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Abstract. Assuming the existence of a real torus acting through holomorphic
isometries on a Kahler manifold, we construct an ansatz for Kahler-Einstein
metrics and an ansatz for Kahler metrics with constant scalar curvature. Using this
Hamiltonian approach we solve the differential equations in special cases and find,
in particular, a family of constant scalar curvature Kahler metrics describing a
non-linear superposition of the Bergman metric, the Calabi metric and a higher
dimensional generalization of the LeBrun Kahler metric. The superposition
contains Kahler-Einstein metrics and all the geometries are complete on the open
disk bundle of some line bundle over the complex projective space PM. We also
build such Kahler geometries on Kahler quotients of higher cohomogeneity.

Introduction

In this paper, we construct ansatze for Kahler geometries with commuting
holomorphic isometries. We express the Kahler-Einstein condition and the
condition for constant scalar curvature Kahler metrics as a system of differential
equations with respect to the Kahler quotient coordinates and the Hamiltonian
functions. This symplectic approach to special Kahler geometry with symmetry
has recently been exploited most successfully by LeBrun [7-9]. Also, our concern
with Kahler metrics of constant scalar curvature was inspired by the work of
Calabi [2,4].

In the case of Kahler metrics with circle action, we solve the equations under
some reasonable geometrical assumptions and find, in particular, a family of Kahler
geometries with constant negative scalar curvature on the open disk bundle of
any complex line bundle Θ{—p) over the complex projective space P" when p is
sufficiently large. If one considers the open disk bundle to be differentiably
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isomorphic to the underlying differentiable manifold of the total space of Θ{ — p\
one shall see in Sect. 3 that both the complex structures and the Riemannian
metrics are varying within this family. Our family of metrics is in fact almost
Einstein and in the limit, when one of the parameters vanishes, we obtain
Kahler-Einstein metrics.

We extend our result to metrics of higher cohomogeneity in Sect. 4 by allowing
the Kahler quotient to be different from Pπ. Finally, the case of a higher dimensional
torus acting through holomorphic isometries is considered. Readers may consider
materials in Sect. 2 and 3 as motivation for, as well as concrete examples of, the
general theorems stated in this last section.

1. The Kahler-Einstein Ansatz

It is well-known that a Kahler manifold with Kahler form Ω is Einstein with
scalar curvature 2mA if and only if

p = ΛΩ, (1.1)

where p is the Ricci form and m is the complex dimension. This is usually expressed
as a system of partial differential equations in the coefficients of the metric with
respect to complex coordinates. These equations are most often studied in the
realm of the complex Monge-Ampere equation. However, when there are
holomorphic isometries, we shall rewrite condition (1.1) in terms of Hamiltonian
functions and solve the equations explicitly when there are additional geometric
assumptions.

If TN is a real torus acting freely through holomorphic isometries on a Kahler
manifold M with Kahler form ί2, then M can be considered as a torus bundle
over a real manifold of dimension 2m — N, where m is the complex dimension of
M. The Riemannian metric defines a connection 1-form θ = (θuθ29. . >θN). The
fibre coordinate is chosen to be (ίi,ί2> ••>*#)• To choose coordinates on the base
manifold, let Xh i = 1,2,..., JV, be the Hamiltonian vector fields generated by this
torus action, and z, be the Hamiltonian functions, i.e.

When ξμ are the complexcoordinates of the manifold obtained by the Kahler
quotient by the torus, (ξμ, ξμ,Zi) forms coordinates on the base manifold. Then the
metric on M can be expressed as

g = h + WijdZidzj + (w~ \ω&)p

where h is a Kahler metric on the quotient space of each level set of the
Hamiltonians and ωi = dti-\-θi. Note that (w"1)^ is precisely the inner product
between the vector fields Xi9Xj.

To find the Kahler form of this metric, one expresses h as

h = hμvdξμdξγ.

When / is the complex structure,
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Therefore, — Iωt = w^dzp i.e.

WijdZj + iOi (1.2)

are type (l,0)-forms. Then the metric can be expressed as

9 = hμvdξμdξv + (w~ \ι{wlJ4zj + iω^WkidZi - iωk),

and the Kahler form is

Ω = Ωh + dzkΛ ωk

:=-hμvdξμ A dξv + dzk A ωk. (1.3)

The fact that Ω is a closed form and that the differential ideal generated by
type (l,0)-forms is closed is equivalent to a system of differential equations
describing the relation between partial derivatives of the coefficients of θi9 the wu

and the hμv. Due to the fact that we have a Kahler quotient and that the vector
fields are commuting holomorphic isometries, these equations can be expressed
concisely as

dθk = ίψtdξi Λ dξμ + i^dz, Λ dξμ - i^dz, Λ dξμ. (1.4)
2 ozk dξμ dξμ

Moreover, there is an intrinsic condition that ddθk — Q. This condition can be
expressed as

^ ^ (1.5)+ 4 ^ 0.
dzβzk dξλdξμ

To derive the condition that the metric is Einstein, recall that

p = — idd log det g. (1.6)

As det g = det h det w ~ \ set

u = log det h — log det w,

and let A = — 2Λ, then (1.1) is equivalent to

dldu = Aίλ

Comparing with (1.3), we obtain

4 ^ + I V ^ - ^ , (1-7)

<"-•>»)

(1.9)
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In particular,

where Bt are integration constants, and (1.7) can be simplified using the last
equation.

The above discussion then provides a proof for the second part of the following
proposition:

Proposition 1.10 (cf. [7]). Let w be a positive definite symmetric matrix and h a
positive definite hermίtian matrix of smooth functions on an open set U inCm~N x RN

which satisfy

^ Bι)
d^ = Ahλμ, (1.11)

dz,

= AZι + Bh (1.12)

dztdzk dξλdξμ

Suppose also that the closed form

(1.14)

is an integral form for each k. Let M be a torus bundle over U such that it has a
connection 1-form ω = (ωl9...ωN) whose curvature is (Fί9...FN). Then

is a Kάhler-Einsteίn metric with scalar curvature — mA.
Conversely, any Kάhler-Einstein metric with a torus acting freely through

holomorphic ίsometries, can locally be constructed as above.

Remark. Note that generically (1.13) follows from (1.11) and (1.12) by differentiating
(1.11) with respect to zk and substituting (1.12) into the resulting equation.

2. A Superposition of the Calabi Metric and the Bergman Metric

In this section, we are looking for metrics with S 1 symmetry. In this case, Eqs. (1.11),
(1.12) and (1.13) in Proposition (1.10), can be simplified as follows:

^ L + B)d^ = Ahλμ, (2.1)
dξλdξμ

— w~1=Az + B, (2.2)
dz
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Before we begin to find new solutions to these equations, let us look at some
examples.

(i) The Bergman Metric on the Ball This is the standard metric defined in the
interior of the unit ball in Cm. With a complex coordinate system ζί9... ζm9 it can
be written as

β (iΣCfJ2

We take the rotation

Y-ίyίr i -r i
Y 2Σ\ζ'dζ. Sζ"

to get
• _

and

Obviously, a generic level set is a sphere and the Kahler quotient is the complex
projective space P"1"1. Note also that although the Hamiltonian function z is
approaching infinity as a point is approaching the boundary of this disk, the disk
with its center removed is the unit disk bundle of Θ{— 1) over p m - 1 with the zero
section removed. We shall see these phenomena in a more general situation.

(ii) The Multi-Eguchi-Hanson Metrics. This is a family of Ricci-flat Kahler
metrics. In order to obtain an S1 symmetry, one can consider the MEH metric
corresponding to multi-monopoles on a line. More precisely, the metric is

g = Vdx'dx+V-iω2

9

where x = (r cos 0, r sin 0, x), ω — dt + γ such that

dγ=*dV,

with

v= t(r2+(χ-λfy112.
α = 0

In this case, the rotation field d/dθ is a holomorphic isometry.
For the case when N = 1, set λ0 = 0, λ1 = A, that is the Eguchi-Hanson metric,

then the Hamiltonian function and the length of the vector field is

z = ( r 2 + x 2 ) 1 ' 2 + ( r 2 + (x - λ ) 2 ) ' 1 2 , w~'= Z—^.
z

Note that the Eguchi-Hanson metric is globally defined on the total space of the
canonical bundle over P 1. This metric is also known as a Calabi metric.

In view of these examples we impose additional geometric conditions as follows:

(i) the length of the.Hamiltonian vector field is constant on each level set:
(ii) the Kahler quotient metrics obtained from each level set are homothetic.
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We shall see that the Kahler quotient metric is necessarily Einstein under these
two conditions.

Remark. If M is compact and g is Kahler-Einstein with positive Ricci curvature
then (i) is equivalent to the Kahler quotient metric being Einstein. ([5], p. 106).

Let qμv be the coefficients of the quotient metric with respect to the coordinates
ξμ. Then condition (ii) implies that

hμv{z, ξμ, ξμ) = f(z)qμv(ξμ9 ξμ).

With condition (i), Eq. (2.3) is equivalent to require

for some constants C, D. Now,

u = log det h — log det w = log det q + n log (Cz + D) — log w, (2.4)

where n is the complex dimension of the quotient space. Then (2.1) is equivalent to

4 S l°g*?q + (Λz + B)Cqλμ = A(Cz + D)qλμ.
dξλdζμ

As a consequence of this equation, q satisfies

d2 log det q

Sξλdξμ

with

-4k + BC = AD. (2.5)

Thus q is a Kahler-Einstein metric with scalar curvature 4nk. Moreover, (2.1)
is equivalent to (2.5).

The remaining equation is (2.2). Substituting (2.4) into (2.2), we have

iA n C dlogw
(Az + B)w = y—.

Cz + D dz

Let K = w~1

9 then this equation is transformed to be a linear equation in K:

dK nC A

+ K A

+ K A
dz Cz + D

and hence

K = {Cz + D)-n{\{Az + B)(Cz + Dfdz + £}.

Note that as long as C Φ 0, one can assume that C = 1, D = 0 because in this case,

Then we can choose z + — to be a Hamiltonian function.
C
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Therefore, generically, one may assume that C = 1,D = 0, and hence

w = . (2.6)

n + 2 n+1

To obtain a metric on a bundle, one must also verify that

1 1 / i dhλμ — dw dw
F:= —I dζλ A dζμ -f i — dz Λ dζμ — i—^ύ

is integral. Now,

2π 2π2 dz

1 i ,, ,τ

In 2

Since q is a Kahler-Einstein metric, this is the first Chern form of the quotient
metric q. In particular, it is integral. The local construction is finished.

Now we shall study the global nature of these metrics. The metric tensor is
given by

g = zq + wdz2 + w~ 1ω 2,

where w is given in (2.6) and ω = dt + θ with dθ = Ω(q), the Kahler form of q.
Furthermore, we now assume that q is the Fubini-Study metric

q

with constant holomorphic sectional curvature 1. Then (2.5) implies that B = n 4-1.
Also since the Fubini-Study metric is Kahler-Einstein and the canonical bundle
ofPnis 0(-(n + l)) we get

dθ = Ωq

n + l r q

= the curvature of Θ( — 2).

We shall prove that we have a metric satisfying

with /I < 0 and complete on a disk bundle on Pn. Let us first prove a necessary
condition on the degree of such a bundle and then go on to see that this condition
is also sufficient: Let Z be the zero section of O{ — p) -* P" and let K be the canonical
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bundle of Θ( — p). From the adjunction formula we have

K\z = Θ(p-(n+l))\z

Thus,

p - ( w + l) = degree(K)= J Cl{K)
P1

pi pi

Hence, as a necessary condition we must have p ^ n + 1 with equality if and only
if A = 0. To prove that our family of Kahler-Einstein metrics contains a metric
on Θ( — p) for all p in the range p ^ n + 1 we proceed as follows: Set z = \r2 and

W + 2
E = — I - I . Then the metric is given by

g = V~ Hr2 + -q + r- V(dt + 0)2, (2.7)
4 4

where 0 ^ ί ^ 4π and

/π\2n + 2 Λ
(2.8)rj 2(n + 2)

We have apparent singularities at the zeroes of V. Now set

ί2n+2 A
1

and assume that α > 0 satisfies

U(oί) = peZ, (2.10)

K(α) = 0. (2.11)

Then

α2 = 2 y l - 1 ( n + l - p ) ? (2.12)

^ : f ^ (2.13)
n 4- 2

Then from (2.12) we again see that if A < 0 we need p ^ n + 2. Restrict attention
to fibres of the Hopf map C w + 1 - {0} -»PΠ, then # becomes

where α 2 n + 2 is given by (2.13). Now dividing out by the action of Zp, introducing

a new angular coordinate τ = —, and simultaneously introducing a new radial

coordinate JR2 = r2V, the fiber-wise metric becomes
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0lfiber = U~2(1 + U-'tfr-ty^R2 + ~ dτ2

+ — dτ2

P

P

Thus, the metric extends smoothly across the origin R = 0. Finally, note that

^ : = 2 » + 2 * . « _ _ Λ _ r > 0

dr r2n+3 n + 2

so the metric is non-singular for all r > α = (2/1 ~ ϊ(n + 1 — p))1/2

Again Z denotes the zero section of &(—p)->P". Let

Vt = {(zo,...,zB)e(C+ 1 - {OD/Zplz, #0},

i = 0,1,..., n. Then consider the isomorphisms fcf: Vt -> Ut x (C — {0}), where

Λ ̂  i, 0 ̂  k g n. Then since

and l/j x (C — {0}) covers Θ(—p)\Z we have an isomorphism

and by sending Z to {0} we get a desingularization Θ( — p)-+Cn+1/Zp.
The two processes above of desingularization are compatible: On the fiber of

C l + 1-{0}->Pnwehave

Idz — w"1^!,

so we get

Then η « Ke/τ and we have proved that our metric is defined in a neighbourhood
of the zero section of the bundle ®{ — p) over Pw. As the metric is defined for all
r ̂  α, the metric is complete on a manifold diffeomorphic to the total space of
Θ{—p). However, one can see that, when A < 0, the Kahler metric is only defined
on an open disk bundle of Θ( — p) over Pn as follows:

We have seen that the fibre-wise metric is given by

where w is given in (2.6), with B = n+ 1, A^0,E^0. This is a metric on the
complex plane such that τ is the angle-coordinate. Therefore, by uniformization,
there is a function p of z and a function # of p such that

+ 4w" ^ τ 2 = g2(p)(dp2 + p2rfτ2).
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Then

— = P , 4w 1=p2g2.
dz g

Differentiating the second equality, one has

dw'1 Λ Ίdg „ ,dρ J Λdg4 = 2gp2f + 2pg2f = 4[w-ί-f
dz dz dz \ gdz

Therefore,

dlog(g2w)

dz

so

= - pw,

where C is a positive constant. Then

As

w λ —zΛ—
zn n + 2

for any given large positive constant Co, there is z0 ^ α, such that for all z ̂  z0,

n + 2 = n + 2

Then

J wdz = J wίίz H- j
α α 20

dz
g J wdz +

n + 2
2 ,

+

7 ^o / z zo\
= J wrfz + —- ( arctan arctan — 1,

a Co \ A Q AOJ

where Ao = Co / . Now, one can see that as z is approaching infinity, p is
V A

approaching a positive constant, i.e. p is a bounded function of z and hence the
metric on each fibre is defined only on an open disk. This is precisely a generaliza-
tion of the phenomena of the Bergman metric. However, our metrics can be extend-
ed over the zero section which gives the existence in the following proposition.
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Proposition 2.14. For any integer p ^ n + 2, the open disk bundle of Θ(— p)-»P"
admits a complete Kάhler-Einstein metric with negative scalar curvature. Up to
multiplication by an overall constant, there is exactly one such metric which is
U(l) x SU(n + 1) invariant.

Proof. The in variance forces the length w" 1 of the symmetry only to depend on
the Hamiltonian function z and then the uniqueness follows from the unique
solution in (2.6) of the differential equation.

Remark. B. Bergery has produced a series of Kahler-Einstein metrics of cohomo-
geneity one on complex line bundles ([1], p. 276). From the symmetry and unique-
ness our metric must correspond to an object in his work. However, B. Bergery
claims that his Kahler-Einstein metrics are defined on a line bundle. This can
only be true as a Riemannian metric.

Remark. If we set A = 0 in the metric, we get a Ricci-flat metric on the canonical
bundle of P". This metric has previously been discovered by Calabi in [3]. Also,
if a = 0 we get the Bergman metric. This we also see by comparing (2.6) with the
first example. Thus the family of metrics is a kind of non-linear superposition of
the Calabi metric and the Bergman metric. For n = 1 see also [11].

3. The Constant Scalar Curvature Kahler Ansatz

In [6], LeBrun constructed a family of Kahler metrics with vanishing scalar
curvature. The metrics in this family are complete on complex line bundles on P 1 .
The metrics are not Einstein but the conformal class contains an Einstein metric
on the ball in R 4 previously found by Pedersen [10]. In this section we shall
construct a family of Kahler metrics with constant scalar curvature and complete
on disk bundles over Pn. This family of metrics contains a higher dimensional
generalization of the LeBrun metric.

To obtain the ansatz for constant scalar curvature Kahler metrics with
symmetry, one essentially performs a contraction on Eq. (1.11), (1.12) and get the
following:

Proposition 3.1. Let wbea positive definite symmetric matrix and h a positive definite
hermitίan matrix of smooth functions on an open set U in Cm~N x RN which satisfy

= mA, (3.2)
λdξμ dzk dzt ) dzt

- ^ + 4 ^ = 0. (3.3)
dztdzk dξλdξμ

Suppose also that the closed form

-±F,= Ul-ψ*dξλ Λ dξμ + ^ * , Λ dξμ - & * , Λ dA (3.4)
2π 2 π \ 2 dzk dξμ dξμ )

is an integral form for each k. Let M be a torus bundle over U such that it has a
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connection 1-form ω = (ωί9...,ωN) whose curvature is (Fί9...FN). Then

is a Kάhler metric with constant scalar curvature — mA.
Conversely, any constant scalar curvature Kάhler metric with a torus acting freely

through holomorphic isometrίes, can locally be constructed as above.

Now, consider the S1 case. We assume we have a Kahler metric with one holo-
morphic symmetry in complex dimension n + 1 and we assume the length of the
symmetry is constant on each level set and that the quotient metrics obtained
from each level set are homothetic. From Sect. 2 we know that such a metric has
the local form

fw-W, (3.5)

where

h = zq, (3.6)

and q is the metric on the Kahler quotient. Furthermore, the quotient metric is
assumed to be Einstein with scalar curvature Ank so that

d2 log det q _

Under these assumptions the equation for constant scalar curvature (3.2) is
equivalent to

z h nφ = (n + 1)A -f 4fen, (3.7)
dz

where

ώ-du - 1

dz

Solving this equation, we get

A

where G and E are integration constants.
To study the global properties of this Kahler metric we proceed as in Sect. 2.

We fix the quotient metric to be the Fubini-Study metric with constant holomorphic
sectional curvature 1. Furthermore we set z = \r2 and

K-l- E +H J¥L ί 3 9 )
V~1 ^ + ^ ~ 2 ( ^ T 2 ) ' ( 3 9 )

where E, H and A are constants. Then the metric takes the following form:

g=V-Hr2 + r-q + r-V{dt + Θ)2, (3.10)
4 4
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where ω = dt + θ and dθ = curvature of Θ(— 2). N o w set

Kβ r2n + 2 r2n 2(n + 2) V '

E = k1a
2n + 2; H=-k2a

2n, (3.12)

divide out by the action of Zp and introduce τ = — then we may proceed in much

the same way as in Sect. 2, using V and U as in (3.9) and (3.11), to resolve the
apparent singularity, and to show that the metric is complete on the open disk
bundle of Θ(— p)-+Pn. Thus we obtain the following proposition.

Proposition 3.13. Let p be an integer and kγ and k2 be non-negative numbers such that

Λa2

(n + 1)^ + nk2 - p =

l-kt-k2 =

2(n + 2)'

Λa2

2(n + 2)9

kx + k2> 1.

Then (3.9), (3.10) and (3.12) define a complete Kahler metric with constant negative
scalar curvature on the open disk bundle of Θ( — p)->Pπ. This is the unique family
of such metrics which is U(l) x SU(n + 1) invariant.

Remark. When the parameter G in (3.8), or equivariantly the k2 in Proposition
(3.12), is small, the metric is almost Einstein. In fact, the Ricci form is

1

Then

As <β β , Ωq > is constant, dz ΛCO has length equal to 1, Ωq and dz A ω are orthogonal
and z is bounded away from zero, there is a constant C such that

\\p-ΛΩ\\2^CG2.

In particular, if G = 0, the metric is the Einstein metric in Proposition (2.14).

Remark. For A = 0, we obtain a scalar flat Kahler metric when

k1=p-n, k2 = (n + l)-p9

and this metric is in fact complete on the entire total space of Θ( — p):

Proposition 3.14. For any integer p^n, the bundle Θ(—p)-+Pn admits a complete
Kahler metric with vanishing scalar curvature. Up to multiplication by an overall
constant, there is exactly one such metric which is 17(1) x SU(n+ 1) invariant.

Remark. For n = 1, this scalar flat Kahler metric is the LeBrun metric. Thus the
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metric in Proposition (3.13) may be thought of as a non-linear superposition of
the Calabi metric, the Bergman metric and a higher dimensional version of the
LeBrun metric. Also for n = 1, the LeBrun metric is locally conformal to an Einstein
metric. However, we have the following proposition:

Proposition 3.15. For n ̂  2, the constant scalar curvature Kάhler metric in (3.13) is
conformally equivalent to an Einstein metric of cohomogeneity 1 only when it degene-
rates into the Calabi metric. For n = 1, only the LeBrun metric is locally conformally
Einstein with cohomogeneity 1.

Proof Let Z be the tracefree part of the Ricci tensor of our metric. When g = φ~2g
is an Einstein metric, then

(vdφ + g) , (3.16)
V 2 ( + l ) /

where the covariant derivative and the Laplacian are associated to the metric in
(3.13). Now, we have Idz = w - 1 ω and Z(X9 Y) = - p(IX, Y), where p is the Ricci
form. Then we obtain

\ ή { ^ l ) (3 17)

where w ι is given in (3.8). The property of cohomogeneity one forces φ to depend
only on z and we get

(d2φ _1 dφ (dw~
Δφ = — I — - w H 1

\dz2 dz\ dz
1 dφdw~x\ , 0\wdzz

dz2 2 dz dz

ldφdw'1 _ 1 2 1 _t _ίdφ
+ 2~dz dz ω + 2 Z W ϊ z '

Then (3.16) is a system of three equations

nG 1 \ / d 2 φ t lrfφίiw"

(3.19)

2zw+1 2 Λ V^ 2 2</z dz

--^f^|w--f^f^ +

 nw-ΛVθ) (3.20)
/i + 1 V dz 2 dz\ dz z ))

dφ _x _x n fd2φ _χ dφίdw'1 n _Λ\

2zn + 1 ' 2~)Ψ + nΊϊzZ W ~n~+ϊ\dz2~W + l z \ dz + z W / / '
(3.21)

ί nG 1 \ dφdw'1 n ίd2φ _χ dφfdw'1 n _Λ\_ 0

\2^ + 1 ~ 2 )φ + n~dz dz ~n~^ί\dz2W + l z \ dz + 2 W / / "
(3.22)

Now, subtracting (3.22) from (3.20) we get — - = 0, so φ(z) = az + b. But if we sub-
dz2
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stitute this into (3.21), we see that A = 0 and that for n Φ 1 this equation will only
be satisfied if G = 0, i.e. if the metric is the Calabi metric.

4. Further Applications of the Ansatze

(i) Higher Cohomogeneity. In all the constructions above, we fixed the Kahler
quotient to be Pn with the Fubini-Study metric. This was done to make the
examples more explicit and transparent. However, we can also build metrics on
non-homogenous Kahler quotients to obtain metrics of higher cohomogeneity.
Thus, let X be Kahler-Einstein of complex dimension n with metric q. We assume
that

with Λq = |/ε, ε = — 1,0, or 1. Here / is the index of X in case Λq Φ 0, i.e. the biggest
positive integer such that there exist a line bundle L on X with L* isomorphic to
the canonical bundle of X. In the Ricci-flat case, we shall assume that q is a Hodge
metric on X and then L is the line bundle represented by the Hodge form. Again,
let g be the metric

where

lε kta K2a Λr

2(n + 2)

Furthermore, let p be an integer and kl9k2 be non-negative numbers such that

Aa2

n + 1 2(n + 2)

*i+*2>-^τ. (4-2)

n+ 1
Then we get

Proposition 4.3. Let the parameters satisfy (4.2). Suppose that Λ < 0 , f c 1 > 0 and

k2 > 0, then g is a Kahler metric with constant negative scalar curvature and complete

on the open disk bundle of L ί ε -• X.

We also obtain the special cases of Einstein metrics and scalar flat metrics:

Proposition 4.4. Let the parameters satisfy (4.2). Suppose that A < 0, kγ > 0 and

k2 = 0, then g is a Kahler-Einstein metric with negative scalar curvature and complete

on the open disk bundle of Llε -> X.

Proposition 4.5. Let A = 0,ε=l;kι=p — n,k2 = n + l—p andp be an integer such
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that p^n, then g is a scalar flat Kάhler metric complete on I/-»X For p = n + 1,
the metric is Rίcci-flat.

(ii) Torus Symmetry. A trivial way to obtain Kahler-Einstein metrics with S1 x S1

symmetry is to take the product of the metrics which were constructed in Sect. 2.
In this case, the Kahler quotient is the product of Kahler-Einstein metrics.
Similarly, we choose an S1 x S1 action on the complex disk with dimension
n1-\-n2-\-2 so that one S1 is rotation in the first nί + 1 coordinates and acts
trivially on the rest, another S1 acts in the complementary way, then the Kahler
quotient is a product of Fubini-Study metrics on PWl x P"2. Motivated by these
two examples, we shall find solutions to the Einstein ansatz with the following
assumptions:

(a) the matrix w is a function of zί9z2 only; (b)the Kahler quotient metric
obtained from any level set has the form

h = MzuZzKdξfdξ" + f2(z1,z2)q2

χβdζ"dζ^,

where q1^2 are Kahler-Einstein metrics on manifolds of dimension nt and scalar
curvature 4^^.

As a consequence of (1.13), condition (a) and (b) are compatible only if fί9f2

are affϊne functions of z1 and z2. We set ft = zf. i.e.,

h = z1q
1+z2q

2.

As

M = logdet(W~1)

= log det q1 + log det q2 + l o g ^ z y det X),

where K = w"1, (1.11) is equivalent to require n ^ to be the scalar curvature of
the Kahler-Einstein metric q\ Finally, (1.12) is a system of two equations in the
entries of the matrix K. Assuming that Kγi depends on zγ and K22 depends on
z2 only, this system can be simplified as follows:

When K12 = 0, one obtains the product of metrics constructed in Sect. 2.
The matrix

Z j Z 2 Z 2 ~r i

is another solution. This solution corresponds to the Bergman metric.
However, there is a family of non-trival solution obtained by solving the

following systems:

dz2
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2 n2
— — + —K12 = Az1+B1.Bz2 z2

This system has solutions only if nί = n2, say it is n. Moreover, Bί=B2 = 0. It
means that both q1 and q2 are Ricci-flat. Then the solution is

/ A _ E. A F N

K =
n + 2 n + 2 -n/2 n/2

Zl Z2

\
n + 2

ztz2+- rn/2 n/2 n + 2
J

However, we have not been able to decide the completeness of this metric.

Remark. We also worked on the constant scalar ansatz, then Azt + Bt is modified

by adding a factor —. But such a system could have a solution only if G{ = 0.
ZT

We have also obtained another Ricci-flat Kahler metric with TN symmetry with-
out deciding the completeness. We still keep the geometrical assumptions which
imply that the inner products Ktj = g(Xi9 Xj) only depend on the Hamiltonians zt

and that

for constants Cf, D. Also,

u = log det qμv + n logίC^ + D) + log det K.

If we furthermore assume that Ktj is diagonal,

Ktj = K/N,

then (1.12) leads to the differential equations

dzk

\=^(Azk + Bk)(Cizi- (4.6)

This is exact if we assume the metric has vanishing scalar curvature, i.e. A = 0,
and set Ck = 1 and Bk = λ, for all k = 1,..., N.

Then we may solve (4.6) to get

F

κ =

where we have D = 0. Now, again assuming that the metric q is the Fubini-Study

metric with constant holomorphic sectional curvature 1 the equation correspond-

ing to (2.5) gives λ = —(n+\). Then dθk = curvature of 0 ( - 2). Thus, the Ricci-flat
N

Kahler metric is given by
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with

For N = 1, this is the Calabi metric.
One may also allow IN to be replaced by a positive definite symmetric matrix

with constant coefficients. Then one obtains a family of Ricci-flat Kahler metrics.
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