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Abstract. We study conditions for the existence of extended supersymmetry in
topological Yang-Mills theory. These conditions are most conveniently for-
mulated in terms of the holonomy group of the underlying manifold, on which the
topological Yang-Mills theory is defined. For irreducible manifolds we find that
extended supersymmetries are in 1-1 correspondence with covariantly constant
complex structures. Therefore, the topological Yang-Mills theory on any Kéhler
manifold possesses one additional supersymmetry and on any hyperKéhler
manifold there are three additional supersymmetries. The Donaldson map, which
plays a crucial role in the construction of the topological invariants, is generalized
for Kéhler manifolds, thus providing candidates for new invariants of complex
manifolds.

1. Introduction

Recently, a quantum field theory method was proposed for constructing
topological invariants of four dimensional manifolds [1]. It is based on N = 2,
D =4 Euclidean supersymmetric Yang-Mills theory minimally coupled to
gravity. One might expect that the N =2 supersymmetry of the theory is
completely broken because the graviton’s superpartners are absent. Neverthe-
less it turns out that the theory is invariant under a singlet rigid supersymme-
try if one identifies the SU(2) automorphism group of N =2 supersymmetry
with the SU(2), subgroup of the Euclidean tangent group SO4) ~ SU(2),.
x SU(2)r. This singlet supersymmetry plays an important role in the construc-
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tion of topological invariants. Roughly speaking, its existence implies that the
expectation values of supersymmetric observables do not depend on the choice of
Riemannian metric of the four-manifold. So these expectation values are topolo-
gical invariants (or, more precisely, invariants of a smooth structure) of the
underlying four-manifold. For this reason the theory was called topological. The
set of observables analyzed in [1] corresponds to the Donaldson invariants [2].

The study of supersymmetric theories has revealed many different remarkable
relations between the structure of supersymmetry and geometry. For instance the
target space of D =2 supersymmetric o-models is an arbitrary Riemannian
manifold in N = 1 case, while in N = 2 (or, equivalently N = 1 D = 4) case the
target space should be Kahler, and for N = 4 (or N = 2 D = 4) only hyperKahler
manifolds are allowed [3]. Here, extended supersymmetry requires the existence of
covariantly constant complex structures and hence reduces the holonomy group
of the corresponding target space.

One may wonder whether extended supersymmetry in topological Yang-Mills
theory is possible. The main purpose of the present paper is to study this problem.
We restrict ourselves to the most interesting case of four-manifolds which are not
locally metric products. We find that the additional supersymmetry requires the
existence of a covariantly constant complex structure on the four-manifold. This
complex structure reduces the holonomy group of the manifold. In four
dimensions there are essentially two nontrivial possibilities: the holonomy group
can be reduced to U(2) or SU(2). In the former case there is just one complex
structure while in the latter one there are three complex structures. We prove that
the additional supersymmetries are in 1-1 correspondence with covariantly
constant complex structures. Therefore when the holonomy group is U(2) (that is
when the manifold is Kéhler) the topological Yang-Mills theory has one
additional supersymmetry, and when the holonomy group is SU (2) (hyperKéhler
manifolds) there are three additional supersymmetries. This picture resembles
amazingly the above mentioned situation with D =2 o-models. The only
difference is that in the topological Yang-Mills theory under consideration all
supersymmetry generators anticommute.

The original topological Yang-Mills theory [1] formulated on an arbitrary
Riemannian four-manifold leads to invariants of a smooth structure of the
manifold. In our case the topological field theory gives a way to construct
invariants of complex of hypercomplex structures. We discuss supersymmetric
observables specific to the Kéhler case. Using topological Yang-Mills theory
arguments we find also an interesting relation between complex structures on the
four-manifold and on the modulus space of instantons on the manifold: it turns
out that the modulus space of instantons on a Kahler (hyperKahler) manifold has
a natural complex (respectively hypercomplex) structure.

The construction of topological invariants in [1] was based on the Donaldson
map which relates the de Rham cohomology groups of the Riemannian manifold
with the de Rham cohomology groups of the modulus space of instantons on this
manifold. On the Kéhler manifold the de Rham groups are decomposed into the
Dolbeault groups. We propose a generalization of the Donaldson map which
relates the Dolbeault groups of the Kdhler manifold with the Dolbeault groups of
its modulus space of instantons. This gives a way for construction of new
invariants of complex structures on four-manifolds.

A natural explanation for the existence of the singlet supersymmetry in the
topological field theory was given in [4]. It uses arguments of N = 2 conformal
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supergravity. We find it enlightening since it makes clear that any N =2
conformally invariant theory possesses a singlet supersymmetry on an arbitrary
Riemannian background after twisting the SU(2), and SU(2),, groups. Of course,
N = 2 Yang-Mills is the most important example of such a theory. We use this
approach in our study of extended supersymmetries in topological field theory.
However a knowledge of conformal supergravity is not necessary for understand-
ing this paper since the main results can be checked directly (see Sect. 4).

The paper is organised as follows. In Sect. 2 we review briefly some general
facts about N = 2, D = 4 supersymmetric Yang-Mills theory and the topological
Yang-Mills theory. Using N = 2 conformal supergravity arguments we establish
in Sect. 3 the basic relation between holonomy groups and additional supersym-
metries. In Sect. 4 we discuss properties of the topological Yang-Mills theory on
Kéhler manifolds, generalize the Donaldson map for this case and make several
comments about the hyperKahler case.

This paper is a completed version of [5].

2. N=2 Supersymmetric Yang-Mills Theory and Topological Field Theory

In this section we review some basic facts about N = 2 Yang-Mills theory [6] and
topological Yang-Mills theory [1] which are needed in the subsequent sections.

2.1. N = 2 Yang-Mills Theory

The Lorentz group of the Euclidean four-space is locally isomorphic to the group
SU(2), x SU(2)g. We denote indices of fundamental representation of SU(2),, by
o« B, 7 ...,and of SU2)g by d, B, 7, ... The automorphism group of N = 2
Euclidean supersymmetry is SU(2), x R*, where R* is the multiplicative group of
nonzero real numbers. It replaces the U(1) subgroup of the automorphism group
of N =2 supersymmetry in Minkowski space. We denote indices of the
fundamental representation of SU(2), by i, j, k, ... The supersymmetry
parameters £, E* are real in the following sense:

& = (= ey EP), =gy, @

where ¢, is the standard antisymmetric tensor, &;, = —1. The Yang-Mills N = 2
multiplet consists of a gauge field 4,, spinor fields y,;, w,; and scalar fields M, N.
For the closure of supersymmetry algebra it is necessary to introduce an auxiliary
field T;; = T;. All these fields take values in the Lie algebra of some compact
gauge group G. All fields are antihermitian,

A—ao'! = _Aada —l;; = _Wais Vs = —Wdia
M=-M, N=-N, T,=-TY )

13

The supersymmetry algebra is graded by dimension and by R*-charge. Denoting
the dimension and the R*-charge of a field X by [X] and deg X respectively, we
have

[4,:] =[M]=[N]=cm™", ol = wal = em™32, [T;] = cm™?, 3)
degAd,; =0, degw,=—1, degy,=1, degM =2,
degN = _2’ deg T;J = Oa deg éai = _1’ degéo’zi = 1, (4)
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where &;, &;; are the supersymmetry parameters. The supersymmetry transform-
ations have the form

04, = i‘fai Wsi — ifai Wi
. 1 )
0wy = —&J T+ 280 Fy + 7 Cul M, N~ & DN,

Oy =—&' T+ sziF.iﬁ + 2 EulM,N] + fﬁigﬂazM,
OM =2it%y,,, )
ON =2iE%y,.,
. ; . 5 i i
oT; = i 9, Wit léaj@ap Vi =3 E%ilwej» M1 — 3 i Wai» M]

[y rd i a 4 3
— i i@ﬁd‘/fﬁj — i jgﬂ& Vpi — 3 ¢ i[V/djsN] 3 ¢ j[W&i9N]s
where F,;, F;; are components of the curvature,

(Deosi» D) = €ap Faj + €45 Fop - (6)

The Lagrangian of the theory equals, up to a total derivative,

L=tr(4F,  F* - 2,, MP**N — 4iy™ D, v*;
. ai : &i 1 ij

_IM[‘//ai:‘// ]_ZN[V/a'zial// ]—g[M,N]2-—T;JTJ) (7)

2.2. Topological N = 2 Yang-Mills Theory

The topological Yang-Mills theory can be obtained from N = 2 Yang-Mills theory
by changing the action of the Lorentz group, namely by replacing SU(2),, t}y’ the
diagonal subgroup in SU(2), x SU(2), (or, in other words, identifying the indices
o, f, ... with the indices i, j, ...). We use the following notation

1 ai _1
é=§£ faia ai*z(éai+éia)9

ai 1
V=8 Wy, Kai = — § (l//ai + Wia) . (8)

In what follows we will need formulas for supersymmetry transformations with
parameters £,; only. Rewriting them in terms of &, faﬂ, we get

0A = _ifa,s v +ilys,,
M =0, ON=-2il%y,+2iy,
Sy = &y T + 26, F¥ + L EM, V],
Wi =~ DM~ EDu M, ©)
Oy = “% Cas T + & T + ET,, + &5, EF + & F) + 2LF, —% & IM,N],
0T = =il Dy — 16 9y, — 18D .

DY+ 5 E s M1+ 5 E Dt M) — i€t M) — 5 £l M),
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The commutator of two such transformations vanishes up to a gauge transfor-
mation:
[0,0'] =1, 10)

where supersymmetry transformations ¢ and ¢ have parameters ¢, fa,, and 1, 1,4,
respectlvely, and 7 is the gauge transformation with parameter M (7,5 + 2¢n).

It is useful to note that all fields of the theory now become Lorentz group
tensors (and not spinors): y,, corresponds to a Vector W= 0" Wi V| to a scalar
and y,, to a self-dual rank two tensor y,;, = o) Xap> Xab = % Eapca X

Now consider this theory minimally coupled to a gravitational background
with a metric g,,. Here y, v, ... are four-dimensional world indices. In vector
notation the corresponding action and the Lagrangian read

S=§d4x]/§L, (11
L=tr {% F;F“‘“—%@uM@“N— v, 2" v +iD, v, "

i i 1 i , 1 ,
__l//u[lllqu]_*l//[l//»M]'—_[M’N]2+V[Xuv’M]Xu __TuvTu}' (12)
2 2 8 8 8
Here F, is the self-dual part of the Yang-Mills field strength,

1 ~ ~ 1
z (Fuv+F;‘1v)e Fuv 2 gsuvﬁ,QFlga (13)

and the fields 7,, and y,, are self-dual,
1 e, 1
T;w 2 gguvlg T Xuv 2 genvlgx (14)

Witten observed [1] that the singlet supersymmetry with parameter ¢ of the
twisted N = 2 Yang-Mills theory survives on an arbitrary gravitational back-
ground g,,, . This supersymmetry is remarkable since it exists in spite of the absence
of g,, superpartners. Denoting the corresponding supersymmetry operator by Q
(so that X =£QX), one finds

04,=1iy,, OM=0, ON=2y,
1
QWZE[MaN]a QWuz—@uMs
Oty = Tuy + 2F,5, (15)
QTuvz_2i(9qu—@qu)+—i[Xust]s
Qg,uvzo'

The square of Q is zero modulo gauge transformations.
The Lagrangian can be written in the form

L=QV, (16)
where
V= {1 Fr ’”+1 @"N—1 [M,N]— 1 T, } 17
4 uvl 2 Vlu 4 l// 8 qu

! We use the following conventions: 6, = (1,i5), (0,)* = %[0, %0, ; + (@ B)]
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For constructing topological invariants it is very important to show that the
energy-momentum tensor T*” of the theory can also be represented as Q acting
on some combination of fields. T#” is defined as usual by the variation of the
action under an infinitesimal change of the metric g,, = g, + 04,,,

08 = [d*x)/gdg,, T (18)

This variation is not straightforward because the fields x,, and T, are constrained
by self-duality conditions. To preserve the latter, an arbitrary variation of the
metric should be accompanied by some variation of the fields y,,, T,,. These
variations are not uniquely defined: to a given variation we may add an arbitrary
self-dual tensor, linear in dg,,, . However there is a distinguished way to define such
variation. It consists simply in projecting the self-dual tensor to the three-
dimensional subspace which is self-dual with respect to the new metric g,,, + dg,, .
This means that the variation should be orthogonal to the subspace of self-dual
tensors, or in other words, it should be anti-self-dual. This defines the variation
uniquely. In [1] the y,, variation was chosen exactly in this form. The
corresponding formula reads

1 1 .
5Xuv = Z gﬂégdrx;;v - 5 6uvlg ‘/‘;glaéga‘rx e. (19)

It is natural to require that the operators Q and J/dg,, commute,
o)
,—|=0. 20
2.5, (20)

Applying Q to (19) we find that the combination T}, + 2F,; varies as in (19). This
means that the variation of T,,, itself is different from (19). It contains the anti-self-
dual part F,, of the Yang- Mllls field strength %:

1 -
0T = 3 07 09ue(To+ 2F3) = 3 6401 /900, (T*~2F79) (21)

Now one can easily check that (20) is satisfied. This useful property together
with Eq. (16) imply that the energy-momentum tensor T*” of the theory can indeed
be represented in a form

™ = Q™ 22)
with

‘/ w0 T Wan. (23)

(In [1], Q commuted with d/dg,, only on shell, so Eq.(22) needed a tedious
verification which we have avoided by introducing the auxiliary field 7,,, and the
transformation law (21).) This property of the energy-momentum tensor plays a
crucial role in the construction of topological invariants.

2 In Sect. 3 we will discuss the singlet supersymmetry using conformal supergravity. We don’t
know how to explain this transformation law in the framework of conformal supergravity
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2.3. Topological Invariants

The construction of topological invariants proposed in [1] used path integrals of
the action (11) which is not positively defined. So this construction is more
suggestive than rigorous. However if to play freely with ill-defined objects, it gives
self-consistent results which can be verified by different methods. In our
discussion of the complex case we make some similar conjectures, which need
analytic proofs, about invariants of complex manifolds. Since in the complex case
we follow the line of construction in [1], we briefly recall it here.

Consider an observable 4 which by definition is invariant under supersymme-
try, Q4 = 0, and under changes of the metric, d4/dg*’ = 0. Then

64y _ 8
09 09

[(@2X) exp<—3—2S> A

N S
— el—z [(@x) exp(— ;—2S> /g AQi™,

where (2X) is the integration measure. Integrating by parts and taking into
1 .
— = =0
account that Q<exp< p S) ]/5;) , We obtain

5¢A>
0G v

=0. (24)

Thus <{A4) does not depend on the choice of a metric and hence carries only
topological information.
Moreover (A4) does not depend on the coupling constant:

9<4)

5<_—e_2>

(In the last equation we again mtegrated by parts.) Thus we may work in the limit
e—0. In this limit the path 1ntegral is concentrated on the superspace .# of
configurations on which the action is equal to zero.

The kinetic term for the gauge field vanishes for self-dual connections (i.e.
solutions of the equation F,; = 0). Witten argued that if the gauge group is chosen
tobe G = SU(2) (in the followmg we always mean this choice) then in general the
whole bosonic part ./ of .# is the modulus space of self-dual connections. As for
fermions, it is known that on the background of a typical self-dual SU(2)-
connection the fields v, y,, do not have zero modes. When M = N = 0 the field
equations for y, have the form

= [(2X) exp< ! S) AS

= [(@x) exp(—%S)A(QjV)=0. 25)

D,y*=0,
(@ﬂwv—@vWﬂ)+=0‘ (26)
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These coincide exactly with the equations describing infinitesimal deformations
of self-dual connections. In other words, zero modes of v, correspond to tangent

vectors to the modulus space of the instantons. Hence the fermionic part of M is
described by the tangent sheaf to ./ Itis clear that M is Q-invariant (the auxiliary
field 7, vanishes on Al also). Moreover the formula QA4, = iy, shows that the
singlet supersymmetry operator Q reduces to the wedge derivative on #
considered as a vector field on .7 .

Consider now forms 4;,i=0, ..., 4:
Ay =tr M?,
=tr(—=2My,)dx",
Ay =tr(—y,w,—IMF,) dx"dx", 27

As = tr(iy, F,,) dx"dx" dx*,
A, =tr < ‘11 ” W) dx®dx*dx"dx" .
One easily checks that
dA;= QA ,, (28)

where for j = 4 we put 45 = 0. Now let w be an arbitrary given j-form on M*
which does not depend on fields. Assume that w is closed, dw = 0. Then consider
the observable

b= [ Ady_;ro. (29)
MA
We have
00 =[QAy-jAw=[dA;_;Aw=[d(A;-; A ©)=0. (30)

Thus @& satisfies the conditions needed for constructing of topological invariants.
Moreover, if w = do then
d=[Ag_;Ando=(—1)""[dAy_;n 0o
= (—1)7*1[QAs_; Ao =Q((~1)*" [As_; A 0). (31)

It is clear that the expectation values of such observables vanish: if 4 = QB then

A4y =[(2X) exp(—e1—2S> 0B =[(2X) Q(exp(—gj )) B=0. (32

Therefore we may obtain nontrivial observables only from nonzero de Rham
cohomology classes of M *. By construction, functions on .# are differential forms
on .#. Moreover, the R*-grading corresponds to the grading of differential forms
by their degrees. The recipe for the construction of the Donaldson invariants
proposed by Witten [1] is as follows. Each time when 4; contains M we replace it
by (M), where (M) is the solution of the equation

2D, M} =ily,,y"]. (33)

(Here 9, is a self-dual connection and y, is a zero-mode.) Let A} be the result of
this substitution. Now let

D,=[Ay_;jro. (34)

M
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Witten showed that @, is a well defined closed differential j-form on .#. Thus,
closed j-forms on M* correspond to closed j-forms on .# and exact forms
correspond to exact ones. This gives a map

H{(M*R) > H!(M,R), w—&,, (35)

which is called the Donaldson map. (We used here cohomology classes instead of
cycles, used in [1], for the future convenience in the discussion of the Dolbeault
groups in the Kéhler case.) The space .# consists of components .#", enumerated
by the topological charge. If we take arbitrary closed forms w,, ..., w, of degrees
Ji>--->Jis0 that ¥j, = dim .#, for some nthen @, A ... A @, isa volume form
on ./, and one can check that

(By.. By = [ Py A ... A D, . (36)

Mn

Topological invariants obtained as expectation values of observables of the form
@, . ..d; precisely reproduce the Donaldson invariants.

3. Conformal Supergravity Approach to Topological Yang-Mills Theory
3.1. Singlet Supersymmetry

Karlhede and Rocek [4] gave the following explanation for the singlet supersym-
metry in the topological Yang-Mills theory. Since topological Yang-Mills theory
arises from N = 2 supersymmetric Yang-Mills theory, it is natural to use the
language of N = 2 supersymmetry, or in other words to couple N = 2 supersym-
metric Yang-Mills theory to N = 2 supergravity. We want to identify SU(2), with
SU(2),. Since SU(2), becomes local in gravity, this enforces SU(2), to be local
also. This is a property of N = 2 conformal supergravity. So we are prompted to
start with the coupling of N = 2 supersymmetric Yang-Mills theory to N =2
conformal supergravity. We will work in the component formalism. The
transformation laws of the fields of the supergravity multiplet are well known [7].
Let us consider configuration for which all fields except the vierbein e,** and the
gauge field ¥,/ for the group SU(2), (and, to be more precise, the aux111ary scalar
field D) vanish. Then the formula for the transformation of the gravitino field ;'
reduces to . . . o

Ops = 0,8+ w5 P 4+ V1 E9, 37

where w,*; is the spin-connection. After identifying the groups SU(2) L and SU(2),
the parameters &* break into a singlet &, which is antisymmetricin «, ,and a triplet
&% which is symmetric in «, i. Similarly, the gravitino field yu breaks into y, and
Y. Moreover, after this identification we may put

w5 =V. (38)

Then the transformation law for the gravitino field takes the form
V= 0u¢, (39
oyt = 9,8 =0, + 0,2, + 0 f E. (40)
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We want to find out which supersymmetry transformations preserve the
background under consideration, or in other words for which values of ¢, £*f the
equalities

oy,=0, oyf=0 41)

are satisfied. It is natural to call such transformations the Killing spinors of the
field configuration considered. One possibility is obvious

¥ =0, ¢=const. 42)

This is precisely the Killing spinor discussed in [4]. This spinor leads to the
existence of the residual singlet supersymmetry in the twisted N = 2 Yang-Mills
theory on a general metric background. (The mechanism of the relation between
Killing spinors and supersymmetries in Yang-Mills theory is as follows. After
coupling of the Yang-Mills Lagrangian to conformal supergravity, the resulting
Lagrangian is invariant under all supersymmetry transformations if we transform
the fields of the supergravity multiplet simultaneously. Fixing the configuration of
the supergravity multiplet, we obtain Yang-Mills theory on the background of this
configuration. The corresponding Lagrangian is invariant only under those
sypersymmetry transformations that preserve the chosen configuration.)

Remark. Suppose we are given some N = 2 supersymmetric theory. One may ask
whether the existence of Killing spinors ensures that this theory will possess
corresponding supersymmetries after twisting. In general, the answer is no. For
instance, the twisted N = 2 g-models with nontrivial target spaces do not seem to
have supersymmetries. The reason lies in the absence of conformal invariance in
such models. On the other hand, N = 2 Yang-Mills is conformally invariant in
four dimensions. Hence the twisted Yang-Mills theory is indeed invariant under
the supersymmetry transformations corresponding to the constructed Killing
spinors. The invariance of the Yang-Mills Lagrangian under these supersymmetry
transformations can be checked directly, however, without referring to conformal
supergravity. We will discuss this in Sect. 4.

3.2. Additional Supersymmetries and Complex Structures

Let us go further. It is clear that in the case of a general metric there are no Killing
spinors distinct from (42). We may ask what are the conditions for the metric that
ensure the existence of other supersymmetry transformations satisfying (41)?
Formula (40) shows that it requires the existence of real covariantly constant
tensors of the form H*#. (Then we can take

&b =yH, (43)

where y is a real constant Grassmann parameter.)
In vector indices, a tensor H,; becomes a self-dual tensor H,, of rank two,

H, =em™ ef, Hy. (44)

Since H,, is covariantly constant, the tensor L," = g**H,, 1s covariantly constant
aswell, 2,L," = 0. Then it follows that the eigenvalues of L do not depend on the
point x* in space-time. Indeed, the coefficients of the characteristic polynomial
det (A1 — L) are simply functions on the manifold and since &,L,” = 0 we have
0,det(A1 — L) = 9, det(A1 — L) = 0. Hence the coefficients of the characteristic



Extended Supersymmetry in Topological Yang-Mills Theory 387

polynomial as well as the eigenvalues are constants. Since H,, is antisymmetric
and real it follows that the eigenvalues of L,” are imaginary and that non-zero
eigenvalues constitute complex conjugate pairs. (To see this, let us choose an
orthonormal basis. Then L' = —L. Let v be an eigenvector, Lv = Av. Then
v*L* =7v*. But Lisreal,so L* ='= —L. Thusv" L = —Jv*. Now

v (L) =A@t ) = (v L)v=—AvTv.

So A2 = — 4, i.e. A is imaginary. Applying complex conjugation to Lv = Av we get
Lo = 7. Therefore, / and 1 are eigenvalues of L simultaneously.) The manifold is
four-dimensional so L has four eigenvalues. Denote them by id,, —id,, ii,,
—ik,, where A, 4, are real. Let the corresponding eigenvectors be v, 7,, v,, 7,.
Then in the real basis Rev,, Imv,, Rev,, Imv, the operator L will have the form

0 4, 0 0
-2, 0 0 0

=10 0 o Ay “3)
0 0 —4, 0

and the self-duality condition implies that A, = 1,. (Assuming that our four-
manifold is not locally a metric product, we could obtain the same result in a
different way, without using the self-duality of H,,. To do this, note that the
distribution corresponding to any eigenvalue is integrable: if

L v"=lv", L) wht=iw",
then
L [v,w)* = L, (v®0,w" — wtd,v")

=L, (0 D,w" —weP,v")

= 02D, (L, wH) — wtD,(L,"v*)

= X(W()gg w — WQ@e Uv) = )-[Ua w]v’ (46)
since Z,L," =0 and A = const as proved above. This means that the two-
dimensional real distribution corresponding to eigenvalues il;, —ii, is inte-
grable. If 1, + 1, we get two orthogonal integrable distributions. They define on

the manifold the structure of a local metric product, which contradicts the
assumption. So again 1; = 4,.) Since 4, = const the operator

1= T L’ 47
is covariantly constant and satisfies the identity
I*=—1. (48)

Hence any Killing spinor defines uniquely a covariantly constant complex
structure. The expression (45) implies that the metric is Hermitian with respect to
it. Thus, the existence of a Killing spinor is equivalent to the existence of a Kdhler
structure on M. Multiplying the Killing spinor by a non-zero real number, we
obtain the same Kéhler structure. However, we can from the very beginning fix the
norm of H,; in such a way that the resulting 4, equals +1. Let us make the
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convention that we consider only such normed H,,. We have proved the following
proposition:

Proposition. Additional Killing spinors are (up to a sign) in 1-1 correspondence with
Kdhler structures on M.

The existence of a covariantly constant complex structure on the manifold
reduces its holonomy group. In dimension four there are, in essence, two
possibilities: the holonomy group reduces to U(2) or to SU(2). In the first case,
there is only one covariantly constant complex structure (and the manifold is
called Kihler), while in the second case there are three covariantly constant
complex structures (and the manifold is called hyperKéahler). We have come to the
following corollary:

Corollary. A Kdhler manifold admits one additional Killing spinor and a
hyperKéhler manifold admits a triplet of additional Killing spinors.

Remark. We could have tried to look for a Killing spinor of the opposite chirality
(i.e. &;; before twisting). Then we would have had to worry about the gravitino
field w4 or, after twisting, ;. Its transformation law is

5‘///1&13 = guédﬂ'

Demanding that dy ,, = 0, we find that the existence of such a Killing spinor
leads to the existence of a covariantly constant object £,; on the manifold. In world
indices, this becomes a vector £,. A covariantly constant vector reduces the
holonomy group to SO (3). Indeed, since &, is covariantly constant, 9,¢, = 0, it
will be preserved by the operators of parallel transports, which therefore act
nontrivially only in the hyperplane orthogonal to &*. This means that the
operators of parallel transport lie in SO (3). In this case the manifold is locally a
metric product. The standard arguments showing this are as follows. Letusgotoa
coordinate system where £#(=g*'¢ ) has a form ¢! = €2 = &3 = 0, ¢4 = 1. (This
is always possible locally since the length of £ is a non-zero constant and so the
vector field ¢* has no zeroes on the manifold.) In this coordinate system, the
condition &, ¢* amounts to I,4, = 0,01 0,94, + 0,9,, — 0,94, = 0. This equation
is equivalent to (i,j =1, 2, 3):

a4gij = 8494,' = 04944 = 0;g2aa =0,
aig4j - ajg4i =0.

Then g,; = 0,/, where f = f (x1, x , x3), and one can easily check that in the
coordinate system yi=xf, p* = x* + /f the metric takes the form

Gy = <gijgyk) 0 )

const

This means that the manifold decomposes into a local metric product, as stated
above. So in this case we are back in three dimensions which was the starting point
of the whole story for topological Yang-Mills theory [1, 8] and where the Floer
groups arose [9]. However we are concerned in this paper with the irreducible case
(i.e. with the case in which the manifold is not a local metric product) and so we
will not pursue this line further.
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4. Topological Yang-Mills Theory on Kihler and HyperK:hler Manifolds

We have seen in the last section that covariantly constant tensors H,; (corre-
sponding to covariantly constant complex structures on the manifold) define
additional Killing spinors. Using our knowledge of the conformal invariance of
the N = 2 Yang-Mills theory we deduced that the topological Yang-Mills theory
possesses corresponding additional supersymmetries. Now we want to check this
directly.

The check of supersymmetry invariance of the N = 2 Yang-Mills theory on flat
space is based on the fact that the supersymmetry parameters ,;, £;; are constant,
ie. 0,&,; =0,0,¢; = 0. In curved space this holds true for covariantly constant
supersymmetry parameters, %,¢,; = 0. The only possible obstruction to the
invariance of the action might be the appearance of the Riemann tensor in
commutators of covariant derivatives. However, direct inspection shows that the
Riemann tensor does not occur in the variation of the Lagrangian (12), as in the
case of singlet supersymmetry [1]. This proves once more the following lemma.

Lemma. Let the supersymmetry parameters in the formulas (9) have the form
&,ﬂ = AH,;(x), where H,;(x) is covariantly constant and A is a constant Grassmann
parameter. Then the Lagrangian (12) of the topological Yang-Mills theory is
invariant under these transformations.

We note that the commutator of two such transformations has the same form
as in flat space.

Corollary. The topological Yang-Mills theory has one additional supersymmetry
operator on a Kdhler manifold and three additional supersymmetry operators on a
hyperKdhler manifold.

As mentioned above, the supersymmetry operator Q reduces to the wedge
differential on the modulus space of instantons. The topological Yang-Mills
theory on a Kéhler manifold has two supersymmetry operators, Q and Q'. Later,
we will write topological Yang-Mills theory in complex coordinates. It will be
convenient to replace the operators Q, Q' by ¢ = (Q — 0)/2,d=— (Q + 0)/2.
We will give explicit formulas for g, § in complex coordinates on a Kéhler
manifold. These operators are complex conjugated and Q =g + §. This is
reminiscent of the wedge differential on complex manifolds (¢ = 0 + J). Analog-
ously, on a hyperKiéhler manifold four operators d, I;d are defined, where ; are
complex structures. In topological Yang-Mills theory on a hyperK&hler manifold
precisely such a picture arises for the supersymmetry operators. Thus the modulus
space of instantons on a Kaéhler (hyperKéhler) manifold has a complex
(hypercomplex) structure. The situation for general Kdhler manifolds was studied
in [10]. It was shown there that the standard metric on the modulus space of
instantons on a Kéhler manifold is itself Kéhler. As far as we know, the situation
for a general hyperKdhler manifold has never been discussed. However it follows
from the Kéhler case that each covariantly constant complex structure on the
manifold itself induces a Kéhler structure on the modulus space. Thus in the
hyperKéhler case we conclude that there are three covariantly constant complex
structures on the modulus space of instantons on a hyperKéhler manifold. In
other words, the modulus space of instantons on a hyperKdhler manifold is itself
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hyperKéhler. It would be tempting to interpret all these facts from the point of
view of the topological Yang-Mills theory.

Remark. On Kéhler (and similarly hyperKéhler) manifolds, dotted and undotted
indices are essentially different. A Kéhler structure distinguishes one of chiralities:
we defined the Kihler structure by the tensor H,; with undotted indices.
Therefore, the self-duality and anti-self-duality equations on a Ké&hler manifold
have different geometric meanings. The action in topological Yang-Mills theory
vanishes on configurations for which F,; = 0. So our discussion concerns the
modulus spaces of instantons defined exactly by this equation.

Let us now discuss the Kéhler case in more detail. After choosing a gauge
where H,, = H,, = 0, H,, = const, the transformations of the second supersym-
metry take the form

QA =iy, QAy=—iy:,,
OM=0, QN=4iy,,,
Q=T —2F,, Qran=-T,+2F,,

! 1 !
QX12=—Z[M,N]: Qv =-=2T,, —4F,,, (49)

.Q/!//m:@mMa Q/l//u:”@zaM,
Q'Ty, = 2i913'//1i1 + iy, M], 0'T,, = "2i@2ﬁl//;§2 —i[x22, M],
, . g e i
o7, = ’9113‘//32 - lgzﬂ'//m ) [y, M].

It is useful to work in complex notation. Let z™, m = 1,2 be local complex
coordinates. It is perhaps worthwhile to explain how spinor indices are related to
world indices in the complex case. The complex structure /,” in spinor indices

becomes I(,,(,',“"i and the tensor H,/ = < (l) 0 ) defines a complex structure by the
formula !

L= HPob.

Two vector fields X; = d,; satisfy the equality 7X; = iX;;. This means that in
complex coordinates they are expressed in terms of 9/dz™ only (and not 0/0z™). In
other words, the vierbein e,**, e.* has in this case the properties

20 — 1o —
e, =0, e;!*=0.

It is convenient to introduce fields B=w + 2y,,, C=w — 2y, and use
operators ¢ = (Q — Q)/2, § = —(Q + Q')/2. Then
g4, =0, qdA™=iy",
gM =0, ¢gN=iC,
Uomn = 2Fe,s g™ =T™,
qB=—%T—F+%[M,N], qgC=0,
ql//m____@mMa C]V/m=0,
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qun = 2l@nl//m - 2lgmll/n - i[an,M],
qgT™ =0, qT = -2i9,v™ — i[C, M],
q_Am=—in’ qu=09
GM =0, gN = —iB,
= =—_T GyMrt = ) fmn
qXmn mn > 1‘1)( s (50)

GB=0, gC= —ET—F—%[M,N],

q¥m=0, qy"=9"M
Gl =0, GI™=—2iP"y™ + 2i9™y" + i[x™, M),
GgT = —2i9™y,, = i[B, M].

Here we use the following notation. The components of the Yang-Mills curvature
are given by

=[92,,.9,), F"=[2™, 2", F' = [29™,9,] + +0"F, F = (2,,, 2™].
The fields x> T, ™, T™ are antisymmetric,

Xmn = —Xnm> Tmn = _T;nm» an = _Xnm’ ™= -7

The reality conditions for the fields are

Zmz_Aﬁl’ M=—M, N='—N9 Zmn': Komii »
]_:nnz—]:hﬁ’ l/7m—__.—-l//r7n Bz—c’ TZT’ (51)
Fr'nnz_ mii > FZF’

where 4. = g, A", W = G, V"> Lina = Jum 957 X< etc., and g, is a Kdhler metric.
The operators q, q satisfy the following commutation relations:

q2=0’ q—2=0’ {qaq-} =ZTM’ (52)

where 7, is a gauge transformation with parameter M.
The Lagrangian of the theory has the form

1 1

L=tr {Fm,,F'”" —5 F2+ (2" 2, M)N + 5 FIM. N1+ i(Z,p,) 1™

s m. . n . m . oam i mn

o n __l_ __1_ 2 1 mn 1 2}
iV "IN — 5 MIB, C)— g [M,NP = 3 T, T™ + ¢ T

(The topological charge density reads

1

tr (F,,,,, F™— S F2+ ™, F"m)

in complex notation, so the kinetic term in the Lagrangian differs from the
standard one by a total derivative, as above. The kinetic term vanishes on
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configurations for which F,,, = 0, F" = 0, F = 0. These are anti-self-dual fields.
The self-duality equation is different. It has the form F™, = 0. This difference
originates in the above-mentioned fact that on a Kéhler manifold one of the
chiralities is distinguished.)

The careful reader may ask where the Kéhler condition for the metric comes
into play, or how it is seen in complex notation that the Lagrangian (53) is not
invariant under transformations (50) on the background of an arbitrary
Hermitian metric. The answer is that in the Lagrangian (53) one meets expressions
like 2,y =0,y + L,"w* — I 7»y*, and supersymmetry transformations of
the term containing I, /7y * does not cancel. The detailed analysis shows that this
is the only obstruction. So the condition ensuring the invariance of the Lagrangian

53)is
9 9" Ly = 0 (54)

(and complex conjugated). One can show that in four dimension this equation is
precisely equivalent to the Kéhler condition.

In the discussion of topological invariants we used the fact that the Lagrangian
can be written in the form (16). In the Kédhler case, this formula can be refined:

L =qqW, (55)
where

W=u@xmwuéBc+m@. (56)

Having in mind the generalization of topological invariants for the complex
case we have to show that the variation of the Lagrangian (53) under an
infinitesimal change of the Kdahler potential, g, = . + 09,5 09 = 0,,0;0K
can be represented as ¢g acting on some combination of fields. To this end we
assume that the fields 4, , 4., ¥,,» W5> M, N, Ypms Xpa» B> Cs T, » T do not vary,

while the variation of T is as follows:
0T =—2F,.0g™.

One can easily check that this variation commutes with the operators g, § (50).

Remarks. 1. The topological Yang-Mills theory on a hyperKéhler manifold has
supersymmetries Q, Q,; and the Lagrangian can be written in the form

L=00,,0°0"7Y, (57)
where
Y=%UN? (58)

The formulas (16), (17), (55)—(58) are suggested by the superspace form of the
Lagrangian for N = 2 Yang-Mills theory in the flat space. The action contains an
integration over Grassmann variables which reduces to the application of
supersymmetry transformations.

2. Let dg,, be a variation of the hyperKahler metric compatible with all three
complex structures, 0X be the corresponding variation of a field X. Fixing any
complex structure from the S?-family we return to the Kéahler case where we know
that [6, 0] =0 for Q' corresponding to this complex structure. This argument
proves that [d,Q,s] = 0 for all Q,;. Hence, similarly to the Kahler case, the
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variation of the action can be represented as 0Q,, 0% 0, acting on some field
combination.

The construction of the topological invariants in Sect.2.3 was based on the
Donaldson map (35). As we have seen above, the modulus space .# has in the
Kihler case a natural complex structure. Therefore the space of differential forms
on ./ is bigraded. In fact, in the Kéhler case the whole space of fields of the theory
is bigraded. This bigrading is given by formulas

deg' A, = deg’ 4™ = (0,0), deg'w,,=(0,1), degw,=(1,0),
deg M=(1,1), deg N=(—-1,-1),
deg xmn = (—1,0),  deg'y™ = (0, 1), (59)
deg’' B=(—1,0), deg'C=(0,—-1),
deg'T,,, = (—1,1), degT™=(1,—1), deg' T=(0,0),
deg'q = (1,0), deg'qg=(0,1),

where deg’ X is the bidegree of X. Note that the degree deg X given by formulas (4)
is simply the sum of bidegrees of X. It is easy to see that the bigrading on the space
of differential forms on ./ is inherited from the bigrading (59). In the Kéhler case
we should consider forms B, ; instead of A4; [see (27)], where

BO,O =1tr MZ,

Bio=—-2tr(My,)dz",

BO,I = 2tr(Ml//,h) dZ_m,

BZ,O = tr(vlmll/n)dzmdzns

B, | =2tr(y,w, + iMF,)dz"dz", where F,.=1[9,,%,], (60)
By, = U'(— VaW:+ % MY:,M) dzmdzn,

B, =2itr(y, Fp) dzmdzn dz*,

By, =1r <2iW1€Fmﬁ + %Mgmxrﬂ?— % 7 7%1:) dzmdzrdz¥,

B2,2 = tr<2 mnEd + FI_EIE__;-@}'I(WMXEI_)> dzmdzrdz*dz'.

Note that
deg'B, ;= Q2—p,2—q), [B,J=cm 270t
We have
GB, = 0B, ;_1, (61)
where 0 = dz""azim. [We put B, _; =0 in the right hand side of (61) when ¢ =0.]

The forms B, ; do not have good behavior with respect to d, g, since in general the
forms B, ; are not equal to B; .
Formula (34) now takes the form

dsw:jBé—r,Z-s/\w’ (62)
M
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where o is a d-closed (r, s)-form on M, dw = 0. Finally, we obtain the map
H"*(M)—> H"*(M ), (63)

generalising for the Kéhler case the Donaldson map.

In conclusion we note that in the Kéhler case invariants of the complex
structure can be constructed starting not only from observables 4 such that
QA = 0. It is sufficient to demand the invariance of A under any non-zero linear
combination of ¢ and §: if

(xq+y7)A=0, J64/6K=0,
then

6;%=5%§(9X) exp( ! S)A

1 1
—e—zj(@X) exp(—TS gtA

— 2 1@X) exp( - 2 S) g@an 4. (64

e

which vanishes after integrating by parts. Here g = detg,;, gt = 0S/0K, Kis a
Kihler potential. For @ = [ B,_, ,_; A @ we have §& = 0. So we may use such

M
observables to obtain invariants of the complex structure. This amounts, as in
Sect. 2.3, to building volume forms on .#, from @ ’s and integrating them over
M.
Similarly, to obtain invariants of hypercomplex structure in the hyperKahler
case, it is sufficient for observables to be invariant under arbitrary combination of

Qa Qaﬁ'
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