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Abstract. A geometric construction of a certain singular unitary representation of
S0e(p, q\ with p + q even is given. The representation is realized geometrically
as the kernel of a S0e(p, ^-invariant operator on a space of sections over a
homogeneous space for S0e(p,q). The K-structure of these representations is
elucidated and we demonstrate their unitarity by explicitly writing down an
so(p, ̂ -invariant positive definite hermitian form. Finally, we demonstrate that the
annihilator in ̂ [9] of this representation is the Joseph ideal, which is the maximal
primitive ideal associated with the minimal coadjoint orbit.

1. Introduction

The irreducible unitary representations of a semisimple Lie group G fall into two
basic classes; the tempered representations which enter the Plancheral decomposi-
tion of L2(G), and the "singular representations" which form the complement of
the tempered representations in the full unitary dual of G. There are fairly uniform
geometric constructions of the tempered representations that associate these
representations with certain orbits of semisimple elements is the dual of the Lie
algebra of G.

There is no such uniform scheme for constructing the singular unitary
representations. A good geometric construction seems to be the procedure of
Rawnsley, Schmid and Wolf ([R-S-W]) which uses indefinite harmonic theory
to unitarize Dolbeault cohomology. However, the procedure works only in a
narrow setting; it associates most of the unitary highest weight modules to elliptic
coadjoint orbits. Other singular representations have geometric realizations. For
example, the metaplectic representation is constructed by a quantization procedure
known as the Kostant-Sternberg-Blattner method of moving polarizations (see
[B]). There are also constructions using Howe's dual pair picture (e.g., [M]), and
there are constructions using twister techniques (e.g. [E-P-W] and [Nl]). Even so,
most of the success in constructing singular representations has been limited to
singular highest weight representations.
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Singular representations are also of particular interest to physicists. For in
field theories based on a semisimple spacetime symmetry group, the most
appropriate analogs of massless particles have always been singular representations.
Indeed, in such theories, the important property of gauge invariance, which is
inherent to Poincare-invariant field theories involving massless particles with
spin ^ 1, can be generalized in such a way as to include particles of all spin; even
sub-massless, preon-like particles (see e.g., [A-D-F-S] and [F-F]).

This property of gauge invariance is related to the fact that singular representa-
tions have low Gelfand-Kirillov dimension. Let (π, V) be an irreducible representa-
tion of a Lie algebra g on a vector space V9 let υ be any vector in V9 and let ̂ w[g]
denote the subspace of the universal enveloping algebra of g consisting of products
of at most n elements of g. The Gelfand-Kirillov dimension ([Vo]) measures the
"size" of a representation (π, V) in terms of the growth rate of dim(C7n[g] t;) as
tt-»oo. The fact that a representation has low Gelfand-Kirillov dimension may
be regarded as an indication that the representation has some "missing states" in
the same sense as massless particles with spin ^ 1 lack "longitudinal states." And,
like longitudinal photons, these missing states tend to reappear in field theoretical
realizations as pure gauge solutions to the field equations. The fact that the
Gelfand-Kirillov dimension of a singular representation is small may also be
regarded as an indication that the annihilator of the representation in ^[g] is
rather large.

In this paper we formulate a geometric construction of a certain unitary
representation of S0e(p, q); with p + q even and greater than 5. As we will see, the
representation constructed is a small representation of SOe(p, q) in the sense that
(i) it has the lowest possible Gelfand-Kirillov dimension, and (ii) its annihilator
in the universal enveloping algebra of so(p, q) is the Joseph ideal ([J]), the (maximal)
primitive ideal associated with the minimal coadjoint orbit. This construction
includes two highest weight representations of S0e(2, q) which are not amenable
to the Rawnsley-Schmid-Wolf construction ([Z,N2]), and which are also
important physically since they correspond to scalar particles in a conformal field
theory over a ^-dimensional spacetime. Indeed, the unitary structure of our
construction may be regarded as a generalization of the usual Klein-Gordon inner
product for scalar field theories. Also included in this construction is the
distinguished spherical representation of 50e(4,4) discussed by Kostant ([K,K2]).
However, in general, the representations constructed here are neither highest weight
nor spherical representations.

Our construction is geometric in the sense that the representations are realized
within the kernel of a G-invariant differential operator Π' on a space of L2 sections
on a homogeneous space for G. Most importantly, the Hubert space inner product
is given explicitly in terms of operators ^+ and ® _, where Π' = ®+^- Part of
the point is that our construction is elementary in the sense that none of the fancy
machinery of modern representation theory is used. Indeed, the geometric setting
of this construction can be traced back to Dirac ([D]).

II. The Differential Operator Π'

έ
q

yi2- Σ j>p+Λwhere

i = l j=l

the yk are the coordinates of yelR/+<? with respect to some fixed basis. Let
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C = {yeJR.p 9:Q(y) = Q} and C* = C\{0}. We denote the projectivized cone by
X; it is obtained from C* by identifying all points lying on the same line through
the origin. X is a connected (p + q — 2)-dimensional sub variety of (p + q — l)-dimen-
sional real projective space.

The orthogonal group O(p, q) is the group of linear transformations of Rp'*
preserving Q. We assume throughout that 2-ζp^q and 2 < q. 0(p, q) has four
connected components; we let G = SOe(p, q) denote the component containing the
identity.

-i,

is a Carton involution, so the elements of G fixed by σ form a maximal compact
subgroup KoϊG.K is isomorphic to S0(p) x SO(q). G acts transitively on C* and X.

Both the Laplacian

and the Euler operator

β> \ ι .
~~ k =i Syk

are G-invariant operators on C°°(RP'*). One would like to restrict Π to C*;
for, as a general principle, the kernel of such an operator would have a chance to
be an irreducible representation. However, there is no natural way to restrict Π
to C*. We will show that Π nevertheless determines an invariant operator Π' on
functions which are homogeneous of a certain degree.

Let C°°(C*,d) be the space of C°° functions on C* which are homogeneous of
degree dεZ', i.e., f(λy) = λdf(y) for all AeR - {0} and all yeR™. Left translation
by G preserves C°°(C*,d). Since $ is a vector field on Rp>g that is tangent to
C*,<ί restricts to a well-defined differential operator on C*. £>f = df, for all

Proposition. For p + ge2N, and d = 2 -- - — , there is a well defined operator

Proof. Let /eC°°(C*,d) and let F be any C°° homogeneous extension of / to a
conical neighborhood of C*. We claim that

is independent of the extension F when d = 2 — - — -.

Adopting spherical coordinates {r, θί , . . . , θp _ i p, φ 1 , . . . , φq _ 1 } on
Rβ, one finds
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and

2 (& + 4 ~ 2K -- 2 (

where ί2SO(p) (respectively, ΩSO(q)) is the differential operator on R*7 (respectively,
R4) corresponding to the Casimir operator of S0(p) (respectively, S0(q)). When
F is homogeneous of degree d, we have δF = dF. Upon restriction to the cone
(setting r = p), we obtain

dr c*

1
—2 ((d + <? — 2)d — ΩSO(p) + ΩSO(q))F\c*.

If we now set d = 2 , the term involving the derivative with respect to r

P + Qvanishes. Thus, when d = 2 —,

/>-2V ίq-2

is independent of the way we choose F.
p + q

Henceforth, we shall always assume that p + q is even and d = 2 —.

We will now determine the K-types of KerΠ'; i.e., we decompose the
representation of K on Ker Π' (in fact, on all of C°°(C*,d)) into irreducibles.

Let S*-1 and S*"1 be the unit spheres inside R*7 and R4. Sp~l xSq~l c C*
and a function in C°°(C*,d) is determined completely by its values on 5P-1 x Sq~l

(because every point of C* is on a line through a point of S*7"1 x Sq~ί). Thus,

Consider S0(n), the special orthogonal group. It is well known (see, e.g., [Vi],
Chapter IX, Sect. 2) that

' VΛ9 n>2,

«L2(S-^^

αeZ

where Va is the irreducible representation of S0(n) corresponding to homogeneous
harmonic polynomials on R" of degree a and "K-finite" means the functions whose
K-translates span a finite dimensional subspace. Imposing the additional condition

φ( — y) = (— l)dφ(y) we arrive at the following fact: for p + q even and d = 2 — -—-,
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va,b,
dmod2

aeZ+

b = dmod2

= p<q,

where VΛfb =Va®Vb (considered as an irreducible representation oϊSO(p) x S0(q)).
We are now ready to determine 2?κ = (Ker D')κ-rmιte The Casimir operator Ωso(n}

acts on Va by (a2 + (n-2)a)I. Thus, if φeVatb, as in (1), then

Thus,

and we have

Proposition. For p + q even,

a+p/2 =

Va,b, 2 = p<q.

III. The Invariant Inner Product

In order to have a unitary representation we need a Hubert space J^ with a
G-invariant inner product. Here 3? will be the completion of 2tfκ with respect to
the positive definite hermitian form defined below. Most of our work is directed
towards proving the invariance of this form.

Consider the (n— l)-sphere S71"1 and the Casimir ΩSO(n) acting on S""1. Set

on

more precisely, on the K-type Va, @n is a + - 1 . Note that Π' = (βv + @q)(@P - &q)

on C°°(C*,d)Mnite, where Q)p (respectively &q) acts on 5p-1 (respectively Sq~1). Let

(φ, ψ)= f φψdω,
SP-ixSQ-1

where dω is a fixed K-invariant measure on Sp~ί x Sq~l.
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= ((3p + 9q)φ, φ) - (φ, (Sp - Sq)φ) for φ, ψ in

- 1 ± -1 }}φ. Thus if

2aφ, for a > 0

0, for

Remark. For 0eFα>bg^fx, (S)p±^q)φ =

p Φ 2, fflκ = Ker (̂  — 2 ) and the form <, > becomes

When p = 2 we have

for a > 0

, for a < 0,

and ̂  = Ker (9p + 0β)φ Ker (&p - &q). Thus <, > is positive definite.

Theorem. <,> is a positive definite invariant hermitianform on 3tfκ.

By "invariant" we mean invariant under K and for all Xe$o(p,q), the (real) Lie
algebra of G,

Proof. As @p ± <$q are scalars on each X-type, it is clear that <, > is X-invariant.
We may write so(p, q) = I + p; the Cartan decomposition, where f is the Lie algebra
of K and p is its orthogonal complement with respect to the Killing form:

0 B\

'B O/

The isotropy representation of K on p is irreducible, therefore we need to check
(2) for just one element of p. We choose

L =

In spherical coordinates, the action of L on C°°(5P 1 x Sq *) is given by

i 0 -

0 -

0 -

0

• 0

• 0

• 0

• 1

0

0

0
0

0

... o

... i

... o

. . . ό '

We write L = dL0 + Lί where

and
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One can easily check

9ψ). (3)

In order to confirm (2) we shall write down an explicit basis for each K type
Va tb in terms of spherical functions. Let

A = (al9a29...9ap.2)9 α^ ^α2 ̂  ••• ^αp_ 3 ̂  |0p_2 |,

B = (bl9b29...9bq.2)9 b£bι£b2£. £bq-3£\bq-2\9

and set

?/2M

ι̂
where

are the "associated spherical functions" and C* is the Gegenbauer polynomial

cWf ( ir Γ<"-r+A) (2xγ-»C 'WΛ ( 1J Γ(λ)rl(n-2r)l(2X)

(see, [Vi], Chapter IX, Sect. 3).

Lemma.

(a) cos ΘPn

Λ,m(cos θ) = ̂ l̂  [(« - m + 1)PB

Λ+ lιm(cos θ)

n + m-l)PB

Λ_1>m(cos0)].

(b) -s inθP B

Λ , m (cosθ) = — _ [-„(„-„, + 1)P*+ (oosβ)
αt^ 2/ί + 2n

+ (2/1 + n)(n + m + 2λ - 1)P^_ 1>m(cos 0)].

(c) Pim(cosfl)Pj.M(cosβ)(sin0)2A-1dθ = 0 for n*ri.

Each of these identities can be derived from properties of Gegenbauer poly-
nomials.

Note that when p = 2 the form of ψAfB is slightly different. For now we assume
that p φ 2; we will come back to the case p = 2 later. To make the notation a little
easier we let A± =(a± l9a1,a2,...,ap-2), and similarly for B±. Furthermore, we
understand ψA± B± to be zero if A± or B± is not allowable (recall a ̂  av ^ ••• etc.
must hold).

Using the lemma we get:

LψA,B = C + , + *lΆ + ,B+ + C+,-ΨA + ,B- + C-, + ΨA-,B+ + C.t.\l/A-tB-9 (4)
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where

_-(a
+ '+~

_
+ . — —

_
/ \ / \

Ή-OH-O

Note that for V0tb c jf^ we have C + 5 _ , C _ > + = 0 . On easily confirms, using (4) and
the fact that (φ^±B±9 ΦAΈ') ^ ° requires a' = a ± 1,

.tlr) + ((3P

= 0.

When p = 2,

and

v -(fc-
- l L

(5)



Singular Representation 253

As before one confirms:

> ΨA'B> > + <ΦAB> L^A' > = 0.

IV. Reducibility

In this section we give a few more facts about the representations appearing in

Proposition. When p>2, <3ifκ is an irreducible (g, K)-module (hence Jjf is an
irreducible unitary representation of G). When p = 2, JJfκ = MP^

Jjfx and J^κ are irreducible (g. K)-modules.

Proof. When p φ 2 this follows from Eq. (4). Note that for V0tb c tfK9 C + _ = 0 = C _ +
and no C+ + or C_ _ is zero. Thus, one can get from any VΛίb in J4fκ to any other
K-type in Jί?κ by applying L. The situation for p = 2 is similarly restricted by
Eq. (5), which has the form

LφAtB = EψA + fB- + FψA-tB+9 a < 0,

where the coefficients C,D,E, F are never zero. Of course, ψA±,B- = 0 when b = 0.
Thus, all of the Va>b c jfκ with α > 0 are obtained by applying L to V(q/2}_i>0 and
no Vaj with 0 < 0 can be obtained in this way. Therefore, ffl^ ^s irreducible and
invariant. Similarly for tff % . qed.

We may also study the larger representation V = C°°(C*, d). This is a degenerate
principal series representation. In Sect. 2 we determined the K-types, Eqs. (4) and
(5) give the g-action.

Case I: p^2. Vj^κ is the direct sum of two irreducible representations. This
follows from the same reasoning as above; none of the coefficients in Eq. (4) are
zero unless VΛfb c ̂ κ. Therefore, within each of the two regions separated by the

p Q
line α + - = b -f -, L can take any K-type to any other K-type. Furthermore, one

cannot cross the line a + -— l=b + -— 1 by applying L (or g). Thus the
Γ Ί

K-types of the irreducible constituents are <Vaιb:a + -—\>b+-—l> and
\ / ' 2 2 1

p Q \
Va,b

:a + o~ I <b + ~— 1 x Each of these irreducible constituents is unitarizable.

To see this, we first note that the K-in variant inner product ( , ) actually provides
a G-invariant pairing between C°°(C*, d) and C^C*, d-2) (see [Kn], p. 273). Since
Π' is a G-invariant operator mapping C°°(C*,d) to C°°(C*,d — 2), we can give
C°°(C*,d) an invariant hermitian form by defining
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This form is positive (respectively, negative) definite on Va^ aΛ --- \>b-\ --- 1,

respectively, α+-— l < f e + - — 1 1, because if φeVaj we have

Note that J^κ is the null space of « , ».

Case II: p = 2. C°°(C*, d) J^κ has three irreducible constituents. The X-types of
these are the V0jb with

The hermitian form « , » defined above is negative on the first and positive on
the other two.

V. The Annihilator

Let ^w[g] be the elements of degree ̂  n in the universal enveloping algebra of a
00

simple complex Lie algebra g not of type An9 and let gr<%[$] =
n = 0

We note that grtfl[§\ ~S[g], the symmetric algebra of g, which may also be
identified with P(g*), the ring of polynomials on g*. There is also a function

>gr(<%[ci]) defined as follows: for we^n[g] let gr(ύ) be the image of u in
"1^]. If / is an ideal in ̂ [g], then / = gr(/) may be identified with an

ideal in P(g*). The characteristic variety of / is the zero locus of / in g*. We will
identify the ideal in ^r[g] which annihilates 3fκ and see that its characteristic
variety is the closure of the minimal coadjoint orbit in g*. It is in this sense that
fflκ is associated to the minimal nilpotent orbit.

More precisely, we will see that the annihilator of ̂ κ is the Joseph ideal. This
is an ideal constructed by Joseph ([J]) as an attempt to formulate a quantization
procedure for non-polarizable orbits. It is the unique primitive ideal ( = annihilator
of an irreducible representation) whose characteristic variety is the closure of the
minimal nilpotent orbit. This ideal is maximal and completely prime. We will use
the characterization of the Joseph ideal given below. This is due to Garfϊnkle ([G]).

Let S2[g] be the space of homogeneous elements of degree 2 in the symmetric
algebra of g and let β be the highest root of g with respect to some positive root
system. Under the adjoint action of g,S2[g] decomposes into a direct sum of the
form

where F2β is the irreducible finite dimensional representation of g with highest
weight 2/?,£0 is the 1 -dimensional submodule consisting of scalar multiples of the
Casimir operator, and the Ei9i=l9...9k, are the remaining irreducible summands
of S2[g]. (F2β and E0 always appear in the decomposition of S2[g].)
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Theorem. (Garβnkle) Suppose / is any ideal in ^[g] of infinite codimension. Let
I = gr(/\ Then / is the Joseph ideal if and only if

Our purpose now is to show that the annihilator of Jtif is the Joseph ideal. Let
g again denote the complexification of so(p, q) and let (π, W) be the natural
representation of g on Rp'β.

We recall that all finite dimensional representations of GL(W) can be realized
within the tensor algebra Z(W) of W. In fact, the irreducible finite dimensional
representations of GL(W) correspond precisely to the tensors with fixed Young
symmetry (see [W]). This correspondence not only allows one to parameterize the
irreducible finite dimensional representations of GL( W) by Young diagrams, it also
allows one to compute their tensor products from a knowledge of the tensor
products of representations of the symmetric group Sn;n = p + q.

The finite dimensional representations of Q(p, q) can also be realized within
the tensor algebra ϊ(W)ι however, in this case, irreducible representations
correspond to traceless tensors with fixed Young symmetry. To reduce further to
SO(p,q) one must take into account the behavior of a traceless tensor under
reflections. However, for our purpose it will be sufficient to decompose the tensor
product of two copies of the adjoint representation with respect to 0(p, q). (The
adjoint representation of SO(ρ, q) extends uniquely to an irreducible representation
ofO(p,9).)

The adjoint representation of g is equivalent to the representation of g on
Λ2(W), which we denote in terms of Young diagrams by

B.
Using techniques described in [H], it is easy to show that, as a representation of
O(p, q), 9 ® 9 decomposes as

ΠHΘ1Θ φ B.
The first four terms are also the summands of S2[g] c £[g]. In particular,

corresponds to the irreducible representation of S0(p, q) with highest weight 2β and

dimension — , while the 1 represents the trivial representation. Upon

restriction to SO(p, q), the representation

m
is an irreducible representation of dimension . The representation
denoted by

is irreducible and of dimension — except when n = 8, in which
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case it is a direct sum of two, irreducible, mutually contragredient representations
of dimension 35. Thus,

E = I Θ Π H Θ t.
Let us now denote by gtj the components of the metric tensor of Rp'€ and by

gίj the components of its matrix inverse. Let {My = — M^ ; 1 ̂  i < j ^ p + q} be
the basis for so(p, q) in which the commutation relations take the form

[My, Afw] = fitoAfyfc -

(My corresponds to the generator of a (pseudo-) rotation in the i — j plane of JR.p'q.)
The element

Q= £ gίjgklMik®Mβ
i,j,k,l

then corresponds to —2ΩSO(ptq} regarded as an element of 52[g]. The subspace of
corresponding to the representation

CD

is spanned by elements of the form

q', and the subspace of 52[g] corresponding to the representation

is spanned by elements of the form

Sίjkl = My ® Mkl — Mik ® MJI + MH ® Mjk + Mjk ® Mu — Mβ ® Mik + Mkl ® My,

l^ί<j<k<l^p + q. We thus have

E! = span {Sy; l^ί^j^p + q}9

E2 = span {Syk/; l^i<j<k<l^p + q}.

Now let / = ann(jfx), I = gr(/). We aim to show that E09E1 and £2 are in

Now, on C°°[C*,d], so(p^) acts by

y "̂  y - Σ.^ ^ Λ^J* ̂  ~ y$ι*> ~g^

As is easy to check, the operators
jj V*V V^ ,̂ - τ/% V*V T.Λ- T.̂ - V*V V*V T 'V , iΛ- T^V

•^•ijkl = MijMkι — MikMji + MuMjk -\- MjkMn — MβMik -f M k IMy

vanish identically on C°°[C*,d], while
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acts by the scalar λ0 = li ί \ -p - q ]. Thus,

soE2c/nS2[g]. And

so E0c=/nS2[g].
Because / is the annihilator of a representation, /nS2[g] is g-invariant.

Therefore, since Eί corresponds to an irreducible representation of g, to show that
El ci 7nS2[g], it suffices to exhibit one element of E1 lying in /nS2[g]. Now from
(1), it is evident that

- ΩSO(q}

On the other hand, a simple calculation verifies £ Eu = gr(Ξ). Thus, Ex c= /nS2 [g].
i=l

Finally, we note Eqs. (4) and (5) imply gr(Lk)φI k= 1,2,... . From this ob-
servation, it follows that, (i) the annihilator of 2tfκ must have infinite codimension
in ^[g] and (ii) F2β φ /πS2[g]. Thus, we have proved:

Theorem. The annihilator of 3?κ in ̂ [g] is the Joseph ideal.
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