
Commun. Math. Phys. 137, 1-12 (1991) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1991

Monotonicity Properties of the Family
of Trapezoidal Maps

K. M. Bracks1*, M. Misiurewicz2** and C. Tresser3

1 Institute for Mathematical Sciences, SUNY at Stony Brook, Stony Brook NY 11794-3660, USA
2 The Institute for Advanced Study, School of Mathematics, Princeton NJ 08540, USA
3 I. B. M, Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights NY 10598, USA

Received April 21, 1989; in revised form August 10, 1990

Abstract. Trapezoidal maps which are everywhere expanding out of their plateau
form a three parameter family T, up to affine changes of coordinates. We show
that splitting T according to the various possible dynamical "behaviors" (we make
this word precise in the process), yields a codimension one foliation. Some conse-
quences of our result in terms of the monotonicity along simple one parameter
families in T are then drawn. All together, aperiodic behavior is rare both from
the topological and the measure theoretical point of view in T.

I. Introduction and Statement of the Results

In this paper, we consider the set T of "trapezoidal maps" (i.e., maps whose graph
is trapezoidal) on the unit interval / = [0,1], which absolute values of the slopes
on both sides of the plateau greater than one, and which send both endpoints of
I to 0. These maps have been the object of many publications (see Sect. Ill), and it
turns out that most of the questions about the evolution of the topological dynamics
in one parameter families of such maps (see Theorem 1), and a related measure
theoretical question (see Theorem 2) can be easily deduced from kneading theory
[4,8,9] and the following well known:

Main Fact. For a map in T, the Lebesgue measure of the union of all inverse
/ 00 \

images of the plateau SP is one, i.e., λ (J / \&) 1 = 1.
\n = 0 )

For completeness a proof of this statement will be provided in the Appendix.
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We now need a few simple remarks and definitions to state our main results.
First, we can represent any f in T by a triple (X, Y, Z), where X stand stands

for the inverse of the left slope, Y for minus the inverse of the right slope, and Z
for the length of the plateau. Then T is the set of all maps/(x)=/(Xy jZ)(x)
such that:

(X,Y,Z)e(0,l)3 and X+Y + Z^L

T is a metric space with the distance inherited from the usual distance in R 3 .
Set,

and thus 9 = [α,6] Then,

Any point xe^, has an intrinsic coordinate t = t(x) which is zero at the
left-hand end a of the plateau, one at the right-hand end b, and more generally

, x x — a
is given by t(x) = .

b — a

The last ingredient we will need is a bit of kneading theory [4,8,9] adapted
to trapezoidal maps. We will follow as much as possible the notations and
conventions of [4]. Although this discussion is not quite standard, some readers
might skip it at first reading, and go to the statement of the results. We distinguish
between the periodic and aperiodic cases according to whether the maximal value
M is periodic or not.

The main specific feature of trapezoidal maps is that there are two ways to
define addresses of points, each of them being significantly better in some context.
We shall thus use both of them and speak of either C-kneading theory, with
C-addresses, C-kneading sequences,..., or of P-kneading theory, with P-addresses,
P-kneading sequences . In both cases, the address a(x) of a point to the left of
the plateau is L, while a(x) is R if x lies to the right of the plateau. The itinerary
I(x) of x is the sequence (a(x),a(f(x)),...); this sequence is infinite if it contains
only L's and R% and stops after the first C or P. The kneading sequence
K(f) of / is defined as the itinerary of M. With Q standing for either C or P, we
set L < Q < R, and for two words in L, β, R beginning by WA and WB with A < B,
we say that WA < WB if W contains an even number of R's, and that
WA "> WB - - otherwise. We say that a sequence 5, which is infinite if it
contains only L's and R's, and stops after the first C or P, is a unimodal
kneading sequence if it can be realized as the kneading sequence of a unimodal
map. This is equivalent to say that S is not smaller than any of its right shifts.

- In the C-kneading language, we will assign C as the address of the point x0

in the plateau with intrinsic coordinate ί(x0) = 1/2, and a(x) = L for x on the left
of xθ9 a(x) = R for x on the right of x0. The consequence is that a same kneading
sequence can correspond to two different periods for the stable periodic orbit in
the periodic case. The C-kneading language is particularly adequate for the
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formulation of Theorem 1 and for the proof of Theorem 3. It is also the language
we refer to when making comparisons with the smooth case.

- In the P-kneading language, we will assign P as the address of all points in
the plateau. Consequently the same kneading sequence can no longer correspond
to two different periods. The price we pay is that periodic kneading sequences
cannot be realized by trapezoidal maps in T: in the periodic case, the kneading
sequence is finite and terminates by P. The P-kneading language is particularly
adequate for the statement of Lemma 1.

Remark 1. It is clear that an a periodic behavior corresponds to the same
sequence in C or P kneading theory. Translating between the triple (C-kneading
sequence, period, t) and the pair (P-kneading sequence, t) corresponding to the
same periodic behavior is also easy. However, having both languages at our disposal
will allow shorter AND clearer statements.

Given two maps / and g in T whose P-kneading sequences read respectively
K(f) and K(g), we will say that the behavior $(f) off is smaller than the behavior
Λ{g) ofg if either K(f) < K{g)9 or / and g are periodic, K(f) = K(g) and t(f) < t(g)
or t(f) > t(g) according to whether the kneading sequence contains an even or an
odd number of R's. (Here t(f) stands for the intrinsic coordinate of the point in
the plateau which is periodic with respect to the map /.) Hereby, we have implicitly
defined the behavior &(f) of any map in T which, according to Remark 1, can
also be described using the C-kneading language.

Remark 2. In the case of a smooth map, a behavior would be defined similarly in
the aperiodic case, while the third member of the triple (C-kneading sequence,
period, t) could be chosen as the multiplicator (or Lyapunov exponent) of the
attracting periodic orbit in the periodic case.

Since this paper deals mainly with monotonicity properties, let us be precise
on this matter. The word "strictly" will always mean that x φ y implies that x and
y have different images under the map whose monotonicity we consider, while
this implication will not be assumed to hold when "strictly" is not employed.

Theorem 1. The partition 3F of the space T into the sets of maps with the
same behavior is a codimension one foliation of T. Each leaf is a graph in the
direction of any of the coordinates X, Y,Z. Moreover, the behavior strictly decreases
with each of X,Y,Z.

Any unimodal C-kneading sequence is represented by a leaf of 3F in the
aperiodic case, and by a connected continuum of leaves in the periodic case.

Let T be the set of triangular maps (i.e., maps whose graph has a triangular
convex envelope) on the unit interval /, with absolute values of both slopes greater
than one. It is the Z = 0 part of the boundary of T. The parameters^ and Y
provide natural coordinates for T. We cannot extend <F to a foliation of T = Γu T,
since bunches of leaves would collapse, due to the non-existence for such maps of
kneading sequences which are not primary, (a C-kneading sequence K is primary
if it is larger than R*™ and if K = A*B with AΦ0,BφC implies that A = R*m

for some m) [12]. However, these are the only collapsed bunches of leaves [11,12].
This observation leads to the following corollary of Theorem 1.

Corollary 1. The partition £f of the space T into the sets of maps with the
same behavior is a stratification of T'. Each component of the boundary of
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each stratum inside T is a graph in the direction of any of the coordinates
X and Y. Moreover, the kneading sequence decreases with each ofX and Y.

Any primary unimodal C-kneading sequence is represented by a stratum of tf.

Remark 3. In fact, more is proved in [12], namely ^ is a foliation. We
cannot get this foliation from our Theorem 1 without duplicating the estimates in
[12]. We have reported Corollary 1 merely as an illustration of possible implications
of the methods of this paper in other contexts.

Corollary 2. The topologίcal entropy, as a function defined in T, is decreasing
with any of the parameters X, Y, Z.

Theorem 2. For any pair (X, Y), the set of Z values such that fiX,γtZ) *5 aperiodic
has Lebesgue measure zero.

Corollary 3. The union of all aperiodic leaves in !F has zero (three-dimensional)
Lebesgue measure.

We conjecture that the foliation 3F in Theorem 1 is smooth. However the only
thing we can prove is the following:

Proposition. For all leaves of 3F corresponding to a periodic behavior and t = 0 or

r d Z i d Z u r

t = 1, there are estimates jrom above on -— and —— by positive continuous junctions
dX dY

of (X, Y, Z), independent of the particular behavior.

Proof of the Proposition. Let λ = 1/X, μ = 1/7. For a fixed x, denote

_dfn{x) _dfn(x)
Un~ dλ ' K~ dμ '

Then by an easy induction, we get that if among a{x\a(f(x)),..., a(fn~ί(x))
there are k L's and m R's (k + m = ή), then

If we fix μ and Z, and let λ = λ(t), x = x(t) and fn(x) = x (with k L's and

m R's as above), then we get
1

λ-1
. Analogously, if we fix λ and Z,

and let μ = μ(t), x = x(t) and fn(x) = x then
dx

dμ

1

••μ-l

Now if ve look at

the leaves of 3F corresponding to a periodic behavior and ί = 0 or ί = l , then

λ=l/X, μ=l/Y and either x = a = ~-——, or x = b = —-——.
X -|- Y X H~ Y

In both cases we get the desired estimates by easy calculations.
• (Proposition)

Corollary 4. For all leaves of 3F corresponding either to a periodic behavior
and ί = 0 or t=l, or to aperiodic behavior, Z is a locally Lipschitz continuous
function of X and Y and the Lipschitz constant is uniformly bounded on compact
subsets of T.
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II. Proofs of the Theorems

Proof of Theoerm 1. The following result is (like the above mentioned "Main
Fact") part of the folklore. Because we could not find a satisfactory reference,
we formalize it as:

Lemma 1 and Definition (Preimages of the plateau).

i) In the aperiodic case, any component of the preimage f~n{0>) has length
U1'U2 "Un Z, where Ot = X if the ith preimage is taken on the left-hand
side, and Ut = Y otherwise. Furthermore, for each point x whose orbit intersects
the plateau there is a unique n ^ O and a unique component of f~n(3P) such
that x belongs to this component.
ii) In the periodic case, when the point in the plateau with intrinsic coordinate
t has period p, the plateau is contained in the kth preimage of itself, for all k
which are multiples of p. To avoid dealing with possible intersections of preimages,
we recognize that the plateau is the unique component off~°(&>)9 and for n>0, we
only consider preimages on the left or on the right, i.e., never in the plateau. With
this modified definition, two components of the preimage f~n{&) have length
m'U1'U2" 'Un'Z, where m stands for t or \—t according to whether there is an
even or an odd number ofR's in the P-kneading sequence of the map. Any preimages
of these components will carry along this factor m, the length of all other components
of any preimage being computed like in the aperiodic case. Furthermore, with this
modified definition of a component of a preimage, we can ensure again that for each
point x whose orbit intersects the plateau, there is a unique n ^ 0 and a unique
component off~n(gP) such that x belongs to this component.

The proof is obvious and left to the reader (see Fig. 1).
In order to correctly use the information contained in Lemma 1, we will need

some facts which are just translations of known results in kneading theory [4, 8,9],
collected here under the following:

Remark 2. Assume that the P-kneading sequence increases, then:

-no inverse legal path (i.e., sequence of rights and lefts allowed for taking
a preimage of the plateau [8]) can disappear, but new ones do appear,
- any inverse path which would carry the m factor for the smaller P-kneading
sequence, looses this factor for the bigger one,
- if an inverse path carries the m factor for the bigger P-kneading sequence,
this path is not a legal inverse path for the smaller one.

After putting all this together, we arrive at the first new fact:

Lemma 2. For any one parameter family {fc]c w^h

(A,B)e{(X,Y),(X,Z),(Y,Z)}

and where C stands for the third coordinate in T, Ct > C2 implies that &(fCί)< &{fc2)

Proof of Lemma 2. Assume on the contrary that J^(/C l)^J^(/C 2). Then from
what we know about preimages of the plateau (Lemma 1 and Remark 2),
it follows that for each n>0:

This contradicts the Main Fact. • (Lemma 2)
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We remark that Lemma 2 proves that the partition ^ given in Theorem 1
has the monotonicity properties claimed in Theorem 1. We now proceed to prove
that 3F is indeed a codimension one foliation. For convenience, elements of the
partition 3F are denoted with JSf's. We need three further known (and easy) facts
stated here as Lemmas 3,4, and 5.

Lemma 3. Suppose that the mapsfiXYfZo), f(X,γ,Zί)eT have kneading sequences Ko

and Kx respectively. Then any unimodal C-kneading sequence between Ko and Kx

is realized by somefiXY>Z) with Z between Z o and Z x .

Lemma 3 can be easily deduced from Theorem 3 below. It could also
be proven along the lines of Theorem 5.2 of [1], or of Theorem Π.3.8 of [4].

Lemma 4. Finite C-kneading sequences are dense in the set of unimodal C-kneading
sequences.

Lemma 5. For any given finite P-kneading sequence, the set U of (X, Y, Z)'s for
which f(χ,γ,Z) has this kneading sequence with ίe(0,1) is open. In U, the dependence
of X on (X, Y, Z) is continuous. Moreover, as (X, Y9 Z) approaches the boundary of
[/, then either f{XYZ) approaches the boundary ofTort approaches 0 or 1.

The following corollary is an intermediate value statement for behaviors,
which follows from Lemmas 3 and 5.

Corollary 6. Suppose that the maps fiXfYfZo)9 f(χ,γ,Zί)€T have behaviors &0 and
&1 respectively. Then any behavior between 0&o and 3&\ is realized by some
f(x,γ,z) W I ί ^ Z between Z o and Zx.
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We point out that T was defined as a set of functions, not points of (0,1)3.
However, for convenience we will sometimes use "(X,Y,Z)eT" in place of

()
We next remark that each 1£eg* is the graph of some function Z = Φ#(X, Y).

This follows immediately from Lemma 2. The next lemma proves that Φ^ is
continuous. Let U# deote the domain of Φ#.
Lemma 7. Let <£e#\ Then Φ# is continuous.

Proof of Lemma 7. We break the proof into two parts. First assume that J£?
corresponds to a periodic behavior with ίe(0,1). We will show that

(*) U# is open and Φ^ is continuous.

Fix a point (X, Y,Z)εJ£. We will use the notation ί( ,v) to indicate the intrinsic
coordinate t of a map/<.,.,.) cooresponding to a point in the set U from Lemma 5.
By Lemma 2, on each vertical line (the axis Z is vertical) in 17, the ί's are ordered
in the same monotone way. Now we use Lemma 5. On the vertical line through
(X,Y,Z) there are points (X9Y9Zλ) and (X,Y9Z2) on both sides of (X,Y,Z)
with t(X, Y, Zf)e(0,1) for i = 1,2 and t(X9 Y,ZX)< t(X9 Y,Z) < ί(Jf, Y, Z2). By the
continuity of ί, there is a neighborhood V of (X, 7) such that for (Xr, Y')eV9 we
have t(X'9 Y', Zλ) < t(X9 Y, Z) < t(X\ Y', Z2). Therefore, by the continuity of ί, there
is some Z' between Zγ and Z 2 with t(JΓ, Y', Z') = t{X9 Y, Z); that is, (X\ Y', Z')eJSP.
This proves that V a U<?, and thus U% is open. Moreover, since we could take Zγ

and Z 2 arbitrarily close to Z, this also proves the continuity of Φ#. Thus, we have
proven (*).

We now need to prove that Φ# is continuous for an arbitrary S£. The argument
is similar to the above. If <£e$F is arbitrary and {X, Y,Z)eJ?, then, in view of
Lemma 4, we can find Z x and Z 2 arbitrarily close to Z and such that ZX<Z< Z 2,
(X,Y,Z1)€&U (X, Y,Z2)eJ£?2, and J2Ί,JS?2 correspond to periodic C-kneading
sequences. Then the continuity of Φ^ follows as in the proof of (*), using
Lemma 2 and (in the place of the continuity of t) (*). Note that this does not work
iϊX+Y + Z=l9 since we cannot choose Zί. However, in this case 5£ = {(X, Y, Z)e
(0,l) 3 |X+ Y + Z= 1}. • (Lemma 7)

Now notice that for any jSfeJ*', the set U# contains with each point (X, Y) the
entire rectangle (0, AT] x (0, Y]. To see this, choose 0 < X < X and 0 < Ϋ < Y, and
let Z = Φ#(X, Y). If (X, %Z) is in T, then, by Lemma 2, β{fXtYtZ) < ^(fχ,γ,z) a n d

hence, by Corollary 6, (X, Ϋ) is in the domain of Φ^. If (X, Y, Z) is not in T, then
there is some Ze(0,1) such^ that X+Ϋ + Z=l9 i.e., M = 1 (for the map fχ,γ,z)-
Again, by Corollary 6, (X, Ϋ) is in the domain of Φ#.

We can now conclude the proof of Theorem 1:
For any (X, Y,Zγ\ (X, Y,Z2)eT with Zγ < Z2, the set {(X\ Y\Z')eT\X' ̂  X9

Y'^Y, @(X,Y,Zί)^@(X',Y',Z')^@(X,Y,Z2)} admits, by the previous para-
graph and Lemma 2, the coordinate system (Xf, Y'9Λ(X'9 Y'9Z')). The coordinate
change is continuous by Lemmas 2 and 7. This completes the proof of Theorem 1.

• (Theorem 1)

Proof of Theorem 2 and Lemma 3. Theorem 2, as well as Lemma 3, is a particular
case of the following (see [6]):
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Theorem 3. Letfx: [0,1] -> [0,1] withf(0) = /(I) = 0bea map with a single interval
J (perhaps reduced to a point) in (0,1), where f(x) attains its maximal value, and f
increasing on the left of J, decreasing on the right of J. Define the cutting out family

offx by:

fR(x) = mm(f1(x),R).

Then,

i) Any unimodal kneading sequence not greater than K(fx) is realized by some fR

ii) Rx > R2 implies that K(fRl) ^ K(fRl).

iii) Furthermore, iffγ has no homterval out of [j fx

 n(J), then any unimodal kneading

sequence not greater than ^ ( / i ) , and corresponding either to an a periodic behavior,
or to a periodic behavior with t = 0 or £ = 1 is realized by a single fR with OfίR^. 1.
iv) Furthermore, if fx

α) has everywhere the absolute value of its slope greater than 1, except perhaps
on a plateau where it takes its maximal value,

β) or has a negative Schwarzian derivative everywhere, except perhaps on a
plateau where its takes its maximum value,
then, λ{R\fR has no stable periodic orbit} = 0.

Proof of Theorem 3. The basic fact in cutting out families is that any kneading
sequence for a fR can be read as an itinerary of some point under fί9 these points
being precisely those which bound their orbit from above. This takes care of
statements i), ii), and iii).

For statement iv), the case α) with a plateau is covered by Theorem 4 in the
Appendix, and the case without a plateau is then a simple consequence, since by
cutting an arbitrarily small piece of the tip, one gets a plateau. That the case β)
behaves like the case α) is a result of [10]. Details are left to the reader.

• (Theorems 2 and 3, and Lemma 3)

III. Some Remarks

As we already mentioned, Corollary 1 was already known in a stronger form [12].
It corresponds to the face Z = 0 of T, i.e., to triangular maps. We refer to [12] for
more historical background in this context.

As far as proper trapezoidal maps are concerned, most previous studies were
devoted to the subspace X = Y of T (i.e., maps with a symmetry), and more precisely
to one parameter families with a constant length Z of the plateau. We remark that
our Lemma 2 works as well for such families. Almost everything was known
for this particular case of our Theorem 1, except for the periodic case with
t Φ 1/2. While a short proof was available in the periodic case with t = 1/2 for
Z > (13 - 3.yΪ7)/2 [1], the only general result for X = Y was through quite a long
proof [7], on which relied the short treatment of the aperiodic case in [3]. Also
a proof was provided in [5] for the particular case X = Y = 1/2 of our Theorem 2.

The main motivation for results such as our Theorem 1 is that getting similar
results for the quadratic family would be quite important. Presently, only periodic
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behavior and exceptional types of aperiodic behavior are understood at the level
of Theorem 1 for 1 — ax2 (see e.g., [6] for recent results and more history), most
of the proofs being quite difficult. Hence our results provide a model for the
conjectured evolution of the dynamics in the quadratic family, and may be a new
way to think about it, if not a path for proofs.

Conjecture. If for a one-parameter family {/,} of piecewise smooth unimodal maps,
ΣdtP

nft(l)(c)<0 (perhaps = — oo), where Pft is the Perron-Frobenius operator
for ft and c is the common critical point of all ft% then K(ft) is increasing in t.

If true, this conjecture could provide a tool for proving monotonicity for some
one-parameter families of unimodal maps.

Theorem 2 is less relevant for smooth dynamics since one knows that for ergodic
properties, the quadratic family behaves quite differently.
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year 1988-1989. C.T. thanks the Arizona Center for Mathematical Sciences (ACMS) for an
invitation for the academic year 1988-1989. The ACMS is sponsored by AFOSR contract
49620-86-c0130 with the URI program at the University of Arizona. All three authors express
their gratitude to A. G. Bell for inventing the telephone which was instrumental in the completion
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Appendix

The "Main Fact" which serves as a basis of our results could be extracted, for
instance, from [10], and is nothing but a particular case of the following:

Theorem 4. Let 0 < a < b < 1 and letf:[0,1] -*[0,1] be a map such that on [0,a~]
and [b, 1], / is of class C2 and

Then the Lebesgue measure

Proof. We can find points c,d such that a<c<d<b and a map g:A^>[0,1],
where A = [0, c] u \_d, 1], such that (see Fig. 2):

-flf = /on[0,α]u[6, l ] ,
—g is of class C2 on each of [0,c] and [d, 1],
— g maps each of [0,c] and [d, 1] onto [0,1],

|
xeA

For each n, the set

Dn = {*6[0,1] \fι(x)φ(a,b) for i = 0,1,...,n - 1}

= {xe[0,1]\gι(x)φ(a,b) for i = 0,1,...,n - 1},

is contained in the set
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Our aim is to show that λl f] Dn 1 = 0. In fact we will show that even

J
Notice that En is the domain of gn. One can easily see by induction that En is

a union of 2" disjoint intervals Δktn(k = 0,1,. . . , 2n — 1) and each of them is mapped
onto [0,1] by gn. Then the set En+ί is obtained from En by taking each ΛKn and
dividing it into three subintervals:

(g^XHΆcnigXJ-HίdAn and tel^Γ1^]),
where the first two of these intervals are the components of En+1 contained in En,
and the third one is disjoint from En+1. To compare their measures, we have to
estimate the distortion of gn, i.e., the maximal possible ratio of derivatives of gn

o n Δ k > n .
Suppose that x,yeΔkn. The constant:

is finite since g is of class C2. We have:

w - l

Σ
i = 0

n-1

i = 0

n-1

^ Σ
i = 0

n - 1

since g'(x) and g'(y) lie in the same component of A. We have also:



Monotonicity Properties of Trapezoidal Maps 11

thus,

n - l oo

i=o μ h

Since α > 1, the constant γ = exp [ j8 ^ α " j ) is finite and we get the following

estimates for the distortion:

sup

Consequently,

inf
1

sup |fo")'(x)Γy"

Now if we denote Gktn = (gn\Δkn)~1((c,d)\ then:

1 = f \(gn)'(χ)\dx ^ λ(Δk„)• inf

and

d-c= I \(gη'(x)\dxϊλ(Gk,ny sup \(g»)'(x)\.
GktΠ xeGk.n

Consequently,

y

The above inequality holds for all k and we get:

l-c
λ{En+^ λ(En) 1 -

7

Hence, by induction, we get (since Eo = [0,1]):

SO

( oo \ / d — c\m

Π £M U lim 1 I = 0. • (Theorem 4)
» = 0 J m^co\ γ )

Remark 4. Theorem 4 is known to hold in C 1 + ε . It is also known to be false in C 1 [2].
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