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Abstract. The approach to isospectral Hamiltonian flow introduced in part I is
further developed to include integration of flows with singular spectral curves. The
flow on finite dimensional Ad*-invariant Poisson submanifolds of the dual (gl(r)+)*
of the positive part of the loop algebra gl(r) is obtained through a generalization
of the standard method of linearization on the Jacobi variety of the invariant
spectral curve 5. These curves are embedded in the total space of a line bundle
Γ-^IP^C), allowing an explicit analysis of singularities arising from the structure
of the image of a moment map Jr:MNr x MN ,.->(#/(r) + )* from the space of rank-r
deformations of a fixed N x N matrix A. It is shown^how the linear flow of line
bundles Et-*S over a suitably desingularized curve S may be used to determine
both the flow of matricial polynomials L(λ) and the Hamiltonian flow in the space
MNtf x MNjΓ in terms of 0-functions. The resulting flows are proved to be completely
integrable. The reductions to subalgebras developed in part I are shown to
correspond to in variance of the spectral curves and line bundles Et-+S under
certain linear or anti-linear involutions. The integration of two examples from
part I is given to illustrate the method: the Rosochatius system, and the CNLS
(coupled non-linear Schrόdinger) equation.

Introduction

In [1] it was shown how isospectral Hamiltonian flows in the space of rank r
perturbations, JtA, of an N x N matrix A can be derived from the Adler-Kostant-
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Symes (AKS) theorem through the use of a moment map from JiA into the dual,

(#/(r) + )*, of the positive part of the loop algebra gl(r) (cf. [13] for the rank 2 case).
These systems were shown to be completely integrable under special assumptions
on the spectrum of A and the resulting matricial polynomial L(λ)E(gl(r)+)*. For
these cases, standard linearization methods ([3,4, 5,11,12,15,17]) yield solutions
in terms of 0-functions for the associated spectral curves S. To treat the general
case these methods must be extended to allow for singularities occurring in S when
the assumptions on A and L(λ) are removed. The purpose of this paper is to
provide a more unified, streamlined formulation allowing A and L(λ) to have more
general spectra. Such a generalization is necessary in order to cover important
examples of integrable systems, e.g. the coupled nonlinear Schrδdinger equation,
discussed in [1]. The construction we consider expands on work of Hitchin [9].

Since this work is a sequel to [1], we shall adopt the same notational
conventions, which are briefly summarized, together with some of the main results,
in Sect. 1. In Sect. 2 we describe an embedding of the spectral curve S into the
line bundle O(n)—^IP^C) which is used to integrate the flows on the Jacobian of
an appropriate desingularization of S. The geometry of Sect. 2, along with a simple
dimension count, is used in Sect. 3 to prove complete integrability in the generic
case. In Sect. 4 we obtain the explicit realization of the geometric solutions from
Sect. 2 in terms of ^-functions. In Sect. 5 we derive the properties of S, and the
restriction to special classes of line bundles in the Jacobian of 5, following from
the reductions of the generic system to flows in (#/(r)+)* which are invariant under
finite automorphism groups as introduced in [1]. Finally, in Sect. 6 we illustrate
the general constructions in this paper by explicitly solving two examples
introduced in [1]; the Rosochatius system, and the coupled nonlinear Schrόdinger
equation (CNLS).

1. Notation and Summary

Following [1], we let JtQ c MN r x MNtr denote the open, dense submanifold of
pairs (F, G) of N x r complex matrices, F, GeMNr, defined by

JIQ = {(F, G)eMN,r x AfjvJF and G have rank r}. (1.1)

This space inherits the natural symplectic structure on MN r x MNy.

ω = tτ(dF Λ dGT). (1.2)

For a fixed N x N matrix A, let

JtA = {A + FGT\(F,G)eJt0} (1.3)

denote the space of rank r perturbations of A. The group GL(r, (C) acts freely and
properly on Jί§ by

g ' ( F 9 G ) = (Fg-l,Ggτ), (1.4)

which preserves the symplectic structure (1.2). Therefore one has a natural Poisson
manifold structure on the quotient space ^0/GL(r, (C), with Poisson bracket
given by

{π*f,π*g}, (1-5)



Isospectral Hamiltonian Flows 557

where π: Jt§ -»J?0/GL(r, <C) is the natural projection. Since the projection from
JΪQ to JiA has as its fibers the GL(r, <C) orbits, we may identify MA with J^0/GL(r, <C).

Let ^/(r) = gf/(r,C)(x)C[A,yl~1] be the loop algebra of semi-infinite formal
Laurent series in λ with coefficients in gl(r, (C); i.e. with elements of the form

m

i= — oo

Let gl(r)+ denote the subalgebra of gl(r) given by the matricial polynomials in λ

and gl(r)~ the subalgebra whose elements are sums of terms involving only strictly
negative powers of λ. Then gl(r) is the vector space direct sum

gl(r) = gl(r)+ ®gl(r)~. (1.6)

The algebra gl(r) has a nondegenerate, ad-invariant, inner product given by

where (X(λ)Y(λ))0 denotes the constant term in tfie formal series X(λ)Y(λ). This
pairing gives the identification

(0'(r)+)* ̂ teW)1 = gl(r)o > (1-8)

where ^/(r)~ = λgί(r)~
Assuming >4 to be diagonal, with eigenvalues {α f} ί = 1 5 >.. ) Π of multiplicity

{/cj.= 1 n, write F, GeMNr in block form

G =

where Fί5 Gf are k{ x r matrices. Define the map

Jr\MNr x M]Vr-»(0/(r)'f )* ~ gl(r)ΰ
by

n ιπτF
(1.9),

ί = ι α, —

Theorem 1.1 ([1], Ch. 2). Jr defines an equivariant moment map for an infinitesimal
gl(r)+ action on MN r x MN r.

Let I(gl(r}*) denote the ring of coadjoint-invariant functions on gl(r)* and let

^+ be the ring of functions on (gl(r)+)* given by restricting I(gl(r)*). More

generally, if αeGL(r,(C), Y = a~l -/, and φeC°°(^(r)*), we define φyeC<*(0/(r)*)
by

φy(X(λ)) = ψ(X(λ) + λy) (1.10)

and set

(1.11)
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The generalization of the AKS theorem given in [18] implies that the functions

in $'\ Poisson commute in the Lie-Poisson structure of (gl(r)+)*. Let 3FΎ denote
the pullback of 3F\ to MNtf x MN r by Jr. The functions in ̂ γ are invariant under
the stabilizer subgroup GL(r, C)α of a in GL(r, C).

Theorem 1.2 ([1], Thm 3.6). The functions in ̂ Ύ Pofsson commute on MN^r x MNr.
Moreover, the Hamiltonian flows are isospectral for A -f FαGτ, i.e., if (F(i), G(ί))
describes the Hamiltonian flow of he^γ , then spec(A + F(t)aG(t)τ) is independent
oft.

Remark. In the case that 7 = 0, α = /, GL(r, C)fl = GL(r, (C) so the functions in
3F = 3?® reduce to functions on J(A, i.e. we can consider the flows on JfA as
Hamiltonian with respect to the natural Poisson structure there.

In [1] it was shown that when kt = r - 1 for all i then & = ̂ ° is a completely
integrable ring of functions. One of the purposes of the present paper is to generalize
this result to Y 7^ 0 and more general {/cj. In [1] the problem was reduced to one
on (#/(r)+)* symplectic leaves by quotienting MNtf x MN r by the natural symplectic
action of the subgroup H of GL(Λf, (C) stabilizing A under conjugation.

Let Jίv denote the open dense submanifold of MNt, x MN r on which Fh Gt

have rank k{. The group H acts freely and properly on Jfi, again preserving the
symplectic structure, so Jt^/H is a Poisson manifold.

Theorem 1.3 ([1], Corollary 2.5). Jr is invariant under the H action on Jίv, hence
it reduces to an equivariant moment map

for an infinitesimal gl(r)+ action on Jί^/H. The mapjrt0 is one-to-one and maps
symplectic leaves of J?k/H onto symplectic leaves in (gl(r)*)*.

Now let Jt = ̂ kn^0, i.e. (F, G)eJt if F and G have rank r and Ft and Gf

have rank kh all i. Jί is invariant under the actions of H and GL(r,C)fl, and
the functions in J^y are invariant under both of these actions. Hence we may
consider !FΎ as a ring of functions on the Poisson manifold Jΐ/(H x GL(r, C)α) =
JK/(H x SL(r,(C)J and it is this ring of functions on J(/(H x GL(r,C)J which will
be proved to be completely integrable. It then follows that the ring of functions
3FΎ extends to a completely integrable ring on an open dense subset of Jί by the
arguments of Theorem 4.2 in [1], (cf. [8]).

Because of Theorem 1.3, in order to study the ring of functions ^Ύ reduced
to MIΆ it suffices to consider the functions 3F\ on finite dimensional symplectic
leaves of (gl(r)+)*. There is a natural GL(r,C) action on (0/(r)+)*, given by
conjugation, which corresponds to the GL(r,C) action on Jt/H, i.e. the actions
are intertwined by Jr>0. To study the ring of functions ^Ύ reduced to
Jf/(H x GL(r, (C)α) it suffices to consider the ring of functions ^\ on certain finite
dimensional symplectic leaves of (gl(r)+)* reduced by the GL(r,C)fl action.

With the identification (<Γ/(r)+)* - <Γ/(r)~, if φel(gί(r)*\ the Hamiltonian flow
for φYG^Y

+ on gl(r)ΰ is described in the AKS theorem as given by

X(λ) = [ d ( ( X ( λ ) + λY)»)+, X(λ) + λYl (1.12)
at

where X(λ)egί(r)~, (X(λ) + λY)* is the element of gί(r)* corresponding to
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X(λ) + λYegl(rldφ((X(λ) + /IF)") is the differential of φ at (X(λ) + λY)* considered
as an element of gl (r) ~ gl (r)**, and the subscript + denotes the projection to gϊ (r)+

along gl(r)~.
Since we are interested in these flows only on the finite dimensional orbits in

the image of Jr we can manipulate Eq. (1.12) to a more convenient form. First
recall the expression for JΓ given in (1.9). We multiply away the poles at the α/'s
to convert this to a matricial polynomial, i.e. let

L(λ) = λ-la(λ)(Jr(F, G) + λY\ (1.13)
n

where a(λ)= ]Γ (λ-^). We can thus rewrite (1.12) as a flow of matricial poly-
nomials by I = l

-Uλ) = ldφ((X(λ) + λY)»)+, L(λ)l (1.14)
at

Finally, since we are working on finite dimensional orbits in gl(r)~ , it is enough
to consider the case when (see Proposition 3.1) dφ(X(λ) + λY) can be written in
the form P(L(λ\ λ~ l ) where P(z, λ~ *) is a complex polynomial in λ~ 1 and z. Thus
we have reduced our study of the flows on orbits in JtIR to the study of the flows

, -') + , L(λ)l (1.15)
at

where P(z,λ~1) is an arbitrary complex polynomial in A " 1 and z. In the next
section we study these flows.

2. Geometric Solutions of Matricial Polynomial Lax Equations

In this section we derive geometric solutions to Lax equations of the form

λ~})+9 L(λ; ί)], (2. 1
at

where
L(A; ί) = L(λ) = LQλm + Lίλ

m-1 + . +Lm (2.2)

is a matricial polynomial in A, i.e. Lt.6^/(r,C), P(z,λ~1) is an arbitrary complex
polynomial in A" 1 and z, and the subscript^ denotes taking the positive part
with respect to the splitting gl(r) = gl(r)+ @gl(r)~.

Define the spectral curve S0 a <C2 by

S0 = {(/, z)|det(z/d - L(λ; ί)) = 0}, (2.3)

It follows from (2.1) that S0 is independent of ί. On S0 the value z = z(λ) is an
eigenvalue of the matrix L(λ\ t).

According to the techniques of [5, 12, 11, 15,4, 3, 17], one defines, for generic
L(λ\t\ a line bundle (or its associated divisor class) over a compactification S of
S0, with fibre at (λ,z) the z-eigenspace of L(A ί), and one obtains from the flow
L(A; ί) a linear flow in the Jacόbian of 5.

The approach in terms of line bundles must be generalized if the eigenspaces
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over the points (Λ,z)eS0 c=C2 are not everywhere one-dimensional. This is the
case at the points (/l,z) = (αί,0) for L(λ;t) of the form (1.13) arising from rank-r
perturbations of A if the multiplicity fcf of its eigenvalues α£ is less than r — 1. To
handle such cases, we adopt a construction of Hitchin [9] and consider the sheaf
E® over C2, with support S0 a C2 defined by the exact sequence:

which is well defined for jany L(λ; t). In the case when the eigenspaces of Lτ(λ; t)
remain of dimension one, E? is just the sheaf of sections of the dual of the eigenvector
bundle of U(λ\ t).

In subsections (a)-(d), the corresponding sheaves Et and Et will be constructed
on a compactified curve S and its desingularization π:S-+S. A key feature of the
construction (cf. [10, 9]) is an embedding of S into a surface T which is a partial
compactification of C2. (T is just the total space of the mth power of the hyperplane
section bundle of P^C).) The flow of line bundles over S is then seen to be induced
by a flow of line bundles over T which, in turn, is linked explicitly to the Lax pair
flow. If the Lax equation is of the form (2.1) the flow of line bundles over T
corresponds to a flow of transition functions etp(z-λ~^ over T.

a) The Embedding. To describe the embedding, consider ΊP1 (<C) with the standard
coordinate charts ( V θ 9 λ ) and ( V ί 9 λf = (l/λ)). We consider the line bundle
πiT-^P^C) which is the mth power of the hyperplane line bundle over P^C).
The transition function from K0 to Vl for T is l/λm, thus T can be covered by
two coordinate patches Uί = π ~ l ( V i ) with coordinates (λ,z) on U0 and

The equation

0 = det(Lμ) - zld) = ( - 1)V + a^λy-1 + + ar(λ) (2.4)

embeds S0 into L/0. From (2.2) we see that at(λ) is a polynomial of degree im.
Therefore, by switching to (λ', z') coordinates, Eq. (2.4) becomes (away from λ = 0)

0 = ( - l)'(zT + ά,(λf)(zj-1 + . + 3r(n (2-5)

where ά^λ') is a polynomial of degree im. From this it follows that S0 extends to
a (possibly singular) compact curve S in T. Via the map π T-^P^C), S is an
r-fold branched cover of P^C). The adjunction formula ([6], p. 146) gives the
virtual gemls of S to be

0 = i(r-l)(rm-2). (2.6)

When L(λ) arises from a rank r perturbation, and hence has the form given
by Eq. (1.13), the curve S has specific geometric features. In this case the degree
m is either n, if Y Φ 0, or n — 1, if Y = 0. Evaluating (1.13) at λ = α, yields

^ (2.7)

Hence, generically (i.e. on ̂ k c MNιΓ x Λf NfΓ) L(αf) has rank fct. Thus the character-
istic polynomial of L(αf) vanishes at least to order r — kt at z = 0. (It may vanish
to higher order if the Jordan form of L(αf) is not diagonal.) It follows that the
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curve S has at least an (r — /ct )-fold intersection at the point (λ, z) = (αj,0). In the
generic situation L(αf) is diagonalizable and S has exactly an ordinary (r — /ct)-fold
intersection at (αt ,0).

One can now see geometrically that the flow (2.1) preserves the spectrum of
an element A -f FGT of MA. The spectrum {gj of A + FGT is given by the
Λ-coordinates of the intersection of S with the rational curve z = a(λ\ away from
λ = α f. This follows from the general formula

FGT - λIdN) = det(X - λ!dN)άet(Idr - Gτ(λIdN - A)~1F). (2.8)

Finally, note that the nonzero z-coordinates pij9 j = I , . . . , k i 9 of the points in
S over λ = αt are determined by

0 = det(zWΓ-L(αί)) = ( Π (*-Py)V~kl- (19)

\ J = 1 /

Hence, by (2.7) the p0 's are given ( up to constant factor - f] (α^ - α,-) ) by the
\ j*i /

eigenvalues of the fc; x fc, diagonal block FtGT of FGT. These eigenvalues are
therefore also constants of the motion.

b) Line Bundles. One can describe the line bundles on S using the embedding of
5 into T.

Proposition 2.1. The line bundles of degree zero on S are all given by restrictions
of line bundles on T with first Chern class c± = 0.

Proof. Since T is simply connected it follows from the exponential exact sequence
that the line bundles with c1 = 0 on Tare given by the cohomology group Hl(T, Φτ\
where Φτ denotes the sheaf of holomorphic functions on T. Likewise the degree
zero line bundles on S are given by Hi(S,Φs)/H1(S,Z). Thus it suffices to prove
that //HT, Φτ) surjects onto H\S, Φs\

Let Φ(ϊ) denote the ith power of the hyperplane bundle on P^C) and Θτ(ΐ) the
pull back of (9(ί) to T via π: T-^P^CC). By considering transition functions, it is
easy to see that, for i > 0, in the C/0 trivialization //°(T, Φτ(ί)) is generated by
monomials zkλl

9 k ̂  0,* / ̂  0 and km + / ̂  i. From this and Eq. (2.4) it follows that
S is the divisor of a section of Φτ(rm), thus we have the exact sequence

0 -> Φτ( — rm) -+ΦT-+ΦS->Q, (2.10)

where, by the standard abuse of notation, we have let Φτ(ϊ) denote both the line
bundle and its sheaf of local sections.

From the long exact sequence for (2.10) it follows that Hl(T, Φτ) surjects onto
H1(S, Φs) as long as H2(T, Φτ(-rm)) = 0. But this is the case since T has a Leray
open cover by the two open sets U0, U1. Π

To make use of Proposition 2.1 we need to study the line bundles on T. As
mentioned in the above proof, the line bundles on T with ct = 0 are given by
Hl(T, βτ). Since L/0, Ui is a Leray cover of T we can compute #X(T, Φτ] by

HX(T, 0Γ)- H°(U0nUί9 Φτ)/(r0(H°(U0, Φτ)®rl(HQ(U^ Φτ}\

where rf is the restriction map from Ui to (70n U^.
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Proposition 2.2. Hl(T,Φτ) is generated by monomials of the form zlλj, j>0,
— im <j < 0. The corresponding line bundles have transition functions exp(zlλj)from
U0 to C/!.

From Propositions 2.1 and 2.2, along with the equation for S, we conclude

Corollary 2.3. H^S,^) is generated by the monomials zlλj, 0<i^r- l ,
-im<;<0.

c) The Desingularization. In subsection e) we describe how to pass from a linear
flow of line bundles to a matricial polynomial satisfying a Lax pair equation. In
order to arrive at a matricial polynomial with the required behavior at the α^s
we will have to consider line bundles on a partial desingularization of S.

Recall that we have assumed that S has an ordinary (r — kt)-fo\d intersection
at (αί? 0), i = 1, . . . , n. Desingularize S at these points to get a curve S with a mapping

ψ:S-+S which is an isomorphism away from ^"^(α^O)) and has the property
that \l/~l((y,i, 0)) consists of r — kt distinct points at which S is smooth. (Note: we

allow that Sjmay have singularities elsewhere.) In part e) we shall see that line
bundles on S correspond to matricial polynomials with the desired behavior at
λ = α f.

The (virtual) genus g of S is given by the formula (see [6] p. 505, or [19])

A (r-^Xr-^-l)
9 = 9- L - 1 -

i = ι 2.

], (2.11)

where m = n if Y Φ 0 and m = n— 1 if 7 = 0.
The meromorphic functions λ and z on S lift via ψ to S. Likewise the line

bundles on S lift to 5. By standard results ([19]) ff *($, 0S) surjects onto H^S, <%),
hence, using Proposition 2.1, we conclude that all line bundles of degree zero on
S are lifts of line bundles on T with c1=Q.

Recall that Θτ(i) denotes the pullback to T of the ith power of the hyperplane
bundle on P^C). Pulling back by the maps S-^S-^T, we may consider these to

be line bundles @$(i) over S. Since Sis an r-fold branched cover of P^C), it follows
that ΘS(I) has degree ri. If £ is a line bundle on S, we denote £®<%(i) by E(ί).

Remark. In the case that 7^0, note that λ~mL(λ) equals Y at λ= oo. We will
assume that Y has r distinct eigenvalues, so the curve is nonsingular at λ = oo.
More general cases can be dealt with by appropriately desingularizing the curve
at λ = 00. (See Sect. 6.)

d) From Matricial Polynomials to Line Bundles. The first step in the integration
of Lax pair equations of the form Eq. (2.1) consists of solving the "direct problem";
namely, given a matricial polynomial L(λ\ as defined e.g. by Eq. (1.13), construct
a corresponding line bundle over S. The idea of this construction is by now quite
standard ([3,4,5,11,12,15,17]). The modification that we make is in principle
quite simple, and consists essentially in taking the dual approach. However, in the
cases when one has degenerate spectrum (e.g. when one has singular curves) it
provides a more transparent treatment of the different Jordan canonical forms
which can occur.
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We define a sheaf E over T by the exact sequence:

0^0Γ(-m)θ'-^^0®^£-»0. (2.12)

This sheaf is supported over S. When S is reduced and when the kernel of L is
everywhere one dimensional over S9 E is a line bundle of degree g — 1 + r (see e.g.
[17]). This is the case when S is smooth. At points where the kernel of (z — L(λ)±
is of dimension greater than one (which are of necessity singular points of S), E
may not be a line bundle. In fact, in the generic case for our problem, in which
there is an (r — kt)- fold ordinary point at λ = αt with dim(ker(L(aj)) = r — kh E is

just the pushdown ψ*(E) of a line bundle of degree g — 1 + r on S. Note that by
(2.12),

Cr« H°(S, Θ®r] = H°(S, E) = H°(5, E).

e) From Line Bundles to Matricial Polynomials. We now turn to the "inverse"
problem; namely given a line bundle E over S with degree g — 1 4- r, to construct
the associated matricial polynomial L(λ\ The line bundle E ( — l ) has degree g — 1
and hence, generically, has no sections. Throughout this paper we assume the line
bundles are generic in this sense, i.e.

H°(S,(£(-1)) = 0. (2.13)

In fact our solutions will have poles where this assumption fails. Assuming (2.13)
it follows (by Riemann-Roch) that H°(S, E) has dimension r. We will make use
of the following specific isomorphism of H°(S, E) with <Cr.

For Λ0eC let DλQ denote the zero divisor of the meromorphic function (λ — Λ0)
on S, and let D(£ be the jth formal neighborhood of Dλo (cut out by (λ - λ0)

j+1).
Since S is an r-fold cover Dλo is a set of r points in 5, counting multiplicity.

Proposition 2.4. Via the restriction map one has the isomorphism

H0(S,E)^H°(Dλo,E)*V.

More generally

H°(S, £(;)) S H°(D%, £(;)) ̂  C"^»>.

Proof. One has over S the exact sequence of sheaves

0 -»(%(- 1) -> <%( j ) -> <VO') - 0.
λo

Tenspring with E and taking the long exact sequence yields the result as long as
H1(S, £(-l)) = 0. But this follows from Riemann-Roch and the assumption
//°(5,E(— 1)) = 0. The dimensions of the spaces follows from the fact that the
D^'s are sets of points with multiplicity. Π

Now recalling that the z coordinate corresponds to the eigenvalue of the
matricial polynomial we define a linear map
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by the commuting diagram

(2-14)
L(-i)

H°(S9E)-

where Z denotes the map H°(Dλ,E)-+H°(Dλ,E) given by multiplication by z. If
seHQ(Dλ,E) and p is a point of Dλ with multiplicity one then (Zs)(p) = z(p)s(p).
At points p of higher multiplicity the section s is given by a truncated power series
in (z — z(p)\ and Z gives the truncated series of zs.

To get the matrix L(λ) corresponding to the linear transformation L(A) we
choose a basis of H°(S, E). Fixing a basis for all λ determines L(λ) and a change
of basis changes L(λ) by conjugation with an element of GL(r, <C). If Dλ consists
of r distinct points Dλ = {p£; i = 1,..., r}, then L(λ) has the eigenvalues z(pi) with
a corresponding eigenvector given by the section of E which vanishes at pj9 j Φ i.
This section naturally corresponds to the fiber of the dual bundle £* at pt. Thus
L(λ) is diagonalizable with eigenvalues z(pi\ In particular, since we have desingu-
larized at α f , L(αt ) is diagonalizable, with rank kt. If DA does not consist of distinct
points then L(λ) is determined by multiplication by z on truncated power series
in z. This gives a nilpotent part so that the Jordan form of L(λ) will not be diagonal.
This fact explains why we have desingularized S at the αf 's. If we want to study
more general cases in which L(αf) has nondiagonal Jordan form we should
desingularize S only the appropriate amount.

We still need to check that L(λ) is a matricial polynomial.

Proposition 2.5. L(λ)= £ L£A', where Li:H°(S,E)-^H°(SiE) is linear.

Proof. On C70 the space H°(S, 0(m)) is generated by the m + 2 sections 1, A, . . . , λm, z.
m

Hence, if we consider the Taylor expansion L(λ) = X L^1' + R(λ)9. where #(/ί) has
m ί=^0

order λm + 1, we see that £ L£A
1' defines a map //°(S,£)->/f°(S,£(w)). Likewise,

i = 0

multiplication by z defines a map H°(S, E) -> H°(5, E(w)). Composing these maps
with the restriction to D(

0

m) gives two maps H°(S, £) -> #°(D(

0

W), JE(m)). By definition,
m

these two maps coincide. Applying Proposition 2.4, multiplication by z and Σ Li^

coincide over all of S. Π ί=0

Thus from a line bundle E of degree § - 1 + r we have constructed a matricial
polynomial L(Λ) with the desired Jordan form at λ = ai. Comparing (2.14) and
(2.12) one sees that (2.12) with this definition gives back ψ*(E). Because the
construction depends on a choice of basis, L(λ) is determined up to conjugation
by an element of GL(r, C). Recall however, that if we desire L(λ) to come from a
shifted isospectral flow, then the value at λ = oo of L(λ) is fixed (i.e. L(oo) = Y). In
this case, the only allowed basis changes are those which leave Y fixed, i.e. L(λ)
is determined up to conjugation by GL(r, C)α.

f) From Linear Flows of Line Bundles to Lax Pairs. Finally, we need to see how
a linear flow of line bundles Et of degree g—l+r gives rise to a Lax equation of
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matricial polynomials. The bundle E0 can be trivialized with respect to the covering
l/o, C/i with a transition function /(z, /I) from U0 to U1. Also, E%®Et has degree
zero so, by Corollary 2.3, its transition function from t/0 to L^ can be given by
the exponential of a polynomial in z and λ~ 1. Since the flow is linear the transition
function must be of the form exρ(ίμ(z, λ)\ μ(z9 λ) a polynomial in z and λ~ ί. Putting
this together, Et has transition functions /(z, λ) exp(ίμ(z,/ί)) which we henceforth
use to fix trivializations of Et.

From Et, we obtain a family Vt = H°(S,Et) of vector spaces, which we will
think of as a vector bundle V over <C, and a family of maps L(/l; ί) For fixed ί we
can get a matrix L(λ; f) for the map L(A; ί) by choosing a basis for Vt. However,
without some canonical choice of basis for Vt9 there is no hope that L(A; ί) so
chosen will satisfy a Lax equation. We therefore define a connection
Vf:H°(C, K)-»/ί0(<C, 7) which, by parallel translation, smoothly extends a choice
of basis at VQ to all of V.

Let evi:H
0(UiπS,Et)-+@sΓ)Uι be maps evaluating sections with respect to the

trivializations of Et over Ut. Set

(2.15)

then, if ψεH°(S,Et) one has

(2.16a)

(2.16b)

and also the relation linking the two trivializations:

ev0(Φ) = f~l(z, λ)e-t^λ)ev1(φ). (2.17)

Differentiating (2.17), then using (2.16b), we obtain

dt(ev0φ) + eυΌ(P(L) + φ) = f'1e^(dt(ev^) - eVl(P(L)_φ)\ (2.18)

where P(L) = P(L)+ + P(L)_ and P(L) + is the polynomial part of P(L). Therefore
(dtev0 + ev0P(L) + )ψ, (dtevί — evίP(lι)-.)ιl/ are the evaluation of a section of

H°(S,Et) over Uθ9 U1 respectively; we use this to define a connection Vt acting
on sections of V\ it is given over U0 by evQ1(dtev0 + ev0P(L)+).

Remark. As P(L)+ is of the form P(L)0 -f λP^ + λ2P(L)2 + •••, Eq. (2.21) implies
that V, just corresponds to taking derivatives over λ = oo. Thus we have

Proposition 2.6. A basis et of H°(S, Et) satisfying Vtet — 0 is given by choosing a
basis with constant values at the r points over λ = oo.

Now assume that one has a basis of sections (trivialization) ei = e^t) of V such
that VX = 0. Let ψ = \l/iei be any section of V over <C; let dtψ denote "naive"
differentiation: dtψ = (d^e^ Since Vtet = 0, Vtφ = dtψ. Let L = L(/l, ί) be the matrix
of L with respect to this basis. Since Lψ gives the components of a vector in the
et basis we again have Vt(Lφ) = Bt(Lψ).

Theorem 2.7. L(λ,t) satisfies the Lax equation dtL = [P(L) + ,L].

Proof. Let φ be a section of K; then

) = ev0(dtφ). (2.19)
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Applying (2.19), (2.16a) to φ and Lφ and combining, we get

-ev0(P(L) + Lφ) + ev0((dtL)φ + L(dtφ)) = -zev0(P(L)+φ) + zev0(dtφ)ι (2.20)

applying (2.16a) to dtψ and P(L)+ψ instead of ψ, (2.20) becomes

ev0((dtL - [P(L) + , L] WO = 0. (2.21)

Since ev0 is injective and the above is true for all ψ, the theorem is proved. Π

g) From Line Bundles to Rank r Perturbations. We can recover the N x r matrices
F and G (modulo the reduction by H) directly from the line bundle E on S.

Since the curve S is the desingularization of S over the points λ = αt , we can write

5., = *u + - + *<,r, (2-22)

where for j > fcf, z ( x i t j ) = 0 and for j = 1, . . . , ki9 z(xitj) = py, the eigenvalues of the
kt x fef block FiGT.

Choose sections sίj e//°(S,£) such that, in the l/0 trivialization,

fy(*i,fc) = 0 for fc^'»
(2.23)

and define maps

F£:H°(S, £)-*€*' (2.24)
by

s-+(s(Xi,i)>-~>s(Xi,ki))
and

Gΐ:<Ck^H°(S,E) (2.25)
by

fc,
(^i-.-^fc,)-^ Σ OΛr

7=1

Choosing a. basis of H°(S9E) to determine the matricial polynomial L(λ) from
the map L(λ):HQ(S,E)->H°(S,E) also yields matrices F£ and G* for the maps Ff

and Gf . Using F, and G; as the kt x r blocks of N x r matrices F and G it is then
straightforward to check that

— (Gτ(λI-AΓlF + λY)
λ

coincides with L(λ) at λ = α f, and hence at all λ.

Remark. By fixing the st/s we have fixed the value of the H moment map, namely
FiGT. The reduction by H still leaves an ambiguity in Ff and G^ up to an action
of the stabilizer group of FiGT in GL(kh<C). We have, in effect divided out this
ambiguity by our choice of definitions (2.24) and (2.25).

3. Integrability

In Sect. 1 we constructed a ring of functions ^γ on Jt which Poisson commute,
produce isospectral Hamiltonian flows through A + FaGT, and are invariant under
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the action of H x SL(r,C)α. We now show that these functions are completely
integrable on generic leaves of the Poisson manifold Jt/(H^x SL(r,C)J.

Since the symplectic leaf Γ through N(λ) = Jr(F, G) in gl(r)ΰ is identified with
the symplectic leaf in J(/H through the H orbit [(F, G)] of (F, G), it follows that
in order to prove complete integrability of the ring ̂ γ on symplectic leaves in
Jil(H x SL(r, C)J it suffices to prove complete integrability of the ring of functions
$*\ on the symplectic leaves of /7SL(r,(C)fl.

In Sect. 2 we have seen that there is a one-to-one correspondence between
flows of matricial polynomials (modulo SL(r, <C)J of the form (2.1) and linear flows
in the Jacobian of the desingularized spectral curve S. To relate the flows of
matricial polynomials to rank r isospectral perturbations we use the map given
in Eq. (1.13). A slight variation of the argument in [1], Proposition 4.9, shows that
the map

given by
N(λ)-+λ-la(λ)(N(λ) + λY) (3.1)

gives a correspondence between the flows of type (2.1) in gl(r)+ and Hamiltonian
flows of shifted AKS type (1.12) through N(λ) = 7Γ(F, G) in gί(r)~ . Indeed consider
N(λ) = Jr(F9G)Egl(r)- and let

L(λ) = λ-la(λ)(N(λ) + λY)εgl(r) + . (3.2)

Proposition 3.1. Let L(λ; t) denote the flow through L(λ) given by a Lax equation of
the form (2.1), i.e.

^ L(λ; t) = [(P(L(A; t ) 9 λ ~ l ) ) + 9 L(A; 0] (3.3)
at

and let N(λ; t) = - L(A; t) - λY. Then there is a φe&\ such that N(λ\ t) describes
a(λ) ^ ^

the hamiltonian flo\v for φ on gl(r)^ ~(gl(r)+)* through the point N(λ).

Proof. It is enough to prove the proposition in the case that P(L(λ\t\λ~1) —
λ~j(L(λ; t))k. Multiplying (3.3) by λ/a(λ) we get

-(N(λ; t) + λY) = l(λ-j(L(λ', ί))*)+, N(λ; t) + λΓ\
at

or
k , N(λ; t) + λY \.

J
<+*/

Thus by (1.12), the proposition is true if we can find φel(gl(r)*) such that

dφ(X(λ)) = λ-'-k(a(λ)γX(λf

for X(λ)egί(r)~gί(r)*. Since φ!" nel(gί(r)*) given by

has derivative -λmX(λ)n~1, it follows that φ is given by a finite linear
n

combination of the φm'π's. Π



568 M. R. Adams, J. Hamad and J. Hurtubise

From Proposition 3.1 it follows that the flows of type 2.1 from Chap. 2 give
a family of g = \[N(2r - 1) - £fcf + r(r - l)(m - n) - 2r + 2] independent hamil-
tonian flows on Γ/5L(r, Qβ, (N = £fc4, and m = n if 7 Φ 0, m = n - 1 if Y = 0). To
prove complete integrability we need only show that the generic leaf of Γ/SL(r, <C)α

has twice this dimension, i.e.

N(2r - 1) - Σ/cf + r(r - l)(m - n) - 2r + 2. (3.4)

Proposition 4.3 of [1] yields the fact that Γ is given by

Γ ) Έ7 1 9i/^i9i πτ ( /i-T, ( /Λ r\
= \ L λ - V' ̂  eGL(r,C) >, (3.5)

where μ; = F G^ is a fixed matrix of rank A^. Let us assume that μ( is diagonalizable
with k{ distinct nonzero eigenvalues. From this it follows that the GL(r, C) orbit
through μt has dimensions

(Γ2 _ Γ) _ [(Γ _ fcί)2 _ (Γ _ fc|)] = 2/c.r _ fc£ _ £2.

Summing over /, we get

dim Γ = 2Nr-N-Σk*. (3.6)

Finally, for the reduction by the 5L(r, C)fl action we discuss two important cases:

1) y = 0, a = I.
ii) a is diagonalizable with r distinct eigenvalues.

For case i) we compute the dimension of the generic symplectic leaf in Γ/SL(r, C)
by dim Γ - dim(5L(r, C)) - rank(5L(r, C)), i.e. N(2r - 1) - £** - (r2 - 1) - (r - 1).
This agrees with 3.4 when m = n—l.

For case ii) SL(r,(C)α is simply an (r— 1) dimensional abelian subgroup of
SL(r, C). Thus the dimension of the generic symplectic leaf in Γ/SL(r, <C)α in this
case is dim Γ - 2(r - 1) = N(2r - 1) - £/c? - 2r + 2 which agrees with (3.4) with
m = n.

Remarks. 1) More general μf's can be considered. For instance we may allow
repetition of nonzero eigenvalues and also nontrivial Jordan block structure. In
this case the curve must be desingularized the appropriate amount so that L(α^)
has the correct Jordan structure. The genus of the desingularized curve can then
be compared to the dimensions of the symplectic leaves of Γ/SL(r, C) to study
integrability.

2) Similarly, more general α's may be considered. Here also, one must
desingularize the curve, at λ = oo, so that L(oo) = Y has the correct Jordan form.
(It is easy to check that when a is diagonalizable the dimension count still yields
complete integrability.)

4. Theta Functions

In Sect. 2 we discussed the relation between linear flows of line bundles on S and
Lax pair flows of matricial polynomials given by Eq. (2.1). In this section we use
this relation to construct explicitly the flow of matricial polynomials satisfying
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(2.1) in terms of theta functions on the Jacobi variety of S. As in Sect. 2 we do this
in two steps; first for a fixed line bundle on S we describe the corresponding
matricial polynomial in terms of theta functions, then, using the connection of
Sect. 2f, we describe the dynamics in terms of generalized Baker-Akhiezer
functions. At the end of the chapter we also write the coefficients of the matrix
FGT in terms of theta functions. Throughout this section we assume that S is
smooth so that we may make use of the standard theta function theory,
a) We start by making more explicit the link between line bundles E on S, positive
divisors, and matricial polynomials L(λ). In Sect. 2d we saw that E was defined
by the exact sequence (2.12). A positive divisor Δ representing E (i.e. the zeroes of
a section of E) could be obtained by fixing ve<Cr« H°(S, (9®r) and setting Δ to be
the sum of points p in S such that *;elm(z — L(λ)) at p. From the relation
(z - L(λ))aάj(z - L(λ)) = det(z - L(A)) Id (where (z - L(Λ,))adj represents the classical
adjoint matrix, i.e. the transposed matrix of cofactors) one sees that such points
are given over S by the condition (z — L(Λ))adjt; = 0 away from the points in S
where corank(z — L(λ)) ^ 2, i.e. the points where (z — L(A))adj = 0.

Conversely, given a line bundle E, the discussion in Sect. 2 says that the matrix
L(λ) can be found as follows: Choose a basis^1,..., ψr of H°(S, E). Choose A0eC
over which lies exactly r distinct points in 5, and let p 1 ?...,p r be an ordering of
these points (λ(pj) = λ0). Let φ(λ0) be the r x r matrix given by

then

z(Pι) "I

(4.2)

For λ in a neighborhood of A0 there are r distinct points in S mapping to λ. These
points may be ordered continuously in that neighborhood, so a choice of ordering
at λ0 gives L(λ) on a neighborhood of λ0. But, since L(λ) is a polynomial, its des-
cription on a neighborhood defines it globally.

To compute L(λ) we need an explicit representation of sections of E, and an
explicit choice of the basis ψl

9 i= l,...,r of H°(S9E). We choose the following
representation of sections of E. Let £0 be an "initial value" line bundle of the
appropriate degree (g + r— 1). Let Δ be a positive divisor representing E0. (For
instance, Δ may be determined by the above prescription.) Sections of E0 can be

represented as meromorphic functions ψ on S with poles allowed at Δ, i.e.

(Ψ)^-Δ (4.3)

Other line bundles Et of the same degree can be written as £0 (x) Ft9 where
Ft = £* (x) Et is of degree zero. Ft will be given the "exponential" transition function
considered in Sect. 2, and sections of Et will be meromorphic sections of Ft whose
divisor D is greater than or equal to — Δ.

We next consider a basis of H°(S9E0). By Proposition 2.6, the dynamical
problem will require that the i/^'s be constant at A = oo, and so we choose the '̂s
by fixing their values at oo. Let D^ = P^ + - - - + P^ be an ordering of the r points
in Z)^. It follows from the genericity assumption (2.13) that

S,[4-Dβ + P'J))=l Vi. (4.4)
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Here [Δ — D^ -f P^] denotes the line bundle represented by the divisor
Δ — D^ -f P'w. Global sections of this bundle may be represented as meromorphic
functions on S with zeros at D^ — P1^ and poles allowed at Δ. By (4.4) such
functions also represent sections of £0. Equation (4.4) says that for each i, there
is a meromorphic function ψ1 on S such that

(ψ^-Δ + Dv-P^. (4.5)

Since Δ — D^ is a divisor representing £0( — 1) it follows from (2.13) that ^'(P1^) Φ 0,
hence we may normalize by

Equations (4.5) and (4.6) determine ψl uniquely, ΐ = l,...,r, and these functions
clearly give a basis for H°(S,E0).

The final step to writing L(λ) in terms of 0-functions is to write the i/^'s in
terms of 0-functions (see [14]).

Fix a basis of α-cycles and ί?-cycles and let w1 , . . . , w^ be a basis of holomorphic
1-forms dual to the α-cycles of that homology basis. Define A:S x S-»Jac(S) by

(4.7)

and let θ be the theta-function defined by the fo-period matrix of w l 5 . . . , w^.
Now (ψ1)^ -Δ + D^-P1^ thus (φ^ + Δ-D^ + P^ is effective (and has

degree g). Thus

i.e. (ψ1) has polar divisor Δ and zero divisor Q? -f — f- βf -f- Z)^ — P^
Let 4 be a sum of points 41 + ••• + Δs+r~l. One can find ee<C° such that

Vj. (4.9)

Fix xe<S and set

)̂, (4.10)
7 = 1 j = l

7i= ^feSί). (4-12)
7=1

Abel's theorem says that modulo periods

y i sα ' + α'-jS + ft, (4.13)

since 6? + + 6f 4- ^oo — P^ — Δ is the divisor of a meromorphic function. Now,
if x l 5 . . . , x$ are points on 5 and δ denotes the Riemann constant, the function

A(x9xj) (4.14)
7=1
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has zeros exactly at y = x, , j = 1,... ,#, (see e.g. [6]). In particular the functions

y^θ(A(x,y) + δ-γi), (4.15)

y-+θ(A(x,y) + δ-of) (4.15b)

have zeros at the Qf s and the Δps, j = 1,..., 0, respectively. Using (4.14) it follows
that the function

y-+θ(A(x,y) + δ - of - of + β-β,) (4.16)

also vanishes exactly at the Qfs, j = 1,... ,§. Hence, a single valued meromorphic
function with the correct poles and zeros is given by

θ(A(x9 y) + δ - α' - α" -f β - ft) f] 0(Λ(P^, y) + e)

F'GO = î — , (4.17)
θ(A(x, y) + <5 - α') Π 0(Λ(J*+', y) + e)

.7=1

and so

M0 = ̂ .y* . (4.18)
F'(P'J

b) The Dynamics. We now consider a linear flow of line bundles Et on S with
initial value £0 as above. To produce the flow of matricial polynomials L(λ\ i) we
must choose r independent sections

^;e#0(S,£,) (4.19)

for each t. By Proposition 2.6 and Theorem 2.7, if L(Λ; t) is to satisfy a Lax pair
equation, the ^j's must be chosen to be constant on D^. If we simply use Eq. (4.17)
and (4.18) to describe ψl

t, the time dependence appears extremely complicated since
it enters through the time dependence of Δ. However the time dependence of the
t/^j's can be made more transparent by considering the time dependence of the
transition functions for the line bundles. (See e.g. [14,16]).

Let Ft denote the (Jegree zero line bundle on S given by Ft = E*®Et. Thus ψ\
is a section of £0 (x) Ft. Now, as we saw above, the section ψl of E0 can be represented
by a meromorphic function with zeros at D^ — P1^ and poles permitted at Δ. Since
Ft is defined by exponential transition functions between 170 and U1 (see Sect. 2b),
its sections in the 17 x trivialization are functions with an exponential singularity
at D0. Thus, the section \l/\ of E0 (x) Ft may be represented as a function with zeros
at D^ — P^, poles permitted at Δ, ana an exponential singularity at Z>0, i.e. φ\ is
represented by a generalized Baker-Akhiezer function.

To produce \l/\ explicitly, let the transition function for Ft from L70 to 17! be
given by exp tμ(z, λ\ where μ(z, λ) iŝ a polynomial in z and λ ~~1. Let η be the unique
differential of the second kind on S which is holomorphic away from D0, has the
same polar part at D0 as dμ, and is normalized by having zero α-cycle integrals.
Let Ue(C° be given by

. / \
(4.20)
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Fix xeS and set

χ,y) + δ-yί)

where γt is given by (4.12). From (4.14) and the transformation properties of θ
functions, we have that Wt(y) is a single valued function on S with poles at the
<2f s, defined by (4.8), and with the appropriate exponential singularity at D0. Thus

Λ ί- f ph (422)

has the desired properties.

c) The Matrix FGT. We now turn to the problem of presenting the coefficients
of FGT in terms of theta functions. Recall from Sect. 2g that the ij coefficient
(.FmG^)y of the mk block FmG% of FGT is given by:

(FmGΪ)ij = ski(xmj). (4.23)

Thus, in order to present the coefficients (FmG^)y in terms of theta functions,
it suffices to describe the sections stj in terms of theta functions. As above, Sy may
be represented by a meromorphic function on S which vanishes on DΛ. — Xy and
is allowed to have poles on Δ. Let α', α" be as in (4.10) and define ζy and ζt by

ζiJ = A(x9xiJ)9 ζt = t Cy. (4.24)

Then proceeding as above, we define

κ,y) + tU + (5 - α'- α/; + Ci - Cij) Π ^(A(xίn, y) ̂ r e)
__ ϋίi (4.25)

θ(A(x,y) + δ-<x!) Π θ(A(Δ9+n,y) + e)
n = l

and then,

sii(y> 0 = IFF ~— ~ lj — (4.26)••j ^^ ' I r / \ •»-» / .\ \ '

5. Reduction to Subalgebras

In the previous sections we have dealt only with the case that the loop algebra is
#/(r,(C). This gives Hamiltonian isospectral flows in the space of complex rank r
perturbations of the complex N x N matrix A + FGT. For jnany applications it
is necessary to repeat the above study for a subalgebra of #/(r,<C). For instance,
if we wish to study real rank-r perturbations a study of #/(r,]R) is necessary.

In [1] a description of the appropriate finite rank perturbation spaces was

given for various subalgebras of #/(r,(C). Here we wish to discuss the effect on the
linearization process (Sect. 2) when we reduce to a subalgebra ofgl(r, C). In general,
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we will see that requiring the matricial polynomial L(λ) to lie in a subalgebra of
#/(r,(C) is equivalent to assuming various extra structures on the spectral curve,
det(L(A) — z) = 0, and on the eigenvector line bundle for L(A). The requirement that
the Lax pair flow (2.1) leave the subalgebra invariant is then translated into the
requirement that the flows in the Jacobi variety satisfy these extra conditions.

The simplest case is the reduction to s/(r,C)c#/(r,C). Requiring that L(λ) is
traceless gives a condition on the curve (and its embedding). Namely, that for fixed
A, the sum of the z values must be zero. This is reflected in the equation for the
curve in that the coefficient a^(λ) of zr-1 must vanish, i.e.

det(L(A) - z/) = zr + α2(A)z r"2 + ••• + ar(λ\ (5.1)

Another situation we consider is given when the subalgebra is of the form
k <= gl(r9 (C), where k c gl(r, (C) is given by the fixed points of an involutive auto-
morphism σ on gl(r, <C). (Thus k is the fixed point set of the automorphism σ on
0/(r,C) given by σ(X(λ)) = ^σ(Xj)λj

9 where X(λ) = ΣXjλJ-) since the details differ

for each subalgebra, we shall demonstrate this situation only with the cases where
fc is either gl(r, R), so(r, C), sp(r, C), u(r\ or u(p, q).

Let k+ = fcn0/(r,<C)+, fc~ =fcn0/(r,C)~, and k~ = fcn0ί(r,<C)~. There is a
natural identification of (fc + )* with k~ (see [1], Chap. 5). Also, for the real
subalgebras we assume that the polynomial ά(λ) is real, thus, as in Sect. 2, we may
consider the flows in (k + )* as flows through matricial polynomials

LQλm + Llλ
m-1 + .. + Lm with L^k. (5.2)

Caseϊ). fc = 0/(r,R). In this case, the spectral curve S, given by det(L(A) — z) = 0

is equipped with the involution i: (A, z) -» (A, z) since L(λ) = L( A). This involution
lifts to the^desingularized curve S. Furthermore, the eigenvector line bundle for
L(λ) over S is invariant under this involution, i.e. ι*E = E.

Conversely, we claim that this invariance of the line bundle implies that the
induced matricial polynomial L(λ) is in gr/(r,R). Indeed, assume that the curve S
is invariant under the involution r. (A, z) -> (A, z) and that the line bundle E is also
invariant under this involution. Then H°(S,E) is equipped with a natural real
structure where seH°(S,E) is said to be real if ι*s = s. Recall that for AeC, L(A)
is given by the commuting diagram

L(A) (5.3)

where βί;Λ evaluates a section of E at the points of Dλ and diagfo ) denotes multipli-
cation by z on Dλ (see Sect. 2e). For real A, the involution on H°(S9 E) induces an
involution on Cr satisfying

= diag(z~i)°ι. (5.4)

Hence for real A, it follows that

ι°L(λ) = L(λ)°ι. (5.5)
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Therefore, if we use a real basis of H°(S, E) to construct a matrix L(λ) for L(/ί),

we have that L(I) = L(I).
Thus, we see that in order to produce flows of type (2.1) with L(λ)egl(r9lR)+

we must consider curves invariant under the involution / and restrict to the flows
of line bundles which are invariant under the involution. Concretely, this means
that the divisor Δ of E should be chosen to be /-invariant and the transition
functions, exp μ(z, λ\ describing the flow must also be /-invariant.

Case ii). k = so(r9 <C) or sp(p, C), 2p = r. In this case, the matrix L(λ) is required
to be compatible with a nondegenerate bilinear complex form <,>, i.e.

0 = <L(/lXw> + <y,L(A)w>, ι?,weCΓ. (5.6)

To interpret the structure in terms of the data of Sect. 2 we require a form on

H°(S,£) which is compatible with the map L(λ): H°(S, E) -> H°(S, E) in the sense
of (5.6).

Assume λe(C is such that L(λ) has distinct eigenvalues z l 9 . . ., zr. Let ̂ e/f °(S, E)
be the eigenvector of L(A) corresponding to z/. Then (5.6) implies

(zί + z j)<^,^>=0forallf,;. (5.7)

Since the bilinear form <,> is nondegenerate, the z/s must either come in pairs,
or vanish. Thus we can order the e/s so that z2j = — z2j- ^ and zr = 0 if r is odd.
From this we conclude that the curve is fixed under the involution ι:z-+ — z. (This
fact is also easily seen directly from the equation for the curve and the involution
which fixes L(λ).) Furthermore, in the basis e 1 ?..., er, the matrix for <, > is given by

0 ±Pι

Pi 0

0

0

0

0 ±p2

p2 0

0

0

0 (5.8)

Using the isomorphism evλ:H°(S,E)-+<Cr, the bilinear form < > on H°(S,E)
induces a bilinear form < >Λ on Cr which is given by (5.8) in the basis evλ(eι\
i = 1,..., r, of Cr. Defining an involution i: <Cr -> Cr by

(leaving αr fixed if r is odd) we see that

for

(5.9)

(5.10)

where Fλ:(Cr-»<Cr is a linear map and o:<Cr®(Cr->Cr is the map given by
componentwise multiplication. Since the diagram

H°(S9 E) ® H°(S, E) - 07 (x) CΓ

(5.11)
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commutes when the map Cr®CΓ-><Cr is given by (α,fe)->α°ί(b), we may define a
linear map F://°(S,£® /*£)->£ by

F(s) = Fλ(evλ(s))9 seH°(S,E®ι*E) (5.12)
so that

β) for α,βe#°(S,£). (5.13)

Since <α, β> is independent of λ, it follows that F must also be. Notice that if
se#°(S, £ (x) ι*E) satisfies eî s) = 0 for any λ, then F(s) = 0.

Now, as in Sect. 4, let D0 denote the zero divisor of the meromorphic function
λ on 5 and let D^ denote its polar divisor. By (5.12),

F(H°(S,(E®ι*E)(-D0)) + H()(S,(E®ι*E)(-Daΰ))) = Q. (5.14)

Using the Riemann-Roch theorem, and Serre duality, one can compute the
following dimensions:

A°(S, (E® ι*E)(- DO)) = 0 - l + r , (5.15)

A%S,(E®ι*E)(-Dco)) = 0 - l + r

and

*«(S,(£®^(-D0-Dβ)) = j?iff®''£).(-1>0-|)-)(βX5, (5.16)
(g—l otherwise

where K$ denotes the canonical line bundle on 5 and w denotes linear equivalence.
Now F vanishespn H°(S9 (E ® ι*E)( - D0)) + H°(S, (E ® ι*E)( - DJ) but must be
nonzero on H°(S, £® ι*E). Counting dimensions, it follows that the intersection,
H°(S9(E®ι*E)( — D0 — D^)) must have dimension at least g for F to be nonzero.
Since D0 and D^ are both divisors representing the hyperplane bundle (9(1), we
conclude from (5.16) that

E*Ks(2) (5.17)

if we are to have a nondegenerate bilinear form given by (5.13).
To complete the discussion we shall

i) Describe the line bundles E satisfying (5. 17).
ii) Describe the admissible maps F://°(S,Ks(2))-><C.

iii) Determine in which cases the form given is symmetric or anti-symmetric

To describe the line bundles satisfying (5.17) it is enough to display the existence
of one line bundle E0 with E0 ® z*E0 « Xs(2) and then to describe the degree zero

line bundles X with ^ί® ι*X w β, the trivial bundle. To find £0, we first need to
describe Ks(2) more explicitly.

First, note that if the curve S in T were smooth, one could obtain the canonical
sheaf over S by Poincare residues, i.e.

XS, (5.18)

which is given in local coordinates over S by

(5.19),
op/oz
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where p(z, λ) = 0 is a local equation for S. When S is singular Ks can be defined
as the sheaf of Poincare residues. This gives rise to meromorphic 1-forms with
poles at the singularities of S. In our case, since KT&ΘT( — m — 2) and S is the
divisor of a section of (9T(rm) we conclude

Lemma 5.1. Ks « Os((r - ί)m - 2).

To describe K$, let Dt denote the r — kt points of S which project to the ordinary

(r — /c,)-fold intersection of S at (α,,0). The forms on S pull back to forms on S
with poles at D where

0 = ̂ -^-1)0,. (5.20)
ί

Thus we have an injective sheaf homomorphism

0-»^*KS-»K5(D). (5.21)

Combining a degree computation with Lemma 5.1 we conclude

Proposition 5.2. Kg(2)« <%((r - l)m)(£).

We are now ready to prove

Theorem 5.3. There exists a line bundle EQ9 over S, with E0(x) j*£0 « K§(2).

Proof. To construct £0, we first find £0 with E0®ι*E0«^((r — l)m). This
construction breaks into two cases:

i) If (r — l)w is even, choose

//*_ nm\V-) <5 22'
Since the bundles ^(/c) are invariant under the involution /, it follows that

ii) If (r — l)m is odd let A = oo intersect S at the points ± z f, i = 1, . . . , r/2 and
let Q be the divisor zx + z2 + — ̂  zr/2 Set

ffll ,5.23)

Then since β ® ι*β « β?( - 1) we have E0 ® z*E0 « 0((r - l)m).
To construct EQ we will find a divisor C with C(χ)z*C^Z) and then

E0κE0(Q. (5.24)

To find C note that if r — fct is even, the involution must pair up the points in
Dt, thus we can find C{ with C^i^C ̂ D^ In this case the contribution to C is
(r - kt - 1)Q. If r - kt is odd, the contribution to C is £(r - fcf - 1 )/>,-. Π

The next step is to study the line bundles X, of degree zero, satisfying

φ. (5.25)

Recall that the degree zero line bundles on S are isomorphic to Hl(S, (%)/H1(S,Z)
and that there is ajurjection H^S, 0s)-+Hί(S9 <%). Hence from Corollary 2.3 we
conclude that H1(S, (9$) is generated by the monomials zlλj

9 0 < i < r, — im <j < 0
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(modulo relations describing the kernel of the above surjection). The action of /*
splits H 1(S, @s) into ± 1 eigenspaces

Hl(S, (9s) = H\ ® H1., (5.26)

where H\ is generated by the monomials zlλj with i even, and Hi. is generated
by those with i odd.

Let Γ « Hl(S,Z) denote the lattice in H^S, (%). For ZeΓ write

Z = Z + + Z _ , (5.27)

where Z + eH^. Then ι*Z = Z+ -Z_, and since z*Γc=Γ, letting Γ± =ΓnH1

±,
we conclude

Γ+ + Γ_ c Γ c ±Γ+ -f ±Γ_, (5.28)

where addition of lattices denotes the lattice generated by the elements of the two
addends. Let π + :Γ ->H + be the projection given by (5.26). From (5.28) we have

π+(Γ)^±Γ+. (5.29)

Let A denote the set ofdegree zero line bundles X satisfying (5.25). Representing
X by an element XeH1(S90s) we have

X + ι*XeΓ. (5.30)

With the splitting (5.26) we write X = X+ + X- and conclude from (5.30) that

2X + eΓ. (5.31)

The lifting of X is defined only up to addition of an element of Γ. Thus the map

X^X+G±Γ+ (5.32)

induces a well defined map

p:Λ-+(±Γ+)/π + (Γ). (5.33)

In conclusion, we have

Theorem 5.4. The map p gives a bijection between the connected components of A
and the elements of (^Γ+)/π + (Γ). Each of these components lifts to an qffine copy
o/Hi. inHl(S,(9s).

To give an explicit description of the map F:H°(S,Ks(2))->(C we recall from
(5.15) and (5.16) that F vanishes on a fixed hyperplane in H°(S,Xs(2)) so it is
unique up to a constant. Using Proposition 5.2 we see that a section of Kς(2) is
uniquely expressible in the form

a(z9λ) = a^-1 + a^λy-2 + ... + α r_ ,(λ\ (5.34)

where deg(αf(/l)) = im, and α(z, λ) is required to vanish appropriately at the singular
points. If at λ = λ0, the section vanishes at the r points of DΛo (counted with
multiplicity) then the polynomial α(z,/ί0) must vanish identically. In particular
a0 = 0. Thus from (5.14) we conclude

Proposition 5.5. Up to a constant multiple, the map
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is given by F(s) = α0 in the above trivialization.

At this point we know that if E = E0 ® X, XeA, then F induces a bilinear form
on H°(S, E) of the form (5.13). We now wish to determine in which cases this form
is symplectic, and in which cases it is orthogonal. To this end we define a signature
which is constant on the components of A.

For X e A we have ι*X ® X * 0. The action of z* on the sections of X induces
an involution ** ® j* on the sections of (9. There are exactly 2 involutions on the
sections of Θ, namely ± /, where / is the identity. We define

*1 ίf '*®<* = / . (5.35)
-1 if ι*<g)ι*=-/ l ;

Since this depends only on X + 9 it follows that this induces a homomorphism

σ:(lΓ+)/π + (Γ)->Z/2. (5.36)

A computation with respect to our local trivializations then yields:

Proposition 5.6. Let E = EQ®X, XεA. For a, beH°(S,£) we have

i) <α,b> = <ί7,α
ii) < t f , £ > = ~ <

Proposition 5.7. Assume S is connected. If r is odd, the form constructed above is
symmetric and hence L(λ) belongs to so(r, <C). // r is even and the involution has

(r \
fixed points, then the form is antisymmetric and L(λ) belongs to spί -,C 1.

Proof. If the involution on S has a fixed point then signpf)= -f1 for all XeA.
In this case the symmetry or antisymmetry of the form is determined by (— I)1""1.
When r is odd the involution always has fixed points. Π

Case iii). k = u(p, q). The arguments here are more or less the same as those for
case ii) so we shall only state the results with a few brief remarks.

In this case, we require the coefficients of L(λ) to be in u(p,q) so from the
equation for the spectral curve we find an antiholomorphic involution

ι:(UH(-ί,λ). (5.37)

This induces an involution on the line bundles, which at the level of transition
functions is given by

ΓMH7X-U), (5.38)

and at the level of sections in our choice of trivialization is given by

s(z9λ)-+s(-z,λ). (539)

Furthermore, we require an hermitian inner product on the space H°(S, E). As
above, this inner product is given by

), (5.40)
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where, once more

KS(2) * 0§((r -

579

(5.41)

In this case, however, one can normalize the choice of F so that <α,ί?> = <b,0 >.
The signature of the form is determined partly by the geometry of the curve and
partly by the line bundle.

For real A, the involution fixes the fiber over A, and hence we may label the
eigenvalues in such a way that

z2 ί=-z2 ί-ι, i = l , ..,* (5.42)

(5.43)

and

zj=-zj9 j = 2fc+l, . . . , r .

Furthermore, we require that

(5.44)

For our "standard" bundle Eθ9 using the basis of sections determined by

s f(λ,z f) = <5y, (5.45)

one shows that the form is given (up to a constant multiple) by the matrix

0 «!

/?! 0

0 α2

β2 0

0 ak

βk o

(5.46)

where α,-/?,- are real, positive numbers, and the y^'s alternate in sign. Thus the

signature of the form is

Now if Lis a line bundle with L®ι*L&(9, one can repeat the analysis for the
form on H°(S, E0 ® L), comparing with the results for E0, we see that we get
signatures within the range (fe, r — k) to (r — fe, fe). Since these bounds hold for all
real λ, the actual range possible is from (fcm, r — km) to (r — fcm, fcm), where fem denotes
the maximum k given as /I varies in R.



580 M. R. Adams, J. Harnad and J. Hurtubise

6. Examples

a) The Rosochatius System. The Rosochatius system is a Hamiltonian dynamical
system on T*Sn ~ 1 which is most easily described by considering the Hamiltonian

on T*R" = RM x R" and constraining the flow to the symplectic submanifold
M which is giyen by

Σx? = l and Σ*ιΛ = 0- (6.2)

The constrained equations of motion are given by

(6 3)

In [1] it was shown how to realize this system as a flow of rank 2 isospectral
perturbations generated by the Lax pair equation

where

N(λ) = - Σ \( I

2

l l ) + >/--2μ/( )~2 ί~ l ί ) ( • (6 $)

Setting

Iα V \o o//
we have that L(A) is a matricial polynomial satisfying an equation of the form (2.1)
with

We shall now apply the tools developed in Sects. 2, 4 and 5, to explicitly solve this
system in terms of theta functions.

The spectral curve S for this system is hyperelliptic, has genus g = n-\, and
is given by

0, (6.8)

where
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It is easily checked that for generic x, y the curve S is smooth, and so we need
not perform any desingularization, i.e. S = S and g = g.

The construction of Sect. 4 assumed that the points at λ = oo were distinct so
that the sections ι/^ of the bundle E could be determined by their values at these
points. That construction is easily generalized to the case that the divisor D^ has
points with multiplicity by constraining not only the values of the i/^'s at these
multiple points, but also the values of an appropriate number of derivatives.

Let E be the line bundle on S obtained, as in Sect. 2, from L(A, 0). Assuming
that E is generic in the sense of (2.13) it follows that one can choose a section ψ1

of E which vanishes at the point oo to precisely first order. (There are no sections
of E which vanish to second order at oo.) We normalize ψ1 by fixing the values
of its derivatives in λ~1/2 at oo in our chosen trivialization to be ±(2ε)~1/2.
Similarly, we can choose φ2 which does not vanish at oo. Normalizing we set
ιj/2(ao)= 1. There is an additional normalization of the derivative of ψ2 at oo,
which is determined by the condition x y = 0 and is effected by the addition of a
suitable multiple of ψ1; we omit it as it is of no importance in the final description
of the solution. Now ψ1 and ψ2 form a basis for the sections of E so we may
proceed as in Sect. 4 with L(λ) determined by (4.2).

The next step is to consider ψ1 and if/2 as generalized Baker- Akhiezer functions,
as in Sect. 4, and find expressions for them in terms of theta-functions. In particular,
recall that a divisor corresponding to the line bundle given by the initial conditions
is given by (L(A; 0) — z Id)adj υ = 0. Taking into account the normalizations at infinity
which determine the choice of υ, the zero divisor Γ(0) of ψ1 is then q1-\- — \- qn,
where

J = l , . . . , w - l and qn=oo. (6.10)

Similarly, the polar divisor Δ is p1 + ••• + pn, with

= z(pjl j=l,...,n. (6.11)

The results of Sect. 4 than give explicit formulae for the Baker- Akhiezer
function φl(t) = ψ^λ, f) in terms of theta-functions and the "initial divisors" 7^(0)
and Δ, but the explicit determination of the xt flows is still rather cumbersome
since it requires the expansion of the ψ^tfs in the local parameter λ' to high order.
The Xι flows can, however, be derived implicitly. They are expressible in terms of
hyperelliptic integrals as follows. Let Q(t) = £#,-(£) be the zero divisor of φl(t) and
let flj(ί) = λ(qi(t)) be the corresponding set of /l-coordinates. From (6.10), we have

n y2 ι n— i

~ " -*a (6 12)ί—i 1 / η \ 1 1 v i'7

i = ι λ —α, α(λ)i=ι

i.e., the αt's give hyperelliptic coordinates on the sphere. The form ω^dln^1)

has simple poles at Q(t\ Λ and a pole of the form d( -—j- J at oo. Applying the
\ Λ /

reciprocity formula ([6], p. 240) for the periods of ω and those of the regular
differentials z~1λn~1~jdλ we obtain

αfU"-*-; f2ί + c, 7 = 1
Σ J —7ίΓd λ = =lΛ . i ' (6'13)
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where cj9 = 1,..., n - 1 are constants. Up to normalization, this agrees with the
integration of this system given in [7].

b) The Coupled Nonlinear Schrόdinger Equation (CNLS). We next consider a real
form of the coupled 2-mode nonlinear Schrόdinger equation:

(6.14)

As discussed in [1], Sect. 6F, this equation can be given as the commutation
relation for t and x flows of matricial polynomials with coefficients in sw(l,2).
Namely, let

with L1esu(\,2) and

(6.16)
v - 1

3

"2 0

0 1\J 1

_o o
~o a v~

u 0 0

-t? 0 0_

0
o\J

-1_

Defining x and ί flows by

_ d _ .
rfχJ

rf

^J

(6.17)

(6.18)

(6.19)

the commutativity of these flows requires u and v satisfy (6.14) and determines
L2,..., Ln, l in terms of w, v and their x derivatives, up to integration constants.

In [1] a space of rank 3 isospectral flows was related to CNLS as follows.
Choosing distinct^real numbers a1 ?...,an, a reduction of the moment map
J3:Mn3 x MM 3-»<7/(r)~ gives a moment map J:C2π->sw(l,2)~ by

-\*\i\2 -»
-IC, I 2J

= N(λ\ (6.20)

where pt = \ζt\
2.

With L(λ) = -a(λ)N(λ) the flows (6.18) and (6.19) are equivalent to the
Λ

Hamiltonian flows on sw(l,2)~ of the Poisson commuting functions,

(6.21)

(6.22)
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The value (6.16) of L0 determines the value of the sw(l, 2) moment map and is thus
an invariant of the flows. It gives the constraints

: = i (6.23)

Under these constraints, the form of L± is also invariant, yielding

^α^l^l2 =Σ α i l( i l 2 — jΣ α ΐ> Σ''V/,ί/ = 0 (6.25)
and

u — ~ \/~ lΣ α i*7iPi> ϋ ~ ~~ \J~ lΣαi£»Pi (6.26)

The spectral curve S for this problem is given by

det(L(λ) - z) = - z3 + za(λ)Q(λ) + a2(λ)P(λ) = 0 (6.27)
with

fβ π _ 2 / l π ~ 2 , (6.28)

fP π _3^~ 3 . (6.29)

These 2n — 3 integrals Qt and P7 give a completely integrable system on the 4n — 6
dimensional space given by C2π with the 6 real constraints (6.24). Imposing all the
constraints (6.23), (6.24) (i.e. assuming (6.16)) the curve has two points at λ= oo,

namely the regular point z = — and the double point z = —— . Assuming

also (6.17) and changing to coordinates z = z/λn and 1 = I/A, an expansion near

z = —— yields that the curve (after an appropriate change of coordinates) is

locally given at this double point by

u(u - v3) = 0 (6.30)

and thus separates into two sheets in the desingularization. Furthermore L(λ) is
generically of rank 1 at λ = α, (the rank two case may also be considered but the
explicit computations are more complicated) and so the curve also has double
points when λ = αt . Resolving all of these singularities (including the one at oo),
the desingularized curve S will have genus

g = 2n-S. (6.31)

The flows on the Jacobi variety of S linearize the Hamiltonian flows on the
4ft— 16 dimensional manifold given by C2" with the 12 real constraints of (6.23),
(6.24), and (6.25), divided by the 4 dimensional stabilizer group of L0 in sw(l,2)
(i.e. the flows generated by the first class constraints).

To solve for u and v in terms of ^-functions we choose sections ψ1, ψ2, ψ3 of
the line bundle E on S such that

ψ.j = ψl(aθj) = δij. (6.32)

Inserting into (4.2), expanding near 1 = 0, and discarding terms of order I2 yields

^ d
,, , , „ (6 33a)

dλ
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(6.33b)

Applying the results of Sect. 4, we have, with the notation given there,

I (6.34)

l 1

where ί = 2, 3 and μ£ = { η, v{ = { //, with 77, // being the forms corresponding as
OOi OOj

in (4.20) to the ί, x flows respectively. The Kt are constants independent of x and
ί; p is a base point. Differentiation yields

u(x, t) = K2 exp(^ + . i ,
2 ' V ;

--3-. (6.35b)
δ + tU + xV-γί)

Another method of solution, analogous to that given in [7] for the Rosochatius

system may be used to obtain these solutions. This is based on finding a Liouville

generating function for canonical transformations to an appropriate linearizing
Darboux coordinate system. The general result integrating all isospectral flows

corresponding to rank-r perturbations via such a Liouville generating function
and details regarding these examples may be found in [2].
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Note added in proof. The following ate errata for part I of this sequence [1].
On page 460, equation (2.40) the rank should be r.
In proposition 3.4, dφ(^) = (dφ(^)) + + (dφ(ΛO)_ and the ΛPs in equation (3.11) should be

script.
On page 468, the degree of the line bundle should be —g — r+l.
On the line above equation (6.4), b — c = 4Δ.
At the bottom of page 487 the subalgebras should be interchanged, so that (6.9a) corresponds

to sw(l, 1) and (6.9b) corresponds to sw(2).






