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Abstract. We compute the branching rules of the conformal embeddings SO{4nk)1

DSp(2ή)kφSp(2k)n and SO(rq)ι DSO(r)q®SO(q)r for rq even. Using this we prove
that the affine algebras Sp(2n)k and Sp(2k)n have the same S matrix and modular
invariants. As a second application, we show how the triality of SO(8) leads to an
exceptional modular invariant for SU{2) at level 16 and for all SO(q ̂  4) at level 8.

1. Introduction

An important class of conformal field theories (CFT) [4] is provided by the Wess-
Zumino-Witten (WZW) models [35]. They are characterized by the presence of a
Kac-Moody (KM) symmetry [19,17]. The WZW models lead to many other
CFT's through the Goddard-Kent-Olive coset construction [16]. Examples are
the minimal unitary Virasoro models [10] and the N = 2 superconformal theories
[23]. The latter have been used as building blocks for the internal sector of
4-dimensional heterotic strings [13, 23, 9]. The classification of modular invariant
partition functions for Kac-Moody algebras is thus also important for string
phenomenology.

Several authors have recently pointed out intriguing relations between a priori
rather different KM algebras. Kac and Wakimoto [22] showed that Sp(2ή)1 and
SU(2)n (= Sp(2)n) have the same modular S matrix (the subscript is the level; all the
algebras considered here are untwisted). Walton [34] computed the branching
rules of the conformal embeddings SUirήkφSUik^cSUinkjj^ and observed that
the modular invariant partition functions of SU(ri)k are naturally related to those
of SU(k)n. Considering the same conformal embeddings, Altschuler, Bauer, and
Itzykson [1] expressed the S matrix of SU(ή)k in terms of that of SU(k)n. These
embeddings were systematically used in [33] to obtain new exceptional modular
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invariants. Naculich and Schnitzer [26] derived relations between the holo-
morphic blocks of the four-point functions of SU(ή)k and SU(k)n. It was observed in
[1, 25,12] that there is also a duality for the ratios SOt JS00 for the following pairs
of theories:

SU(ri)k and SU(k)n,

Sp(2n)k and 5p(2fc)π,

SO(r)q and SO(q)r.

Here, we use conformal embeddings to investigate the relations between some
of these KM algebras. Using the branching rules of

SOiAnk), DSp(2n)k®Sp(2k)n, (1.1)

we show that the S matrices of Sp(2ή)k and Sp(2k)n are exactly equal, a stronger
result than the equality of the ratios Soλ/So,o The conformal dimensions are also
closely related, and this allows us to prove that these two theories have the same
partition functions. The isomorphism between representations is given by the
transposition of the corresponding Young tableaux.

We also compute the branching rules of the conformal embeddings

SOirq^DSO^φSOiq), (1.2)

if rq is even. Here the number of fields of SO(r)q and SO(q)r is different, and the
relation between the S matrices is not as simple as in the previous case. We will thus
instead concentrate on the construction of modular invariant partition functions.
A method due to Bouwknegt [6] indeed allows one to compute a modular
invariant of fi from modular invariants of fϊ and g if the branching rules of the
conformal embedding ^K'®K are known.

Many modular invariants have already been constructed for KM algebras[15,
5, 30, 8] but the only algebra for which a complete classification exists is ST7(2)
[14, 7]. In [33], we developed a computer algorithm that finds all modular
invariants of a Kac-Moody algebra provided the rank^jhe level and the
coefficients are not too big. One of the results was that the SO(q) (4 ̂  q ̂  11) have
an exceptional invariant at level k = 8. We conjectured that this is true for all SO(q)
and we also suggested that this is related, through (1.2), to the triality of 50(8). We
show here that this is indeed correct and we derive this exceptional invariant.

The paper is organized as follows. We derive the branching rules for (1.1) and
prove the equality of the S matrices and modular invariants ofSp(2ή)k and Sp(2k)n

in Sect. 2. We compute the branching rules for (1.2) in Sect. 3 and in Sect. 4 we
construct the exceptional modular invariant of SU(2)16 and SO(q^4)8. Section 5
is a short conclusion.

2. Duality Between Sp(2n)k and Sp(2k)n

The Kac-Moody algebras Sp(2ή)k and Sp(2k)n have the same number of primary
fields: (n + k)\/nϊkl To relate the transformation properties under τ-> — 1/τ of the
characters of these theories, we use the fact that they appear jointly in the
conformal embedding (1.1). We denote by χΛ(τ) and χΛ(τ) the characters of the
integrable representations of S0{4nk)1 and Sp(2k)n, and by SΛΛ. and Sλλ, the
corresponding 5 matrices (to simplify the notation, we use the same symbols - but
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different indices - for the various characters and S matrices that appear). S is
always symmetric and is real if the associated^Lie algebra has onh^elfcontragra-
dient representations (this includes the Sθ(2n + 1), £p(2n), and SO(4ή) algebras).

The integrable representations of SO(4nk)1 reduce as follows:

x

where the branching functions bλ

Λ{τ) are linear combinations (with constant
coefficients) of the characters oϊSp{2n)k. Transforming τ-> — 1/τ in (2.1) and using
the unitarity of S, one finds:

bλ

Λ(-ί/τ)= Σ SΛΛ,SuK(τ). (2.2)
Λ',λ'

The rest of this section is as follows. We first compute the matrix SΛΛ> oϊSO(4nk)v

We then derive the decomposition formulas for the representations of this algebra
(Eqs. (2.31-32) and (2.35-36)). Inserting these results in Eq. (2.2), we show that with
the appropriate identification of representations, the S matrices of Sp(2ri)k and
Sp(2k)n are equal. We also prove that their partition functions are in one-to-one
correspondence and finally we deduce a few new partition functions.

SO{4nk)1 has four integrable representations: o, v, +, — which have respec-
tively the identity, the vector and the two spinor representations of SO(4nk) as
ground states. The S matrix is easy to compute since v, +, and — are simple
currents [11, 30]. A simple current is a primary field whose fusion product with
any other primary field consists of only one field. Here,

The other fusion rules follow from the commutativity and the associativity of the
fusion product.

It has been shown in [31,18] that

S =g2πiQj(b)s (2 4)

where Ja is the fusion product of J and α, and where the "charge" Qj(b) (which
characterizes the monodromy of the field b with respect to the simple current J) is
defined by:

Qj(b) = h(b) + h( J) - h(Jb) mod 1. (2.5)

The conformal dimensions are given by:

h(o) = 0, h(v) = l/2, h( + ) = h(-) = nk/4. (2.6)

The S matrix of SO{4nk)1 is thus:

(2.7)

with ε = (—1)"* (the ordering of the fields is: o, v, +, —). The reality and the
unitarity of Simply Soo=+ \. The sign is determined as follows. For any affine Lie
algebra, SaΛ can be expressed as a certain sum over the (finite) Weyl group [21,15].
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If a (or b) = identity, this sum can be rewritten using the Weyl denominator identity
as a product over the (finite) positive roots:

πff-(e + S)
(2.8)

where bars distinguish finite roots and weights from the affine ones. The βt span a
fundamental cell of the coroot lattice, k is the level, h v the dual Coxeter number, r
the rank of the associated Lie algebra and ρ the finite Weyl vector. It follows from

- l (2.9)

and

0<d'B^k (2.10)

that SOtb (and in particular SOtO) is always strictly positive.
To compute the branching functions bλ

Λ(τ), we use the "Parthasarathy-Kac-
Peterson-Nahm theorem." This theorem is due to Kac and Peterson [20] with a
correction by Nahm [27] and gives the decomposition of the spinor represen-
tations (denoted + and — here) of some orthogonal KM algebra. It is a
generalization of the finite dimensional analog, which was proved by Parth-
asarathy [28]. A proof and an example of application can be found in [2]. The
theorem reads:

Let gbe a simple Lie algebra, g0 Cg a semi-simple subalgebra of the same rank,
such that g = g o θ V defines a symmetric space V, i.e., [V, F] Cg0; let W, Wo be the
Weyl groups and ρ, ρ0 be the Weyl vectors of the affine Lie algebras g, go; let W1 be a
set of coset representatives of W/Wo such that w(ρ) — ρ0 is a dominant weight of £ 0

for any weWγ. Then the spinor representations 4- and — of the affine algebra
S0(dim V) associated to the isometry group of V reduce as follows in representa-
tions of g0:

= ΣJMQ)-Qo), (2.11)

where

W1

± = {we Wx :det(w)= ± 1 } , (2.12)

and where we denote a representation of £ 0 by its highest weight w(ρ) — ρ0.
The Weyl group W of an affine Lie algebra is the semi-direct product of the

corresponding finite Weyl group W and of the group T of "translations" by the

vectors of the coroot lattice I this is the lattice generated by the vectors α v = -^

[17]. Hence,

W,={Wκ T)/(W0 K T0) = (W/W0)x(T/To). (2.13)

Here go = Sp(2ή)φSp(2k) and g = Sp(2n + 2k) turns out to be the right choice:
the symmetric space V defined by

Sp(2n + 2k) = {Sp{2n)®Sp{2k))® V (2.14)

has dimension:

dim V=2{n + kf + {n + k)- (2n2 + n + 2k2 + k) = Ank. (2.15)
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The roots of Sp(2ή) can be taken as

{(±et±e)/)/2 (/*;), ±]/2et}, (2.16)

where the et (1 ̂  i: ̂  n) are orthonormal vectors. The (finite) Weyl group is the semi-
direct product Sn x Z£, where iSπ consists of all permutations of the ef and Z\ of all
sign changes: e,—>±et. The regular embedding Sp(2n + 2k)DSp(2n)(BSp(2k) is
taken such that the roots of these three algebras are jiven by (2.16), with 1 rgί,
j^n + k, ί^ij^n, n + l^ij^n + k respectively. W/Wo reduces to Sn+k/Sn®Sk.
T/To is trivial because the coroot lattice of a symplectic algebra is generated by the
vectors {]/2e£}.

We now describe the set Wί=Sn+k/Sn ® Sk. Consider the following permutation
oΐSn+k:

(2.17)

with

0 £ / 1 £ / 2 . . . £ / t g n . (2.18)

The sets {1,2, ...,n} and {n + 1, n + 2, ...,n + k} on the second line are both
arranged in increasing order. With these ordering conventions, βP is uniquely
specified by the set of Zf's. SP transforms the vectors et with indices in the first line in
the vectors with indices in the second line. For example,

0>eh + 1=en + 1. (2.19)

The identical permutation corresponds to Zx = Z2 = . . . = lk = n. The number of such
permutations is (n + k) \/n! k!. It is also easy to see that it is impossible to transform
a permutation of this set into another one by multiplication with permutations of
Sn or Sk. We will show below that Φ(ρ) — ρ0 is a dominant weight of
Sp(2ή)k®Sp(2k)n for all SP. The permutations βP are thus coset representatives of

The Weyl vector ρ of g = Sp(2n + 2k) is given by

(2.20)

where ρ is the (finite) Weyl vector of g (i.e., half the sum of the positive roots), and
where the dual Coxeter number of g is n + fc + 1; Ao is the fundamental weight
corresponding to α0, the highest root of the affine algebra g. Since the embedding
g0 Cg is regular, Λo reduces as: Λ 0 = Λ'0 + ΛQ, where Λ'o and ΛQ are^the analogs of
Ao for Sp(Tή) and Sp(5k). ρ0 is the sum of the Weyl vectors of Sp(2n) and Sp(ϊk).
Combining all this we find

) ~ Qo + kΛ'o + nΛ"0. (2.21)

As expected, the spinor representations of SO(4nk)1 decompose in combinations of
(products of) representations of level k of Sp(2ή) and representations of level n of
Sp(2k). In the following, we will concentrate on the finite part έ?(ρ) — ρ0.

The Weyl vector of Sp(2n + 2k) is given by:

ρ=-^nΣ (n + k+ί-ήet9 (2.22)
]/2 J=i
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and similarly for Sp(2n) and Sp(2k). It is convenient to write

Qo), (2.23)

with

ρ-ρo=Ajβί. (2.24)

We also need the expression of an arbitrary vector in weight space in terms of the
fundamental weights Ά{.

1 r r - 1

-JΞ Σ χiei= Σ (Xi-Xi+Mi+xΛi ( 2 2 5 )

the coefficients of the Λf are the Dynkin labels. This gives a dominant weight of
Sp(2r) iffxί^x2έϊ...^xr^>0. The key property of ρ is that the coefficients of the e/s
decrease regularly as i increases. The coefficients of the e?s in 0>(ρ) — ρ are then
simply related to the Zf's that characterize the permutation SP. We first consider the
weight of Sp(2k) contained in 3P(Q) — QO\

^(Q)-Qo\sP(2k)= - i .Σ (n-h)en+i. (2.26)

In terms of Dynkin labels, this gives rise to the representation with highest weight

(l2-l1,l3-l2,...,lk-h-i,n-lj (2.27)

which, because of (2.18), is a dominant weight of Sp(2k). But it must also be a
dominant weight of Sp(2k)n. This means that if we express

nΛZ + (l2-h)Λ'ί + - + (lk-h-i)Λ';-1+(n-lk)Λ'; (2.28)

in terms of the affine fundamental weights ΛQ and Λ" + ΛQ (z = l,...,fc), all
generalized Dynkin labels ( = coefficients of ΛQ and ΛQ + A") should be positive.
This is the case, since the above representation corresponds to (Zx;
l2 — ll9..., lk — lk-1, n — lk) and lx ̂  0 (the 0 th Dynkin label will always be separated
by a semicolon from the others).

We now turn to the terms involving eί,...,enin ^(ρ) — ρ0, i.e., to the weights of
Sp(2ή). It is easy to see that the coefficients oίeu...,eh are fe, those of eh + 1 5 . . . , eh

are fe — 1,.... Because of (2.25), this gives a contribution equal to 1 for the ί^,
/2

th,..., Zfc

th Dynkin label. The weight of Sp(2n) contained in 3P% - ρ 0 has thus the
Dynkin labels

(2.29)

where N(i) is the number of times i appears among the Z/s. Note that this notation
smoothly extends from the finite to the affine case. In the former case, the Z/s equal
to 0 are ignored, while in the latter, each of them contributes 1 to the coefficient of
Λ'o. In terms of generalized Dynkin labels, the above representation is (iV(0);

We finally compute the sign of 9. Writing SP as a product of elementary
permutations on two indices, one verifies that this sign is equal to

(_l) . ϊ .*-«.(_ 1 )* + . l ,- . (2.30)
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Collecting these results, we find that the spinor representations of SO(4nk)ί

decompose as follows into representations of Sp(2ή)kφSp(2k)n:

with

The decomposition of the two other representations, o and v, is obtained
through automorphisms [2]. The nontrivial automorphism of Sp(2k)n takes the
form:

(2.33)

ion is equivalent to the fusion product with the s
/

current J = (0;0,...,0,n):

k

here £ mi = n I. Its action is equivalent to the fusion product with the simple

μ(m) = J-m. (2.34)

The automorphisms of Sp(2ή)k(BSp(2k)n extend to automorphisms of SO(4nk)1

and hence transform + and — into one of the integrable representations +, —, o,
v. One finds which one by examining the terms of lowest conformal dimension.
This yields

with

°= Σ (N(O);N(ll...,N(n))(n-lk;lk-lk_ί,...J2-l1,lί) (2.35)

κ \even

,?,'•= odd' ( 2 J 6 »

The set {b^(τ), b^{τ)} is thus the set of characters of Sp(2ή)h since each such
character appears exactly once, either in the decomposition of o or of v. One
could also use the set {bλ

+(τ% fri(τ)} with

bλ

+(τ) = bJ

0\τ\ bλ.(τ) = bJ

v\τ) (2.37)

if nk is even and

b\{τ) = bi\τ),bλ-{τ) = bJ

0\τ) (2.38)

if nk is odd. Using (2.2) and (2.7) (with SOtO = 1/2), we find

bλ

0(-l/τ)= Σ SoΛ.Sn,b
λ

Λ,{τ)
Λ',λ'

= Σ\ Su,(bt'(τ) + bΐ'(τ) + bJ/(τ) + bJ/(τ))

= Σ\ (SW + Sλ,Jλ.) (bλ

0(τ) + bϊ(τ)). (2.39)
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Similarly,

\ τ)). (2.40)

SλtJλ, can be related to Sλr using (2.4) and (2.5). The charge Qj(λ) is simply half the
congruence of λ (mod 1). Hence,

Q ( l l l h ) ( l l + l l + )

= 4 Σ //(modi). (2.41)

Note that the charge of (iV(0);..., ΛΓ(n))with respect to the simple current oϊSp(2ή)k

is given by

\(N(ί) + N(3) +...)= \ Σ I,(mod 1). (2.42)

Thus o contains only representations of charge 0 and v only representations of
charge 1/2 with respect to the simple currents of Sp(2ή)k and Sp(2k)n. The final
result is:

(2.43)

The characters (n- lk; lk- Jfc_ l9..., l2 - ll9 IJ of Sp(2k)n and (ΛΓ(O); N(ί),..., N(rή) of
Sp(2ή)k (with N(ί) the number of times ί appears among the Z/s) transform thus in
the same way under τ-> — 1/τ. The fusion rules can be expressed in terms of the S
matrix elements using Verlinde's formula [32] and are thus also the same.

This isomorphism has a simple interpretation in terms of Young tableaux.
Consider the representation of Sp(2r) with Dynkin labels (aua2,...,a^). In the
orthonormal basis of the e/s, its highest weight is

— l(aί+a2+...+ar)e1 + (a2 + ... + ar)e2 + ...+arer]. (2.44)

1/2
One associates to it a Young tableau with rows of length α 1 + α 2 + ... + αrJ

a2 + . . . + ar,..., ar. It is not too difficult to convince oneself that the representations
(/*-/*-1,..., ί2 - h>'i) of Sp(2k) and (N(ί)9..., N(n)) of Sp(2n) correspond to Young
tableaux that are the transpose of each other. A similar identification of fields has
been discussed in [25,12, 29].

We conclude this section with a proof that the modular invariant partition
functions of these theories are also the same. We first note that χa(τ)χ$(τ) can be
invariant under T (i.e., h(ά) — h(b) = 0 modi) only if Qj{a) = Qj(b). This follows
from:

= l fli + 2 α l + 3 α i + ...mod2

= α1 + α3 + ...mod2 (2.45)

for the representation of Sp(2ή)k or Sp(2k)n with Dynkin labels (α1? a2,...). Let aT be
the field of Sp(2ή)k associated by the above isomorphism to the field a of Sp(2k)n.
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They satisfy

if Q/a) = 0 (2.46)

and

h(a) + h(aτ) = 1/2modi if Qj(a) = 1/2. (2.47)

This implies

h(a) - h(b) = 0 mod 1 o h(aτ) - h(bτ) = 0 mod 1, (2.48)

since Qj(a) = Qj(b).
This one-to-one correspondence between the bilinears invariant under T (and

with the same transformation properties under S) implies that there is a one-to-one
correspondence between modular invariants of Sp(2ή)k and Sp(2k)n.

SU(2)ί6 = Sp(2)16 and SO(5)8 = Sp(4)8 (cf. Sect. 4) have an exceptional modular
invariant. This implies the existence of an exceptional invariant for Sp(32)ί and
Sp(ί6)2 (they were obtained using other methods in [33]). For example, to get that
of Sp(32)1, one has simply to replace the representation of SU(2) with Dynkin label
i in (4.9) by the representation of Sp(32) whose ith Dynkin label is 1 (and the others
are 0). On the other hand, the exceptional invariant of S/?(8)4 [33] cannot be
obtained using the present method.

There are four "isolated" conformal embeddings [3] Sp(2ή)k C Γ; by this we mean
that there is no conformal embedding Sp(2k)ncT. For example, SU(2)10 = Sp(2)10

CSO(5)1 while there is no conformal embedding of Sp(20)1 in some KM algebra.
The above results imply that Sp(20)u Sp(56)u Sp(ίO)3, and Sp(14)4 have an
exceptional integer spin modular invariant (sum of squares).

3. Branching Rules for SO{rq)x^SO(r)q®SO(q)r {rq Even)

These branching rules are an essential ingredient in the derivation of new modular
invariants for the orthogonal algebras. We use the same theorem as in Sect. 2. Here
g0 = SO(r)®SO(q) and we must find a simple group g with the same rank as g0 and
such that the symmetric space V defined by g = g o © F has dimension rq. This is
only possible if r and q are not both odd, and g = SO(r + q). In the following, we will
put r = 2n and q = 2k + l or 2k.

In terms of r orthonormal vectors ef's, the roots of SO(2r +1) can be chosen as

{±ei,±ei±ej(iΦj)}, (3.1)

and those of SO(2r) as

{±eί±ej(i+j)}. (3.2)

The Weyl group of SO(2r +1) is then the semi-direct product of all permutations of
the ef's and of all sign changes (like in the symplectic case). The Weyl group of
SO(2r) has the same form, except that the number of sign changes must be even. We
choose the roots of the three algebras appearing in the regular embedding
SO(2n + 2k + l)DSO(2ή)®SO(2k + l) to be given by (3.1) with \ύUjύn + h by
(3.2) with l^ij^n and by (3.1) with n + 1 ̂ ij^n + k respectively; and similarly
for SO{2n + 2k)DSO(2ή)®SO(2k).

The set of coset representatives is:

W, =(Sn+k/Sn®Sk)®Z2®(T/T0). (3.3)
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We will make the same choice of coset representatives 0> e Sn+k/Sn®Sk as in Sect. 2.
The non-trivial sign change of Z 2 can be taken as

σ:en-+-en if q = 2k+l (3.4)

and
σ:en^-en9 en+k->-en+k if q = 2k. (3.5)

With these choices, ^>(ρ) — ρ0 and σ£P(ρ) — ρ0 will be dominant weights of
SO(2n)q(BSO(q)2n. T/To is also non-trivial: the coroot lattice of SO(2n + q) is
generated by the long roots ±eι±ep and a translation t by e^en+k foi^example
cannot be undone using translations of the Weyl groups of S0(2n) or SO(q). T/To

has two elements; we will discuss below which element has to be taken as
representative of the non-trivial class.

The computation of the highest weights 3P(ρ) — ρ0 appearing in the decompo-
sition of the spinors + and — of SO(2nq)1 closely parallels that of Sect. 2. The finite
Weyl vectors are given by:

\ for SO(2r + ί),

Q= Σ (r-i)ei for SO(2r). (3.6)
i=ί

Note that the coefficients decrease in the same regular way as in (2.22). The relation
between the {ej basis and the Dynkin basis is provided by

r r-ί _ _

Σ xiei= Σ fe-^+i)^i + M (3.7)
i l i l

r r-ί _ _

Σ χίei= Σ (*i-x. +iMj+(χ Γ -i + ; χ M (3 8)
i l i l

forSO(2r + l), and

for SO(2r). These weights are dominant iff Xi^x 2 = = Xι = 0
Xi^X2 = - = χr-i = \χr\ respectively. If q = 2k + ί, the representation of
SO(2ή)qφSO(q)2n corresponding to the permutation 9 characterized by
^ύh = h-" = K^n has the highest weight

) - Q o = (2N(0) + N(ί); N(ί),N(2)9 ...,N(n-

+ 2AΓ(n) + l)(/2 + Z1;/2-Z1 ?Z3-/2 j...,/ f c-/ f c_1,2n-2/ f c) (3.9)

with the same notations as in Sect. 2. If q = 2k, one has instead

) - ρ0 = (2N(0) + JV(1); N(l),..., N(n-1), N(n-1)

)(Z2 + / 1 ;Z 2 -/ 1 , . . . ,/ k -/ k _ 1 ,2n-/ f c _ 1 -Z f c ) . (3.10)

We now consider the contribution of σ^(ρ) — ρ0 to the decomposition of the
representations + and —. Since ρ0 does not contain en (nor en+k if q = 2k) on which
σ acts nontrivially,

σ^(ρ)-ρ o = σ(^(ρ)-ρ o ). (3.11)

Changing the sign of en in SP(Q) is thus equivalent to interchanging the last two
Dynkin labels of the weight of SO (2ή)q contained in 3P(g) — ρ0, and similarly for en+k

?LnάSO{q)2n'ύq = 2k.
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We now turn to the action of T/To. 0>(ρ) is a weight of SO(2ή)®SO(q) of level
hg = 2n + q — 2. The translation tbyen + en+k does not modify the level of the affine
weight ^(ρ), and the finite part of t0>(ρ) is given by [17]:

>,+««+*)• ( 3 1 2 )

We consider first the restriction of 0>(Q) and t^(ρ) to S(5(2π). If we write

.α n _ 1 ) α M ) = α, (3.13)

with a0 + ax + 2(a2 + . . . + an_ 2) + an_ ± + an = Λβ

v, then the restriction of ί^(ρ) to
S6(ln) will be

(flo fli^.-^-i-^^ + Λ/), (3.14)

which we denote (slightly abusively) t(a).
The restriction of ρ0 is (1 1,..., 1), and t(a)—(1 1,..., 1) will not be a dominant

weight of S()(2ή)q. We use reflections of the Weyl group of SO(lri), level hg , to bring
t(a) back in the strictly dominant affine Weyl chamber. The reflection w, with
respect to the simple root αf (O^Ξi^n) takes the form

wi(a) = a — aίoίi. (3.15)

The components of αt in the generalized Dynkin basis are given by the zth line of the
generalized Cartan matrix, which can easily be read off the extended Dynkin
diagram. We find

= Jv-a, (3.16)

with Jv one of the simple currents of SO(ϊn).
Note that this operation commutes with the subtraction of ρ 0 :

J p α - ( l ; l , . . . , l , l ) = Jf, ( α - ( l ; l , . . . , l , l ) ) . (3.17)

The sign of the above transformation is + 1 , since the sign of ί is + 1 , and each wf

contributes a factor — 1 .
If q is even, the same result applies to the restrictionof tdP{g) — ρ 0 to SO(q). Take

now q = 2k+1. Let a be the restriction of ^(ρ) to Sδ(5fc +1), with

+ ...αJ k_1) + αk = Λ,v. (3.18)

Then

t(a) = (ao;al9...9ak.1-h^ak + 2h^) (3.19)

and

= J a (3.20)

is a strictly dominant affine weight. This transformation also commutes with the
subtraction of ρo; its sign is — 1 .

One can check thaW(α) is Weyl-equivalent to Jv-a or Ja also in the
"degenerate" cases of SO(3), ...,SO(6).
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Collecting these results, one finds the following branching rules for
SO(2n(2k + l))t DSO(2ή)2k+ 10SO(2fc + l)2r ι:

ί = Σ
β O {

2 + lί;l2-lu..Jk-lk-u2n-2lk), (3.21)

with 0 ̂  lt ^ . . . ^ lk ̂  n (implicit hereafter) and
fc feven

Zk+rt+fi+r-^- 022)
C interchanges the last two Dynkin labels; C, JV9 and J act only on the
representation immediately to their right.

The decomposition of the two other representations can be obtained by acting
with some appropriate automorphism on + and —:

= Σ
V β , y =

(3.23)

W=ίodd ( 1 2 4 )

The action of the simple current Js=(0; 0, ...,0,g) of SO(2n)q is [30]:

w i t h * ίeven

—, o, and v can be expressed in terms of +:

- = C ( + ),

(3.26)

where C and J s only act on the representation of S0(2w)2k+1.
The components in the above decomposition formulas are a bit different if n ̂  2

or fe = 1 but they can be easily worked out. In particular, if k = 1 (and n ^ 3), the
embedding is such that the root of SO(3) is en+19 with norm-squared = 1. The finite
Weyl vector and the fundamental weight are jen+ί the coroot is 2en+1. In general
the level of a representation is 2k'/ψ2, where k! is the central element and ψ is the
highest root of the algebra. Usually one can arrange ψ2 = 2, so that k' and the level
coincide. Here ψ2 = l, hence the conformal embedding under study is actually

SO(6ή)ί DSO(2ή)3®SU(2)4n. (3.27)

In formulas (3.21) and (3.23), Jy{l2 + hl ...,2*1 — 2/*) has to be replaced by
+ (-l) y2/;2n-(-l) y2/).
For SO(4nk)1 DSO(2ή)2k@SO(2k)2n, one finds

Σ
l1;l2-li,..Jk-lk_i,2n-lk_1-lk), (3.28)



Conformal Embeddings and Exceptional Modular Invariants 579

with

and

lί;l2-lu..Jk-lk-ίan-lk-ί-lk), (3.30)

with

°= Σ

= 2,(l2 + lί;...92n-lk.1-lk) has to be replaced in (3.28) and (3.30) by the
following representation of SU(2)2n@SU(2)2n:

_ / 2 ; / 2 _ / l ) ( / 1 + / 2 ;2n-/ 1 -/ 2 ) (3.32)

on which Jv acts as follows:

Jv(2n-a; a)(2n-b; b) = (a; 2n-a)(b; 2n-b). (3.33)

4. Exceptional Modular Invariant of SU(2)ί 6 and SO(q)s

We will construct these exceptional invariants using a method due to Bouwknegt
[6]. If the branching rules for g D /ι'φ/z are known, any invariant of £ can be written
as follows:

Ύ" — V Ύ" y' y y'*y* M 1 ^

where χ'μ, χ'v are characters of ft and χm, χM characters of fi. It follows from the
unitarity of T and S that if

^ = Σ ^ ; , v Z X * (4.2)
μ,v

is an invariant of ft, then the contracted tensor

will give rise to a modular invariant quantity with positive and integer coefficients.
Z o o is however generally not equal to 1. Sometimes all the Zm π are multiples of
Z o o and it suffices to divide Z m M by Z o o to obtain a physical invariant. In other
cases, one needs to take more involved combinations of modular invariant
quantities to obtain a physical one.

We now try to derive invariants of S U(2)16 using this method. The + spinor of
SO(24)X reduces as

=(0;0,0,0,3)(0 + 16) + (0;0,l,05l)(4 + 12) + (l;l,0,l,

+ (0; 0,0,2,1) (2 +14) + [(0; 2,0,0,1) + (2; 0,0,0,1)] (8) (4.4)
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and —, o, v are given by (3.26). We have used a hybrid notation: representations of
SO(8)3 are denoted by generalized Dynkin labels, and those of SU(2)16 by the
associated finite Dynkin labels.

If we contract the diagonal invariant tensors of SO(24)ί and SO(S)3 we find:

4(|0 + 16|
2
 + |2 + 14|

2
 + |4 + 12| + |6 + 10|

2
 + 2|8|

2
). (4.5)

Here 0 stands for the character χ0. After dividing by 4, we thus obtain the regular
integer spin invariant of SU(2)16.

Consider now the following modular invariant tensor of SO(8)3:

z ; t Ψ = < w (4.6)
where SΓ is the transformation

ΦuΦ2,Φ3,Φd = (ΦθlΦ3,Φ2,ΦuΦ4). (4.7)

This modular invariant arises from one of the automorphisms of the finite Dynkin
diagram of SO(S) (triality). Contract Z'μtφ with the invariant tensor of SO{24)γ

associated with

Z» = \ + f + \o\2 + (-)(v)*+ (»)(-)*• (4.8)

After division by 4, this yields the exceptional modular invariant of SU(2)i6:

. (4.9)

This result gives us a simple explanation for the existence of this invariant and it
shows (see below) that it belongs to an infinite series. In other words, it is not that
exceptional after all!

In the following we show that contracting the tensors of (4.6) and (4.8) gives an
exceptional modular invariant for all SO(2k +1)8. To establish this, we formulate a
series of propositions. The proofs are easy and are omitted. The aim is first to
characterize which representations of SO(8)2k+1 and SO(2fe + l) 8 occur in the
decomposition of +, —, o, v and which products of representations are possible.
We then describe which combinations of terms can appear in the exceptional
invariant and finally we show that this invariant is physical (i.e., Z o o = 1 and all
coefficients are nonnegative integers).

1. Solving the constraint (3.22) we find

- = C ( + ); o = JJί + ); v = JsC{ + ) . (4.10)

2. All representations oϊSO(2k +1)8 of charge (= congruence) 0 appear once in the
decomposition of +, and twice if they are fixed points under the simple current J;
and similarly for —, o, and v.

3. The representations (Φ0IΦ19Φ29Φ39Φ4) °f S0(%)2k+ι present in + satisfy:

φo = φ1 mod 2 = 03 mod 2; φ4 = φ0 + l mod 2. (4.11)

All such representations appear once in +, and twice if they are fixed points under
CJυ(i.e., if φo = Φi)'
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4. Denote by R the representations oϊSO(2k +1)8 such that JR Φ R, and by / (and
g,/z) the fixed points: Jf=f. Then + decomposes as a sum of two types of terms:

φ(R + JR) (with CJvφ = φ) (4.12)

and
(φ + CJvφ)f (with CJvφ *</>). (4.13)

The crux of the proof is that Z1=0 (respectively φθ) is equivalent to ΛΓ(O)φO
(respectively =0).

5. There are three possibilities for the components φ0, φuφ3oϊφ: they can all be
equal, or two can be equal or they can all be different. If a representation with labels
{φo; φl9 02, 03, φ4) appears in the decomposition of + , all those obtained by
permutations of φ0, φί9 and φ3 also appear.

6. One can thus naturally group the terms in + as follows:

I:(a;a,φ2,a,φ4)(R + JR)

with a φ b

III: [(α; b, φ2, c, φ4) + (b; a, φ2, c, φ4)~]f

+ [(«; c, φ2, b, φ4) + (c; a, φ2,b, φ4)~\g

+ [(c; b, φ2, α, φ4) + (b;c, φ29 a, φ4)~\ h

with a>b>c. (4.14)

+ is the sum of all these combinations, each appearing once (they must of course
satisfy Eq. (4.11) and level (φ) = 2k +1). The representations R, /, g, h oϊSO{2k +1) 8

are determined by the representations φ they multiply. Contracting (4.6) with the
first term in (4.8) then gives three types of contributions to the invariant of
SO(2fe + l) 8 :

I:\R + JR\2

] (4.15)

(we have used the same notation for the representations and for their character).
Note that the identity is multiplied by φ = (0; 0,0,0,2k +1) and is thus contained in
a term of type I.

7. The four terms in (4.8) give exactly the same contribution after contraction; one
can thus divide the total result by 4 to get a physical invariant.

The recipe for constructing the exceptional modular invariant of SO(2k + ί)8 is
thus: group the terms appearing in the decomposition of + as in (4.14); the
contraction with δμ^φ gives rise to terms of type I, II or III, depending on φ. For
example, for SO(5)8, one has:

+ {40,02,62} + {32,06,26} + {24,12,52} + {16,30,50}

+ {08,10,70}, (4.16)

where 00 stands for the character χ(O,o)
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The exceptional invariant of SO(Ί)8 also displays a term of type III: [/,g,/ι].
These invariants had already been obtained numerically in [33]. They can be given
a natural interpretation in terms of an automorphism of the fusion rules of the
extension of SΌ(2fc-fl)8 by the simple current J [24]. Consider the regular
invariant generated by the integer spin simple current J:

7 _ $δΛ,tΛ + δΛ,,JΛ HQj(Λ) = 0
ZΛ Λ'~{0 otherwise ' ( }

Instead of the combinations (4.15), (4.17) gives rise to

I:\R + JR\2

II:2\f\2 + \R+JR\2

(4.18)

The theory which hasjhis invariant as partition function has a larger symmetry
than the original SO(2k +1). Because of the factor 2, the fixed points f, g, h give rise
to 2 primary fields (denoted by / + , /".. .) of the extended algebra [24]. On the
other hand, the pair R, JR leads to one primary field (denoted by R). Consider the
following transformation of the primary fields of the extended algebra:

I I I : / + ~ r , g+~£~, £ + ~/-. (4.19)

Acting with this transformation on one chiral sector of the regular invariant gives
the exceptional invariant discovered above. The existence of such a transformation
(we did not prove that it constitutes an automorphism of the fusion rules, but this is
likely) provides a test of the correctness of our computations.

We now turn to the case of SO(2k)8. In [33], we found that SO(4)8

= SU(2)8@SU(2)8 has an exceptional modular invariant given by

(4.20)

where each pair ij stands for a representation of SU(2)8@SU(2)8 with (finite)
Dynkin labels / and j (the 0th labels are 8 — i and 8 —j respectively). These
representations appear in the decomposition of + and o, but not in — nor υ (cf.
Eqs. (3.28-33) with n = 4 and fe = 2). One can easily verify that contracting the
tensor of SO(16k) 1 (with k = 2) arising from Z" = \(o) + (+ )|2 with the tensor δβf ̂ φ of
S0(8)2k (cf. Eq. (4.7)) and dividing by 4 reproduces this exceptional invariant.

In the following, we show through a series of propositions that this construction
gives an exceptional invariant for all SO(2k)8, k^.2. We will have to analyze the
possible patterns for the terms of this invariant and to prove that all the coefficients
are integers (after division by 4).

1. The decomposition of the representation + of SO^βk)^ is given by Eq. (3.28)
with Σ/^even. From now on we note J'v, J's, J'C = J'VJ'S the simple currents of
SO(8)2fc, and Jvi Js, Jc those of SO(2k)8.

(4.21)

Note that J 2 = Jv if k is odd and J 2 = H if k is even.
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2. The representations of SO(2k)s present in + and o are of charge (= congruence)
0 with respect to Jv and Js and reciprocally, all representations of charge 0 appear
in + and o. Remember that a representation (Λo;..., Λk) has charge 0 with respect
to Jv if Ak^ί + Ak = 0 mod 2 and has charge 0 with respect to Js if

2Λ1+4Λ2 + ...+2{k-2)Λk_2 + {k-2)Λk_1+kΛk = 0mod4. (4.22)

The multiplicity of A is usually 1, but it is 2 if A is a fixed point under C or CJV and 4
if it is a fixed point under Jv (i.e., under C and CJV).

3. The same statement applies to the representations φ of SO(S)2k; φ0, φu φ3, and
04 are thus all equal mod 2.

4. All products φA appearing in + satisfy

Cφ = φ, CA + A (4.23)
or

C'φΦφ, CA = A (4.24)

and similarly with C, C replaced by CTV, CJV.

5. There are 5 possibilities for the components φθ9 φi9 φ3, and 0 4 of φ: from all
equal to all different (see below). If the representation φ appears in +, all those
obtained by permutations of φQ, φu φ3, φA are also present.

6. + decomposes as the sum of the following combinations of terms and each
allowed combination appears once. The behaviour of the representations A,AU...
under C and CJV follows from Proposition 4.

I:(a;a9φ29a9a)(ί + C + CJV + JV)A

II : [(α; a, φ2, a, b) + (a; a, φ29 b, a)] (1 + CJυ)A1

+ [(α; b9 φ2, α, α) + (6; a, φ2, a, of] (1 + C)A2

with aή=b

+ [(α; b, 0 2 , α, ft)+ (6; α, 0 2 , α, 6) + (α; ft, 0 2 ? b, α) + (ft; α, 0 2 , ft, α

with α > ft

+ ί(a; ft, </>2, fl, c) + (b; a, φ2, a, c) + (a; ft, φ2, c, α) + (ft; α, φ2, c, a)]A3

+ [(α;c,02,α,ft) + (c;α,0

with aή=b,c;b>c

with a>b>c>d. (4.25)

Combinations of type IV are absent for k < 3 and those of type V for k < 6.
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7. Consider the product

φA = (2JV(0) + JV(1); JV(1), JV(2), JV(3), N(3)

+ 2N(4))(l2 + l1;l2-lu..Jk-lk_uS-lk-lk_1). (4.26)

Then

N(0) = N(4),N(ί) = N(3)oli = 4-lk+1_i (ί^k). (4.27)

The behaviours of φ under J's and of A under Js (cf. 3.25) are thus closely related.

8. Contracting the tensors and dividing by 4 yields the following types of terms:

Jv)A\2. (4.28)

If k is even, A is a fixed point under J s (because of Proposition 7) and we can rewrite
this expression as

\(1+JV)AH1+JV)CA\2. (4.29)

If k is odd, A is not a fixed point under Js; using Proposition 7, we can rewrite
expression (4.28) as

\(l+Jv + Js + Jc)A\2. (4.30)

Using o = J's( + \ contracting and dividing, we find next:

II:\(l+CJv)AiHl + QA2\
2. (4.31)

Aγ and A2 can be related using J's( + ) = Λ( + ) :

Jil+CJJ^Hl+C)^. (4.32)

This yields the contribution

(4.33)

to the exceptional modular invariant.
We proceed in the same way for the terms of type III, IV, V. They organize

themselves into orbits under Js iϊk is odd and into orbits under Jv and Js if A; is even;
incomplete orbits never occur. Whenever an expression like (1+J S + Jv-\- JC)A
appears, the representations A, JSA, JVA, and JCA are all different.

V: [(1 + Λ M J [(1 +Λ)(Λ 3 + Λ5)]*-f [(1 + JS)Λ3] [(1 + Js)(Aγ

] * . (4.34)

This completes the proof of the existence of an exceptional modular invariant for
SO(2k)8.

The recipe for constructing this invariant is now clear. To get the terms of type I,
it suffices to identify all nonnegative integers a, φ2 satisfying 4a + 2φ2 = 2k. One
finds the corresponding representations A using Eqs. (3.28-29); this gives rise to
(4.29) or to (4.30) (depending on the parity of k). One then proceeds similarly for the
terms of type II,.. ., V.
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Here the identity appears in the combination (of type II) |1 + Jv + Js + Jc\
2. It is

thus likely that this exceptional invariant is related by an automorphism of the
extended algebra to the regular invariant:

7 _ftΛ>,Λ + δΛ,,JvΛ + δΛ,>JsΛ + δΛ,,JcΛ iϊQv(A) = Qs(Λ) = 0
ZΛ>Λ'-\0 otherwise ( 4 ' 3 5 )

This is the integer spin invariant tensor of SO(2k)8 generated by Js if k is odd and
the product of the tensors generated by Jv and Js if k is even. It gives rise to:

I:2|(l + JV)Λ\2 + 2\(1 + JV)CΛ\2 if k is even

\(ί+Ja + Jυ + JJA\2 tikis odd

2 . (4.36)

Comparing expressions (4.29-30, 4.33-34), and (4.36), one sees that there is a
simple transformation (the analog of (4.19)) which transforms the regular invariant
into the exceptional one and which is probably an automorphism of the fusion
rules of the extended algebra.

5. Conclusion

An elegant method for finding new modular invariants of a KM algebra ft is to use
the connection with another algebra ft provided by a conformal embedding g
Dftφfi. In this way, we have exhibited a one-to-one correspondence between the
modular invariants of Sp{2ή)k and those of Sp(2k)n.

We have also discovered an exceptional modular invariant for all SO(q^4) at
level 8. The mechanism behind this - the triality of 50(8) - also provides a simple
explanation of the exceptional invariant of S17(2)16. These invariants belong to a
class that comprises all the modular invariants which are due to an automorphism
of an extension of a KM algebra by integer spin simple currents. Many (but not all
of them) can be obtained using the methods of this paper. On the other hand, all the
known ones can be accounted for by the conjecture of [33]. This conjecture
predicts (among others) modular invariants of the above type for all simple Kac-
Moody algebras with fixed points under a simple current of order 2 and spin 4. An
interesting problem would be to prove this conjecture directly, by constructing the
regular extensions of KM algebras and by identifying their representations.

Acknowledgements. I am grateful to S. Schrans, W. Troost and especially to J. Figueroa-O'Farrill
for many interesting discussions and for reading the manuscript.

Note added. The branching rules used here have also been examined by K. Hasegawa, Publ. RIMS
25, 741 (1989)



586 D. Verstegen

References

1. Altschuler, D., Bauer, M., Itzykson, C: Commun. Math. Phys. 132, 349 (1990)
2. Altschuler, D., Bardakci, K., Rabinovici, E.: Commun. Math. Phys. 118, 241 (1988)
3. Bais, F., Bouwknegt, P.: Nucl. Phys. B279, 561 (1987)

Schellekens, A.N., Warner, N.P.: Phys. Rev. D34, 3092 (1986)
4. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Nucl. Phys. B241, 333 (1984)
5. Bernard, D.: Nucl. Phys. B288, 628 (1987)

Altschuler, D., Lacki, J., Zaugg, P.: Phys. Lett. 205B, 281 (1988)
6. Bouwknegt, P.: Nucl. Phys. B290, 507 (1987)
7. Cappelli, A., Itzykson, C, Zuber, J.B.: Nucl. Phys. B 280, 445 (1987); Commun. Math. Phys.

113, 1 (1987)
8. Felder, G., Gawedzki, K., Kupiainen, A.: Commun. Math. Phys. 117, 127 (1988)

Ahn, C, Walton, M.: Phys. Lett. 223B, 343 (1989)
9. Font, A., Ibanez, L.E., Quevedo, F.: Phys. Lett. 224 B, 79 (1989)

10. Friedan, D., Qiu, Z., Shenker, S.: Phys. Rev. Lett. 52, 1575 (1984)
11. Fuchs, J., Gepner, D.: Nucl. Phys. B294, 30 (1987)
12. Fuchs, J., van Driel, P.: J. Math. Phys. 31, 1770 (1990)
13. Gepner, D.: Phys. Lett. 199B, 380 (1987); Nucl. Phys. B296, 757 (1988)
14. Gepner, D.: Nucl. Phys. B287, 111 (1987)
15. Gepner, D., Witten, E.: Nucl. Phys. B278, 493 (1986)
16. Goddard, P., Kent, A., Olive, D.: Phys. Lett. 152B, 88 (1985); Commun. Math. Phys. 103,105

(1986)
17. Goddard, P., Olive, D.: Int. J. Mod. Phys. Al, 303 (1986)
18. Intriligator, K.: Nucl. Phys. B332, 541 (1990)
19. Kac, V.G.: Infinite-dimensional Lie algebras. Cambridge: Cambridge University Press (1985)
20. Kac, V.G., Peterson, D.: Proc. Natl. Acad. Sci. USA 78, 3308 (1981)
21. Kac, V.G., Peterson, D.: Adv. Math. 53, 125 (1984)
22. Kac, V.G., Wakimoto, M.: Adv. Math. 70, 156 (1988)
23. Kazama, Y., Suzuki, H.: Phys. Lett. 216 B, 112 (1989)
24. Moore, G, Seiberg, N.: Nucl. Phys. B313, 16 (1989)

Dijkgraaf, R., Verlinde, E.: Preprint THU 88/25 (to appear in the Proceedings of the Annecy
workshop on Conformal Field Theory)

25. Naculich, S.G., Riggs, H.A., Schnitzer, H.J.: Phys. Lett. 246B, 417 (1990)
26. Naculich, S.G., Schnitzer, H.J.: Preprint BRX-TH-289 (1990)
27. Nahm, W.: Duke Math. J. 54, 579 (1987)
28. Parthasarathy, R.: Ann. Math. 96, 1 (1972)
29. Saleur, H., Altschuler, D.: Preprint Saclay SPhT/90-041
30. Schellekens, A.N., Yankielowicz, S.: Nucl. Phys. B327, 673 (1989)
31. Schellekens, A.N., Yankielowicz, S.: Phys. Lett. 227B, 387 (1989)
32. Verlinde, E.: Nucl. Phys. B300, 360 (1988)
33. Verstegen, D.: Nucl. Phys. B346, 349 (1990)
34. Walton, M.: Nucl. Phys. B322, 775 (1989)
35. Witten, E.: Commun. Math. Phys. 92, 455 (1984)

Novikov, S.P.: Usp. Mat. Nauk 37, 3 (1982)

Communicated by N. Yu. Reshetikhin




