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Abstract. Scattering states of charged particles in a massive Euclidean lattice
gauge model are constructed.

1 Introduction

The particle spectrum of Euclidean Quantum Field Theories on the lattice has
been the object of extensive studies in various models (see [2,10] for references).
Recently, under general assumptions (essentially existence of a transfer matrix and
mass gap), a full construction of the scattering states for particles of the vacuum
sector of those theories has been performed [3] following the ideas of Haag and
Ruelle [7,8]. This work extends the main result of [3], namely the construction of
multiparticle states, to the charged particles of the Z 2 Higgs model whose existence
has been shown in [2]. The construction presented here depends in some details on
particularities of this model but they might certainly be adapted in its essential
tools to other massive models involving charged particles. In the general
framework of relativistic quantum fields the construction of the scattering states of
charged particles in massive theories was performed in [9].

As in [3], the main problem to be overcome is the lack of locality (Einstein
causality) of the real-time evolution. Following [3] we by-pass this problem by
making use of the exponential decay of certain Euclidean correlations, a fact
related to the existence of a mass gap in the spectrum of the Hamiltonian operator.

1.1. The Model and Previous Results

The Έ2 gauge-Higgs lattice model is particularly interesting for testing structural
properties of gauge theories. Detailed results on the superselection sectors'
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structure of its associated quantum spin system in the "free charges" region of its
phase diagram have been obtained in [1] (see also [5]). That work established for
that region of the phase diagram the existence of two inequivalent sectors, the
vacuum sector and a charged one (with associated Hubert spaces here denoted by
J^o and Jf+, respectively). These sectors are believed to be the only existing ones in
this model (in d + 1 = 3 there is also a magnetically charged sector). In [1] charged
states with finite energy have been explicitly constructed and in [2] it has been
shown that corresponding charged particle state exist in J«f+. The present work
completes the next step of showing the existence of multiparticle states with even
(in J^Q) and odd (in if + ) charged particles. Our notation follows [1] and [2]
closely.

The Έ2 gauge-Higgs model has the action

(1)

where σ and τ are Ising fields living on sites and bonds respectively of Zd +1 (d ̂  2),
representing Higgs fields and gauge fields respectively, and where βg and βh are
positive coupling constants. Above δ denotes the lattice exterior derivative:

δτ{p)= Π τ(b), δσ(b)= Π <Φ0, (2)
be dp xedb

where dp is the set of bonds contained in the plaquette p and db is the set of sites
contained in the bound b.

The results of [1] and [2] have been obtained for g: = e~2βg and h: = tanhβh

sufficiently small, a restriction maintained here to provide the necessary conver-
gence of the expansions.

For the quantum spin system associated to this model the time-zero field
algebra is generated by hermitian operators associated to the sites of Έd, σ^x),
σ3(x), and hermitian operators associated to the bonds of TLd, τλ(b\ τ3(b), satisfying
the algebra of Pauli matrices and commuting at different points (the σ-operators
also commute with the τ-operators). The operators σ3 and σx are analogues of the
Higgs field and its canonically conjugated momentum, and the τ 3 and τι operators
correspond to the gauge field and electric field respectively. These operators
generate local and global algebras of fields and gauge invariant observables and in
[1] a translation invariant vacuum state and translation covariant charged states
have been constructed, to which two inequivalent representations of the algebras,
one in space J»f0 and the other in Jf+, are associated.

In algebraic level the euclidean dynamics is generated by an automorphism
defined as the strong limit of local automorphisms implemented by local transfer
matrices, and is interpreted as the action of discrete euclidean time translations. It
is implemented in 3tf0 and in Jf+ by two inequivalent global transfer matrices with
densely defined inverses [1,4].

To simplify the notation we shall denote both transfer matrices by the same
symbol, T, and shall not distinguish the representatives of σ{ and τp irrespective to
which they are acting in J^Q or in Jf+> a n d shall denote then again by σ3(x), τ3(b),
etc. The action of the space displacements by xeΈd is implemented by unitaries
denoted in both cases by U{x),

Real-time translations are then defined in ^(J^ o +) by

(3)

The following important result ([1], Theorem 6.4) has to be mentioned:
For any set of distinct points {xu ...,xn}cZd there are eigenvectors of the

transfer matrix φXι,...,χn£^o o r ^+ (according whether n is even or odd,
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respectively) inducing ground states (in the sense of [1]) with a configuration of
external charges in the points {xί9..., xn}. The vectors φXίtm..tXn are covariant under
space translations: U(y)φXUmmmtXn = φXι^tmmm9Xn^9 VyeΈ*.

The eigenvalues of φXu...tXn are denoted Here by βXlt...tXn- For n = \ we call
βχ = β9 for any x9 by translation in variance.

The importance for us of the vectors φXl)...tXn is the following. The gauge
n

invariant vectors Π σ?»{^dΦ^1 *n

 c a n be interpreted as states of n dynamical

charges located at the points {xl9 ...,%„}. This suggests the use of vectors of the
n

form Π αίi(σ3fe))Φx!,...,xn> after adequate smearings, as approximants for the
multiparticle states, replacing the vectors like φ(x1)...φ(xn)Ω, where φ(x) are
charged fields, used in the standard Haag-Ruelle construction. Charged fields
connecting Jfo and J"f+ are for the model presently not available (but there is an
announced result by Szlachanyi [6]) and here we show how to proceed in this case.
Otherwise the methods of [3] could in principle be used.

The following result on the existence of one-particle charged states has been
established in [2]:

The Fourier transform of the 2-point function

G(xQ, x) = (σ3(O)Φo, U(x)Tlxolσ3(0)Φo) (4)

can be analytically extended for each pe( — π, π]d to a meromorphίc function of p0 in
the region lmpo<ώ(p) with an isolated simple pole at po = iω(p), where ω(p), the
energy-momentum relation of the particle, is smooth and ώ(p) is continuous with
ώ(p)>ω(p)^m, m being the mass gap. The velocity v(p) = gmdω(p) is nowhere
constant.

This implies that there is a closed subspace Jf|1 } of Jf+ (the single particle
subspace) on which the relation

( T - e - ω ( P ) ) | j r i 1 ) = 0 (5)

holds. Here P is the momentum operator, i.e. the infinitesimal generator of spatial
translations,

eίP'*=U(x), sp(P)C(-π,πγ, (6)

and Jf|1 ) is the closure of the linear space

>= \ΨP Ψf=
 u

s\xpp?nsp(H,P)c{(ω(p\p\pe(-π,π)d}Je@(Rd+ί)], (7)

H being the Hamiltonian defined as H = — In T
The results of [1] (and of [2]) have been obtained with the use of polymer and

cluster expansions for the "free charges" region of the phase diagram of the model.
We resume here the most important ingredients of those expansions, since the
results of Sect. 4 make strongly use of them. For details see [1,2]. The polymers are
pairs γ = {Pγ9 Nγ}, where Pγ is a coclosed set of plaquettes, Nγ a closed set of bonds,
γ being closed as a graph, where the graphs in question are constructed in the
following way: The vertices are the co-connected components Pi of Py and the
connected components Nj of Nγ and the edges are pairs {Pi9 Nj}9 where Nj winds
an odd number of times ω(Pf, Nj) around Pt. For general Pt, Nj define

(Pί,ΛΓj) = ( - i r ( P ' ^>. (8)
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For the definition of a polymer model one needs a definition of compatibility
between polymers. Two polymers yuy2 are compatible, y1 ~y2, if no elementary
3-cube has plaquettes in Pyι and Py2 as faces, if no point is a boundary point of
bonds in Nγι and Nγ2 and if co-connected component of Pγι has a odd winding
number with a connected component of Ny2 and vice-versa. They are called
incompatible yl*y2 otherwise.

The activity of a polymer y is

(9)

with (Pr Ny) = Π (Pi, Nj), \Ny\ being the number of bonds in Ny and \Py\ being the

number of plaquettes in Py.
Let χL denote the product of link variables for a set L of bonds. Then one gets

for its vacuum expectation value the expression

< X L > = Σ Λ M exp{Σc Γ μ Γ (β£,M-l) j ( 1 0 )
MeConn(L) [Γ ' j

Above Conn(L) denotes the set of all sets of bonds M with dM = dK; hM = h{M]; Γ
are clusters of polymers, i.e., nonnegative integer valued functions with finite
support on the set of all polymers, μΓ = Π μ(y)Γ(y) (multi-index notation). The

y

coefficients cΓ are the Ursell functions, are of purely combinatorial nature, and
aLM is defined by

fO, if Ny is connected with M,

(Pv LA M), otherwise.

If M = 0 we write au φ = aL.
The following results are often used. One is a remarkable property of the Ursell

functions: if Γ = Γι+Γ2 with yx ~ y 2 for all y1 e suppΓ1 ? y2 e suppΓ2 then cΓ = 0. The
other are the following estimates:

(12)

•, i i . \ 11 f i 11 / '

for ||μ|| =sup y |μ(7)| 1 / | } ) | = max{/ί,g}; where ||μc | | is a fixed constant with
F Λ - l n H μ J K o o ; where | |Γ| | = ΣΓ(y)M for M = | P y | + |iVy|, and where Fx is a
monotonically decreasing function (see [1], Appendix). The convergence of sums
like (10) follows from (12) together with \{M:Me Conn(L), \M\ ^n}\^ \L\ (Id +1)",
for h small.

2. The Construction of the Scattering States

Let £ ; denote the Spectral projections of T and define h(T)= J h(λ)dEλ, where
(0,1]

/zeC^CO,!]), 0^h(x)<*l, X E [ 0 , 1 ] , with ft(e-y) = l for 0^y^yu h(e-
y) = 0 for

J 7 ^} 7 ! f° r y2>yi- For the construction of n-particle states we shall need
y1>n-sup {ω(p), pe( — π, π]d}, the Maximal energy of a rc-particle state. Below we
shall mostly use g(x): = h(x)2.
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We consider the one-particle states written in the form

Ψf=Σi dtf{s\x, t)h(T)at(σ3(x))φ, (14)
x

with

f{s\x,t)= ( 2 πy,+i)/2 ίdpJ'(P,P0)e-iP0t-i(ω(ε)-''0)s+iεis, seK. (15)

For Je S)(JRd+*) we define the velocity content of supp/ as the set of values of
the group velocity associated to it:

7(7) = {gradω(p), (ω(p), p) e supp?nsp(H, P)}. (16)

The functions f(s) have the following decay properties (see [12]):

Proposition 1. For f{s) as in (15) with Je@(Rd+ί) we have:
a) For all Ne¥ί there are constants CN>0 so that

ί + lslΓd'2(i + \t-s\rN (17)
uniformly in x.
b) There exists a positive constant C so that for every s,

Σ ϊ dt\fsXx,tMC(l+\s\f2. (18)
seZά -oo

c) For all L, M, N e N there is a positive constant CL M N so that, if for all s with
\s\>ί,

( j | ^ δ (19)

for some constant δ>09 then

l/ ( s ) feί)I^C L , M > N (l + | S - ί | ) - L ( l + | S | )- M ( l + | χ | ) - ^ . (20)

To follow the Haag-Ruelle construction we propose to use the vectors

ψfι,...,f„(*)••= Σ Sdtι...dtn n JΪM\sbtd(βtι.....J-u"

x/t(Γ)αtl(σ3(x1)) Π h(T)\(σ3(xj))φXi Sn (21)

as approximants for the scattering states for s-> + oo. We have

d

ds
= Σ Σ Σ \άtv~άtndt\-dϊn

k,k'=l Xί,...,Xn X\,...,X'n

x Π f$(Xi,ti) Π fl:l.(x'pt'j)F(x,x',t,t'), (22)
ί = 1 i — 1

where
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and

j o } | * , X j.Π g(T)αίι(σ3(x/))|

(24)

The main result is the following Theorem:

Theorem 1. Let {£•}• = !C®(R d + 1 ) with {Ψfi}
n

i=1 C^ ( 1 ) , ^ Φ O , and with non-
overlapping velocities: V(fynV(J ), i + j . 77ιen:

i) For eαc/z n e N ί/ιer£ is α positive constant Cn so that for all seIR,

ds

ii) The strong limits

\-T£ / \ ^ S~*i / A . \ \ \ M / ^ ^ \

lim 5/

/l!...,/n(s') (26)
* ± oo

in JfJ) or J f+ (according with n being even or odd respectively) and the
convergence to the limit vectors, denoted respectively by Ψ°/^n.ifn is faster than any
power in s for s-> + oo respectively.
iii) For ψfu,..,/k, Ψgi,...,9n as given above then

η ί

where the sum is over elements η of the permutation group of {1,...,/?}.

Remarks. Above, ii is an immediate consequence of i. The proof of part iii will not
be given here since, as in the relativistie case, it follows the ideas of the proof of part
ii. Parts ii and iii establish the existence of asymptotic particle states and the
statistics of the particles (bosonic in this case).

Definition 1. To simplify the notation we introduce the ordered sets

(μί,. .,μn,μn + 1,...,μ2n)'. = (C- ;t/utw',tn) (28)
and

( ? 1 J •• 5 ? π 5 ? n + U •• 3 ? 2 « ) : = = fen • • • J ^ I J ^ I S • • • ? £ « ) > ' ( 2 9 )

and write

(30)

Definition 2. We denote by σ set of all partitions of {z1? ...,z2n} into ordered pairs
such that

i 6 σ=>i = {fe1? ziπ + 1), (zί2, ziπ + 2 ) , . . . , (zjn, z/2π)} (31)

with ίae{l, ...,n} and zπ+αe{n? ...,2n} for all α, 1 ^a^n.

Proof of Theorem 1. One starts with the following result on clustering properties
of F(x, x', t, ί'). The proof is given in the next subsection.
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Theorem 2. For F(x,x',t, t') as above there are, for each qe¥S, positive constants
c'a,q, ltίa^n so that

n~1 ί l + llίll)ββ

\F(x,x\t,t')-G(x,x\t,t'U βΣ c'a,q ( 1 +

l

D ( 2 ) ' ^ - 1 ) α ? (32)

with

for

wheri

G(x,x',t9t'): =

e \\t\\ : = max \μ

D[2\z) = D[2

ί έ Ί
\a=l

i — μj\ and Wi

>Z2n)'

3 ( ^ ,

here

= min{

b=ί

n

c= 1

0<a<n,

7 \ Ώ^iΎ
->z2nhU?> \Z1

) (33)

(34)

(35)

with

Dψ{z)=Dψ{zu...,z_2n):= min {\x'a-xb\}, (36)
a,be{l, ...,n},a=tb

and

D<iXz)EEDfXzί,...,z2n): = mm ίmin {\xa-xb\}, min { |x;-xiin. (37)
\a±b cΦd j

n n

Replacing (32) into (22) and using that £ Π (ψf- * Ψf- J = °> s i n c e t h e V/
osP k,k'=H=l

are independent s; we get

^ c o n s t Σ Σ Σ ldtv~dtndt\.-dtf

n

k,k'=l xι,...,xn x\,...,x'n

x Π \f{ftxi,td\ Π l^)-(^ί})lΣc;(i
i = l 7 = 1 α = l

(38)

and from this the proof of Theorem 1 is completed by making use of the decay
properties of the functions f(s)(x, t) (Proposition 1) and the fact that they represent
a set of wave functions with non-overlapping velocities, in complete analogy with
the relativistic case (see [3, 8,10]). •

2.1. Proof of Theorem 2

The first step to the proof of Theorem 2 is to approximate g{T)Tiμ by polynomials
on the transfer matrix, following ideas of [3,10]. This is possible since g(T)Tίμ, in
contrast to Tiμ, is norm continuous in T. Using Chebishev polynomials for the
approximation we write for μ e R ,

V) ; (39)
where

= Σ a%\μ)Tm= Σ h(μ)Tn(2T-ί) (40)
0 0
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is the approximating polynomial of degree N and the rest R{N\μ) is given by

R™(μ) = j &N\Kμ)dEλ, with &N\λ9μ)= Σ bn(μ)Tn(2λ-ί). (41)
(0,1] n>N

Above Tn(-),ne¥l, are Chebishev polynomials Tn(x): = cos (n arccos x), x e [ — 1,1 ]
and

t V ι > l n c o s α + 2 l " α ^. (42)
-π/2

Relation (42) comes from the fact that Chebishev polynomials form a complete
orthogonal basis in L2([ —1,1], (1-x2)~1 / 2rfx) (see e.g. [11]) and the second
equality in (40) is the defining relation of the α^'s in terms of the bn's (see also the
Appendix). The two following lemmas hold:

Lemma 1. For the a^'s given in (40) there are functions Λ(oc) > 0 and C(α) so that forα-°'
7*(μ):= Σ I Λ Φ " " 1 (43)

« = o
/zαs ί/z£ bound yN(μ) ^ C(α)e^(α)iV uniformly in μ e ]R, /or αZ/ JV e N. W^ cα^ choose
v4(α)-2argsinh(e"α/2) αnrf C(α) = 2(^ ( α ) )/(^ ( α ) - l ) .

Lemma 2. For ^{N\λ,μ\ iV^l, μelR defined in (41) ί/z£r£ is /or each
/ C so Λ

The proofs are given in the Appendix, see also [10, 3]. Replacing (39) into (30)
we get F(x, x\ ί, t') = FE(x, x', t, t') + FR(x, x\ t, t'\ where

F^X, χ\ t, t) = Σ 2\\ <\μa- μa+i)/fe {nj}) (44)
« 1 , . . . , « 2 n - 1 = 0 α = 1

for

Hz,{nj}):=[Φtl.....Sn,\ Π σ3(zI.)T« | σ 3 ( z 2 n ) ^ + i , . . . ; S 2 n ) , (45)

and

FR(x9 x', ί, ί')

J B c { l , . . . , 2 n - l

w h e r e ,o ^ J ^ ω if a e β '
^ ^ ) W if aφB, ( 4 7 )

for any 5c{l, . . . ,2n — 1}. The terms in the sum in (46) are called rest terms since
they contain at least one factor R(N)(y) in the scalar product. The right-hand side of
(44) will be called Euclidean term and will be object of an detailed analysis in the
next sections.

The proof of Theorem 2 follows after the two following lemmas:

L e m m a 3. For each g e N there are positive constants caq so that

(48)
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Lemma 4. The approximation of FE(x, x\ t, t') by G(x, x\ ί, t') is governed by the
following estimate:

fc, A, α and the cβtβ's being positive constants(A = 2(2n— l)argsinh(l)J.

The proof of Lemma 4 is much more involving and shall be the subject of the
next section.

Proof of Lemma 3. We majorize the sum over the rest terms by

Σ ΓΠ ll# ( Λ%^-μ«+i)lΠΓΠ ll£(ΛrV*-μ*+i)ll I, (50)
flc{l,...,2n-l} [αeB J [_beBc

where Be = {l,...,2w-1}\B. Using the simple bound \\Em(μ)\\ = \\g(T)Tiμ

-R(N)(μ)\\ ^ 1 + \\R(N)(μ)\\ we majorize (50) by

1} aeB

*-!) Σ Π — μ L - μ i a + ί ^ Σ gα,J-r
BC{1,...,2«-1} αeB iVy

 fl=l |_ JΛ
JBΦ0

cflf€ being positive constants, where in the first inequality above we made use of
Lemma 2. •

To complete the proof of the Theorem 2 take N =[_ε{\ + Dψ{z))~] for ε
sufficiently small (0 < ε < a/A), where [ ] is the lowest integer function. Then (32)
follows straightforward from (48) and (49) for noew constants c'aq. •

3. Proof of the Lemma 4

The following theorem is the technically central result of this work.

Theorem 3. For g and h sufficiently small one has the following Euclidean clustering
property:

l/fe^-Jfex',^})^^-^2^, (52)
where

J(x,x',{nj}):= ft (σ3(x'a)φx,,T
E^σ3(xa)φJ (53)

with

E(a)= n+ΣX nh9 (54)
b=n-a+ί

for some k, α > 0 (depending on n, βg, and βh).

The proof is given in the next section. A stronger decay than that implied by
(52) can be obtained with more work, but (52) is enough for our purposes. Defining

(55)
n- 1 = 0 a= 1
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and using the result of Theorem 3 and (44) we get

\FE(x,x\Ut')-H(x,x',t,tf)\
N 2 ι i - l

«1> . . . , « 2 n - 1 = 0 a— 1

where the last inequality follows from Lemma 1, taking Λ = (2n —1)^4(0). The proof
of Lemma 4 is then completed with the following lemma, which together with (56)
implies (49):

Lemma 5.

\H(x,x\t,t')-G(x,χ\U01 ^ " l c'a%q ^*J-l?a I (57)

Proof of Lemma 5. We start from the identity:

J(x,x',{nj})= ((§) σ3(x'a)φx,, <g) T™ (g) σ3(xc)φx\ (58)
\ α = l 5=1 c=l /

Now we write

έ τ£<&>= "π (rn-eγ< π ( ^ , - / 2 " - d = ' π 1 (^ΐ,-.ι)" , (59)
b = 1 c = l d = 1 έ i = 1

where ?Γa is defined in Theorem 2. Hence, in analogy with (39) one has

Σ 2"Π aZ\μa-μa + 1) (§) T£<b>
« i » . . . , « 2 n - l = 0 a — I b=l

= 2"n Σ fl4>β-Atβ+i)(^,,-β|)"-
α = 1 n α = 0

= ΐ Γ {g(^ π - α | )(^ π _ ι l | )
ί < '" -'" + 1 > - ^ A ' > } 5 (60)

α = 1

R{N) representing the rest terms. Expanding the product in the right-hand side of
In- 1

(60) one gets Π g(^~\n-a\)(^\n-a\)ι{μa~μa+ί) p l u s terms containing at least one
a= 1

factor R{N\ which are bounded as (48) since \\g(^a)^a

iμ\\ ^ 1 . Finally note that

Π (&\n-a\)ίiμa~μa*ί)= ( g ) τ ( Σ ; i l ί - ^ i ί ( ^ ~ ^ L i ) ) = (g) τ ί ( ί ^ ί b ) .
α = 1 & = 1 b=1

This proves Lemma 5. Π

4. Proof of Theorem 3. The Euclidean Clustering

The first step is to express I(z, {rij}) in terms of cluster expansions (see [1]). There
are two cases to consider: n = even and n = odά.

4.0.1. The Case n = even. According to [1] (see the proof of its Theorem 6.4) the

vector states φglt...,zn

 a n d Φzn+ί,...,z2n

 c a n ^ e strongly approximated by

Mτ3(Ai....,»}))β||αίp(τ3(Ai.....»}))β|r1 (62)

(Ω e JΊf0 is the vacuum vector) and

1 (63)
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respectively, with p, qeTN, where, as in [1], τ3(B):= f] τ3(&), for a set of bonds
beB

BeZd, a n d where L { 1 π) a n d L{n+ίf2n}cZd a r e s e t s of time-zero b o n d s with
SL{u_n] = {zu...,zn} and dL{n+u_2n) = {zn + u...,z2n}. Then I(z,{nj}) may be
expressed as

σ 3 (z 7 ) T ^ σ 3 ( z 2 χ ( τ 3 ( L { l l + 1 2Π}

= lim < χ K p , 9 > < χ L p , p > ~ 1 / 2 < χ L 9 , g > " 1 / 2 , (64)
p,q^>co

where

LJ
- l 2 « - l |

U T^(Σna,q+ Σ na u U + Σ nΛ,L{M + 1 , _ 2 π } (65)

+i \ i i /j (v 1 yj
and

J T<^(-p,p)|u{(p,L{1 n})} (66)

and
~ InΓ P^{»+1.....2»})}> ( 6 7 )

where {(—p,L{1> >M})} is the set of bonds L { 1 π} placed on the Euclidean time
hyperplane at time — p and T{x)(a, b) is the temporal line joining the points (a, x)
and (b, x) (for a ̂  b). The right-hand side of (64) is given in terms of the cluster
expansion by

Σ /*Mexp (1/2 Σ cΓμ
Γ(aΓ

KP,q>M + aϊKP,q,ΘM-a[-P,P-aΓ

L-q,q)], (68)
MeConn(KP'i) [ Γ J

where θ is the reflection on the (x° = O)-hyperplane (see [1]), from which the limit
may be taken directly and is given by

Σ 7 A/f f A /'Λ X^1 7™1/ T T Γ T* \̂ ) /f ί\\

n exp )i/Z^ cΓμ \βκ,M*aθκ,θM~aLι~aL2)\> \P^)
MeConn(ί:) [ Γ

where

with

K= lim Kp>« and Lt = lim Lr^\ i = l ,2, (70)
p,q-*co p->oo

n 2/ι

Lt = (J Mz., L 2 = (J M Z ι , M x = T ( ϊ )(—oo, oo). (71)
ί = l ~ l i = « + l

Note that dK = {zu ...,z2 n}cZd + 1, with

,Ϋ ";)• (72)

so Conn(X) depends only on {zί9 ...,z2n}.
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4.0.2. The Case n = odd. In this case, according with [1] (see the proof of its
Theorem6.4), we can approximate strongly φZu...iZn and φgn + ί,...,z2n by

αίp(τ3(ί?{i.....»}))ΦollMτ3(ί?i.....π}))0oll"1

and

α ί β ( τ 3 ( £ V i , . . . , 2 ^

r e s p e c t i v e l y , w i t h p , qe¥ί, dl9{Ummmtn) = {zl9...9zn}A0 a n d dl9{n + l

{ }{ }
As in the previous case we express the scalar products in terms of cluster

expansion and after taking the limits p9 q^cc we write /(z, {rij}) as

Σ /zMexp fl/2 Σ c Γ μ Γ « M + α ^ Θ M - α ί 0 ,-<£„ 2)aΓ

Mh (75)
MeConn(K) [ Γ "' "j

where L0 ) i = L|ZlM0.

Definition 3. The sets Conn(K) occurring in (69) and (75) can be decomposed into
the disjoint union of three sets: Conn(K)=V°+ V1 + V2, where

V°= <M M e C o n n ( K ) , M = Q Mi9 Mt - Mp i + j , so that for

all Ϊ, 1 S i^ n: dM{ = {zaι, zbί} for some zflι, zfti e {zl5..., z2n}9 at φ 6f,

with zα ί6{x1 ;...,xn} and z^ejxΊ, ...,x;} >, (76)

Vι= <M MeConn(X), M = (J Mf3 M f - M ; , / +j9 so that for
i l

all/, 1 ̂  f̂  n: δM^ = {zβι, zbι} for some zβi, zftι e {zί9..., z2 ς}, αf φ bf,

but with {zflι, z b j C {x1?..., xπ} or {zflι, zfti} C {x^,..., x'n) (77)
and

= <M ME Conn (K), M= Q Mί? M^Mp iφj9 f <n and

|<3M;| > 2 for some i, 1 ̂  ΐ ̂  / >. (78)

Definition 4. To simplify (69) and (75) define

and for later purposes, for MjCMe V°,

A(Γ, Mp 1): = [ α ^ , Mj + aΓ

βκj,eMj - aΓ

L] -1 ] β ^ , (80)

with the simplifying notation aΓ

x for α^ x and with

, (81)
and

J \ 1=1 / \i=i

w h e r e r M ^ ; ^ , : ^ } w i t h z Λ j G {X\, . . . , x ' n } , z h j e { x l 9 . . . , x π j .
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We have the following result, which holds for both n even or odd:

Proposition 2. There are constants fe, k\ α > 0 so that

and

hM

hMexp fl/2 Σ cΓμ
ΓΛ(Γ,M,n)\\ ^

\ Γ

ΣcΓμ
ΓA(Γ,M,n)

(83)

(84)
MeV2 C Γ

where D(4)(zί9 ...9z2n) is the length of the smallest "minimal tree" of bonds joining
four elements of {zu...,z2n}cΈd+ί.

Proof. The proof uses standard techniques of cluster expansions, by showing with
the use of (12) that both for (83) and for (84) one has

ΣcΓμ
ΓA(Γ,M,n)

r

for a constant A(g,h). For (83) we observe that the left-hand side decays
exponentially with

mini min {\za-zb\}, min {\zc-zd\}\, (85)
[a,be{l,...,n},a*b c,de{n+1,..., 2«},cΦd j

which has Df\zu...,z2n) as lower bound. •

Let us now concentrate on the sum over M e V°. We have to establish the
exponential decay of the difference

= Ά{z_tfZt {π^ΞT 1)' = Σ hMexp f 1/2 Σ cΓμ
ΓA(Γ,M,n)

with

- Σ Π (σ3(zia)φίia,T
N^σ3(ziaJφZtaJ

ieσ a= 1

N(i,a):=

Theorem 4. There are positive constants k and α such that

(86)

(87)

(88)

n

Proof Each Me V° is composed by a disjoint union (J My We write
7 = 1

Γ= Σ
where

Γ n

Ξ(M, ri) = exp fl/2 Σ cΓμ
ΓA(Γ, M, n)\ - exp < Σ 1/2 Σ -

\ r J 0=i r

with

(89)

\Mp\)\ (90)

l/2ΣcΓμ
ΓA(Γ,Mpl)\ (91)

Γ l

where, for ί e σ,

M = U Mβ, with dMa = {zia, zin+J, 1 ̂  a ̂  n, with
α = l

for some (α,fr), α=f=ί?>.
(92)
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In analogy with Proposit ion 2, R{zγ, ...,z2n) has the bound

\R(zu...,z2n)\^ke-«D(4)^->^\ (93)

for constants k and α. Due to this fact we consider only the sum over M e V° in (89).
First define

<9(M, n) = 1/2 Σ cΓμ
ΓA{Γ, M, n), (94)

r
where

A{Γ,M,n): = A(Γ,M,n)- Γ Σ Λ(Γ,M,, 1)1. (95)

The following question has to be considered: what is, for each MEV°,SL sufficient
geometrical condition on Γ for zl(Γ, M, rc)φθ? Write

A(Γ,Mpl) = aΓ

shMj + aΓ

ΘSlΘM)-aΓ

Za~aΓ

Σhι, (96)

where dMj={zaj, zbj}, Sj: = KjAMZaj. Then the clusters Γ of interest are of two
types: a) Γ is formed by polymers which wind around only one of the sets Ŝ  uMy,
say SauMa, (eventually with Γ^Ma), so that

(97)

b) Γ violates condition a), which means that Γ winds around at least two sets SjuMj,
say 5 c u M c and SdκjMd, c + d. By a geometrical reasoning this implies that

\MC\ + \Md\ + 1/2||Γ|| ^D^\dMcudMd). (98)

It is easy to check that a) implies A(Γ, M, n) = 0. So the clusters Γ contributing
to (94) satisfy (98). By (13) this implies the following bound:

kexp <| In ί ~~-1 Γ2 min (D (4)(<3McudMd)- \MC\ - |Md|)1

2 In -p-Ji- [D ( 4 )(z l 9 . . ., z 2 n ) - |M|] ^, (99)

since \\μ\\^\\μc\\, min £><>M cudMd)^£> ( 4>(Z l, ...,z2n) and \M\^\Mc
Mc,MdCM

Above k is a positive constant. Let us return to (90).

Proposition 3. For α, keIR one feαs | e f l - β & | ^

Proo/. First, for x^O one has ( 1 - e ~ x ) g 8 1 / 4 x 1 / 4 . To see this note that \-
So

Now (\-e-χ)^]/2x112. Therefore

(l-e
So



Scattering States of Charged Particles 189

Taking a = ί/2ΣcΓμ
ΓA(Γ9M,n)9 ft = 1/2 £ ΣcΓμ

ΓΛ(Γ9MΛ) with a-b
Γ j=l Γ

= Θ{M, n) and using the fact that both \a\ and |fe| have A\M\ + B as upper bound,
where A and B are positive and independent of M, we conclude from Proposition 3
and (99) that

? In

for some constant k. Therefore

D«>(Zi,...,Z2»)/2

MeV°
hmΞ(M,n) eAh

- l/2\ |M|

(100)

(101)

According with [1], ||μ|| =max(g,/z) and one has

(102)

In (102) one sees the need for the exponent 1/4 in Proposition 3. Hence by choosing
h small enough the sum in (101) becomes uniformly bounded on {zl9 ...,z2n} and
we conclude

D«)(zu...,Z2n)/2

MeF°
hMΞ(M,n) ϊk<

II μj/
(103)

which together with (93) proofs Theorem 4. •

Now we complete the proof of Theorem 3. Joining estimates (83), (84), and (88)
we establish that

ieσ a= 1

(104)

since D(

3

2)(z1?..., z2n) ̂  D(4\zu ..., z2n). From the cluster expansions, or equivalently
from the existence of a mass gap, one has

Σ Π
ieσ a= ί

a= 1

(105)

which finally proofs Theorem 3. •

5. Appendix

Here we present the proofs of Lemmas 1 and 2.

Proof of Lemma 1. According with (40) we have

N

(106)
x = 0

We use the fact that TJ2x - 1 ) = T2m(x1/2), which follows from the identity Tm{Tn{x))
= Tn m(x) and from T2(x) = 2x2 — 1. Applying the explicit polynomial form of Tn(x)
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(see [11])
[n/2] f n \ s /Λ

Tn(x)= Σ L Σ (-l)V-2^, (107)

s = o \2sJ q = o \qj
we get

N m (Ίm\ ί S \

aiN\t) = (-l)» Σ bm(t)(-ψ Σ L _ (108)
m = n s = m~n \^S / \m YIJ

So we have

N N m ί2m\ ( s \ N

y*m Σ e~m Σ IU0I Σ L = Σ IMOIAΠ, (109)
n = 0 m = n s = m-n \ ^ J \ ^ ^ / m = 0

where

μm = e~am X eα
m m

s=k \2sJ \kj

The right-hand side equals

l/2{(^"α/2 + | / l + e " α ) 2 m + ( ^ ~ α / 2 - l / l + e " α ) 2 m } = cosh(2rnb)<^ ( α ) m, (111)

for b: = argsinh(β~α/2) and v4(α) = 2argsinh(β~α/2). Since \bjt)\^2 using (111) we
get easily

/ 2eA(a) \

l ^ . D (112)

Proof of Lemma 2. Using | Tn(x)\ rg 1, Vx e [ — 1,1 ], we have

l

Taking (42), using the identity

^ (114)

integrating by parts and using smoothness of g( ) it is possible, for each q e N, to
find a constant Cρ, depending on the function g( ) but independent of n, so that
\bn(μ)\SCqn~q(l + \μ\)q holds1. The lemma follows from (113). •

Acknowledgement. I am indebted to Klaus Fredenhagen for the suggestion of this work and for
valuable hints and discussions.

1 Using stationary phase methods a sharper estimate for \bn(μ)\ can be found, which is
nevertheless not so useful for our purposes and more difficult to handle
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