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Abstract. We give a new proof for the existence of a non-Gaussian hierarchical
renormalization group fixed point, using what could be called a beta-function for
this problem. We also discuss the asymptotic behavior of this fixed point, and the
connection between the hierarchical models of Dyson and Gallavotti.

1. Introduction and Main Results

We consider the fixed point problem for the nonlinear operator .47, defined by the
equation

W)= ﬁ _Too dse_#szf(s+ﬂt)l", teC, (.1)

with f=N"5/% and N=2. Our first result is the following.

Theorem 1.1. There is a function fig which can be written as a convergent product

© t2
Jr(®)=fr(0) kﬂl (1 + r_>’ teC, (1.2)
= k
with fir(0), ¥, 75, ... real and positive, and which satisfies & (fr) = fir. Furthermore,
along the real axis, the limits
I, =limt™ % Infiz(t), [_=limzt % Infx(t), 1.3)
exist, and they satisfy 0<l, <2]_<o0.

Interest in this fixed point problem stems from the theory of critical phenomena
in statistical mechanics and quantum field theory. The transformation 4" is
directly related to a renormalization group (RG) transformation on a space of

* Supported in Part by the National Science Foundation under Grant No. DMS-8802590
** Supported in Part by the Swiss National Science Foundation



538 H. Koch and P. Wittwer

lattice field theories in three dimensions with a certain hierarchical symmetry;
more details, including a discussion of the role of N, are given in the remarks below.
Although these models are not very physical, they mimic extremely well what
appears to be the behavior of more realistic models, both qualitatively as well as
quantitatively. Due to their relative simplicity, hierarchical models have a long
history in the testing of RG ideas [1-7]; for a more extensive list of references, see
[6].

The fact that 4" has a non-Gaussian fixed point has been proved before in [6],
using computer-assisted analysis.! The proof which we present here follows a
different route, close to the traditional beta-function approach in quantum field
theory. It still involves a fair number of numerical estimates, but they can be
checked without the help of a computer. Our analysis uses three new and
interesting facts about the transformation 4"

1. Under the iteration of .4, the zeros of a polynomial approach the imaginary
axis.
2. The derivative of 4" is symmetric with respect to some inner product (given
below).
3. There is a connection between .4~ and Dyson’s RG transformation.
In [7] it was shown! that the spectrum of the derivative of 4" at the fixed point fiz
lies in the open unit disk, except for a simple eigenvalue 6 > 1 (which is related to
the critical index for the free energy) and the trivial eigenvalue N. With the methods
used here, it is easy to prove the following additional property. For 0<b<1,
denote by ., the Hilbert space (of entire analytic functions) obtained by
completing the vector space of polynomials with respect to the norm associated
with the inner product

2b 2b

2 e | ase T g, (19
- T —o© —

Theorem 1.2. The derivative DA (fig) of A at the fixed point f is a positive trace-
class operator on #,. Its trace is equal to 2||| flll, where

flil=

h g>(b) =

1 © _l_itz
[ dte TS .5)
/(1B ‘I°°
The transformation .#° considered here differs from (the N =2 analogue of)
Gallavotti’s RG transformation 7 [5] in that we use a scaling factor =N ~>/°
instead of =N "%, For general N, the transformation J is defined by the
equation

(TE)O=Y/n | dse>gls+ot)f’, teR, (1.6)

where v=1/(4a> — 1), but in what follows we set again N =2. In addition, both 4"
and J seem to be quite different from (a version promoted by Baker [2] of)
Dyson’s original RG transformation £ for hierarchical models [1], which is given
by

(R(h)) (t) =20 _}0 dx e ***’hat + x)h(at —x), teR, (1.7)

! For N=8; but the case N=2 could be treated similarly



Renormalization Group Transformation for Scalar Hierarchical Models 539

with A=(20%—1)v. However, all three of these transformations are related by a
“change of coordinates” in function space. To be more precise, let

gur()=)/20e™**, teR. (1.8)
Then a straightforward calculation shows the following.

Formal Identities 1.3.
(F1) MoV =T oM, where M =“multiplication by gyu;”.
(F2) JoR=F oJ, where J="convolution with gyr”.

Note that fyr=1 is a trivial fixed point for 4" (the high temperature fixed
point). The corresponding fixed points for J and # are gyy and hy(x)=9(x),
respectively. Similarly, g,y =1 is a trivial fixed point for J (the ultraviolet fixed
point), and the corresponding fixed points for £ and A" are hyy =]/ A/(2na?) and
Juv=1/gur, respectively.

It is clear that from the fixed point fiz of 4" (the infrared fixed point), described
in Theorem 1.1, we obtain a non-Gaussian fixed point g =gurfir for 7. It is less
clear, however, whether the corresponding fixed point for £ exists as a function.
But if we extend the definition of £ to measures on IR, then the following can be
proved.

Denote by Cy(R) the Banach space (with the sup-norm) of all continuous
functions on R that vanish at infinity. On the dual Cy(R), which consists of all
finite Baire measures H on IR, we define the transformation £ by the equation

(@(H))<<p)=sdH(x)de(y)e‘f"“”ch(";a : ) peCu®).  (19)

Theorem 1.4. The equation H\g * gur = g defines a positive measure Hyg in Co(R),
and this measure is a (nontrivial) fixed point of the transformation A.

We note that if the function s+ fi(is) is in L'(IR), then d Hg(x) = hg(x)dx, where
hy is the continuous function given by the equation

hm(t)=e“2% Ojo dse™2*'f (is), teR, (1.10)

and of course, hy is a non-Gaussian fixed point for #. Unfortunately, we have no
proof that fiz(i.) € L'(R), but numerical investigations indicate that this is the case.
In fact, a computation of ry, ..., 7400 (S€€ the second remark below) suggests the
following.

Conjecture. The two limits [, and I_ in (1.3) are equal.

If we assume that indeed I, =1_, then it follows [11] that | fiz(is)| is bounded by
exp(—k|s|®/*) as s— oo, for some k >0, which implies that the function hy, defined
by (1.10), is entire analytic.

Remarks.

o The normalization of the integral in (1.1) and the covariance of the Gaussian in
this integral can be changed without changing the essential features of the fixed
point equation A(f)=f. If we choose any constants K, ¢>0 and define

Koo

Ve o

()= dse‘%szf(s+ pt?, teC, (1.11)
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then there exists a scaling T of the form Tf = af(b.), such that #/ =T ! o 4 o T. The
same holds for the transformations J and .

 The transformations 4" and 7, as defined by Egs. (1.1) and (1.6), depend on
three parameters N, «, and . These parameters are related to the more commonly
used quantities d (dimension) and L (linear block size) by the equation

N=I! oa=L"4Y"22  p=] @+2/2 (1.12)

and their numerical values were obtained by choosing d =3 (the most interesting
case) and L=2!3, To explain the relations (1.12), we note first that a conjugacy
analogous to (F 1) holds in general, for any real numbers d >0 and L>1. Thus,
given e.g. the first two relations in (1.12), the third one follows if we require that the
fixed point problem for 4" be equivalent to that of . Assume now that d is a
positive integer. If L is an integer larger than one, then, as shown in [6], there exists
a block spin transformation (with hypercubic blocks of linear size L) on a space of
d-dimensional hierarchical lattice field theories, which is conjugate to , and
which has a Gaussian ultraviolet fixed point whose covariance decays like the
inverse Laplacian in d dimensions. If only N = L is an integer larger than one, but
not L, then a similar block spin transformation can be found (a product of d block
spin transformations, where the k-th factor uses string-shaped blocks of length N
that are parallel to the k-th axis of the lattice Z%, such that the blocks for the
product are hypercubes of linear size N), which is conjugate to 7. In other words,
the relations (1.12) are such that the hierarchical models with N=2,3, ... mimic a
translation invariant model with short range interactions. We note that in the
translation invariant case, the model (and hence the physics) does not depend on
the choice of L. In the hierarchical case, L is actually a model parameter; but
numerical results (for d = 3) suggest that physically relevant quantities, such as the
critical index v, depend only very weakly on L. Our main reason for choosing
L=2"'3 is the conjugacy (F 2) which allows us to construct a non-Gaussian fixed
point for Dyson’s RG transformation.

« Numerically, the zeros r, of the function z — fz(]/ —z), henceforth simply called
“zeros,” can be computed as follows. If f is given by a product of the form (1.2), then
the function f'= ¥(f), defined by (1.11), is formally given by a similar product with
zeros 7y, 7,,.... The idea is to consider ¢ in (1.11) a time parameter which can be
increased continuously from c=0, where f=constf(8.)%, to c=¢=(1—p?)/2,
where f=const.#(f). Differentiation of (1.11) with respect to c yields an evolution
equation for the function f, and it is easy to find the corresponding evolution
equation (a system of nonlinearly coupled first order differential equations) for the
zeros 7, =F#,(c). By integrating these equations, after doubling and multiplying by
B~ 2 each zero at time c=0, we obtain a RG transformation .# : r—#¢) which
maps the zeros r=(ry,r,,...) for f onto the zeros for #7(f). Since, as mentioned
earlier, the exact value of ¢ is irrelevant, we may as well choose ¢ = é(r) in such a way
that 7,(é(r)) =r,. In this case, #"(r) converges numerically to a fixed point as n— oo,
for any reasonable initial set of zeros r.

« A formal relation similar to (F 2) exists between the non-hierarchical analogues
of J and 4, that is, the RG transformation of Balaban [8], and the Wilson-
Kadanoff transformation used e.g. in [9].

o Many of the results given later in this paper are stronger than what is needed to
prove Theorem 1.1 and Theorem 1.2. For more information we refer to Sects. 2—4.
In addition, the results of Sects. 2 and 4 can easily be generalized to arbitrary
integers N =2, where N is the power of f that appears in the definition (1.1) of A"
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The remaining part of this paper is organized as follows. Section 2 contains
some general results concerning the Hilbert space {3, some Banach space %, and
the action of 4" on these spaces; and Theorem 1.2 is proved. In Sect. 3 we show
that 4" has a non-Gaussian fixed point in %, close to an explicitly given
polynomial p of degree six. Here, some bounds are used which can be translated
into trivial numerical inequalities; this is done in Sect. 5. The proof of Theorem 1.1
is completed in Sect. 4, where we discuss the zeros and the asymptotic behavior of
the fixed point fiz. At the end of Sect. 4 Theorem 1.4 is proved.

2. Basic Properties of A~

In this section, we derive some general bounds on the transformation 4", and a
formula for its “matrix elements” A{".
In addition to the Hilbert spaces #;, defined in the introduction, we will also
consider the Hilbert space #,,=L*(R,exp(—t*)dt), with the inner product
1 P ppp—
Ledyy=—F B dte”"f(t)g(2). 2.1)

Vx

If H, denotes the n'® Hermite polynomial, then the polynomials p,, defined by the
equation p,,(t)=H,,(]/§t), are an orthogonal basis for J#;, The following two
identities are well known and easy to prove:

5 2 ni=G=e/ e, 2

n=0

© bn B b2
5 p e =B )= e T

n=0 y1-b*

Here, z,s,t are arbitrary complex numbers, and 0<b< 1.

5 (s2+t2)+

26
=5 (2.3)

Lemma 2.1. Let 0<b<1.

(l) <pm pk>(b)=b_nn!ak,m for k’ n=07 1a 27 seee
(ii) If b<1 then the elements of #, can be identified with entire analytic functions.
Furthermore, for all fe #,, and teC,

b b2
1 Fﬁ'lt'Z”mRe(tZ)

4 /1__b2

Proof. If 0<b=1 then for all x,yeC we have

OIS My

2.4)

@ M o yk wolb ® yh o yk -,
) EkgoH<pn’pk>(b)=<Gx’Gy>(b)=e =3 2 Hb nlo .. (2.5)

n=0 n=0 n_' k=0
The second equality is the result of a straightforward Gaussian integration. The

identity (i) now follows by comparing coefficients. Assume now that 0<b<1.
From (i) and Eq. (2.3) we see that the function E,(t,.) is in #, for all te C:

5 . N bk+n - © bk _

IEx(t, )5 =1321;10 . ”Z= okin! PuO)Dt) P> P 1) =k;O Epk(t)pk(t)
252
=52

- _2b o Re (12
=Eb(t’t)=—bzel_b2 el e(t ).

(2.6)
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Furthermore, if f=p, for some n=0, then
k

© b _ _
CLESL Dwy= kgo X Pi(t) P Py =S () 2.7

for all teC. This identity extends to arbitrary polynomials f by linearity.
Consequently, if {f,} is a Cauchy sequence of polynomials in ), then {f,}
converges uniformly on compact subsets of C. Thus, the limit is an entire analytic
function, and (2.7) extends to any fe ;. The inequality (ii) is now obtained by
substituting the identity (2.6) into the bound

fOI=IKLESE D wl SN Sl Bt Ny O 23)

Next, we consider the derivative of 4" at points fe #, for which the norm
[lL£1ll, defined in (1.5), is finite.

Proposition 2.2. Assume that f is a function in #, with |||f]l|<oco. Then the
operator A(f), defined by the equation

e o]

AN O = | dse

A= =

TR 00, geHy, teC, (29)

is a bounded linear operator on # ), whose norm is less than or equal to ||| f1||.
Furthermore, for any g,he #, the following holds:

AU Bop= = | dee™ fORORD). 210

e
Proof. Let fyr=1. Then for all z,te C we have
3 AP O = (4G 0

1
! Ojo dse 1-7°

T Ya—P

—B1)2+)2zs—22/2

=Gy,(t)= Z ﬂ"pn(t) 2.11)

which implies that A(fy1)p,=B"p, for all n. Hence

CA(fur)Pws Pk>(p) =B"{Dw pk>(ﬂ) ={Dw Pk>(1) (212)

for all n and k. Let now f, g, h be arbitrary polynomials. Then (2.10) is obtained
from (2.12) by linear extension:

(A(f)g, h>(p) {A(fur) (f2), h>(ﬁ) {fe, h>(1) (2.13)
By using the bound (2.4), we find that
28,

l/_ I dte™ | () ——= 1/—5 Igl@ Ikl ge! "
=1 glglhle- (2.14)
This proves the assertion, since polynomials are dense in #z. [

[CA(f)g, h)(p)|
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The following corollary, together with Theorem 1.1, implies Theorem 1.2.

Corollary 2.3. Assume that f is a function in # gz with ||| f||| < co and f(t)>0 for all
teR. Then DA(f) is a positive trace-class operator on Hy, and tr(DA(f))

=2[lI71-

Proof. Note first that DA"(f)=2A(f). It is clear from Proposition 2.2 that, given
our assumptions on f, A(f) is self-adjoint and positive. The trace of A(f) can be
computed by using Eq. (2.3):

o

w(N)= 5 Ecanpondg= 5 5= T aterron

ﬂn
n! V‘
1 2
=ﬁ { dte”" fOEO=IIfll. O (2.15)
From now on we restrict our attention to a subspace of #;, which is invariant

under the action of A".

Definition 2.4. Denote by (3, the real subspace of #; consisting of all even
functions in ¥, which take real values when restricted to the real axis. To every
such function f we associate an I* sequence (fo, f}, ...) by defining

o= — F {fiP2d@> 1n=0,1,2,.... (2.16)

)/ (2n)!

Lemma 2.5. Assume that f, g are functions in # 3, and that ||| f1|| < co. Then A(f)g
lies in A5, and

(A(f)g)k= §:=0 A(M)fmgna k=0’ 1a 25 LR (2'17)

where A™ =0 if either k>m+n, or m>n+k, or n>k+m; otherwise
k,n

A(m)_ﬁk+m+n 2k 2m 2n
kon ™ k+m—n)\m+n—k)\n+k—m

éﬁkm“]/(zk)! <m+n>. 218

k! k

Proof. For k,m,n=0,1,2, ..., define
__F B
V2! |/ 2m)! /(2n)!

Then, with the exception of the last inequality in (2.18), the assertion follows from
Proposition 2.2, since

{P2ks A(sz)l’zn)(ﬂ) . (2.19)

(2Kk)!(2m)! (2n)!
(k+m—n)!(m+n—k)!(n+k—m)!

T e Do DD P 21)=

31

(2.20)
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Here, |[m—n| <k <m+ n; otherwise the integral is zero. To prove the last inequality
in (2.18), it suffices to show that A{™, if nonzero, is bounded by

X;(r,n')lsﬁk+m+n (k +i’:_ n) <m;—n> . (221)

(2m)!(2n)! k'k!
(m+n)!(m+n)! (k+m—n)!(k+n—m)!
vz ™ (m+n)+j k—|m—n|+j
=X ,Ul (m+n)—jm—n|+j  k+j
im=nl (m+n+j)(k+j)— |m—n|(m+n+j))

— (m)7]2
=LXi%] ,I_—ll (m+n+j)(k+j)—|m—n|(k+))

But

A2 =[x{]?

. (222

and each factor in the last product is clearly <1, whenever |[m—n|<k<m+n. []

Remark. Since the coefficients A{™) are symmetric under permutations of the
indices, the fixed point equation for A is formally the equation for the stationary
points of the functional,

S 3 AT .23)

on a sphere Y |fi|*=const.
k

Since it is difficult in general to find good estimates for the norm of a bounded
operator on /%, we will continue our analysis of .#~ on weighted I* spaces.

Definition 2.6. For any given ¢ > 1, denote by 2, the vector space of all functions
in A3, for which the sum

I/ 1l,= Z | file” (2.24)

is finite. Equipped with the norm | . |,, 4, is a Banach space.

Lemma 2.7. Assume that r 21 and 9=+ 2p*r 2 1.1f f is a function in B, then A(f)
is a bounded linear operator from %, to #,, and

1A= 1Sl lgllys  Vge,. (225

2 .
Proof. By using the bound (2.18) and the fact that ( kk> <4* for all k>0, we obtain

1ACNgll, = Z I(A(N)ghlr*

nk+m+n 2k m+n
5 ) (" e

kY (’”*") Brtn=H gy

IIA

!
g ?
1[\48 ‘,’,MS M8 o

m

<

, nl I8 B+2820" "= fllel,- O (2.26)
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3. Existence of a Non-Gaussian Fixed Point

In this section we prove the existence of a fixed point for the map A4": f+— A(f)f in
the space 4,, for some

i
>—1_2BZ.

We assume the validity of five estimates (N 1-5), which will be checked (i.e. broken
down into trivial numerical inequalities) in Sect. 5. Our basic strategy is the
following.

Denote by P the projection in %,, defined by the equation

£, if n=d,
(Pf),.—{o’ it n>d, (3.2)

with d=6. We seek a fixed point of 4" in a region G@® H, consisting of functions
fe %, with a relatively well specified polynomial part Pfe G, and a small higher
order part (I —P)fe H. For any given g G, we define a map T, by the equation

T(h)y=(I1—P)A(g+h), heH. (3.3)

It will be shown that this map is a contraction on H. Hence T, has a unique fixed
point h=h*(g) in H. Using this fixed point, which can be obtained by simply
iterating T,, we define a new map B,

B(g)=PA(g+h*(g)), geG. (34)

If we can prove that this map B (the beta function) has a fixed point g* € G, then the
function f*=g*+h*(g*) is a fixed point of A" in GOH:

N (f*)=(I—P)N(g*+h*(g*)+ PN (g* +h*(g*))
= Tp(h*(g%)) + B(g*) =h*(g*) +g*=/*. (-5

Remark. For a purely numerical computation of f*, the procedure outlined above
already works for d =4. Numerically, the three largest eigenvalues of DA"(f*) are
approximately 2, 1.427, and 0.859. Thus, even a projection P of rank two (which
makes B a map on R?) should do the job, if chosen appropriately. Our reason for
taking d =6 is that this choice seems to minimize the amount of work needed to
estimate both B and T,

To carry out the abovementioned steps, we decompose a function fe %, into a
polynomial part g = Pf; and a remainder h. By decomposing the same way each of
the terms in the sum A"(f)= A(g)g + 2A(g) + A(h)h, we end up with six terms, and
each of them will now be estimated separately.

Lemma 3.1. Let k=0.46. Then for any two functzons hhin (I— P)2, we have
@) (AR <o~ ** AT k]l Al k=0,1,....6.

(@ (- P)A(h)ﬁllﬁklihll Ilﬁll

Proof. Without loss of generality we may assume that 4 and / are of norm one. To
prove (i), we use that for k<6 and i>14,

—({+1)pk+(i+1) l+1 —pipgk+i l l+1 ﬂ —t k +i
¢ Vp (k ), s ) 69

(3.1)
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The last inequality in (3.6) follows since

2B 2B
A T Rl IS

By combining the bounds (2.18) and (3.6), we find that

(A0 swp o agr< s o9/ () (1)
mnz7 i214

>28. (3.7

k

<o g4 <2kk> (1:> —o~144D), (3.8)

and (i) follows. To prove (ii), we use again the bound (2.18):

I~ PGS sup Y ol

mnz27 k=17

ss w0 2 et/ () ()

k=17

sup @lo) 3, (a2 (,’C)

|/ S2 p (B/ey(1+2pe) < < (39

The last square root in (3.9) equals /429/2048, which is smaller than 0.46, as can
casily be checked by verifying, e.g. that 2048 x 0.46 x 0.46>429. [

In order to estimate mixed terms of the form A(g)h, we will need bounds on the
following sums S, ,:

Sua=Y ¢*77AM. (3.10)

k27

Lemma 3.2. Define 6,,=max{S,, ,,0" 'S, s}. If g is a function in P#,, and h a
function in (I— P)#,, then

6
@ (A = lhle™" Py AMig,l, k=0,1,...,6.

(i) |(I—P)A(@)hll, = IR, Z Om|&ml-
Proof. Clearly,
6
I(A@hy <Ihl, 3 lgul max o7"4m. (3.11)
m=0 TEnsk+m

The following bound shows that the maximum in (3.11) is taken for n=7. If
=|k—m|<n and I=max{k,m} <n, then

e~ "IAm L _ B YCn+2)2n+)(ktm—n) _28 (n+1)(2l—n—))
A g it ltm—R @t l—mik) = ¢ @t it)nti—)

_26 () Q@=n)—(n+1) _26
0 (n+1)>—j> T e

<2213 <1, (3.12)



Renormalization Group Transformation for Scalar Hierarchical Models 547

This proves (i). In order to verify (ii), we note first that since
,/(2k+2)(2n+2))/(2k+1)(2n+1)
A;:"L nt1=B A;cmr)l
’ k+n+2—m)(k+n+1—m) ’
k+n+2)(k+n+1)

<p? Am 3.13
=B (k+n+2—m)(k+n+1—m)" " (3.13)
we have
Smn+1= 2, Qk—7A§c',";);+1=A(7":L+1+Q ) Qk_7A§¢m+)1,n+1
k=7 k=7 »
T+n+2)(7T+n+1) _
<4 2 ( k=7 4m 3.14
TR Ty ey JOLAC CE
and thus

O+n)(8+n)
B+nQ2+n ™"

If m<7 <n, then by combining (3.15) with the bound

T—(n+1 — ,—2(—6) (n+1)—7 -4 k=17 -4
QT VAR L =TTV TIAR 107 T ¢ A =070S

Smns1 S A+ 1+ 0B m<6. (3.15)

™7(3.16)
we find that

< [Q_4+ %ﬁz] max{S,, 7,0" "Sp.n} - (3.17)
The assertion (ii) now follows since
I — P)A(g)h|, = IIhllggg éo Q" "Sm,nlgml» (3.18)
and since the term [.. ] in (3.17) is bounded by
[...]<<1+;ﬁ2>_4+15—356ﬁ2=24—30x2‘”3+%2”3<1, (3.19)

as can easily be verified by using the inequalities (I1) below. []

The following inequalities will be used later on, in order to estimate powers of
21/6 and o*!.

Inequalities 3.3. If o— B/(1—2pB?) is a sufficiently small positive number, then

I 0.793700<2713<0.793701,  1.259920<2'/3<1.259922,
(I2) 0.890897 <2716 <0.890900,  1.122461<2'/6 <1.122463,
(I3) 0.659331 <o~ ' <0.659339, 1.516670<p <1.516689.

Proof. One way to prove (I 1) is by comparing the third power of 635 with twice the
third power of 504, which shows immediately that

£33’ <2<(1+107%(33)°,
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and then computing 504/635 and 635/504 to seven decimals. The other bounds are
easy to verify, if one proceeds in the order they are given. For example, the upper
bound on 2'/¢ follows from (I 1) since (1.122463) > 1.259922. Note that it suffices
to verify (I 3) for ¢ = B/(1 —2p?); in this case the identity ¢ "' =2x2~1/6 216 ¢can
be used. [

We are now ready to discuss the transformation T, given by Eq. (3.3). From now
on, ¢ is assumed to be a fixed number larger than B/(1—2B3), that satisfies the
bounds (I 3). The sets G and H are given by

G={geB,:|g,—pa <9, Vn},
H={he%,:|hl,<15 Ph=0, h,20 Vn},

where p and d are the following two functions (to simplify notation, we identify a
function fe 4%, with the sequence of its coefficients f,).

p=(0.909,0.492,0.251,0.112, 0.045, 0.016,0.005, 0,0, ...),
6=(0.005, 0.010, 0.004, 0.008, 0.007, 0.005, 0.003, 0,0, ...).

(3.20)

(3.21)

Proposition 3.4. Assume that

(N1) m(Pm+5m)§0~157,

I|I
nM )

IIf

6
(N2) 1=0" Y Spubm+t3,)(p,+,)<0.064.

m,n=0

Then the map T, has a unique fixed point h*(g) in H, for every g€ G, and the map
g+ h*(g) is continuous on G.

Proof. Let g, 8,8 € G and h, h, he H, and assume that (N 1) and (N 2) hold. Then by
Lemma 3.1 and Lemma 3.2 we have the bounds

IT, (W), < (I - P)A(g)g]l,+ 211 — P)A()hll,+ | (I — P) AW,
<1425+ 1355 15> (3.22)
and
I TR — Tyh)ll,< I - P)AG + g +2h) G2,
+(I—P)AQg+ R+ R (R—h),
SK|g—8l,+2c+x) |F—hl,
SK|g—gl,+31h—hl,, (3.23)

for some constant K. Since T,(h) has no negative coefficients, it follows from (3. 22)
that T, maps H to H. Furthermore by setting § =g =g in (3.23), we see that T is a
contractlon on H. Thus, T, has a unique fixed point h*(g) in H. This fixed pomt can
be obtained by iterating T starting e.g. with h=0. By using (3.23), we find that

1R*@)—h*@)l,= lim [ T(0)—TO)l,

= 202_"K|l§—§llg=2K|I§—g‘)|9- (3.24)

This shows that the map g+ h*(g) is continuous on G. [
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Note that the assertion of Proposition 3.4 implies that the map B, given by
Eq. (3.4), is well defined on G, and continuous.

In order to simplify the necessary numerical computations, we now approxi-
mate each of the coefficients A{™, for 0 <k, m, n < 6, by the largest number Q") with
the property that 1000Q{™ is a non-negative integer, and that

(N3) A — Qi <7065, 0=k, mn=6.
Definition 3.5. If g is a vector in P%,, denote by Q(g) be the symmetric 7x 7

matrix with entries

6
Q@=L O"gm, 0=k n<6. (3.25)
0

Define vectors u, v, w in P#,~R’ by the following equations:

6 min{k +m, 6}

ukzﬁ Zo(pm+5m) Z (pn+5n)9

m= n=|k—m|

6
Uy 1_10@—7 ;OAKI% m+5m)s
we=1ho0 1447, 0ZkZ6. (3.26)

To simplify notation, if g is a vector in P4, denote by |g| the vector whose
components are |g,|. Similarly, if M is a matrix, then |M| denotes the matrix whose
entries are |M, ,|. Finally, if f and g are vectorsin P4, we shall write g < f iff g, < f;
for all k.

Proposition 3.6. Assume that (N 1-3) hold, and let y,=3x 1073, for 0<k<6. If
there is a symmetric 7 x 7 matrix M, such that

(N4) I(I—MQ2Q(p)—Dh.nl <7000, 0=k n=6,

(N5) IM|(1Q(P)p—pl+ Q(0) +u+2v+w)+y =9,

then B has a fixed point in G.

Proof. First, we note that M is nonsingular. This follows since
(I-22(p)—HM)g=¢g

whenever Mg=0, which by (N4) implies that g=0. Consequently, we may
consider the fixed point problem for the map g+ g,

g=g—M(B(g)—g), (3:27)
instead of B. Assume now that ge G. Then
g—p=(g—p)—M[PA(g+h*(g)(g+h*(g)—gl

= =M2Q(p)—1))(g—p)—ML(Q(PIp—p)+Q(g—P)(€—P)
+(PA—0Q)(g)g +2PA(R)h*(g) + PA(h*(g)h*(2)]- (3.28)

From (N 4) and (3.21), together with the fact that |g— p| <4, it follows that

6
I(I—M(2Q(P)—1))(g—p)lk§m";0 0,=y%, 0=k=6. (3.29)
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By the definition of Q, and by Lemma 3.2 and Lemma 3.1, we also have
I(PA—-Q)(g)gl=u, [PA(@h*(g)l=v, [PA(R*(gDh*(g)l=w.  (3.30)

This shows that |g—p| is bounded by the left-hand side of (N 5) which, by
assumption, is bounded by d. Thus, g€ G. The assertion now follows by Brower’s
fixed point theorem. []

As shown earlier in (3.5), the conclusions of the last two propositions imply the
following theorem. The proof of this theorem is completed in Sect. 5, by verifying
that the numerical bounds (N 1-5) are satisfied.

Theorem 3.7. A" has a fixed point in GO H.

4. Proof of Theorems 1.1 and 1.4

In this section we show that any nonzero fixed point f* of ./, that lies in %, for
some ¢ > B/(1—2p?), and is different from f,;; =1, has the properties descrlbed in
Theorem 1.1 and Theorem 1.4. An example of such a fixed point (and probably the
only example) is described in Sect. 3. We note that the Gaussian fixed point fyy lies
in 4, if and only if ¢ < /(1 —28).

Lemma 4.1. Assume that f*e %, for some ¢>p/(1—2p>), and that f* is a fixed
point for A". Then there are constants K, such that

If*@)|S K™, VieC. 4.1)

Proof. We may assume that f*=%0. Let r=p/(1—28%), and define ¢:R, >R,
u{o0} by the equation ¢(s)=| f*||, Then, as a consequence of Lemma 2.7, we
have

Hs) S PP < ... S P2BP)s)” (4.2)
for all n. This shows that in fact f*e %, for all ¢>r. Let I= [1,21?], and define

c=maxx ¥?In¢(x). 4.3)

xel

For any s =1, there exists n>0 and x € I, such that s=(2?)~"x. Since 2% =2"2/3,
we have thus

B(9) S G0 = (x) < e (44)

Let now t be any complex number of modulus at least (r + 1)>/4, and define g = [t|*/°.
From the bound (4.4) and Lemma 2.1 it follows that

(B/o)*"

”f*“(ﬁ/o) Z (2n)! K p2n>(ﬂ/g)|
I L S )

SIfrEse e,
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and thus, using again Lemma 2.1,
1

/1—(B/e)

As mentioned in the introduction, 4" has the following property:

b
If* @) S e 1" <operamies o (4.6)

Lemma 4.2. If g is a polynomial whose zeros lie in a strip |Re(2)| < a, then A'(g) is a
polynomial whose zeros lie in the strip |Re(z)| £ Ba.

Proof. Let d be the degree of g. We use the following formula for A47(g):
(N (@)(B~ )=t P2 =lim g,, 4.7)

n— oo

where

_(14:1=F )( VB ) 2
g,,_<1+z 21/5 D)l1-i 21/’; D) g%, 4.8)

and where D denotes differentiation. Equation (4.7) can be regarded as an identity
in the vector space ¥~ of polynomials of degree <2d, equipped with some norm,
where D acts as a bounded linear operator. Since convergence in ¥~ implies
uniform convergence on compact subsets of C, the assertion will follow if we show
that all zeros of g, g5, ... lie in the strip |[Re(z)| < a. But this is a consequence of the
following theorem by Takagi [10]: If p is a polynomial of degree n, Z the set of its
zeros, and s a complex number, then the zeros of the polynomial ¢ — p(t) — sp'(¢) lie
in the convex hull of the set ZUu(Z+ns). O

That this property of 4" yields some information about the fixed points of A" is
evident from the following fact.

Lemma 4.3. Assume that f* e #, is a fixed point of A", and that ||| f *||| < co. Then
there exists a polynomial g such that A (g)—f* in #3, as n—co.

Proof. We may assume that f* =0, which actually implies that f*(t)>0 for all
teR. Let N be the map on 3, defined by N(f)=A"(f*+f)—f*. This map is
clearly C?, and by assumption N(0)=0. By Corollary 2.3 the derivative DN,
=2A(f*) of N at zero is positive and compact. Denote by #* and # the spectral
subspaces for DN, associated with the spectrum lying in [0,1) and [1, c0),
respectively. By the stable manifold theorem [12], N has a local stable manifold
#3530, which is the graph of a C* map ¢: Un#*—#"* where U is some open
neighborhood of zero in .

W can also be characterized as the inverse image of zero of the map v : U —» #*,
defined by p(f)=¢(f*)—f*, where f* and f* are the components of f in #° and
A", respectively. This map v is clearly C!, and the rank of Dy, is equal to
n=dim #*, i.e. if we choose a basis (linear coordinates) in #* and denote by y,(f)
the k™ coordinate of y(f), then the gradients h, =V, (0), 1 <k <n, are linearly
independent. Thus, for hy=f*, the map

Fho ..... h":(lla -.-,/1:.)""1/]<h0+k;1 }‘khk_f*> (49)

is a C! difffomorphism from some open neighborhood V>0 in R” to some open
neighborhood of zero in #*. By the implicit function theorem, the equation
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F,o . .(A)=0hasasolution Ae V forany (g, ...,g,) in @ 3, sufficiently close to
k=0

(ho, ..., hy). But since polynomials are dense in J#;,, this implies that y(g—f*)=0
for some polynomial g. Since g— f* € #°°, we have N*(g— f*)—0as n— o0, and the
assertion follows. [J

Corollary 4.4. Assume that f*e #{, is a fixed point of A", and that ||| f*||| < co.
Then all zeros of f* lie on the imaginary axis.

Proof. By Lemma 4.3 there is a sequence of polynomials g, A(g), A *(g),...
converging to f*, and by Lemma 4.2 the zeros of 4#™(g) lie in the strip |[Re(z)| < f"a
for some a < co. Thus, since convergence in #{3, implies uniform convergence on
compact subsets of €, f* cannot have any zeros off the imaginary axis (using e.g.
the standard formula for the number of zeros inside a circle). []

Proof of Theorem 1.1. We take fi to be the fixed point of 4" described in Sect. 3, or
any other non-constant fixed point f* that lies in one of the spaces %, with
0> B/(1—2p3). Then, by Lemma 4.1, the logarithm of f*(t)is bounded from above
by a constant times |t|%/°, i.e. the limit [ in (1.3) is finite. For the same reason, the
norm ||| f*||| is finite, which, by Corollary 4.4, implies that all zeros of f* lie on the
imaginary axis. Thus, z— f *(‘ﬁ) is an entire function of order <£3/5<1, whose
zeros are all real and negative. It now follows from Hadamard’s factorization
theorem that f* is given by a canonical product (1.2). This implies in particular
that f* is convex, and thus

© __l_sz
f*(ﬂ“t>=ﬁ_fwdse e %[f*(t+s)2+f*(t—s)2]

L § dse T o= o, (4.10)

T /A=pIn -

for all teIR. The inequality (4.10) shows that the sequence
n (BT Inf*(B7")

is non-decreasing, and hence convergent, for any given teR. In particular, if
f(t)>1 (such a t exists since f* is not constant), then the limit is positive, proving
that [, >0. The inequality (4.10) also shows that the function ¢t~ %5 In f*(t)
varies by no more than a factor of two on any interval [¢, 7 't]. Hence [_ =1, /2.
This completes the proof of Theorem 1.1. []

Proof of Theorem 1.4. Let fi be the fixed point of A" described in Theorem 1.1, or
any other fixed point with the properties: fiz is entire analytic, and real-valued
when restricted to the real axis, and t — fig(t) exp(—&t|?) is a bounded function on
C, for every £>0. Given any positive integer k, let d=2*"1. By using that
fir="*"fr), we obtain a representation for fiz of the form

fur=exo( ~2- ) 00 @)

\

with

d © d
flt)=[dus)e™ ,-Ql Jir(s)* = J dx e [ dpuy(8)0(x — Li(s)) },EI1 Jwls))? s
4.12)
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where i, is some Gaussian measure on R¢, and where L, is some real-valued linear
functional on R?. This shows that fi is the limit (uniformly on compact subsets of
C) of functions f, with the property that s — (D?"f,) (is) is the Fourier transform of a
positive finite measure on IR, for all n=0. Thus, by Bochner’s theorem [13], the
function s+ fir(is) is the Fourier transform of a positive measure whose moments
are all finite (by “measure” we always mean Baire measure). In particular, fiz(i.)
may be represented as follows:

fr(is)=[dHg(x)e *’e***  seR, (4.13)

for some positive measure Hy on R. Since the n'® moment of Hyg(gyy.) is equal to

1/50:(2/1)‘" times the n'™ derivative of fj; at zero, the identity (4.13) can be extended
(using the dominated convergence theorem) to arbitrary s € € by means of a power
series in s. Furthermore, by replacing the second exponential in (4.13) by the power
series for exp(Ax?), we see (using the monotone convergence theorem) that Hyg is a
finite measure. This shows that Hyg * gyy is equal to g = gyr fir, and that Eq. (1.9)
defines a finite positive measure #Z(Hy) on R.

In order to prove that Z(HyR)=Hy, we need a more precise version of the
relation (F 2) between the transformations  and %. By using the identity

2vs? + A(s + ot — x)* + A(s + at — y)?

A +y)? A 2
=§(x—y)2+/1(t—— %) +4a2v[s+4a2v(2at—x—y)] ,

together with Fubini’s theorem, we find that for any finite measure H,

(T (H * gyy)) (t) =202 I/ % ojo dse™ 2" [dH(x)e ™ *s** =%’ [ dH(y)e ™ Hs+a 7

X+)\2 o

A2 —afe— R ,
=20(2'/§ijdH(x)§dH(y)e 2 y)e #( 2 f ds e~ 4avls+..]

— o0

A 2
=({dH(x)[dH()e 2" gHT<t‘ sz;y>

=(Z%H)*gup) (), teR. (4.14)

Thus, since g is a fixed point of 7, it follows that Z(H) * gur is equal to

Hp * gur=2gmr -

Let now H be any positive measure satisfying H * gyr=g. Then by analytic
continuation we obtain the analogue of the identity (4.13), where H is replaced by
H. Consequently, the Fourier transform of H(gyy.) agrees with that of Hz(gur.)-
This implies that H(ggr.)=Hg(gyr-), and therefore H=Hg. [

5. Numerical Estimates

In this section we prove the numerical bounds (N 1-5) used in Sect. 3. To check this
proof, the only skill needed is the ability to correctly add and multiply simple
floating point numbers; and no particular computing tool is required. We choose
to use a computer (instructed not to round) for most of the calculations; but by
sacrificing two or three weekends, we could have done the same with just pencil
and paper.
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The symmetric matrix M which will be used to verify (N4) and (N 5) is the
following:

[1.053 0.594 —0.768 —0994 —0.688 —0354 —0.147 |
—1.967 2.086 2.652 1.837 0.946 0.393
—0.399 0.166 0.079 0.040 0.017

M= - : . —2370 —1201 —0.649 —0271
—2329 —0.824 —0.366

—1.651 —0.350

. —1.258 |

The table below gives the components of g=p+ d, where p and ¢ are the vectors
(polynomials) defined earlier in (3.21), and bounds on powers of ¢. These quantities
will be used frequently later on.

7

Table 1. The vectors p,é,g, and bounds on g7 7, ...,07

Po=0909, 5,=0005, g,=0914, o'<1517, o '<0.660
p1=0492, §,=0010, g,=0502, ¢*<2301, o 2<0435
p,=0251, 6,=0004, g,=0255, @°<3489, o ®<0.287
p;=0112, 6,=0008, g,=0120, <5292, o *<0.189
pa=0045, ©6,=0007, g,=0052, @5<8026, o 5<0125
ps=0016, 6;=0005, g5=0021, 5<1218, o ®<0.083
Ps=0005, 8,=0003, g,=0008, ’<1847, o 7<0055

The above bounds of the form g* < r, were obtained iteratively by setting r, =r; _ 7,
rounded up to 5 digits after the decimal point, where i is the integer part of k/2. The
iteration was started with the upper bounds r . , in the inequalities (I 3) of Sect. 3,
and with ry=1. At the end, the numbers r, were rounded up to the number of
decimals shown in Table 1.

5.1. Proof of (N 1). Most of the work in proving that 6 <0.157 and 7 <0.064 goes
into estimating 62 of the coefficients 4{"). The following bounds will turn out to be
sufficient:

Table 2. Bounds on A{™, for 0Sm<6 and m<k<7<n=13

AP, =27 1/6 %g—g% x Wl/oio <0.9x 0.3 x 0.002 <0.001
AW, =216 %’% x 1%2 <0.891x0.245x0.0135  <0.003
AP, = % X % <04 x0.01 <0.004
ARy =2713 %g—: x % <0.8x0.25x 0.0 | <0.002

1000 2002

—x <0. . . <0.01
4096>< 1600 <0.90 x 0.245 x 0.045 <0.010

AP =20
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Table 2 (continued)

@ 1000
7= 1004

Ay=2"x o
AR, =27 x

APy=27105x

@ _ 3000

77 16384

AP, =27 116 x

¢ = 1000
’ 2048

ADy =271

3300 /910
A(3) 2 1/3
6.7 * 8192 100
B, =216 300 /546
: 2048 100
= _ 10000 |/4641
AQy=—— x L
16384 ~ 10000
A —p-viey 10 V5
: 2048~ 10
@ _ 4550 )3
787 16384 10
A, =2~ 2100 @
: 8192~ 100
A(73)10=2‘”6x10000 4845
: 32768~ 10000
100 1/429
AD = ¥ 7
“77 256 100
A =215 3000 ]/1430
8192 1000
2100 /2145
A®. =213
5.1 2096 100
A, =216 500 /143
: 1024 * 100
@, _ 30000 /4862
A5.9_
32768 10000
A9, -6 770 x;/?s

546
1000
1000 }/455
4096 ™ 1000
910 /6
8192 10
700 /10
2048~ 100
/85
* 1000
1000 /6006
4096 " 1000
V15015
1000

1 V
000 « 2002
1000

4096

2048 10

<0.98 x 0.0234 <0.023
=0.80x0.25 x 0.022 <0.005
<0.80x0.112 x 0.245 <0.022
<0.891 x0.35 x 0.032 <0.010
<0.2x0.01 <0.002
<0.891x0.2442 x0.078  <0.017
=0.489 x 0.1226 <0.060
<0.80 x 0.245 x 0.045 <0.009
<0.794 x 0.403 x 0.302 <0.097
<0.891 x0.147 x 0.234 <0.031
<0.7x0.007 <0.005
<0.891 x0.445 x 0.224 <0.089
<0278 x0.174 <0.049
<0.80x 0.257 x 0.072 <0.015
=0.9 x0.31 x 0.007 . £0.002
<0.3907 x 0.2072 <0.081
<0.7938 x 0.3663 x 0.03782 <0.011
<0.794 x 0.513 x 0.464 <0.189

<0.90x0.49 x 0.120 <0.053
<1.0x0.007 <0.007

<0.891 x0.376 x 0.807 <027

555
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o T0 V3
68~ 2006 « 10
AW, =213 300 ><__|/663
8.9 2048~ 100
4O, 2115 10000 /62985
: 65536 10000
w, _ 10010 /70
7732768 © 10
AW =213 910 x@
' 2048~ 10
A4, =21 9100 ]/714
: 32768 © 100
@ _ 10000 1/67830
7107 16384~ 10000
A4S, 21 30000 ]/35530
: 262144 10000
A — -6 150 X]/sss
k 1024 = 10
5 _ 13500 1/1430
5,87 X =
2732768 © 100
s S000 /24310
APy =271 —— x Lt——
' 16384~ 1000
A‘55)10=2‘”6x10000x 92378
' 65536~ 10000
3465
(5)
Asr= 32768 V—
49, a-wsy S0 V195
k 2048~ 10
9900  1/6630
AB) =216 5 y¥ 7
6.9 " 65536 100
5 _ 5000 x|/2519
6107 37768 © 1000
100000 1/646646
AB) - t3 e T VT
§.11 X 262144 = 100000
3003
AD, =271 x " 1/14
7 x16384xl/—
10010 1/210
AB). =216
7.8 X 32768 ° 10
3900 /1785
A= ——x
8192 100
46 _p-1a, 195000 ]/13566
7107 X 262144 1000

<0.1880 % 0.625 <0.118
=0.7938 x 0.1465 x 0.2575 <0.030
<0.90 x 0.16 x 0.026 <0.004
<0.3055x0.837 <0.256
£0.794 x 04444 x 0459  <£0.162
<0.891 x0.278 x 0.27 <0.067
<0.611 x 0.0261 <0.016
<0.8x0.12x0.02 <0.002
<0.8909 x0.1465x2.93  <0.383
<0.4120x0.3782 <0.156
=0.794 x 0.306 x 0.156 <0.038
=0.90 x 0.16 x 0.031 <0.005
<0.1058 x 5.10 <0.540
=0.7938 x0.2686 x 1.397 <0.298
<0.891 x0.1511 x0.815 =<0.110
<0.153x0.16 <0.025
=0.80x0.39 x 0.009 <0.003
=0.7938x0.1833x3.742 =0.545
<0.8909 x0.3055x1.45  <0.395
<0477 x0.423 <0.202
=0.794 x0.744 x 0.1165  <0.069
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Table2 (continued)

35000 y 3553
131072 1000
100000 490314

AP, = VP <02x001 <0.002
7127 572788 100000 Shex =

A =216 x <09 x0.27 x 0.06 <0015

990 /429
Ay =271 o x <0.7938 x 0.4834 x 2.0713 <0.795
14850 )/ 715
Ay=2710x o X Klo— <0.8909 x 0.2266 x 2.674  <0.540
5500 1/24310
A9, = 76 100 <0.1679 x 1.56 =0.262
“1s, 33000 /46189
AQh=271P x e x ees= S07938x0.5036x 02150 <0.086
e 30000 /176358
=27 e X s S09x046x0.042 <0018

100000 676039

A©) = <02x001 <0.002
6127 574788 100000 =hex =
30030  1/462
© -1y 2 VBZ (800904583 x 2150  <0.87
AP, =2 X 65596 % 10 <0.8909 x x2.150 <£0.878
4290 /770
Ao = 20 VR <0.2619 x 2.775 <0.727

87163847 10
128700 ]/13090
APy =271 x <0.7938 x 0.4910 x 1.1442 <0.446

262144 100
65000 /49742
©) 2116 <0.891x0992x0224  <0.198
A710=2 65536 < 1000 SO81x0992x =
100100 /969
A = VO <0191 x 0,312 <0.060
17 52288 < 100
21000 /7429
©) -1 V27 0794 %01 0862 <0011
AP, =2 X 131072>< 1000 <0.794 x0.1603 x 0.0862 =<0,
500000 1/193154
A, =27 116 x X <090x0239x0.0044  <0.001

2097152 100000

The equalities in this table are obtained by simplifying (in an obvious way) the
expression (2.18) for each of the coefficients A{™). Then, in order to verify e.g. that

A9, <0.015, it suffices to check that 0.27 x 13107235000 and (1000 x 0.06)2
>3553,and that 0.9 x 0.27 x 0.06 £0.015. Here, the bound2 '° <0.9follows from
inequality (I2) in Sect. 3.

By using the inequalities from the last two tables, we get immediately the
following bounds on the sums S, ,, defined in (3.10). Note that the coefficients A")
are symmetric under permutations of the indices k,m, n, and that many of these
coefficients are zero; see Lemma 2.5.
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Table 3. Bounds on the sums S,, ,, for 0=Sm<n<7, which are not zero

Spon= AT+ 0AL + 02 AGH + AT, +0* AT, + 0% A3, + 0°AT3,

S, <0.001 <0.001
S, 6<0.003 <0.003
S, 5 £0.004+0.00304 <0.008
S, s<0.010 <0.010
S, 6<0.023+0.00759 <0.031
S, 7<0.022+0.01517 +0.00461 <0.042
S5 ¢<0.017 <0017
S, s<0.060+0.01366 <0.074
S, ¢ <0.097+0.04703 +0.01151 <0.156
S, ,<0.089+0.07434 +0.03452 +0.00698 <0205
S, +<0.081+0.01669 <0.098
S, s <0.189 +0.08041 +0.01611 <0.286
S4 6<0.271 +0.17901 +0.06903 + 0.01396 <0533
S, 7<0.256+0.24576 +0.15417 +0.05583 +0.01059 <0.723
S s <0.383+0.23666 + 0.08744 4 0.01745 <0.725
S ¢ <0.540 +0.45207 +0.25311 4 0.08723 +0.01588 <1349
S, ,=0.545+0.59922 +0.46481 +0.24075 +0.07938 -+ 0.01606 <1.946
Se. ¢ <0.795+0.81918 +0.60287 +0.30006 + 0.09526 + 0.01606 <2629

S6,7=0.878 +1.10286 + 1.02625 + 0.69083 +0.31752 4+-0.08829 + 0.01218 <4.116

In order to bound ¢7'S,, s and then ¢,=max{S, ;,,0 'S, s}, we use the
inequality (3.15) with n=7, together with the bounds from Table 2 and Table 3.

Table 4. Bounds on oy, ..., 06

0 SpaS0 ! X AT +367 XS,

07185 5<0.66 x 0.000+0.84 x 0.001<0.001, a,=<0.001
07'S; g<0.66 x 0.002+0.84 x 0.008<0.009, 7, <0.009
0718, §<0.66 x 0.010+0.84 x0.042<0.042, 7, <0.042
07185 g<0.66 x 0.049 +0.84 x 0.205<0.205, 05 <0.205
0!8, §<0.66x0.162+084x0.723<0.715, ¢,<0.723
07185 4<0.66x0.395+0.84 x 1.946<1.896, o<1.946
07 183<066x0.727+0.84 x 41163938, ¢,=<4.116

From these bounds, using the values of g, ..., g given in Table 1, it follows that
0=0080+0,81+0,82+0383+0484+0585+ 0686
<0.000914 +0.004518 + 0.010710 + 0.024600 + 0.037596 + 0.040866 + 0.032928
<0.153,
which completes the proof of (N 1).

5.2. Proof of (N2). By definition, t is obtained by adding up all the products
0" &mSm nm fOr 0=m, n< 6. By using the values from Table 1 and Table 3, the sum
over all n<6 of S, g, is bounded as follows:

Table 5. Bounds on (Sg),, for 1<m=<6; (Sg)o=0

(S)m=Sm, 181+ Sm, 282+ Sm, 383+ S, 484+ S, 585+ Sm, 686

(S = 0.000024 <0.00003
(Sg), = 0.000210 +0.000248 < 0.00046
(Sg)s = 0.000884 +0.001554 + 0:001248 < 0.00369
(Sg). < 0.002040 -+ 0.005096 + 0.006006 + 0.004264 < 0.01741
(Sg)s < 0.002550 +0.008880 + 0.014872 4 0.015225 +0.010792 < 0.05232

(52)6 =0.001506 4-0.007905 +0.018720 4-0.027716 + 0.028329 4 0.021032 £ 0.10521
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Given these inequalities, and from Table 1 the values of g, and the bound on g7, we

find

1=0"[81(58)1 +22(58); +83(58)3 +84(58)4 + 85(S8)s + 26(S8)s]
<18.47[0.000016 + 0.000118 + 0.000443 + 0.000906 + 0.001099 + 0.000842]
=18.47 x 0.003424

<0.064,

which completes the proof of (N 2).

5.3. Proof of (N 3).In the next table we define the numbers Q™) and verify (N 3), by
giving bounds of the form A{"™) € Q{™ + ¢, where ¢ denotes the interval [0, 1/2000].

Here a€ g+ ¢ means that a— g € ¢, and a € g—¢ means that g — a e &. The values Q§™)
which are not given below are either zero (if m+ k < n), or determined by symmetry.

Table 6. Definition of Q™) and bound on A4{"), for 0SM<k<n<6

A

Ao=1x)/1
1
AP =276 x = xl/i

Ly

APy =271x
10

AQ. =
3,37 32

A, =276

Vq
1o

100
128

XK_Z_
100

A(O) =2 1/3 100 I/I

1000

AO® —
667 1024

256
1
1000

AP = x I/I

A(ll)z,__ 1/3

AP, =27 x

10
AL, =
23T

100

Lays

/15

10

V2

3
Ay =271 x 16 Xlﬂ
e 0,V
’ 64 10

10

AL, =
4,4= 16

APy =271 x

1
10

30
256

/3

10

elx1

€0.890[89,90] x 0.25 x 1.414[2, 3]

€0.79[3,4] x0.125 x 1

€0.31[2,3]x 0.1

€0.89[0, 1] x 0.7[8,97 x 0.014[1, 2]

€0.[79, 807 x 0.[39,40] x 0.01

€[0.9,1.0] x 0.001

e0.5x1

€0.793[7, 8] x 0.125 x 2.449[4, 5]

€0.890[89,907 x 0.25 x 1.414[2, 3]

€0.3125 x 0.387[2, 3]

€0.79[3,4] x 0.1875 x 1

€0.890[8,9] x 0.156[2,3] x 0.37[4, 5]

€0.625 x 0.1

€0.79[3,4] x 0.11[7, 8] x 0.22[3,4]

o
€1.000—¢

€0.315—¢

€0.099 +¢
€0.031+¢
€0.010—¢
€0.003+¢

€0.001 —¢
€0.500—¢
€0.243+¢

€0315—¢

€0.121 +¢

€0.149—¢
€0.052+¢
€0.063—¢

€0.021 —¢
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Table 6 (continued)
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256 10

@ _ 1000 ]/66
AS 6= X
1024 1000

EUN

256 10

armze 212

AW, =213

3
=—x
16

1
APy =271 x o x /10

A% 6

AP, =116 10 V35
’ 64 10

AR =21 23

) = V2
**7327 10
AP =273 % @ x V210 210
: 256 100
7
AP, =218 x — 6
4,4 X 64 Xl/_
AP =271 x 10 x —I/E
’ 32 10
o 300 V55
71024 100
AP, = 450 « ﬁ
21024 10
A(Z) —2_1/3 X _ﬁ)_ X __~‘/H
5,6
’ 256 10
AP =276 x —330 X ﬁ
’ 1024 10
5
A= 5 x1/10
A9, =p-1 10 V70
’ 256 10
A(33)5=2—1/6 % 9_0 X ﬁ
’ 128 10
100 231
AP = x ¥
365127 100
7
AP, =276 x — 5
4,4 X %) Xl/_

o, 105

4,5—mx 2

€0.89[0, 1] x 0.195[3,4] x 0.14[1, 2]

€0.97[6,7] x 0.0081[2, 3]

€0.[79,80] x 0.11[7,8] x 0.1

€0.1875 x 2.4[49, 50]

€0.793[7,8] x 0.125 x 3.16[2, 3]

€0.89[0,1] x 0.156[2,3] x 0.59[1, 2]

€0.890[89,90] x 0.234[3,4] x 1.73[2, 3]

€0.3125 x 0.64[8,9]

€0.793[7,8] x 0.390[6, 7] x 0.14[4, 5]

€0.793[7,8] x 0.1093[7, 8] x 2.4[49, 50]

€0.890[8,9] x 0.3125 x 0.387[2, 3]

€0.29[2, 3] x 0.07[4, 5]

€0.4[39,40] x 0.24[49, 50]

€0.793[7,8] x 0.195[3,4] x 0.33[1,2]

€0.890[8,9] x 0.322[2,3] x 0.17[3, 4]

€0.15625 x 3.16[2, 3]

€0.793[7,8] x 0.58[59,60] x 0.836[6, 7]

€0.890[8,9] x 0.70[3,4] x 0.264[ 5, 6]

€0.195[3,4] x 0.15[19, 20]

€0.890[89,90] x 0.21875 x 2.23[6, 7]

€0.2050[7,8] x 1.414[2, 3]

€0.025—¢

€0.008 —¢

€0.009+¢

€0.459+¢

€0.314—¢

€0.082+¢

€0.362—¢

€0.203—¢

€0.045—¢

€0.213—¢

€0.108 —¢

€0.022—¢

€0.108—¢

€0.051+¢

€0.050—¢

€0.494 +¢

€0.389+¢

€0.166—¢

€0.030—¢

€0436—¢

€0.290+¢
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Table6 (continued)

3 33
AQ=2"13x % X 1/17— €0.793[7,8] x 0.234[3,4] x 0.57[4, 5] €0.107—¢

1
Ag§)5=z—1/3x1—25§x1/17) €0.7937[0,11 x0.1171[8,91 x 3.16[2,3]  €0.294+¢

450 /330
AP)=2"16x —— x +——€0.890[8,9] x 0.109[8,9] x 1.81[6,7] €0.178 —¢
’ 4096 10
55 V1
AP = %0 X —0 €0.537[1,2] x 0.316[ 2, 3] €0.170—¢
1024 10
350 ]/
AP, = 512 0 €0.683[5,6] x 0.836[6,7] €0.572—¢

21
AP =218 58 x])/14  €0.7973[0,1] x 0.1640[6,7] x 3.74[1,2]  €0.487+¢

/462 462
AP =216 x 57102 0 €0.890[8,9] x 0.1367[1, 2] x 2.1[49, 50] €0.262—¢

1
AW, =216 % %2% x]/35 €0.890[89,90] x 0.1025[39, 40] x 5.916[0, 1]€0.540+¢

30 1155
A= — x F—— €0.1171[8,9] x 3.39[8,9] €0.398+¢
67 256 10
49 /70
AP =2"13 % 813(2) W €0.793[7,8] x 0.604[2, 3] x 0.836[6, 7] €0.401+¢
18
APs=—— x]/14 €0.18457[0,1] x 3.741[6, 7] €0.691—¢
o 10 ]/ 231
AP =271 x %0 ——e0.7937[0,1] x 0.512[69,70] x 1.5198[6,7] €0.618 +¢
2048 10
297
AP =271 x 103 X ]/:/ €0.890[89,90] x 0.2900[3,4] x 2.645[7,8] €0.684—¢
2310 231
AP = W% o €0.56[39,40] x 1.519[8,9] €0.857+¢

In the third column of this table we have used an abbreviated notation for intervals
by writing, e.g. 0.29[ 2, 3] instead of [0.292,0.293]; and the product of two intervals
[x,y]and [s,t]in R, is defined to be the interval [ xs, yt]. Now, in order to verify,
e.g. that AP €0.022—¢, it suffices to check that

1024 x 0.292<300<1024 x 0.293 and (100 x 0.074)> <55 <(100 x 0.075)?,
and that 0.292 x 0.074=0.0215 and 0.293 x 0.075<0.022.

5.4. Proof of (N 4). We first compute the matrix Q(p), as defined in (3.25), using the
values of p,, and Q{") from Table 1 and Table 6, respectively.
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Table 7. The symmetric matrix Q(p)
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QD) n=Qinpo+ 08P + 02002 + Qs + OLNhps + Qps + 006

0(0)o, 0 =0.909000 =0.909000
D)1,0 0.154980 =0.154980
o)1 1 _0 286335 +0.246000 + 0.060993 =0.593328
0p)2,0= 0.024849 =0.024849
o), .= 0.119556 +0.079065 + 0.013552 =0.212173
0(p)2. , =0.089991 +0.154980 + 0.115209 +0.035168 +0.003690 =0.399038
0P)s.0= 0.003472 =0.003472
00); = 0.030371 +0.016688 + 0.002340 =0.049399
00)s.2= 0.059532 +0.078814 + 0.040544 + 0.009135 +0.000720 =0.188745
0(p)3.  =0.028179 +0.073308 +0.090862 +0.055328 + 0.017505 + 0.002656 + 0.000150 = 0.267988
04 0= 0.000450 =0.000450
oP)s, 1= 0.005824 + 0.002835 +0.000336 =0.008995
0P, 2= 0.020582 +0.022736 +0.009585 +0.001728 + 0.000110 = 0.054741
OP)a, 3= 0.025584 +0.050953 + 0.043568 -+ 0.019620 + 0.004640 + 0.000535 = 0.144900
0(p)s. 4 =0.009090-+0.030996 + 0.053463 +0.048832 +0.025740 4+ 0.007792 +0.001310 = 0.177223
op)s. 0= 0.000048 =0.000048
op)s.1 = 0.000945 +0.000400 + 0.000040 = 0.001385
oD)s..= 0.005040 +0.004860 +0.001728 +0.000255 =0.011883
0P)s.3= 0.011295 +0.018592 + 0.013050 + 0.004704 + 0.000890 = 0.048531

0@)s,a= 0.010332+0.027108 +0.032480 + 0.021915 +0.008640 + 0.001990 = 0.102465
Q(p)s 5=0.00272740.012300 +0.027108 +0.032928 +-0.024300 + 0.011056 4+ 0.003090 = 0.113509

O(ps.0= 0.000005 = 0.000005
0(p)s,1= 0.000128 +0.000045 = 0.000173
0ps.2= 0.000990 + 0.000816 + 0.000250 = 0.002056
0p)s.3= 0.003360 +0.004815 + 0.002848 +0.000850 =0.011873
0P)s.a= 0.005522 +0.011984 + 0.011790 4 0.006368 +0.002005 = 0.037669

0(p)s,s= 0.003936 +0.012801 +0.019936 + 0.017910 +0.009888 + 0.003420 = 0.067891
0(p)s. s =0.000909 + 0.004428 + 0.012550 + 0.019040 + 0.018045 + 0.010944 + 0.004285 = 0.070201

Let T be the symmetric matrix T=2Q(p)— I. Using the values Q(p), , given above,
we obtain the followmg for T.

[ 0.818000 0.309960  0.049698  0.006944 |
0.186656 0424346  0.098798
0201924 0.377490
T= —0.464024
0.000900  0.000096  0.000010
0.017990  0.002770  0.000346
0.109482 0023766  0.004112
0289800  0.097062  0.023746
—0.645554 0204930  0.075338
—0.772982  0.135782
i —0.859598 |




Table 8. The matrix product MT

(k,n)
Mk,OTE),n

k,lT‘l,n
Mk,ZTZ,n
Mk,3T£i.n

k,4n,n

k,S’TS,n
Mk,67—'6,n

(MT)k,n

(k,n)
Mk,O’IZ).n

k,l’Tl,n
Mk,2T2,n
Mk,3TE$.n

k,47:t.n
Mk,S’TS,n
Mk,Gn,n
(MT)k,n

(k,n)
Mk,OTb,n
Mk,l’Tl,n
Mk.Z’TZ,n
Mk,3T3.n

k,4T4,n
Mk,STS‘n
Mk,6T6,n
(MT)k,n

(k,n)
Mk,O’IE).n
Mk,lTl,n
Mk,ZT'2.n
Mk,3T3,n
Mk,47:t'n

k,ST'S,n
Mk,6’T6,n
(MT),

0,0
0.861354000
0.184116240

—0.038168064

—0.006902336

—0.000619200

—0.000033984

—0.000001470
0.999745186

(1,0
0.485892000
—0.609691320
0.103670028
0.018415488
0.001653300
0.000090816
0.000003930
0.000034242

(2,0
—0.628224000
0.646576560
—0.019829502
0.001152704
0.000071100
0.000003840
0.000000170
—0.000249128

(3,0
—0.813092000

0.822013920

0.008249868
—0.016457280
—0.001080900
—0.000062304
—0.000002710
—0.000431406

©,1)
0.326387880
0.110873664
—0.325897728
—0.098205212
—0.012377120
—0.000980580
—0.000050862
—0.000249958

(1,1)
0.184116240

—0.367152352
0.885185756
0.262012296
0.033047630
0.002620420
0.000135978
0.999965968

1)
—0.238049280
0.389364416
—0.169314054
0.016400468
0.001421210
0.000110800
0.000005882
—0.000060558

G,1)

. —0.308100240

0.495011712

0.070441436
—0.234151260
—0.021605990
—0.001797730
—0.000093766
—0.000295838

©,2)
0.052331994
0.252061524
0.155077632
—0.375225060
—0.075323616
—0.008413164
—0.000604464
—0.000095154

(1,2)
0.029520612
—0.834688582
—0.421213464
1.001103480
0.201118434
0.022482636
0.001616016
—0.000060868

(2,2)
—0.038168064
0.885185756
0.080567676
0.062663340
0.008649078
0.000950640
0.000069904
0.999918330

(3,2)

—0.049399812

1.125365592
—0.033519384
—0.894651300
—0.131487882
—0.015424134
—0.001114352
—0.000231272

(0,3)
0.007312032
0.058686012

—0.289912320
0.461239856
—0.199382400
—0.034359948
—0.003490662
0.000092570

(1,3)
0.004124736
—0.194335666
0.787444140
—1.230591648
0.532362600
0.091820652
0.009332178
0.000156992

2,3)
—0.005332992
0.206092628
—0.150618510
—0.077027984
0.022894200
0.003882480
0.000403682
0.000293504

3,3)
—0.006902336
0.262012296
0.062663340
1.099736880
—0.348049800
—0.062993238
—0.006435166
1.000031976

(0,4)
0.000947700
0.010686060

—0.084082176
—0.288061200
0.444141152
—0.072545220
—0.011074686
0.000011630

(1,4)
0.000534600
—0.035386330
0.228379452
0.768549600
—1.185882698
0.193863780
0.029607834
—0.000333762

2,4
—0.000691200
0.037527140
—0.043683318
0.048106800
—0.050998766
0.008197200
0.001280746
—0.000261398

G.4)
—0.00894600
0.047709480
0.018174012
—0.686826000
0.775310354
—0.132999570
—0.020416598
0.000057078

(©0,5)
0.000101088
0.001645380
—0.018252288
—0.096479628
—0.140991840

0.273635628
—0.019959954
—0.000301614

1,5
0.000057024

—0.005448590
0.049575876
0.257408424
0.376456410

—0.731240972
0.053362326
0.000170498

2,5)
—0.000073728
0.005778220
—0.009482634
0.016112292
0.016189470
—0.030919280
0.002308294
—0.000087366

3,9)
—0.000095424
0.007346040
0.003945156
—0.230036940
—0.246120930
0.501665318
—0.036796922
—0.000093702

(0,6)
0.000010530
0.000205524
—0.003158016
—0.023603524
—0.051832544
—0.048066828

0.126360906
—0.000083952

(1,6)
0.000005940
—0.000680582
0.008577632
0.062974392
0.138395906
0.128449772
—0.337822014
—0.000098954

(2,6)
—0.000007680
0.000721756
—0.001640688
0.003941836
0.005951702
0.005431280
—0.014613166
—0.000214960

3,6)
—0.000009940
0.000917592
0.000682592
—0.056278020
—0.090480938
—0.088122518
0.232951058
—0.000340174
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Table 8 (continued)

(k,n)
Mk,OTI'),n
k,l'Tl,n
Mk,ZTZ,n
k,JTEi,n
Mk.4T4.n
Mk,STS,n
k,6n,n

(MT)y,n

(k,n)
Mk. 0’1}),11

k.lTlm
Mk,Z’TZ,n

4,0
—0.562784000
0.569396520
0.003926142
—0.008339744
—0.002096100
—0.000079104
—0.000003660
0.000020054

(5,0)
—0.289572000
0.293222160
0.001987920
—0.004506656
—0.000741600
—0.000158496
—0.000003500
0.000227828

(6,0)
—0.120246000
0.121814280
0.000844866
—0.001881824
—0.000329400
—0.000033600
—0.000012580
0.000155742

1)
—0.213252480
0.342887072
0.033523334
—0.118656398
—0.041898710
—0.002282480
—0.000126636
0.000193702

(5,1)
—0.109725840
0.176576576
0.016973840
—0.064119902
—0.014823760

—0.004573270 .

—0.000121100
0.000186544

(6,1)
—0.045564120
0.073355808
0.007213882
—0.026774258
—0.006584340
—0.000969500
—0.000435268
0.000242204

4,2)

—0.034192224

0.779523602
—0.015951996
—0.453365490
—0.254983578
—0.019583184
—0.001504992
—0.000057862

(5,2

—0.017593092

0.401431316
—0.008076960
—0.244991010
—0.090213168
—0.039237666
—0.001439200
—0.000119780

(6,2)
—0.007305606
0.166767978
—0.003432708
—0.102299790
—0.040070412
—0.008318100
—0.005172896
0.000168466

(4,3)
—0.004777472
0.181491926
0.029821710
0.557292824
—0.674944200
—0.079979088
—0.008691036
0.000214664

(5,3)
—0.002458176
0.093462908
0.015099600
0.301151576
—0.238795200
—0.160249362
—0.008311100
—0.000099754

(6,3)
—0.001020768
0.038827614
0.006417330
0.125750504
—0.106066800
—0.033971700
—0.029872468
0.000063712

(4,4)
—0.000619200
0.033047630
0.008649078
—0.348049800
1.503495266
—0.168862320
—0.027573708
1.000086946

(5,4)
—0.000318600
0.017018540
0.004379280
—0.188080200
0.531936496
—0.338339430
—0.026368300
0.000227786

(6,4)
—0.000132300
0.007070070
0.001861194
—0.078535800
0.236272764
—0.071725500
—0.094775204
0.000035224

(4,5)
—0.000066048
0.005088490
0.001877514
—0.116571462
—0.477281970
0.636937168
—0.049696212
0.000287480

(5,5)
—0.000033984
0.002620420
0.000950640
—0.062993238
—0.168862320
1.276193282
—0.047523700
1.000351100

(6,5)
—0.000014112
0.001088610
0.000404022
—0.026303802
—0.075004380
0.270543700
—0.170813756
—0.000099718

(4,6)
—0.000006880
0.000635602
0.000324848
—0.028518946
—0.175462202
—0.111884368
0.314612868
—0.000299078

(5,6)
—0.000003540
0.000327316
0.000164480
—0.015411154
—0.062078512
—0.224176082
0.300859300
—0.000318192

(6,6)
—0.000001470
0.000135978
0.000069904
—0.006435166
—0.027573708
—0.047523700
1.081374284
1.000046122

¥9¢

IOMBIM “d PUE YOO 'H



Renormalization Group Transformation for Scalar Hierarchical Models 565

The verification of (N 4) is now reduced to the straightforward (but tedious) task of
computing the product M T, where M is the matrix given at the beginning of this
section.

By looking at the values of (M T), , in Table 8, it is easy to see that |0, ,—(MT), .|
=<0.0005, for 0=k, n=6. This completes the proof of (N 4).

5.5. Proof of (N5). We begin with the matrix Q(J), as defined in (3.25), using the
values of d,, and Q{") from Table 1 and Table 6, respectively.

Table 9. The symmetric matrix Q(d)

OB n =000+ 001 + 00, + 02003+ 0504+ 005 + QiDd6

Q(6)o, 0 =0.005000 =0.005000
000);.0= 0.003150 =0.003150
0(6),., =0.001575 +0.005000 4 0.000972 =0.007547
00).0= 0.000396 =0.000396
0(0),,, = 0.002430 + 0.001260 + 0.000968 =0.004658
0(6),. , =0.000495 +0.003150 + 0.001836 + 0.002512 +0.000574 =0.008567
00)3.0= 0.000248 =0.000248
Q0)s.,1= 0.000484 +0.001192 + 0.000364 =0.002040
000)s.» 0.001210 +0.001256 + 0.002896 +0.001421 +0.000225 =0.007008
0(0)s.3= o 000155 +0.001490 + 0.001448 +0.003952 + 0.002723 +0.000830 + 0.000090 = 0.010688
0(0)a,0= 0.000070 =0.000070
00)s = 0.000416 +0.000441 + 0.000105 =0.000962
0(0)s. .= 0.000328 +0.001624 +0.001491 +0.000540 + 0.000066 = 0.004049
00)s.3= 0.000520 +0.000812 +0.003112 + 0.003052 +0.001450 + 0.000321 = 0.009267
0(6)4.4=0.000050 4 0.000630 -+ 0.000852 + 0.003488 +0.004004 4 0.002435 +0.000786 = 0.012245
0(0)s,0= 0.000015 =0.000015
0(0)s.1= 0.000147 +0.000125 +0.000024 = 0.000296
00)s.,= 0.000360 + 0.000756 + 0.000540 -+ 0.000153 = 0.001809
000)s.3= 0.000180 +0.001328 +0.002030 4 0.001470 +0.000534 = 0.005542
00)s.a 0.000210 + 0.000432 + 0.002320 + 0.003409 + 0.002700 + 0.001194 = 0.010265
0(0)s. 5= 0 000015 +0.000250 -+ 0.000432 +0.002352 + 0.003780 + 0.003455 +0.001854 = 0.012138
Q(6)s,0= 0.000003 = 0.000003
000)s. 1= 0.000040 +0.000027 = 0.000067
Q(0)6.,= 0.000154 +0.000255 +0.0001 50 = 0.000559
00)s. 3= 0.000240 +0.000749 +0.000890 + 0.000510 = 0.002389
000 4= 0.000088 +0.000856 + 0.001834 +0.001990 + 0.001203 = 0.005971
0()s. 5= 0.000080 +0.000204 +0.001424 + 0.002786 +0.003090 +0.002052 = 0.009636

Q(é)ﬁj 6 =0.000005 +0.000090 +0.000200 + 0.001360 + 0.002807 +0.003420 + 0.002571 = 0.010453

Then, from the data in Tables 1, 7, 9, we can determine the two vectors Q(p)p and

0(5)5.



Table 10. The vectors Q(p)p and Q(d)0

Ok oPo
QP 1P1
O(p),2P2
O(Pk.3P3
O(p)k, 4P
O(p), sPs
QP 6Ps

(Q@)p)x

Q(6), 090
Q(O), 101
O(0), 26,
Q(9), 393
Q(O), 404
Q(O), 505
(O 696

(Q(9)d)s

k=0
0.826281000
0.076250160
0.006237099
0.000388864
0.000020250
0.000000768
0.000000025
0.909178166

k=0
0.000025000
0.000031500
0.000001584
0.000001984
0.000000490
0.000000075
0.000000009
0.000060642

k=1
0.140876820
0.291917376
0.053255423
0.005532688
0.000404775
0.000022160
0.000000865
0.492010107

k=1
0.000015750
0.000075470
0.000018632
0.000016320
0.000006734
0.000001480
0.000000201
0.000134587

k=2
0.022587741
0.104389116
0.100158538
0.021139440
0.002463345
0.000190128
0.000010280
0.250938588

k=2
0.000001980
0.000046580
0.000034268
0.000056064
0.000028343
0.000009045
0.000001677
0.000177957

k=3
0.003156048
0.024304308
0.047374995
0.030014656
0.006520500
0.000776496
0.000059365
0.112206368

k=3
0.000001240
0.000020400
0.000028032
0.000085504
0.000064869
0.000027710
0.000007167
0.000234922

k=4
0.000409050
0.004425540
0.013739991
0.016228800
0.007975035
0.001639440
0.000188345
0.044606201

k=4
0.000000350
0.000009620
0.000016196
0.000074136
0.000085715
0.000051325
0.000017913
0.000255255

k=5
0.000043632
0.000681420
0.002982633
0.005435472
0.004610925
0.001816144
0.000339455
0.015909681

k=5
0.000000075
0.000002960
0.000007236
0.000044336
0.000071855
0.000060690
0.000028908
0.000216060

k=6
0.000004545
0.000085116
0.000516056
0.001329776
0.001695105
0.001086256
0.000351005
0.005067859

k=6
0.000000015
0.000000670
0.000002236
0.000019112
0.000041797
0.000048180
0.000031359
0.000143369
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By computing all products g,,g,, for 0<m=<n=<6, using Table 1, and adding
them up according to the definition (3.26) of u, we find the following values for

2000u;:
Table 11. The vector 2000u
k=0 k=1 k=2 k=3 k=4 k=5 k=6

2080  0.835396

2208, 0.917656

28082 0.466140

28083 0.219360

28084 0.095056

28085 0.038388

22026 0.014624
2181 0.252004 | 0.252004 | 0.252004

2g.8> 0.256020 | 0.256020 | 0.256020

2g:85 0.120480 | 0.120480 | 0.120480

2g,84 0.052208 | 0.052208 | 0.052208

2g.85 0.021084 | 0.021084 | 0.021084

2g.86 0.008032 | 0.008032
2,82 0.065025 | 0.065025 | 0.065025 | 0.065025 | 0.065025

28,83 0.061200 | 0.061200 | 0.061200 | 0.061200 | 0.061200

28,84 0.026520 | 0.026520 | 0.026520 | 0.026520 | 0.026520

28,85 0.010710 | 0.010710 | 0.010710 | 0.010710

28,86 0.004080 | 0.004080 | 0.004080
223 0.014400 | 0.014400 | 0.014400 | 0.014400 | 0.014400 | 0.014400 | 0.014400

2384 0.012480 | 0.012480 | 0.012480 | 0.012480 | 0.012480 | 0.012480

2g38s 0.005040 | 0.005040 | 0.005040 | 0.005040 | 0.005040

28386 0.001920 { 0.001920 | 0.001920 | 0.001920
2484  0.002704 | 0.002704 | 0.002704 | 0.002704 | 0.002704 | 0.002704 | 0.002704

22485 0.002184 | 0.002184 | 0.002184 | 0.002184 | 0.002184 | 0.002184

2g.486 0.000832 | 0.000832 | 0.000832 | 0.000832 | 0.000832
8585 0.000441 | 0.000441 | 0.000441 | 0.000441 | 0.000441 | 0.000441 | 0.000441

28586 0.000336 | 0.000336 | 0.000336 | 0.000336 | 0.000336 | 0.000336
g¢86  0.000064 | 0.000064 | 0.000064 | 0.000064 | 0.000064 | 0.000064 | 0.000064

2000y,  1.170034 | 1.584514 | 1.285870 | 0.851924 | 0.496764 | 0262623 | 0.125451

In order to bound the vector 107y, we use again the components of g from
Table 1, together with the bounds on A{™) from Table 2.

Table 12. Bound on the vector 10¢"v

10070, = Af% g, +

1007y, <
10070, <
10¢7v; <
10070, <
10¢7vs <

1007ve <

APg,+ A

g+ AMe,

+ A+ A

786

0.000024 < 0.000024
0.000210+0.000184 <0.000394

0.000884 +-0.001260 4 0.000776 < 0.002920
0.002040 +0.004212 4+ 0.003969 + 0.002168 < 0.012389
0.0025504-0.007200 4+ 0.009828 4 0.008043 + 0.004320 < 0.031941

0.001506 + 0.005865 +0.011640 + 0.014092 + 0.011340 + 0.006360 < 0.050803

Next, we consider the vector 1=(Q(p)p —pl+ Q(6)d +u+2v+w. The components
w,=0.010" 797 7A{", of w are easy to bound using Table 1 and Table 2; only two
digit precision is needed. We also have to compute |Q(p)p — pl, u, and 2v, using the
data from Table 1 and Tables 10-12. The vector Q(6)d can be found in Table 10.
Putting it all together, we obtain the following.
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Table 13. Bound on the vector 4

H. Koch and P. Wittwer

A =1Q@)p — Pl +(Q(0)0) + e + 20, + Wy,

49 =0.000179 4-0.000061 +0.000586 +0.000000 4 0.000001 = 0.000827
4, £0.000011 +0.000135 +0.000793 +0.000002 + 0.000001 = 0.000942
4, £0.000062 +-0.000178 4-0.000643 -+ 0.000006 4 0.000001 = 0.000890
43 =0.000207 4 0.000235 +0.000426 + 0.000034 + 0.000003 = 0.000905
24=0.000394 +0.000256 +0.000249 + 0.000138 + 0.000008 = 0.001045
45<0.000091 +0.000217 + 0.000132 + 0.000352 + 0.000017 = 0.000809
46 =0.000068 4 0.000144 +0.000063 + 0.000560 + 0.000027 = 0.000862

The product of the matrix |M| with the above bound on A (multiplied by 1000) is
given in the next table.

Table 14. Bound on the product 1000{M|A

k=0 k=1 k=2 k=3 k=4 k=5 k=6

1000| M|y o4o 0.870831 0.491238 0.635136 0.822038 0.568976 0.292758 0.121569
1000[M|, 14, 0.559548 1.852914 1.965012 2.498184 1.730454 0.891132 0.370206
1000| M|, »4, 0.683520 1.856540 0.355110 0.147740 0.070310 0.035600 0.015130
1000]M |, 345 0.899570 2.400060 0.150230 2.144850 1.086905 0.587345 0.245255
1000\ M|, 444 0.718960 1.919665 0.082555 1.255045 2.433805 0.861080 0.382470
1000| M|, 545 0.286386 0.765314 0.032360 0.525041 0.666616 1.335659 0.283150
1000[M;, 66 0.126714 0.338766 0.014654 0.233602 0.315492 0.301700 1.084396
1000(| M| A), 4.145529 9.624497 3.235057 7.626500 6.872558 4.305274 2.502176

By using these bounds, and the values of ¢, from Table 1, it is now easy to check

that (M|A),+3 x 107 ° <6, for 0<k <6. This completes the proof of (N 5).

References

1. Dyson, F.J.: Existence of a phase transition in a one-dimensional Ising ferromagnet.

2.
3.

10.
11.
12
13.

Commun. Math. Phys. 12, 91 (1969)

Baker, G.A.: Ising model with a scaling interaction. Phys. Rev. BS, 2622 (1972)

Bleher, P.M,, Sinai, Ya.G.: Critical indices for Dyson’s asymptotically hierarchical models.
Commun. Math. Phys. 45, 347 (1975)

. Collet, P., Eckmann, J.-P.: A renormalization group analysis of the hierarchical model in

statistical mechanics. Lecture Notes in Physics, Vol. 74. Berlin, Heidelberg, New York:
Springer 1978

. Gallavotti, G.: Some aspects of the renormalization problems in statistical mechanics.

Memorie dell’ Accademia dei Lincei 15, 23 (1978)

. Koch, H., Wittwer, P.: A Non-Gaussian renormalization group fixed point for hierarchical

scalar lattice field theories. Commun. Math. Phys. 106, 495 (1986)

. Koch, H., Wittwer, P.: Computing bounds on critical indices. In: Non-Linear Evolution and

Chaotic Phenomena. Gallavotti, G., Zweifel, P. (eds.). NATO ASI Series B: Phys. Vol. 176.
New York: Plenum Press 1988

. Balaban, T.: Ultraviolet stability in field theory. The ¢3-model. In: Scaling and Self-Similarity

in Physics. Frohlich, J. (ed.). Boston: Birkhduser 1983

. Gawedzki, K., Kupiainen, A.: Rigorous renormalization group and asymptotic freedom. In:

Scaling and Self-Similarity in Physics. Frohlich, J. (ed.). Boston: Birkhduser 1983

See e.g. Theorem (18.2a) in: Marden, M.: Geometry of polynomials. Mathematical Surveys,
Number 3. Providence, RI: American Mathematical Society 1966

See e.g. Theorems (4.1.8) and (4.2.1) in: Boas, R.P.: Entire Functions. New York: Academic
Press 1954

See e.g. Theorem (5.1) in: Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant manifolds. Lecture
Notes in Mathematics, Vol. 583. Berlin, Heidelberg, New York: Springer 1977

See e.g. Theorem (IX.9) in: Reed, M., Simon, B.: Methods of modern mathematical physics,
I: Functional analysis. New York: Academic Press 1980

Communicated by A. Jaffe





