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Abstract. The L2 topology is introduced on the space of gauge connections A and a
natural topology is introduced on the group of local gauge transformations GT. It
is shown that the mapping GTxA->A defined by A^>A9 = g*Ag + g*dg is
continuous and that each gauge orbit is closed. The Hubert norm of the gauge
connection achieves its absolute minimum on each gauge orbit, at which point the
orbit intersects the region bounded by the Gribov horizon.

Introduction

In a gauge theory, configurations which are related by gauge transformations are
physically equivalent. Because gauge transformations are non-linear, the physical
configuration space, which is the space of connections modulo gauge transform-
ations, is a non-linear space of which we lack an explicit description. Moreover, in
Euclidean quantization of a gauge theory we are instructed to integrate over the
physical configuration space, so it seems worthwhile to gather what information
we can about it.

In the work of Gribov [1], who first pointed out the difficulty, it was
conjectured that the physical configuration space may be identified with those
connections A which satisfy two conditions: (1) transversality: d A = Q, and
(2) positivity of the Faddeev-Popov operator K\_A~\ = —D(A) δ^O.

These two conditions define the Gribov region Ω, whose boundary is called the
(first) Gribov horizon. It was subsequently pointed out [2] that the two conditions
which define Ω are the conditions for a local minimum of the Hubert norm on each
gauge orbit. More specifically, if

g, (1.1)
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is the gauge-transform of A(x) by the local gauge transformation g(x), then, for
fixed A, as g varies over the group of local gauge transformations, one finds by an
elementary calculation that the Hubert norm square

SA[g] = \\A \\2=ίdμ(xΛAβ\2 (1-2)
is stationary at d A9 = 0, and moreover at a local minimum the Faddeev-Popov
operator is positive, K[A9~] ^0. Thus, the set made up of the local minima of the
Hubert norm on each gauge orbit lies in Ω. Conversely, every interior point A of Ω
is a local minimum of the Hubert norm on the gauge orbit through A. It is also
known that Ω is convex and bounded in every direction [2], and that (if Euclidean
space is a torus) it is contained inside the ellipsoid $dk\a(k)\2/k2 ^ C, where C is a
constant that depends on the gauge group and the dimension D of space-time [3],
Gribov has proposed that confinement of gluons may be due to the restriction of
the physical configuration space to Ω [1]. For these reasons it is of interest to know
whether all gauge orbits do indeed intersect the Gribov region Ω.

In the present article we shall show that the Hubert norm \\A9\\ achieves its
absolute minimum on each orbit. The precise formulation of this problem leads to
a natural definition of the local gauge group GT^ as an (infinite-parameter)
topological group. We show that, given A, there exists some local gauge
transformation ΛeGTi such that \\Ah\\ ^ \\Aβ\\ for all local gauge transformations
g e GΓi. Moreover, since every minimum lies in Ω, it follows that every gauge orbit
does in fact intersect Ω, at the absolute minimum of its Hubert norm. [As discussed
in the next section, the basic idea is that the topology is chosen to make the gauge
transformation (1.1) well defined when the space A of connections is taken to be the
L2-space. This implies that dg possesses an L2 norm, so the group of gauge
transformations is contained in ff lβ] The existence of the minimum on each orbit
follows from the fact that every minimizing sequence gn - i.e. such that S^EgJ
approaches its absolute minimum - contains a subsequence which converges in
GTt to a limiting gauge transformation h. We remark that convergence in GT± does
not follow from compact embedding theorems, which only provide convergence in
weaker norms. We also show that for fixed A, the gauge transformation (1.1) is a
continuous mapping from GT^ into the space A of L2 connections, and that each
gauge orbit is closed in A.

We mention a related result due to Semenov-Tyan-Shanskii, and Franke [4]
for which details are provided in [5]. The set A of points B which are absolute
minima on each gauge orbit is convex, and moreover A is a proper subset of the
Gribov region Ω. Thus Ω is not a fundamental modular region. The elements of the
difference set Ω—A are relative minima that are not absolute minima, and they are
Gribov copies that lie inside the first Gribov horizon. On the other hand, one
would expect that the set A of absolute minima on each gauge orbit would
constitute a fundamental modular region [6]. For there does not appear to be any
systematic degeneracy which would cause the absolute minimum to be achieved at
more than one point on an orbit.

Our results are stated in Sect. 2 A and proved in Sect. 2B. The extension to
Euclidean space of infinite volume is given in Sect. 3.

2A. Statement

Let N be a smooth d-dimensional compact Riemannian manifold, and let dμ be a
measure on N, absolutely continuous relative to Lebesgue measure, with bounded
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density; without loss of generality we assume that the total mass of μ is one. Let G
be an N-dimensional, fundamental unitary representation of a compact non-
abelian group, and denote by G its Lie algebra in the adjoint representation. Let £0

be the set of smooth C°° -valued one-forms, with values in N x N complex matrices.
We denote by E the Hubert space which is obtained completing E0 in the norm
induced by the scalar product

where Tr includes the trace for N xN matrices and the scalar product at x of one-
forms as given by the Riemann structure; we write ||M|| for (M,M)1/2.

We denote by A0 the set of smooth G-valued one-forms, and by A its closure in
E. Let GT0 be the space of smooth gauge transformations, i.e. smooth maps from N
to G; it is a subset of the smooth maps from N to NX N matrices. We
shall denote by GT its closure in L2(N,μ)NxN and by GT^ its closure in
H, = {fGL2(N^)NxN\ F/eL2(JV,μ)" xNxd}. We denote by || - || and by || ^ the
corresponding norms, i.e. ||/||2= f \f\(x)μ(dx\ \\f\\\= ||/||2 + ||Γ/||2 (|/| is the

trace norm of the matrix /).
Since N is compact, GT{ is a compact subset of GT.
Notice that, if g e GT0, g(x) is unitary for all x e N, and one has for every M e E,

(2.1)

Denote by σ°(A) the orbit of GT0 through A,

Denote by σ(A) the closure of σ°(A) in A. We shall prove the propositions which
follow.

Proposition 1. GT± is a topological group and the map (1.1) extends to a continuous
action of GT± on E. Moreover, σ(A) = {A9 \ g e GT^}, i.e. the closure of the orbit is the
orbit of the closure. Π

Remark i. For some compact Lie groups, the group of local gauge transform-
ations GT0 is composed of disjoint sectors characterized by topological properties,
for example a winding number. This is not true in general of GTX. In particular
there are local gauge transformations in GTX which do not have a well-defined
winding number. Consequently, there is not in general an absolute minimum in
each topological sector. Π

Remark 2. For Aε A, consider on GT0 the functional

By Proposition 1, this functional extends to a continuous functional on GT±. It is
easy to verify that SA(g) attains a (local) minimum at the identity of G7\ only if
a) dμAμ = 0 weakly,
(b) for every we W0, where W0 is the space of C°° maps from N to G, one has

(dw, dw) - ([w, A], dw) ̂  0 ,

where [w, A]a(x)=fabcwb(x)Ac(x), and fabc are the structure constants of the group
G. If A has further smoothness properties (depending on the dimension of the
manifold N), the bilinear form (dwlydw2) — ([w1,^4],dw2) is closable [and sym-
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metric of a) is satisfied] and therefore, whenever positive it defines a (positive) self-
adjoint operator, formally given in local coordinates by — A — \_Aμ,d^.

This is the Faddeev-Popov operator X[^4].
We shall denote by Ω the subset of A for which a) and b) holds. From its

definition it follows that Ω is closed in A. [Condition a) can be expressed by the
statement that A is orthogonal in A to every gradient vector field.]

Proposition 2. Every orbit of GT^ intersects Ω at least once. Π

Indeed, since SA(g) is continuous in GTί9 it follows by a) and b), that every orbit
intersects Ω at the absolute minimum of SA(g\ whose existence is asserted in the
following statement (which then implies Proposition 2).

Proposition 3. For every sequence {gn} which is a minimizing sequence for the
functional SA(g), there is a subsequence g'n which converges in the topology of GT^.
Let heGT^be the limit. The sequence A9'n converges in the topology of A to Ah. As a
consequence, on every orbit, the continuous functional SA(g) attains its absolute
minimum. Π

Remark 1. Notice that convergence is claimed in the topology of GT^ and not in a
weaker topology. The latter would be a simple consequence of compact
embedding theorems.

Remark 2. Instead of ί2, one could consider the subset A defined by

Λ = {A E ΩI SA(g) attains the absolute minimum at the identity of GTJ.
In view of Proposition 3, A is also intersected at least once by every orbit. From
Proposition 1 and the continuity of SA(g) in A, it follows that A is also closed in A.
(This follows from arguments given in [5].) However, A does not have a simple
characterization in terms of differential operators, and we have no estimate on its
size. Still one can prove [4, 5] that Λ is convex and that the inclusion Ω D A is strict.
Moreover, since Λ is closed it follows that the difference set Ω°—A is open, where
Ω° is the interior of Ω.

Remark 3. Conditions a) and b) are meaningful for every distribution-valued one-
form. One can therefore consider instead of Ω, the subset Ωf of distribution-valued
connections on N which satisfy a) and b). For such distributions one can define the
map (1.1) for all g 6 GT0. However, the functional SA(g) is not defined in general for
AeΩ' [although formally SA(g) — SA(g') can be defined]. As a consequence the
enlarged set Ωf does not appear as a set of local minima of a functional defined on
GT0. Nevertheless, about Ω' one knows that it is convex and one can establish an
a-priori Sobolev bound on the elements of Ω' [3].

2B. Proofs

We shall now prove Propositions 1 and 3. Proposition 2 is a consequence of
Proposition 3. The following simple lemmas will be useful.

Lemma I. // lim \\dgn — dgm\\ = 0 and \\dgn\\ < c Vn, there is a subsequence g'n such

that lim ||gl-gjι=0. Π
w.m-^oo

Proof. Write g = g(1) + <g>, where the matrix <g> is the mean of g(x) over N. From
lldgί^H <c V n and <g£υ> = 0 it follows by Poincare's lemma that \\dg™-dg(v\\ ->0
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implies ||giυ— gj^H ->0 [7]. Since |<gw>| ̂  1, there exists a subsequence g'n such that
<g;> converges. Therefore, Hg^-gJ-^O. Π

Lemma II. Let {gn}, B be maps from N to DxD matrices, with \gn(x)\<c for
all xeN, and \\B\\2 = J \B(x)\2μ(dx)< + 00. Assume that ||gj|-gj|->0. Then

\\gnB-gmB\\-+0. D

Proof. For every ε > 0 one can find a μ-measurable subset K(ε) of N and a positive
constant Mε such that J \B(x)\2μ(dx)<ε and \B(x)\<MB VxeKc(ε). Then

*<β)

$\gnB-gmB\2μ(dx)^4c2 J |5(x)|2μ(dx) + M2 J |gπ«-gm(x)|2μ(^)
N K(ε) Kc(ε)

Since ε is arbitrary and \\gn — gm\\ ->0 by assumption, for every <5>0 one can find
N(δ) such that || gnB - gmB \\ < δ if n, m > ΛΓ((5). D

Proo/ o/ Proposition 1. To prove that GT^ is a topological group it is sufficient to
verify that the action of GT0 on G7\ given by g-»g/ι is continuous in g in the
topology of G7\. To prove this assume that

Mm Ilg π -g | l ι = 0, for gπeGT0 and geG^. (2.2)
rt-»oo

We want to prove that for every heGTί9 lim ||gBΛ — gΛ||ι =0. We have
—

The first term is estimated by Leibnitz's rule and the triangle inequality. The
conclusion follows then from Lemma I.

To prove that (1.1) is a continuous mapping and that σA is closed in A it is
sufficient to prove:
a) If gπ, /zeGTj.and lim \\gn-h 1^ = 0, then lim \\A9n-Ah\\ =0.

b) If lim \\Aβn-Aβm^=09 then one can find heGT^ such that
«,m->oo

4hlim 11^"— Ah || =0, and moreover, 3 a subsequence (still denoted by gπ) such that
w-»oo

lim Us,- A !!! = <).
n-*oo

To prove a) one has, using the triangle inequality,

\\A°«-A»\\ = \\gϊAgn-h*Ah+gtdgn-h*dh\\

^2\\A(gn-h)\\ + \\(g*-h*)dh\\ + \\gn-h\\,. (2.3)

The conclusion follows now from Lemma II.
To prove b), assume that lim ||,4*n-£||->0. Then

-

llrfg.ll = llgίrfg.11 ̂  IIBII + \\g^gj+Rn= \\B\\ + \\A\\ +R,,
where lim -Rπ = 0. Therefore, ||dgπ|| <C uniformly in n for some constant C, and

n~+ oo

since |<gπ)| ̂  1, it follows as in the proof of Lemma I that gn has a subsequence
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(which we still denote by gπ) which converges in GT to he GTt. Arguing as in the
proof of Lemma II, one has

\im\\g* Agn-h*Ah\\=Q.
But then

lim\\gϊdgn-B+h*Ah\\=0
or n->0°

lira \\dgn-gnB+gah*Ah\\=0,
«-* oo

It follows from Lemma I that

and this, together with gπ->/ϊ in GT implies lim ||gπ — gjli =0, and therefore,
7 s~* τ< n,τn~*cogβ-+h in G7;.

Since |gπ(x)| = 1 for all x, it follows that

\\g*dg.-h*dh\\ < \\dgn-dh\\ + \\g*dh-h*dh\\
so that

limllg^-fc^lHO.
But then

B\\Z lim
n~ *• oo

so that B^^. Π

Proof of Proposition 3. Let gn e GTX be a minimizing sequence for 5^(g) = \\A9\\ 2, so
that

UmSA(gJ = mA= inf SA(g). (2.4)
«-*oo geGTi

One has

[̂ (
so that

JI = llg dgj ̂  l|g,MgJI
(2.5)

Therefore, ||dgπ|| is uniformly bounded. From Lemma I it follows that there is a
constant C and a subsequence (also denoted by {gπ}) which satisfies ||gj 1 g C for
all n and converges in the topology of GT to an element heGTt, which also
satisfies PIUSΞC [7]. Therefore, B = Ah is well defined.

Define
Λ = SA(Sa) - SA(h) = SB(un) - SB(Γ) ,

where un = h*gn. We have

u*dun\\2- \\B\\2

-ί),dun) + 2Re(B,dun)+ \\dun\\2 . (2.6)

Notice that /ι*gneGΓ1 and \\h*gn-I\\ = ||g.-Λ||, so that un = h*gn^I in £.
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It follows from Lemma II that

lim ||5(Wπ-/)HO, (2.7)
n~ *• oo

and therefore, the first term in (2.6) converges to zero.
To estimate \(B, dun)\, notice that for every ε > 0, one can find B which is of class

C1 and such that ||JJ-B|| <ε. We have

since \\dun\\ = Hdίft gJII ί \\dh\\ + ||dg
It suffices, therefore, to prove that

lim|(B,ΛO|->0.
W-+QO

Integrating by parts

lim (B,diiJ = (B,d(iill-7)) = (iS,(iiII-/))g \\6B\\ \\un-I\\->09~n~* oo

where δ = *d*.
For every ε>0 one has then, for some positive constant C3,

0^ lim SA(gn)-SA(h)^C3ε + limsup \\dun\\2 . (2.8)
n-+oo n-»oo

Since ε is arbitrary and ||dwπ||2^0, we conclude

limSA(gn)-SA(h) = 0, (2.9)
n~+ oo

lim| |AιJ=0. (2.10)
H~» OO

We conclude that SA(g) achieves its absolute minimum at h.
Notice that from (2.10) one also derives

lim||d g l l-dΛ||=0.
Λ-+OO

We have already proved that there is a subsequence g'n which converges in
L2(JV, μ)N *Ntoh. Therefore, g'n converges to h in G7\ . From this and the continuity
of the action of GT± on A one concludes that Aβn converges in A to AheΩ. Π

3. Extension to Non-Compact Manifolds

We now extend this analysis to the case in which N is not compact and dμ is not of
finite mass. We give the relevant definition and sketch the modifications needed in
the proofs. The spaces E and A are defined as before. For GΓ0 we take the set of
those C°° maps from NtoG which take the value / outside some compact set in N.
We denote by GT the completion of GΓ0 in L^c(N,μ)NxN and by GTV the
completion of GT0 in the topology induced by the seminorms

||u||<"> =ί\du\2μ(dx)+ $ \u(x)\2μ(dX),
N Km

where Km is an increasing sequence of compact subsets which invade N.
One has then

Proposition 4. The statements in Propositions 1-3 hold also for the case in which N
is not compact. Π



298 G. DelΓ Antonio and D. Zwanziger

Sketch of proof. In the proof of Propositions 1-3, all the steps and estimates which
only involve the norm || || also hold now without change [compactness of N is
never used there and convergence in Lfoc together with |gπ(x)| = 1 for all x in N is
sufficient for all estimates].

The estimates which involved both the norm || || and the norm || || { required
compact embeddings, and fail if N is not compact. However, they still hold in every
compact subset K and this is sufficient in view of the following "localization"
procedure, which we give explicitly for the extension of Proposition 3 to the non-
compact case.

Let gyjEGΓj be a minimizing sequence for SA(g), so that

HmSA(gn) = mA = inf SA(g).
n-κχ> 0eGΓι

As before one has

\\dgn\\^2\\A\\ for all n, (3.1)

and therefore, for every compact K one has

$\dgn\
2μ(dx)^2\\A\\2, (3.2)

K

so that one can find a subsequence g'n such that

ί \g'n ~ gmlμ(dx)->0 when m, n-» oo .
K

Using the countable sequence of increasing compact sets Kn and passing to
subsequences one can find a subsequence, still denoted by gπ, which converges in
L2

OC(N, μ)N x N to an element h in L2

OC(N, μ)N x N. Moreover, since \gn(x)\ = 1 for every
x in TV, for each compact K there exists a version of h for which \h(x)\ = 1 for all x in
K. Since (3.1) holds uniformly in n one has J \dh\2μ(dx)^2\\A\\2 so that fceGT;.

ΛΓ

By definition of mA one has

HmlSA(gn)-SA(h)^Q. (3.3)
H->OO

Let B = A\ andun = h*gn.
As in (2.7),

SΛgJ-SΛ/0=s*(*υ^^
From Lemma II it follows that un — I converges to zero in L?oc and \\dun\\ < Cγ Vn.

Choose ε > 0. Since B e A, one can find a compact setKeN and a connection B
of class C1 with support in K such that \\B = B\\<ε.

From Lemma II one has, since \\dun\\ ̂

lim
n— * oo

One has, moreover,

|2Re(B, dun)\ ̂  2C,s + |2Re(δB, (un -
so that

We conclude from (3.3) that

0^ lim [SΛgJ-SΛΛ)] ̂  -2s(C, + C2)+ limsup \\dun
«-*oo
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Since s is arbitrary and ||dwJ2^0 we conclude as in the compact case

KmSA(gn) = SA(h), (3.4)

lim||d«J=0. (3.5)
n—*• oo

From (3.4) it follows that SA(h) = inf SA(g) and therefore, the function SA attains

its minimum on GT±. Moreover, considering the subsequence g'n for which u'n
converges to / in Lfoc, it follows from (3.5) that the sequence u'n converges to / in GTV

and therefore, g'n converges to h in GT{ and A9n converges to Ah in A. Π

Remark. The results described here can be extended also to the case in which μ is
absolutely continuous with respect to Lebesgue measure but the density is only in
Lj1^. Let μ(dx) = ρ(x)dx. Then Propositions 1-3 still hold if one defines GT as before
and GT± to be the completion of GT0 in the topology induced by the seminorms

llg| | ( m )= $\dg\2μ(dx)+ j \g\2μ(dx),
N Hm

where Hm = {xe Km \ ρ(x) ^ m} and {Km} is an increasing sequence of compact sets
which invade N. Π
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