribed poles at P+ by taking
meromorphic sections of tensor products of Λλ with a given spin structure
[7,15,16]. There are two different cases which are to be dealt with separately.

(a) Basis for the space of forms of weight λ holomorphic outside P+ and a slit from
P + to P_ along a Jordan curve (this corresponds to the Ramond sector - R).
(b) Basis for the space of forms of weight λ holomorphic outside P+ (this
corresponds to the Neveu-Schwarz sector - NS).

It follows from the Riemann-Roch theorem that

) A (2.7)

when αeZ it corresponds to the R-sector whereas αeZ+1/2 corresponds to the
NS sector. These constructions are valid for all g.

An explicit construction of all these bases has been given in [16]. Henceforth,
we use the indices α, β, s, ί,... for basis when λeΈ +1/2 and i,j, k, l,m,n,... for the
basis when λeΊL.

Let us now introduce the KN definition for "time" τ(Q) on Σ. τ(Q) is defined by

(2.8a)

where y(Q) is defined in (2.6). Thus,

and

τ(β) = Re J y(Q) (2.8b)
<2o

σ(β) = Im ]y(Q)9 (2.8c)
<2o
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where Qo is a fixed point on Σ except P±. Σ is parametrized by one parameter
family of contours: Cτ = {σ(Q): τ(Q) = real constant} which is the analog of "C" on
S2. {fn%Q)} forms a complete set on Cτ. We write the asymptotic form for the basis
of the space of meromorphic vector fields {e£Q)} (corresponding to λ= — 1 in
Eq. (2.3)) which satisfy the go-graded KN algebra on Ct, go = 3g/2,

c = ...,g/2-l,g/2,g/2 + l,...;αn

+ = l . ( 2 9 )

It follows from (2.9) that

= Σ Q / ί + j _ s ( 0 , QeCτ, (2.10)
s= -go

where the structure constants C^ are given by

Ωn(Q) are defined in Table I. Equation (2.10) is the generalization of (2.1) without
central extension (ί = 0) defined on S2 to Σ in the KN formalism. L(Cτ), the
restriction of LΣ on Cv Eq. (2.10) is isomorphic to Eq. (2.3) with t = 0 for sufficiently
large τ. The central extension of (2.10) is the generalized Virasoro algebra given by

00

s= -go

Table 1. This Table refers to the global KN
bases, their duality and completeness pro-
perties in terms of the meromorphic delta-
tensors on Σ

basis Dual basis

- 1
0

-i
+i

we)}
{AiQ)}
{gα(δ)ί
Wδ)}

{o/e»

we»{kβ(Q)}

Duality and completeness relations

Duality Completeness

^ 7 § e^C)O/fi) = i(, ^

!)ω/β) = ί w ^

^ z—: Σ &
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with \_eb t] = 0; here t is a central element and

^ ( e u e j ) . (2.13)

C is any contour on Σ not passing through P± and X(f,g) = f'"(z)g(z)dz, where

f{z)— and g(z)^r- are representations of two vector fields in an admissible
oz oz

coordinate system. Equations (2.12) and (2.13) give all central extensions of LΣ by
standard calculations of two dimensional cohomology of algebras [7], This gives
generalization of L given by (2.1) on S2 to Σ. The properties of the cocycles can be
found in [7].

Let {gα(2)} denote the basis for the space of meromorphic —1/2 forms
corresponding to λ= —1/2 in (2.7). Then the commutator of the vector fields with
g«(0 is go

MQUM\= Σ #Lg ί+α-s(β), βeC τ, (2.14)
s= -go

where the structure constants Hs

i0L are given by

HΊj= ̂  I l>.(0>g«(0])>I+«-s(0 (2-15)

yβ(QYs are given in Table I. Finally we write the central extension of the algebra of
—1/2 forms in order to obtain the super KN algebra,

{gα(β),g/β)}= Σ B>βea+β-p/2(Q), QeCτ. (2.16)
V- -9

The structure constants B%β are given by

Here (2.16) is the algebra of meromorphic —1/2 forms. The central extension of
(2.16) is given by

{g«>gβ}= Σ Kf*+t-p,i + tΦJ&*%») ( 2 1 8 )
P= -9

with the requirement that [gα,ί] = 0. The two cocycle φc{ga,gβ) are given by

$(Q, O) = Qf(z)σ'{z)dz, where ρ(z) (dz)~i/2 and σ(z) (dz)~1/2 are representations of two
—1/2 forms in an admissible coordinate system. The properties of the cocycles
defined above, Eqs. (2.13) and (2.19) are given in the paper of Bonora, Martellini,
Rinaldi, and Russo [9].

Equations (2.12), (2.14), and (2.18) comprise the centrally extended super-KN
algebra which is the generalization of the super-Virasoro algebra. Finally, we set
the notations for the basis of some of forms of weight λ and the dual basis of forms
of weight 1—λ. We also give the duality relations and completeness relations in
Table I. All points Q, Q' in the same row belong to the same Cτ. Notice that {f$(Q),
QeCτ} forms an alternative basis with asymptotic forms (2.3H2.7) with z±

replaced by z±. This basis forms the antiholomorphic analog of what has been
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described. The duality and completeness relations hold for the barred dual basis
with negative signs in front of the contour integrals and the summations, as shown
in Table 1.

In the next section we construct a quantum constraint algebra for NSR
superstring in flat as well as curved space-time manifold in which the Fourier
modes of the operators provide a realization of the centrally extended Krichever-
Novikov algebras given by (2.12), (2.14), and (2.18).

III. Neveu-Schwarz-Ramond String in Flat Space-Time

This section deals with the generalization of the superconformal algebra,
associated with the NSR string, to the Riemann surface, Σ, of arbitrary genus in the
KN framework. The close correspondence of the KN approach with the operator
formalism on S2 renders such a generalization (to Σ) to be both elegant and simple.
Moreover, this is a prelude to our subsequent investigation of the NSR superstring
in a curved background space-time manifold. We present the canonical Poisson
brackets for the NSR string on Σ and derive the classical constraint algebra. Next,
we canonically quantize the model on Σ and derive the quantum algebra of the
normal ordered superconformal generators.

The gauge fixed action (in ON gauge) for the free NSR superstring is

Here τ and σ parametrize the world sheet. χμ are the Majorana spinors, super-
partner of the bosonic coordinates Xμ. The two dimensional Dirac matrices are
defined as y° = σ2, γ

1 = iσl9 and y5 = y°yi = σ3. We denote the world sheet labels by
a,b,... here and the space-time indices by μ, v,... all target manifold tensors are
raised and lowered by the flat metric, ημΛn in this section. The generators of the
superconformal transformations on S2 are

Tί(σ, τ) = Pμ

±(σ, τ)P±μ(σ, τ)±l- ψμ

±(σ, τ)ψ'±μ(σ, τ), (3.2a)

J°±(σ, τ) = 2P*±(σ, τ)ψ ±μ(σ, τ). (3.2b)

Here T° and J°± are the energy momentum tensor and the supercharge densities
respectively, p + = ^ p + χ / )

are the Fubini-Veneziano fields, Pμ is the momentum conjugate to Xμ and the
world sheet chiral fermions are defined through the equation

Ψμ± = 2^Ty5)χμ. (3.4)

The theory is defined over the Riemann surface, Σ, as follows; we Wick rotate
σ-*iσ (0 ̂  σ ^ 2π, — oo ̂  τ ^ = + oo). At a generic point Q on Σ, we can write a local
coordinate system W: W(Q) = τ(Q) + ίσ(Q). Now the costraints (3.2) are generalized
to Σ as

)±^Ψμ±(Q)dQψ±μ(Q)9 (3.5a)

(3.5b)

with
Pμ(Q) ί(P±dX»(Q)) (3.5c)
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Here dQ denotes the global derivative on Σ having a local expression dW—-~. Note

that T+, J% and T°, J0. are the analog of the holomorphic and antiholomorphic
generators on S2 respectively.

The relevant operators Xμ

9 Pμ, P
μ

±, and ψμ+ that appear in the definition of the
generators (3.5) can be globally Laurent expanded in the appropriate KN bases
(refer to Table 1),

Xμ(Q)ΣXμMQ) (3.6)

( 3 7 )

(3-9)

(3.10)

where
0.12a)

m, (3.12b)
and '

γln=— §dAlQ)An{Q)- (3-13)
2πι cτ

The canonical Poisson brackets on Σ are defined on an equal time curve Cτ

{ψμ±(QW±(Q')} = -iημ%(Q,Q'), (3.15)

and all other Poisson brackets among string coordinates vanish.
Now we are in a position to compute the classical Poisson bracket algebra on

Cτ, and present below the algebra involving J% and T+ explicitly,

{J°ΛQ),J°ΛQ')}

l(Q') Σ Vn mωπ(0ωm(β')l, (3.16)
J

= i[PμΛQ)ψMQ;)(dQΔτ{Q,Q)-dQ,Δτ{Q',Q))

+ PμΛQ')ψ+μ(Q')dβδτ(Q,Q')-P*+(Q')dQΨ+μ(Q)δ1ίQ,QΈ, (3-17)

- - P ' ί ( β ) P + μ ( β ' ) Σ yΠmωn(β)
71 «,m

+ dQyf+(Q)dQ,xp+ll{Q')δτ(Q, β')], (3.18)

0. (3.19)
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The algebra involving T° and J°_ can be computed in a straightforward
manner.

We recall that the classical Virasoro algebra on S2 has the following form (the
equal τ Poisson bracket algebra):

-<7% (3.20a)

(σ-σ% (3.20b)

= i [7?(σ) + T+°(σ')] ̂  5(* - O , (3.20c)

= { T » , T_V)} = {J°+(σ), J°_(σ')} = 0. (3.20(1)

We notice that the algebra on S2 neatly factorizes, i.e. the generators on the
right-hand side are either a function of σ or that of σ' and they are multiplied by a
(5-function or a derivative of a (5-function. There is no such factorization in Eqs.
(3.16)-{3.18) due to the use of generic global coordinates Q and Q! in the algebra of
the generators. The algebra on S2, as in (3.20), is obtained through certain
manipulations of the <5-functions and their derivatives. The bilocal expressions in Q
and Q! appear on the right-hand side of (3.16)-{3.18) due to the presence of the
global meromorphic delta-tensors which do not possess all the attributes of the
ordinary (5-functions defined on S2 (ref. to Table 1). However, when we restrict the
algebra (3.16)—(3.18) on equal time circles in a local complex coordinate system W
around P+, we recover the superconformal algebra over S2. Therefore we may
conclude that expressions (3.16)—(3.19) are, indeed, the proper generalization of the
classical super-Virasoro algebra on S2 to the analogous algebra on an arbitrary
Riemann surface, Σ.

The theory is canonically quantized by replacing the canonical Poisson
brackets by the corresponding commutators or anticommutators on an equal time
curve Cτ on Σ,

iriμvm,Q'), (3.21)

M ( 0 , ψ\{Q')} = rTδlQ, Q). (3.22)

The operators appearing in various mode expansions (3.6)—(3.13) satisfy the
quantum bracket relations,

^ ^ n , m , (3.23a)

^ ^ « 5 B ! m , (3.23b)

^ f ί l -" (3>24a)

—fi,,.,, (3.24b)

- - ^ n m , (3.25a)
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K,α-;] = - ^ J W (3.25b)

[*>;] = ̂  Λ> m, (3.26a)

\Xϊ,%Δ = -^vrKm (3 26b)

In the quantized theory, we have to define operators which are properly normal
ordered. Krichever and Novikov have discussed this issue in detail for the case of
global operator formalism. It was noted in Sect. II that as Q->P±, τ-> + oo on Σ.
Therefore, we can identify the limits Q-+P+ with |0>in and β->P_ with out<0|. Then
if we demand regular behaviour of the correlators, the following expressions must
be finite:

Lim Xμ(Q)\0>in = finite, (3.27)

Lim out<0|X"(β) = finite. (3.28)

Using the asymptotic forms for the bases at P+ Eqs. (2.3H2.4) and the expansions
for Xμ{Q) in (3.6), we conclude

Lim Xμ(z+) |0> = finite, (3.29)
z+-+0

Lim (0\Xμ(z_) = finite. (3.30)
z_->0

So that

0, n<g/2, (3.31)

, n^-g/2. (3.32)

Similarly, for the momentum operator we obtain

0, n^g/2, (3.33)

, n<-g/2 . (3.34)

Notice that there is a region of overlap in the Xμ ordering and consequently the
modes in this overlap region annihilate both the "in" and the "out" vacua. Thus,
the vacuum has vanishing norm giving rise to inconsistencies. This problem could
be resolved by adopting the concept of universal vacuum introduced in [16] and
this vacuum possesses unit norm, i.e. (0|0) = l.

Now the operation of the modes is defined to be

X;|0) = 0, n<-g/2, (3.35a)

(0|Z^ = 0, n^g/2, (3.35b)

PJ0) = 0, rc^g/2, (3.36a)

(0|Pπ

v=0, n<-g/2. (3.36b)

We remark that there is exactly "g" Pn's which do not annihilate the left or the right
vacuum. This is also the dimension of holomorphic 1-forms on Σ Eqs. (2.5)-(2.6).
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For the modes of the Fubini-Veneziano fields P+(β), the corresponding relations
are

otf|0) = 0, n^g/2, (3.37a)

(0|αJ = 0, n<-g/2. (3.37b)

In the interval I = ( — g/2^n<g/2) the α operators do not commute since ywm=t=O.
Therefore, there is considerable amount of freedom in the choice of the normal
ordering conventions. The general prescription of KN [7] may be suitably utilized
for our purpose as follows:

g β (3.38)
α χ n^g/2 or m<-g/2'

This may be generalized to include the interval I,

rιμv

where
θ for m^g/2 or n<-g/2

m for n^g/2 or m<-g/2 ' l " ]

In the case of the fermionic fields the normal ordering prescription is unique:

φ*±|0) = 0, s < 0 , (3.41)

= 0 , s > 0 . (3.42)

We need correlators of various fields in order to compute the quantum
superconformal algebra. The relevant correlators are given below:

<P"+(Q)XV(Q')> =~\ >Γ4+(e', Q), (3.43)

(X\Q')P»ΛQ)> = i ifMΓίβ', β), (3.44)

WZ, β), (3-45)

= ^ ̂ V 4 " ( β ' , 0 , (3-46)

tβδ;(Q',Q), (3.47)

>?α/ίξ-(β',β), (3.48)

where Λ
^ Γ

+ ( β ' , β ) = ^ Σ A,(β'K(β), (3.49)

δ:(Q',Q)=~ Σ K(Q')h-s(Q), (3.50)

and
4 = 4 + + 4~, (3.51a)

δx = δ?+δΓ. (3.51b)
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The tensors in the conjugate basis are Δ± and S± and they are exact analogs of
complex conjugates. We also have the following correlators:

<P%(Q)P\(Q')> = - f Σ con(Q)ωm(Qf)ynm, (3-52)
n,m

<Pt(Q)Pf-(Q')> =~τ-Σ ωn(β)ωm(β')fn m, (3-53)
T TΓ n,m

<Pt(β)Pv-(β')> = i Σ ωn(β)ώm(β') « « ; > . (3.54)
n, tn

Now we are in a position to compute the quantum algebra for the normal ordered
operators. The algebra for : T+ : and : J°+ : are presented explicitly including the
anomaly terms.

{:J°+(Q):,:J%(Q'):} = 4\:P^

T"7'' n,m

p+(ftβ')Σiδ)

δΓ(β, βθ Σ ωn(β)ωm(<2')ίU, (3.55)
J

, β))

, V β , ( 3 . 5 6 )

: 7?(β):, : T+°(β') :] = - - : J»+(β)P+ M(β0: Σ ynm
7Γ

+ K-ΨμΛQ)ψ+μ(Q') dQdQ.δt(Q,Q')

-:ψ»+(Q)dQ.ψ+μ(Q'):dQδτ(Q,Q')

-:dQψ»+(Q)Ψ+μ(Q'):dQ,δτ(Q,Q')

^ϊ\l Σ 7r,mΎksωn(Q)ωm(Q')ωk(Q)ωs(Q')
4π L *

Σ ynm

n,m,k,s

-KiQ',Q)dQdQ.δ;{Q,Q)

-dQ,δτ

+(Q',Q)dQδ;(Q',Q)

+dQδ;{Q\ Q)dQ,δ-(Q', 0 j , (3.57)

β ) : , : Γ°(β'):] = [: 7?(β):, : J°_(β'):] = {: J°+(Q):,: J°-(Q'):} = 0 . (3.58)
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Notice that, in contrast to the classical algebra (3.16)—(3.19), the right-hand side of
(3.55)—(3.58) are normal ordered, and additional c-number terms appear in Eqs.
(3.55) and (3.57). These are the central extensions of the superconformal algebra.
We remark here that the restriction of the algebra (3.55)—(3.58) to a local
coordinate system reproduces the centrally extended algebra on S2 (see
Appendix A).

The presence of the c-number terms in (3.55) and (3.57) renders the super-
conformal algebra anomalous at the quantum level. We recall that the action (3.1)
is ON gauge fixed; therefore, we have to take into consideration the super-
conformal ghost contributions to the action. The superghost energy momentum
tensor algebra is presented in Appendix B. We show that the anomaly in energy
momentum tensor algebra is cancelled by the contributions from the correspond-
ing ghost algebra for space-time dimension, D = 10. This concludes our discussion
of the free NSR string.

IV. Superstring in Curved Background

In this section, we derive the quantum constraint algebra for the propagation of
the NSR superstring in a curved space-time manifold with background metric,
gμv(X), on Σ in the KN framework.

The orthonormal gauge-fixed action is

S = J dτdσ ̂  gμv(X)eaX»daX* + l- χYDaχ%v(X)

(4.1)

where the covariant derivative Da stands for

D^d^-ω^/δXμ. (4.2)

RμvQK i s the Riemann-Christoffel tensor in the target space. The target space
vielbeins are related to the metric by the relation

gμv(X) = eJX)e"v(X), (4.3)

where μ is the world index and α is the local coordinate index. The fermionic fields,
in the local coordinate system are

χ* = eχ. (4.4)

The Christoffel connection, spin connection and the curvature tensor are defined
as

Γζx = hμσ(8λgσ, + dvgσλ - dσgλv), (4.5)

ω μ , aβ=- e*λdμ4 - eavΓμλe
λ

β, (4.6)

Raβγδ = <%e}(dμ<Ov, yd ~ ̂ v^μ, yd ~ <Oμ, ya^v, σδ + « V f yσω^ σδ) . (4.7)
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The action is invariant under global supersymmetry transformation on the world
sheet given by

δXμ = εχμ, (4.8a)

W = - iday
aXΛε - Γμ

ρεχ^χ%. (4.8b)

ε is a constant Majorana spinor in two dimensions.
The generators of the superconformal transformations on S2 are

J±=2S«±Ψ±a, (4.9a)

^ β y Ψ - ' ] , (4.9b)

where

S±« = \ (PA + \ ωμ. yifχ*e» ± X'^)j (4.10)

and ψ±a are the two dimensional chiral fermions defined in Sect. II.
The Eqs. (4.9a) and (4.9b) are generalized to Σ as follows:

J±(Q) = 2S«±(Q)Ψ±a(Q), (4.11a)

\ (DQψ\(Q))ψ±M

W (4.1 lb)

We can derive the classical superconformal algebra for the generators (4.11),
analogous to (3.16H3.19) as derived for the free string in Sect. III. The algebra will
go over to the algebra on S2 once we restrict ourselves to any admissible
coordinate patch. However, in order to derive the quantum constraint algebra we
have to define normal ordered generators in the quantized theory on Σ.

We follow the method of Riemann normal coordinate expansion [17] and
expand the normal ordered generators of the superconformal transformations to
order R as follows:

(4.12a)

(4.12b)

μ μ μ J (4.12c)

X% is the background field and ξμ(Q) is the fluctuation. Henceforth, we suppress X%
dependence of all target space tensors for notational convenience.

The operator

U = l + K = l + Jrfσ/c(σ) (4.13)

was introduced in [12] in order to facilitate computation of various quantum
brackets in an efficient and elegant manner. One of the advantages of the method
proposed in [12] was that all the generators in the interacting theory to order R
could be obtained easily from the generators of the free string theory through the
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introduction of the operator U; if we choose

k(σ)= ~^Raλβκ :ξλ(σ)ξ«(σ)ψ\(σ)ψίί(σ):.

The generalization of the generator, k(σ\ introduced in (4.13) can be defined on Σ
as

k(Q)= -^Raλβκ:ξ
λ(Q)ξκ(Q)ψ\(Q)ψβ-(Q): (4.14)

to obtain generators of the interacting theory to order R; in particular

J±{QY = :J°±(Q): +i[K,:J° ± (0:], (4.15a)

where

K = § k(Qf) (4.15b)
QeCτ

and J°±(Q) are the supercharge densities for the free NSR string given by Eq. (3.5b).
The explicit form of the normal ordered supercharge densities are

RΆK $ [_A:O:Δ;δ;m\Q)nQ)ψΛQY , (4.16a)
O Q'eCτ

: J_(β): = : J°_(β): - C + : + ^Raκ j ίΔ^t - A; δ'} (Q\ Q): ξ%Q')ψκ

+(Q'):,

(4.16b)
where

c_ = -^lιλaκίP(Q)ξ(Q)ξ(Q)ψ+(Q)ξ(Q)ψ+(Q)ψ4Q)ψ(QΏ
(4.17a)

c + = -^μλxκίP
μ

+(Q)ξλ(Q)ξκ(Q)ψ-(Q)+iξκ(Q)ψ''-(Q)ψMQ)ψλ

+(QΏ,

(4.17b)

and

Rμ^ = iίRμλ.κ + Rμκ.χ]- (4.17c)

The anticommutators of J ± can be computed in a straightforward manner using
(4.15),

±i{[:K:,: J%(Q)l: J%(Q'):} ± i{: J°±(Q):, [: K:,: yo

τ(ρ'):]},

(4.18)

-i{D ^ ( β ) : , D K : . : ^ ( β ' ) : ] } . (4-19)

The anticommutators (4.18) and (4.19) can be evaluated using (4.16) and (4.17).
They are presented below

= : E(Q, Q'): + : V(Q, &): + : UQ, &):, (4.20)
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where

: E(Q, Q): = f Rμλaκ[i: Pt(Q)ξκ(Q)ψ\(Q)ψ\(Q'): Δτ(Q, Q)

+ :Pt(Q)ξλ(Q)ζκ(Q)P*+(Q'):δτ(Q,Q')

- h • ΨμΛQ)Ψ*AQ)Ψ-(Q)ψκΛQ') • 4(2, QΊ

+ i: ξκ(Q)ψt(Q)ipi(β)P'Uβ') : δτ(Q, β')]

ακ : ξλ(Q)ξκ(Q) • δ^Q, Q') Σ ωπ(β)ώm(<2') <αK>
n,m

Q'), ( 4 2 1 )

: V(Q,Q'): = -\Raκ\2i -(ΔTK -Λ:δτ

+)(Q,Q'): P"+(Q)ξκ(Q):

- i: ξκ(Q')P\(QΊ • ( W - 27 K) (Q, Q)

QΊ, (4.22)

,Q')=-iR § (Aϊδ-; -Z;δ--)(Q",Q)(Δ;δ; -A;δ:)(Q",Q')
Q"sCτ

+ (δ~e') (4.23)

Thus

'). (4.24)

We recall that the first term on the right-hand side is given by (3.55).
If we choose a local coordinate system, W=τ + iσ = lnz and W = τ + iσ' = Inz'

Eqs. (4.21)-(4.23) take the following form (see Appendix A):

E(Q, βθ-f i W D n(σ)ξ V)ξκ(σ)P1(σ):

-i:P"+(σ)ξκ(σ)ψλ.(σ)ψ'-(σ):

+ i : ψt(σ)φa_(σ)φκ

+(σ)φi(σ) :]<5(σ-σ'), (4.25a)

^ Λ α κ ^ [ Γ ( σ ) ^ » ] 5 ( σ - σ ' ) , (4.25b)

~R^"{σ-σ'). (4.25c)

The local form of Γ+ ( 0 obtained in Sect. Ill together with the expressions for E,
V, and L in the local form (4.25) can be used to obtain a local form of T+(σ) on S2.
This local form can be generalized to Σ and subsequently we compute the algebras
involving T+(Q). We recall

4: T+(σ): =4 : T » : + : E(σ): + : F(σ): + :L(σ):, (4.26)

which has the corresponding form on Σ as

4:T+(β): =4:Γ + °(0: + :£(Q): + :F(β): :L(β):. (4.27)
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The commutator of J+ and J_ has the following form:

Q): (Δ?δ? - Δ;δ;)(Q, Q')

- ϊ: vα

+(β V-(β'): WV - KK)(Q', β)]
+ i W ^ K . (4.28)

Notice the last term on the right-hand side of (4.28) has a tensor Sμλaκ(Q, Q')
contracted with Rμλ0ίK. This fourth rank tensor in space-time manifold is also a
tensor on Σ of weight 3/2 in Q as well as of the same weight in Q'. However, the last
term of (4.28) vanishes when evaluated in a local coordinate system (see
Appendix A for further details). Thus it is dropped from (4.28). We also drop all
such terms from all the expressions in our future computations.

Now we proceed to evaluate the rest of the algebra involving T+(Q) given by
(4.27),

[: T+(0:,: J+(β'):] = [: T?(β):,: A(QΊ:]

+ J U έ : PKΛQ)Ψ\{QY iStΈt-Z Έn (β, Q')

Q t

+t; - Ξ-tn (Q, Q'): ξκ(Q)ψ°+(Q):}

: P"_(δ)v"+(δ): Wδt-Δ δ;] (Q, Q')

^ , {Aτ(Q, Q): ξ*(Q)ψ{(Q'):}

V (4-29)

We may remark that this expression goes over to the corresponding expressions on
S2 upon restriction to a suitable local coordinate system.

[: T+(β):,: J-(δ')G = Kκ (i • P\(Q)ψ*ΛQΊ: [̂ t

+-5,+ - Δ δ^ (δ. δθ

dβ<5τ

+ -δ-daδΠ (6', G)

- i : P +(δ')v -(δ'): [^τ+

t̂

+ - Δ - δ n ( δ ' . 6 )

- i : Pα

+(δ)ψκ-(β): [Iτ"5Γ - W ] ( δ , β ' )

^ -(β'): ^τ(β, β')]

- i f - : W W β 1 ) : Σ Cωπ(β)ωm(β')?πm

x ^ t

+(β', β) + ω^βJω^βOy^ΓίG', β)] J (4.30)

The commutators [T+(β), T±(β')] can be computed in a straightforward
manner following the procedures stated above. In fact we have carried out explicit
calculations for these brackets. However, the expressions are very lengthy when Q
and Q are taken to be two arbitrary points on Σ. They are reduced to simple forms
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when we evaluate them on a local coordinate system. This form exactly matches
with the quantum algebra of S2 as expected. In what follows, we present the results
of the two commutators in a local coordinate system.

= [Z(σ) + i: 7?(σ): + Z(σ') + i: 7?(σ'):] ̂ δ(σ- σ')

δ { σ ~ σ r ( 4 3 i )

where

[Γ+(σ), 71(σ')] = 2 — Z(σ)δ(σ-σ'), (4.32)

Z(σ) =-—RΛβ: P\(σ)Pί(σ):. (4.33)
07C

We observe that the superconformal algebra, in the case of the interacting
theory, contains operator anomalies in addition to the usual C-number anomaly
terms. Furthermore, the central charge term in the commutator of the energy
momentum tensor has an additional piece proportional to R the scalar curvature
of the target manifold. We may mention that the theory is free from all anomalies if
the space-time dimension, D = 10 and the manifold is Ricci flat, i.e. Rμv = 0.

In order to derive the condition for vanishing of these anomalies, we reduce the
bilocal form of the constraint algebra on I to a local form by considering an
admissible local coordinate system although the algebra is derived for two
operators defined at generic points Q and Q on Σ (see Eqs. (4.24), (4.28), (4.29), and
(4.30)). We also observe that the quantum brackets of "holomorphic" and
"antiholomorphic" generators such as T+(Q) with 71 (Q'), J_(Q') and J+ with 71,
J_ do not vanish as is the case for the free string. In fact these brackets are
proportional to the Ricci tensor; however, these anomalies vanish for the Ricci flat
manifold as noted earlier.

V. Summary and Conclusions

We have investigated the evolution of NSR superstring for a world sheet of
arbitrary topology, and examined the consequences of (super)conformal inva-
riance. The Fubini-Veneziano fields are defined on a Riemann surface Σ in the KN
global operator formalism. Then the generators of the superconformal transform-
ations were expanded in the KN global bases and the superconformal algebra, on
Σ9 for both the free as well as the interacting superstring was derived.

All the anomalies were obtained from the algebra of the generators in the
quantized theory. It was shown that the operator and the c-number anomalies
vanish if the space-time dimension is ten and the target manifold is Ricci flat. We
note that our results are manifestly covariant as we have used the Riemann normal
coordinate expansion method in defining all our generators in the quantum
theory. It will be interesting to examine the higher order corrections (in R) to the
background field equations of motion when next to leading order terms (in normal
coordinate expansions) are taken into consideration.
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We remark that our results can be derived from the nilpotency of the quantum
BRST charge defined on Σ. In computing the anticommutator of the normal
ordered BRST charge one has to essentially derive the full superconformal as was
done in [18] for the NSR string in general background (in the case of S2). Thus, the
results presented here can be deduced from the requirement of the nilpotency of the
BRST charge.

In conclusion, the KN global operator formalism has proved to be an elegant
procedure to probe the consequences of superconformal invariance properties of
superstring theories on world sheet of arbitrary topology.

Appendix A

In this appendix we briefly outline the procedure for reducing any global
expression on Σ to a local coordinate system defined as W(Q) = τ(Q) + ίσ(Q). The
procedure is the following: locally on Cτ we have

~=dσM-—, (A.la)

where M stands for the Minkowski signature and the world sheet is parametrized
by(τ,σ).

The global bases can be written in the local coordinate system W; in particular
we have all expressions in z+ coordinates as given in Eqs. (23)-{2J). It was stated
in Sect. II that Cτ reduces to the circle C± around P+ as τ-> + oo. We denote this
system as z+,

W=τ + iσ = \nz, z = exp(τ + z'σ). (A.2)

Now, if f(Q) is a smooth one form on Cτ, we have the defining relations (Table 1)

(A3)

as (A.3) is valid on any Ct in particular for C+ (in the local coordinate system given
by (A.2))

Aτ(Q,Q') = δ(σ-σ')dW. (A.4a)

Note that δ(σ — σ') is the Minkowski space 5-function and this convention is
followed everywhere else.

Similarly,

δlQ9 Q') = δ(σ-σ')(dW)ίl2(dW')112. (A.4b)

For the other distributions which appear in (3.49)—(3.51) we have the following
expressions in the W coordinate system:

4+(ρ', β) = 4+(<2', Q) = ~ X-r— dW, (A.5a)
Ini G — o —is
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K(Q',0 = KiQ,0 = ^ σ_σ

1>_fe{dWγi\dWf12, (A.6a)

K(Q', 0 = 3-(Q', 0 = - 2^ σ _ j , + i £ W ' W ) 1 / 2 , (A 6b)

where

δ(σ - σ') = -ί-1 * * 1 (A.7)
2πi|_σ-σ'-ίε σ-σ' + iεj

with

dW=-dW, {dW)ll2 = i{dW)ίl2.

It follows from (A.5HA.7),
^ ^ , (A.8a)

β)= - ^ ^ ' δ(σ-σ')(dW)3'2(dW)112. (A.8b)

We can evaluate other combinations of such delta-tensors in a similar fashion. The
fundamental fields Xμ{Q\ Pμ(Q\ ψμ

±{Q% and Pμ

±{Q) take the following form on the
coordinate system (A.2):

, (A.9a)

= Pμ(σ)dW, (A.9b)

Ψμ±(e)^^±(σ)(rf^)1/2, (A.9c)

Pμ

±(Q) = Pμ

±(σ)dW. (A.9d)

Using these results it is easy to check that the constraint algebras on Σ reduce to
that on the sphere in the coordinate system (A.2); recall Eq. (3.20).

Let us focus our attention on the last term of (4.28), where the anticommutator
of J+ and J_ is computed. As the algebra is defined on an equal time curve Cτ, any
term which vanishes on one such curve will vanish on all others. This is a
consequence of the duality and the completeness relations which hold on any C r If
we write RμλaκS

μλaκ on any equal time curve, Cτ, in the coordinate patch defined by
(A.2); then Cτ becomes the circle C+ around P+. The delta-tensors and the
fundamental fields along with their derivatives go over to the expressions
(A.1)-(A.7) and (A.9). It turns out that this term vanishes when we use the
properties of the standard Dirac ̂ -function and the symmetry properties of RμλΛK

and other tensors that appear in the product. Thus this term vanishes on every Cτ

on Σ. The same argument goes through for similar expressions that appear in
computation of various brackets. As mentioned in the text, we suppress
appearance of such terms in the algebra.

Appendix B

We discuss the cancellation of the onumber anomaly in the algebra [T+(Q)?

Γ+(<2')] which appears when we consider the quantum operators (see 3.57). The full
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gauge fixed action gets contributions from the (b, c) and the (β, y) ghost systems.
The ghost part of the energy momentum tensor on Σ has the following form [9]:

Tg\Q) = c(Q)dQb(Q) + 2dQc(Q)b(Q) -h(Q)dQβ(Q) - ϊdQy(Q)β(Q).

(B.I)

These fields are meromorphic forms of weight λ with the following Laurent
expansion (see Table 1):

, λ=-\, (B.2a)

HQ)=ΣhΩk(Q), λ = 2, (B.2b)
k

- I / 2 , (B.2c)

V2 (B 2d)
α

The fundamental commutators and anticommutators are

{c(Q),b(QΊ} = iHQ,Q'), (B.3a)

ίy(Q),β(QΈ=idτ(Q,Q'). (B.3b)

The correlators involving (b,c) and (β,y) ghost fields are as follows:

= ^ - Σ ^flOO^β), (B.4a)
Zπ k

= ^ - Σ e*(0ίW), (B.4b)

= ^- Σ g«(δ')M0> (B.4c)

= - T- Σ gα(β)Uβ') (B.4d)

Using the correlators (B.4) along with the duality and the completeness relations
for the bases in Table 1, the central term in [Γf (Q), Γf (β')] is given by

Λ (B.5a)

with

znm= Σ Σ Σ c:A.+*-.0+(«+*-s-go)

- Σ Σ° " + m Σ r + S

^ = fiΌ »'» s== ~ do n,m

n + m:=r + s

+ 9o

xL=-Σ Σ Σ
a<g r,s= -go n,m

n+m=k+s

+ 90

+ Σ Σ Σ
α ^ # r,s= -go n,m

++
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where Cs

u and Hs

m are given by (2.11) and (2.15). We recall that

| 0 n < 0 . . . . ίfl n^O

The central extension of [T+{Q\ T+(Q')~] in (3.57) can be written, in a similar
fashion as

^ 2 Σw CzL + xU Ωn(Q)Ωm(Q'), (B.6a)

where

=t Σ [n-Λm.-^-sn-J (B.6b)
fc>0
s<0

and

f L = ^ I lhdK-hsdhk-\en{Q) (B.6c)

and χjm is as in (2.37) of reference [7].

Hence the central term in \Ί\(Q), T|(Q')] is given by —2 £ χn mωn(β)ωm(ρ'),
τ 7Γ n,m

ϊnm = D [zL + XL] + ZMm + fnm , (B.7)

where T | is the full energy momentum tensor, T+ = T% + Tf, χnm, χy

nm, χξm, and
X%m are as defined in (B.5) and (B.6). The central terms in (B.5)-(B.7) are similar to
the expressions in [9]. Note that we have worked in the NS sector.

The central extension is antisymmetric and satisfies a locality condition [7].
Therefore, up to trivial cocycle, it is proportional to the cocycle X(eh βj). Using the
well known properties of χ(ebej) we get Xij = (jD — \5)χ{ebe^ up to trivial
cocycles. Thus, we conclude that #^ = 0 for D = 10.

Similarly, we can calculate φaβ in the algebra for J°+(Q). We note that $aβ is
symmetric and satisfies locality condition [9]. We then derive the same result as
obtained in [9]. This completes our discussion of the critical dimensions and the
mechanism of anomaly cancellations.
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