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Abstract. The local conformal field algebras with the multiplication correspond-
ing to the regularized pointwise product of fields in the operator algebras of the
quantum conformal field theory are investigated.

Introduction

The scenery of the theory of groups, their representations and homogeneous
spaces in view of the intensive interaction with mathematical physics deeply
depends on changes in it. Thus, forming the spectrum of problems of modern
quantum field theory (string field theory, conformal field theory, etc.) provoked
the elaboration of a “daughter” rapidly developping discipline including infinite
dimensional geometry, harmonic analysis on the infinite dimensional manifolds
and the theory of representations of the infinite dimensional algebras and groups.

At the same time methods of quantum field theory penetrated into abstract
mathematics (topological quantum field theory [1-4]). There exist some argu-
ments for the hypothesis that quantum conformal field theory [5-8] would be
useful in singularity theory. One should suppose that the operator formalism
of quantum field theory would play the role analogous to that of cohomology
theory in topology.

All these circumstances explain the appearance of this paper devoted to the
algebraic aspects of QCFT as the choice of the approach to this theory based on
infinite dimensional geometry [9—20]. We construct the L-algebra L(C vir), whose
elements belong to the Fock space over the universal deformation of the complex
disc, in which the model of the Verma modules over the Virasoro algebra is
realised [20]. Then we investigate the local conformal field algebras (LCFAs),
which may be characterised as algebras of geometric objects on the complex plane
valued in the L-algebra L(C vir). The multiplication in the LCFAs corresponds
to the regularized pointwise product of fields in the operator algebras of QCFT.

For pedagogical purposes we shall consider the simpler case of the si(2, C)-
invariant field theory before the conformal one throughout the text.
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1. The Model of the Verma Modules over the Virasoro Algebra

As stated in the introduction we shall consider the simpler case of the Lie algebra
sl(2, C) before the Virasoro one.

Definition 1a [20]. The model of the Verma modules over s/(2, C) is the repre-
sentation of this algebra in the direct integral

$ian

of the Verma modules [21] over si(2, C).

Definition 1b [20]. The model of the Verma modules over the Virasoro algebra
C vir is the representation of this algebra in the direct integral

75 Viedh

of the Verma modules over C vir [19, 22] with fixed central charge c.

In [20] the realisations of the models of the Verma modules over C vir and
sl(2,C) in the Fock spaces over the deformations of the complex disc were
constructed. The deformation corresponding to sl(2, C) determines the Laguerre
realisation of the Lobachevskii geometry. The model space consists of all holo-
morphic functions of two variables z and w, where z belongs to the complex

plane C and w belongs to the universal covering C* of the complex plane without
the initial point C* = C\0. The action of sI(2, C)-generators is determined by the
next formulae:

0z ow (1

2\? o? , @
L=z <5£) — 2w awoz "
Proposition 1. The highest vectors in the model of the Verma modules over sl(2, C)
defined by (1) have the form

vp = w " F(=h,2 —2h;zw), )

where F(a,b;u) is the degenerate hypergeometric function [23].

Proof. To find the highest vector v, with the highest weight & in the model means
to find the function fj(w,z) of two complex variables z and w, which obeys the
system of differential equations

0 0
(2w ) pmamo,

2\° 2 , 0
(Z (5;) —2W—a—m+w é—w—>fh(W,Z)—0

The general solution fj(w,z) of the first equation may be represented as

frw,z) = wFu(zw). 4

©)
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Substituting this expression for f, in the second equation one will obtain the
next equation for Fy,

F/(u) + (2 — 2h — u)F}(u) + hFu(u) =0, ®)
which coincides with the degenerate hypergeometric equation
y' +(b—uy —ay=0

with the parameters a and b equal to —h and 2 — 2h, respectively.

The comparison of formulae (2), (4), (5) finishes the proof.

The model of the Verma modules over the Virasoro algebra may be realised
in the Fock space over the universal deformation of the complex disc [20].
The model space consists of all holomorphic functions of variables w, ¢, ¢,
€3, ... Cn, ..., Where ¢ belongs to the complex plane C for all k and w belongs

to the universal covering ¢" of the complex plane without the initial point
C* = C\0. The action of C vir is defined by the formulae

0
L—p=Z(k+1)ck+p"¥+cp’ p<0,
k=1 k
0

0
LO:Zkaa_Ck‘—wéTv-’
k>1

Li=) a(k+2 0 _, o ~2wa—2+w2i
1= k 0Ciy1 dcy Ocy ow dcy ow’

k>1

d 0 a\%\ o (6)
= —— (4= [ 2 i
L2 ;c,c <(k+3) 8ck+2 ( 802 (601) ) 6ck
0 0 0 d\? 0
e (a— ackﬂ))‘(“a—cz‘(a—cl) )W%
0> 0 0 0 \?
2 R I
3w awoe, " 6w+o'sc(6cz (6c1) )

(‘l)n n— .
L=t Y (ad(Ly))"2Ly; n>2,

where by (ug, ... ur4) are the Laurent coefficients of the function 1/(w?(1 +uw +
2
uw* +...)).

Proposition 2. The highest vectors in the model of the Verma modules over the
Virasoro algebra defined by (6) have the form

on =wrG(c; hyeit,eat?, ... et ) (7
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where the function G(c;h;uy,up,u3, ... Uy, ...) obeys the system of differential
equations

2
Zuk<(k+2)— 2(k + 1) auk—ki)c

k=1 Ouk

9 d d \*) 9
> ((k+3) o — (e 1 (45172‘ ((3—ul> )8—uk

k>1 (8)

0 0 i 0
b (G ) )+ g~ ) ©

2
—@2—h (4—6——(i) )G-3(1-h)ig+hG
uy Ouy

6u1

) o \?
cose (- () ) e-o.

Proof. To find the highest vector v, with the highest weight h in the model space
means to find the function g (w,c1,¢2, ... Cu, -..), Which obeys the closed system
of the differential equations
(Lo — h)gncw,c1,¢2, ... Cpy ...) =0,
Lighe(w,c1,¢2, ... Cpy...) =0, k>0

©)

The general solution gy .(w,c1, ... ¢4, ...) of the first equation may be represented
as

ZheW, €1, €2y .. Cny ...) = 1 Gpe(crt, ... ot ... (10)

Mentioning that the equations of the second group in (9) are the sequences of
the first two of them and substituting the expression for g (10) in these two
equations, one will obtain the system of equations (8).

It can be shown that the function G(c;h;uy,uy, ... ug, ...) is a special function
of hypergeometric type (the degenerate hypergeometric function, corresponding
to the bibundle of the universal deformation of the complex disc over the flag
manifold of the Virasoro-Bott group [16-19] and the complex disc [24]).

2. The L-Algebra L(,iC vir)

Definition 2. Let R be an associative algebra with the unit over the field K, g —
the Lie subalgebra of Der(R). Then an associative algebra 4 with the unit over
the field K will be called an L-algebra over the pair (r, g) iff A is the right R-
module (so R-bimodule in a natural way) and the g-module so that the structure
of the g-module is compatible with the structure of the left R-module.

If R is the commutative algebra of holomorphic functions on a complex
manifold X and g is an algebra of vector fields on X then A is the L-algebra
over (R, g)iff A is the local associative algebra on X (the right R-module) with
the unit over the complex numbers and also

L&, T@] =T 9), (11)
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where ¢ € r, £ € g, T is the operator of the left multiplication in A,L €
Hom(g, End(A4)).

Let 0 be the commutative algebra of all holomorphic functions on € *, namely,
0 = {[ F(x)w*dx}. Then the models (1) and (6) are the right 0-modules in a
natural way.

Proposition 2a. The model (1) of the Verma modules over the Lie algebra si(2,C)
possesses exactly one structure of the L-algebra over (0,sl(2,C)) compatible with
the structure of the right 0-module and sl(2, C)-module in the model (1) so that

L, T(®) =T(L_19P) (12)
for all @ from the model space.

Proof. We shall present this algebra below. Its uniqueness follows from the fact
that the model as the si(2, C)-module is generated by the linear subspace 0 in it.
This statement is explicated in the following lemma.

Lemma 1. Let T be the operator of the left multiplication in an L-algebra over
(0,s1(2,C)) in the model (1), then

T(z) = Ly,

ro=w- L w

Proof. The expression for the operator T'(z) is evidently obtained from (12). Let’s
find the expression for T (w). The condition

[L-, TW)] =1
allows us to choose the following ansatz for T (w):

0 0
T(W) =A <W,Z, —a;) - —a—z-

To find the form of the operator A <w,z, 5%) one should use the next property

of T (w),
Twew) = we(w),

and obtain that 4 (w,z, i) =w.

ow
Corollary.
o\" 9
N w1 w1l 2 — w1 L
T(w)—w(l w 62) w' — hw e
hh=1) 4o (0 hh=1)(th=2) 503\

Theorem 1a. The correspondence

a k
Zkwh (?3?) th (14)
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introduces the structure of the L-algebra over (0,sl(2,C)) in the model. We shall
denote the obtained L-algebra as L(sl(2,C)). The statement above means that the
L-algebra L(sl(2,C)) as an associative algebra is isomorphic to the algebra of all
differential operators of the variable w.

Proof. To prove the theorem we should check the following relations:

[Lo, T(W)] = — T (w) (15a)
and
(L1, T(w)] = (T(w))*. (15b)
Namely,
[0 d 0
(Lo, TOW] = |2 5 —w gt w = a_z_]
LAY o2 , 0 0
(L T = |2 (a—z) N 5]

a\* 0 5 o\2 )
B (E) g tw = (W— 5;) =(T(w))’>. QED.
Let’s now consider the Virasoro case.

Proposition 2b. The model (6) of the Verma modules over the algebra C vir pos-
sesses exactly one structure of the L-algebra over (0, C Virgg) (C Vireg := span(Lp,
p=—1,0,1,2,3,4,...)) compatible with the structure of the right 0-module and
C vireg-module in the model (6), so that

L,T(®)=T(L,®), P=-1-2,-3,.. (16)
for all @ from the model space.

Proof. We shall present this algebra below. Its uniqueness follows from the next
lemma.

Lemma 2. Let T be the operator of the left multiplication in an L-algebra over
(0, C virgeg) in the model (6) then

T(cp) =L_p, (17a)
T(w)c; =ciw—1, (17b)
T(w)c; = cow +wL. (17¢c)

Proof. The expression for the operator T(c,) is evidently obtained from (16).
The proof of the identity (17b) is analogous to one from Lemma 1. Let’s prove
[Lo, T(w)] = — T'(w) that T (w)c, may be represented as

N
T(w)c, = Z wk‘le(cl, ey eat)
k=0

where deg(Ry) = k if deg(cx) = k. Using the property [Li, T(w)] = (T (w))? and
(17b) one should obtain that N < 2. The equality (17c) follows from this fact
and the identities [L;, T(w)] = — (T (w))? and [L{, T(w)] = (T (w)).
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Lemma 3. Let T be the operator of the left multiplication in the L-algebra
(0, C vitreg) in the model (6). Then

T = 3 (1w Pk( 0.7 ) (18)

A s A
k=0 501 @Ck

where t(w) = Y. w*P(cy, ... ck) is the covariantly constant section of ROpx
(0A/ M) with respect to Gauss-Manin connection, where p : A — M is the projec-
tion of the universal deformation of the complex disc on the flag manifold of the
Virasoro-Bott group [20].

Proof. 1t follows from the property [Lo, T (w)] = — T (w) that the operator T (w)
may be represented as

o 0 0
T(w) = Z w! ka(Cl,...Cn,... a, E,...),

k=—N
where deg(Qx) = — k. Using the identities [Ly, T (w)] = (=T (w))!~* one should
obtain that T'(w) doesn’t depend on the variables cy, ... ¢y, ... . Hence
- ] 0
— 1—k o o
T(w) = Zw Qk(@cl’ 6ck>'

k=0

Let’s rewrite the identities [Ly, T(w)] = (=T (w))'**, transiting to the conjugate
variables for i, ... s, ... . Then they should have the form Lit(w) = (t(w))!*%,
where L acts in ROp«(0A/M) [9-13,20]. So t(w) is the covariant transport of
the function w™! € O(p~!(0)) with respect to Gauss-Manin connection.

Remark.
Py=0,
Pi(u1) = uy,
Py(uy,up) = uy —ui, (19a)
P(u1, u, u3) = u3 — 3uguy + 2u3

2 4 2
Py(ur,up, u3, ug) = ug — 4uguz + 10ujuy — Suj — 2u;3,

P = 2+K)" <2<1 — Rt P+ 3 (k+ 2ty — 2uyuy)

k
d
X ——Pc— Y PP;). (19b)
auk i,j>1
i+j=k+1

Question. What is the combinatorial meaning of the polynomials P, ?
Corollary.
by ap (2 2\
TW) =wh1+> w* Pl —,...2— ) .
=1 501 8ck

Corollary. The structure of the associative algebra, determined by the structure of
the L-algebra (0, C virreg) in the model (6), doesn’t depend on the central charge c.



576 D. Juriev

Lemma 4. Let T be the operator of the left multiplication in the L-algebra over
(0, C virreg) in the model (6), then

[T (cp), T(cg)l = (@ —P)T (cp+q) » (20a)

[T(cp)s T(@w)] = T((—w)' ¢’ (w)). (20b)

Proof. The identity (20a) is the trivial sequence of (17a). The identity (20b)
follows from (17b), (17¢c) and the associativity of the L-algebra over (0, C virreg)

in the model (6) when p = 1,2. One should obtain the property (20b) from this
fact and (20a).

Theorem 1b. The isomorphism between the associative algebra U(L,) < 0, where
Ly = span(L_p, p > 0) and the model (6) (both objects are considered as the vector
spaces ), defined as

U(Ly) <03 Ly, ...Lw" > T(cy)... T(cr,)w"

introduces the structure of the L-algebra over (0,C Viteg) in the model (6). The
obtained L-algebra will be denoted as L(C vir).

Proof. One needs to verify that

[t(cz),Z(—l)"w‘—" Az a%)}

k=0

~1
(N ek (O O
_<k§( Lkw P"(acl""ack)) .

This equality follows from the definition of the function t(w) = Y w!*
X Py(cy, ... cx) as the covariant transport of the function w=! € O(p~'(0)) with
respect to Gauss-Manin connection, which is C vir-invariant.

3. Local Conformal Field Algebras (LCFAs)

Definition 3. The L-algebra B over (R,g) will be called the L°-algebra over
(R, g) iff g=Der(B). The L’-algebra over (0, C vir) will be called the algebra of
geometric objects on C*.

Definition 4. Let 4 be the L-algebra over (R, g), then the left R-module V' will
be called the left module over the L-algebra 4, iff V is the left module over the
associative algebra 4 and the g-module so that these structures are compatible
(V is the alggyq(4)(U(g) T (4))-module).

Definition 5. Let A be the L-algebra over (R, g) and B the L°-algebra over (R, g).
Then the L-algebra C over (R,g) will be called the local field algebra with the
algebra of primary fields B and the structural algebra A iff

1. C is the left A-module

2. C is the L-algebra over (B, g).

If R=0 g =sl2,C), 4 = L(sl(2,C)) then C will be called the local
sl(2, C)-invariant field algebra or local projective field algebra (LPFA). If R = 0,
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g = C Virgg, A = L(C vir) then C will be called the local conformally invariant
field algebra or local conformal field algebra (LCFA). The multiplication in
the LPFAs and LCFAs may be considered as the pointwise regularisation of
the operator product in operator algebras of quantum sl/(2, C)-invariant and
conformally invariant field theories.

Let’s consider an arbitrary L°-algebra B over (0,sl(2, C)). The generators of
the Lie algebra sI(2,C) in B will be denoted as [;, j = — 1,0, 1. The operator of
the left multiplication in B will be denoted as 7. Let’s consider the left module

L(sl(2,C); B) = L(sl(2,C)) ® B

this module should be identified with the space of all B-valued holomorphic func-
tions of one complex variable z. Let’s define the sl(2, C)-action in L(sl(2,C); B)
by the formulae

L_1=Z,
Ly = —a—*l-l (21)
O_ZaZ 0>
2\’ 2
L1_2<5_Z) +2loa—z+ll.

Lemma 5. L(sl(2,C); B) is the left module over the L-algebra L(sl(2, C)).
Proof. One needs to verify

[Lo, T®)] =—T(),

[Li, T®] = (T@)*.
Namely,

Lo, 7O = |2 5~ +lot0) — 5

-2 [lo,r(t)]] -2 _=-10.

| 0z 0z
r 2
0= [+ (%) +20 g + b0 - 2]
0 0 2 0 2
=720+ (57) = (w0 - )
= (1),

Proposition 3a. The left module L(sl(2,C);B) over the L-algebra L(sl(2,C)) pos-
sesses exactly one structure of the LPFA with the algebra of primary fields B.

Proof. We shall present this algebra below. Its uniqueness follows from the next
lemma.
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Lemma 6. Let T be the operator of the left multiplication in a LPFA, realised in
L(sl(2,C); B), then

3\’ 2y’
N N ¢
T() = Q) = 11O 52 + 71O ~ S + 1, )~ +.. (@)
for all ¢ from B.

Proof. The statement of the lemma follows from the next equality,
T()z=zE+14(0). (23)
The equality (23) should be proved in the following manner:

T)z=TEL1=L,T1-[L_, T

28 = T4V =2 = 14(9)..

Theorem 2a. The correspondence

k d ‘
- (6_w) ¢ (23)

between the elements of L(sl(2, C); B) and the B-valued differential operators of the
variable w introduces the structure of the LPFA in L(sl(2,C); B).

Proof. To prove the theorem we should check the following relations:

[Lo, T(O)] = T (lo($)) (24a)

and

Ly, T()] = T(L(&); (24b)
that is the easy exercise analogous to the one in Theorem 1a.

Proposition 4a. The LPFAs with the algebra of primary fields B are the subfactors
of L(sl(2,C); B).

The statement of the proposition is the sequence of the definition of
L(sl(2,C); B).

Let’s now consider the Virasoro case.

Let B be an arbitrary L°-algebra over (0, C vireg). The Virasoro generators
in B will be denoted as I;, j = -+ —2,—1,0,1,2, .... The operator of the left
multiplication in B will be denoted as 7. Let’s consider the left module

L(C vir; B) = L(C vir) ® B
over the associative algebra L(C vir). As the linear space this module should be

identified with the space of all B-valued holomorphic functions of the infinite
set of the complex variables cy,c,c¢3, ... Ci, .... Let’s define the C vir-action in
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L(C vir; B) by the formulae

a
L, Z(k+1)ck+pa +¢p  p>0,

k>1
chk—+10,
k>1
Ly=) al(k+2 -2 Gl oL 4
1_k>1 k ac,{Jrl dcy dck 0%¢, 0
0 d o\ (25)
Lz—ch<(k+3) o~ (4072_ (5—) )

k>1

bk(ail '60‘Z+2)) (502 <ac1>)

+3lla—cl+lz+0.56 (5_62~E) )

_ ="
" m—2)!

Lemma 7. L(C vir; B) is the left module over the L-algebra L(C vir).

(ad(L))"2L,, n>2.

Proof. One needs to verify
(Lo, TW)] =—T(w),
[Li, Tw)] = (Tw))?,
[Lo, TW)] = —(T(W)*;

that is the easy exercise analogous to the one in Lemma 5.
Let now B be the algebra of geometric objects and [;, j =---—2,—1,0,1,2, ...
are the Virasoro generators in it.

Definition 6. The algebra of geometric objects B will be called admissible if
Vo € L(Cvir;B) : (Vk > 0)L_yv=L_xT(w)v=0) = (v=0).

Proposition 3b. The left module L(C vir; B) over the L-algebra L(C vir) possesses
exactly one structure of the LCFA with the algebra of primary fields B if B is the
admissible algebra of geometric objects.

Proof. We shall present this algebra below. Its uniqueness follows from the next
lemma.

Lemma 8. Let T be the operator of the left multiplication in a LCFA, realised in
L(C vir; B) then

T()er = c1é —1-1(8), (26a)
T(§)er = 28 — 12(8). (26b)

Proof. The equality (26a) should be proved in a similar way as Eq. (23) from
Lemma 6. To prove Eq. (26b) one should mention that

L_w(T()ez — 28 +12(8) =0



580 D. Juriev

for all k > 0 and ¢ from B. Let’s denote

v="T( ez — 28 +12(8),

then T (w)v = T (z(w)&)ca — cat(w)é + [_2(t(w)&). Because the algebra B is admis-
sible the element v is equal to 0.

Theorem 2b. The isomorphism between the associative algebra U(L.) < B, where
L, = span(L_p,p > 0) and the module L(C vir; B) (both objects are considered as
vector spaces), defined as

U(Ly) < B 3 Loy ... Logé — Tek,) ... Tlei,)E; @7)

introduce the structure of the LCFA with the algebra of primary fields B in the
module L(C vir; B) if B is the admissible algebra of geometric objects.

Proof. Let’s introduce the structure of C vir-module in U(L,) < B by the identi-
fication

U(L4) < B = (U(C vir) x B)/U (span(Lg, k > 0)).
It should be verified that under the isomorphism (27) this action correspond to
the action (25) that can be derived from Theorem 1b.

Proposition 4b. The LCFAs with the algebra of primary fields B, which is the
admissible algebra of geometric objects, are the factors of L(C vir; B).

The statement of the proposition is the sequence of the definition of L(C vir; B).
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