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Abstract. We present the explicit form of the trigonometric R matrices related to
the spin representations of the simple Lie algebras Xn = Bn,Dn. We conjecture that
one dimensional configuration sums of the corresponding vertex models in the
face formulation are the string functions of X(

n

1} modules.

1. Introduction

The importance of quantum R matrices has been recognized widely these days
because of its deep relationship with quantum groups, ^-analysis, operator
algebras, like invariants, conformal field theories, statistical mechanical models,
etc. In constructing trigonometric R matrices, the quantized universal enveloping
algebra Uq$ plays a significant role. In [1] V. G. Drinfeld constructed a "universal
R matrix" ^el^g® Uq§. This, in principle, enables us to write down the form of
the R matrix corresponding to an arbitrary pair of a nontwisted affine Lie algebra
§ and an irreducible representation π of cj. From the statistical mechanical point
of view, each R matrix defines a solvable vertex model on the two dimensional
square lattice. In order to carry out its analysis, we have to deal with the explicit
form of the R matrix. So far, such explicit expressions have been obtained in the
case of g = A(*\ π = an arbitrary representation [2,3] and in the case of g = A^\
B(

n

1\C(

n

1\D(

n

ί\π = the vector representation [4,5]. Very recently, an exceptional
case G(

2

υ is also treated in [6].
In [3] a method was initiated to construct the R matrices related to higher

representations from the one related to a basic representation. This method is
called the "fusion procedure." In the case of A(J\ the key R matrix is the one
corresponding to the vector representation. I. V. Cherednik worked out the fusion
procedure in the elliptic parametrization [7]. When we consider the cases of B(

n

1}

and D(n\ the R matrices corresponding to the spin representations are necessary
for the fusion procedure. The purpose of this article is to give a concise form of
the trigonometric R matrices related to the spin representations of Bn and Dn.
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Let us explain our method in the case g = B(

n

l\ Let Ksp be the spin representation
of Uq = Uq(Bn). Let us recall the characterization of the quantum R matrix R(x).
R(x)eEnάc(Vsp® Vsp) is uniquely determined up to a scalar multiple by the
following relations [5]:

(1) [K(x),2l(x)] = 0 for all XeUq, (1.1)

(2) R(x)(xqH°®Xt + XΪ®q-Ho) = (qHo®XZ + xX£ ®q-H°)R(x). (1.2)

Here Δ is the comultiplication defined in (2.1), and XQ,HO are as in (3.1). Since
the tensor product decomposition of Vsp® Vsp is multiplicity free, (1.1) implies that
R(x) must be written as

where Pk is the projector onto the irreducible component Vk and pk(x) is the
eigenvalue of R(x) on Vk. Therefore, out first task is to obtain a set of orthonormal
vectors in Vk. This is done inductively on the rank n of Bn (Proposition 3.5, 3.6).
Next we determine pk(x) by solving (1.2). Let Wλ denote the weight space of Vsp ® Fsp

of weight λ. Thanks to the invariance (1.1), we have R(x)Wλ c Wλ. Put fe = n — (λ, λ\
where the inner product is so normalized that the short roots have length 1.
Exhibiting the rank n by the upper index («), we find the following commutative
diagram:

R(n)(x) I I (scalar) x R(k)(x). (1.3)

W(n) „ Wφ

Thus the calculation of R(n\x) is reduced to that of the restriction R(k\x)\w(k>. The
explicit form of R(x) is given in (5.9).

In the case Q = D^9 there are two spin representation spaces, Vε

sp (ε= ±).
Accordingly, there are four R matrices corresponding to Vε

sp ® Vε

sp and Vε

sp ®
V~p

ε (ε= + ). Because of the symmetry of the Dynkin diagram, it suffices to consider
two cases. Both R matrices have a property similar to (1.3). The form of R(x) is
in (5. 14).

In our recent analysis on restricted face models, there emerged an intimate
relation between the computation of the local state probabilities (LSPs) and the
representation theory of affine Lie algebras [8,9]. The situation is quite similar
when we consider vertex models in the face formulation. By Baxter's corner transfer
matrix method [10], the calculation of the LSP reduces to the evaluation of a
quantity called "one dimensional (ID) configuration sum." As investigated in [11],
ID configuration sums of the vertex models related to the vector representation of
classical simple Lie algebras turn out to be the string functions in the sense of
[12]. Computer experiments suggest a similar conjectural result in the case of the
spin representations. Let us explain the conjecture in the case of D(^l 1 (n ̂  2).
Let Λj (j = 0, . . . , n + 1) be the fundamental weights of D(^l 1 , let / be the set of level
1 integral weights in Z/10© ••• ©Z/ln+1, and let Λ be a level 1 dominant integral
weight. With each Λ we associated a particular sequence PΛ

=(P(Λ)JZI of elements
of / (see (6.2)). This corresponds to a "ground state" in the statistical mechanical
language. We call a sequence p = (pω)j^ ι(Pωe/) Λ-path, if it satisfies the following
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conditions:

(1) p(j+ υ - p(j} is a weight of the spin representation (π+, KSp) of Uq(Dn+ί) for all ,
(2) pU> = p<$ifj»l.

For the definition of (π+, Ks

+

p), see (4.1). By 0>(Λ) we denote the set of Λ-paths. Let
L(A) be the irreducible highest weight module of highest weight Λ, and let a be
an element in /. In our case, the ID configuration sum f(a,A\q) reads as follows:

f(a9Λ;q)= Σ Vω(P)>
pe^(Λ)

p"> = «

ω(p)= '

p°'+ υ

Now our conjecture is

j=ι

where ^(p) - p°'+ υ - p(j). For the definition of the function H = //D»+s see (6.1).

Here δ is the null root. The right-hand side is the string function studied in [12].
If we admit this conjecture, we can show that the ID configuration sums in the
case of B(

n

ί} coincide with the string functions of a highest weight /)[,+ ! module
viewed as B(

n

1} module.
After having accomplished this work, the author came to know the work by

N. Yu. Reshetikhin [13], in which he obtained a recursive formula for the rational
R matrices related to the spin representations. The author thanks E. Date for
informing him of this work.

The text is organized as follows. In Sect. 2, we recall the definition of Uq(Bn)
and Uq(Dn). Their spin representations are described and the Clebsch-Gordan
coefficients for the tensor product of two representations are calculated in
Sects. 3 and 4. The explicit form of the quantum R matrices is given in Sect. 5.
In Sect. 6, we define the corresponding vertex model in the face formulation, and
give a conjecture on the ID configuration sums. In the Appendix, we give a
trigonometric version of Reshetikhin's recursive formula in the case of B^.

2. The Algebras Uq(BΛ) and Uq(DΛ)

Let us review the definition of the quantized universal enveloping algebra
^g9(9 = Bn> Aι) We follow the conventions in [14]. Let ί) be the Cartan subalgebra
of g, let (,) be the invariant bilinear form on fy* so normalized that the short roots
are of length 1, and let BJ(J = !,...,«) be the standard orthonormal basis with
respect to (,). The simple roots of g are given as follows:

= εn (j = n) for $ = Bn,

= £n-i+£n (j = n) for Q = D».

Let q be a nonzero complex number. We assume that q is not a root of unity. We
define Uq$ to be the associative C-algebra with generators Hp Xf (;' = 1, . . . , n) and
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relations

[#„ Hj\ = 0, [Hi, Xf-\ = ± (α£, atj)Xf,

2 _ -2

Here <?, = <?(<* °">, ay = 2(αt, <Xj)/(α(, «,) and

ΓΠ-πL n J t ;=ι
The usual universal enveloping algebra l/g is obtained by letting q tend to 1. Our
Uq$ is a Hopf algebra with the following comultiplication:

= qHi®Xr + X?®q~Hi. (2.1)

Note that only here the notation is different from that in [14]. In Sects. 3
and 4, we consider the tensor product decomposition with respect to the above
comultiplication. Let us prepare several notations for the subsequent sections. Set
C2 = Ce1/2® Ce_1 / 2. We define 2 x 2 matrices X±,H acting on C2 as follows:

X±eε = eε±l9 Heε = εeε for ε=±£. (2.2)

eε should be understood as 0 if ε^ ±i Consider μ = μ1ε1 + — hμπεπeί)* such that
μj.= +i for all j. With such μ, we associate an orthonormal vector in (C2)Θ/I as
follows:

eμ = eμι® "®eμn (2.3)

3. Spin Representation of Uq(Bn)

Following [14], we recall the spin representation (π, Ksp) of Uq(Bn). The represent-
ation space Ksp is identified with (C2)®". It is spanned by the weight vector eμ (2.3)
of weight μ. Hence, we have dim Vsp = 2". The actions of the generators X*,Hi
(i = 1,..., n) of Uq(Bn) are as follows:

/ ί+l i i+1
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Here 1A denotes the transpose of A. In Sect. 5, we will also need the operators XQ
and H0 defined as follows:

®1. (3.1)

These operators correspond to generators of the affine quantized universal
enveloping algebra U^B^). The tensor product Fsp(χ) Vsp decomposes as follows:

Here Vk (0 g k < n) denotes the irreducible highest weight module with highest
weight εt + — h εn-k, and Vn denotes the trivial module.

We construct the whole orthonormal vectors in each space Vk. We identify
PSp® Kφ with (C4)®" via the following map:

^sp® Fsp = (C2)®"(χ)(C2)®/I -> (C4)®"

Namely C4 is spanned by the four orthonormal vectors e + + , e + _ , £ _ + and e ___
Here e±± is an abbreviation of e± 1/2 ± ι/2 The operators Δ(X^ ) (1 ̂  i ̂  n) act on
(C4)®" as follows:

where ε,ε',η,η' = ±%. When we want to stress the rank n of Bn, we write V (

k

}

instead of Vk. (V(

k

})λ denotes the weight space in F["} of weight λ. Note that
(V(f})λ φ {0} only if A = λ^! + - + Aπεw with A,e{0, ± 1} for all i and (A, A) ̂  n - k.
The next lemma is easy to show.

Lemma 3.1. A normalized highest weight vector v(

k

}eV(

k

} of unit length is given as
follows:

7=1

where N= Π (q~(2k~2j+ί) + q2k~2j+i) and (X) u(j) signifies w(l)® -.-®M(k).
7=1 7=1

Hereafter, we use the convention V("\ = V(£\ V (

k

} = {0} (k> n).

Lemma 3.2. Let λ = λlε1 H h Anεπ be a weight of V(

k\ then we have

n-(A,A)

2

[m] signifies the largest integer that does not exceed m. In particular, we can
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state the following:

(1) // there exists an integer j (1 ̂  j g n) such that λj = ± 1, then

where

λf = λlεί + '"+λj^lεj^ί+λj+ίεJ+'" + λnεn,1. (3.2)

(2) dim (nn))o = dim (Pf- ι1})o + dim (FiVi^o

Proo/. In [15], it is proved that if q is generic the dimensionality of the weight
space is equal to the one when q = 1. This reduces the lemma to the calculation
of the dimensionality of weight spaces of the fundamental modules over the Lie
algebra Bn. q.e.d.

By a direct calculation, we have

Lemma 3.3. If 1 ̂  i < n and ε = ± , then

Let us define the C-linear map ή (1 ̂  j ^ n,ε = ±) as follows:

sp

Fix an integer j. For the operators ^(A^) in ΔCU^Bn-^)), we set

(1^ /<;-!),

(i = j-l), (3.3)

which must be regarded as operators in Δ(Uq(Bn)). Then we have

Lemma 3.4. The following diagram is commutative.

sp sp sp

Now we can state our propositions on the construction of vectors in (V(

Proposition 3.5. Let λ be a weight of V(

Sp®V<g> such that λj = ± 1. We have

(VW\ — ι±(V^n~^\\yk )λ — lj ( y k )λ'

Here λ' is given in (3.2).
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Proof. Let us consider the case λj=\. From Lemmas 3.1 and 3.3, we have

j+ (v(n- lh — !,(") if i < n klj (vk ) — vk π J = n ~ K,

Together with Lemma 3.4, we see

lϊW-^dVφ.

Lemma 3.2 completes the proof.
The following is an isomorphism of algebras.

uq(Bn) Λ υq-,(Bn\
X+r •-> xf,

Hi •-> ~Ht.

We also consider the map defined by

V(n) (x) V(n) φ > V(n} (x) V(n)

* sp W * sp v sp vy v sp 5

Here e_ μ signifies ^_μ ι ® ••• ® β_μ n if eμ = eμι ®- ®eμn. Then we find the following
commutative diagram:

Δ(X?) Δ(Θ(X*)).

It is easy to see that the proof in the case of λj = — 1 is reduced to that in the case
of λj= 1. q.e.d.

Proposition 3.6. For 0 g k ̂  n,

Proof. We are going to show

(1) (<r<2/[-1)/2e+_ +(-)V2t"

(2) (g(2t + 3)/2ί;+_ +(-)k+

Note that the two spaces in the left-hand side are mutually orthogonal. Comparing
the dimension of the subspace of weight 0 (Lemma 3.2), we find that showing (1)
and (2) proves this proposition.

Let us first consider (1). From Lemmas 3.1 and 3.3, we can show

( _ y
~ (2k- 1)12 _, _\k (2k-l)/2

-
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Applying the creation operators Δ(X2),...,Δ(X~)9 we get (1).
We prove (2) by the induction on n. From Proposition 3.5, we know

n - f c - l

Applying Δ(Xn^k^l)9 we have
n-k-2

e+ + ® - ®e+ + ®(qe+ -®β- + +q~1e_ + ®e+ _)®v^eV^. (3.4)

On the other hand, from v(

k

}eV(

k

} ancj the assumption of the induction, we have

Using (1) and Proposition 3.5, the following belongs to V (

k

} :
n-k-2

The vector space spanned by (3.4) and (3.5) contains the following vector:

n-k-2

Applying Δ(Xϊ) Δ(χ--k-2) to (3.6), we see

The rest of the proof is similar to (1). q.e.d.

4. Spin Representations of Uq(Dn)

Our next task is to review the spin representation of Uq(Dn). The difference from
the case Uq(Bn) lies in the existence of two spin representations (πε, Vε

sp) (ε = ±).
Following [14] again, let us recall their features. Let us define the operator 3tf
acting on (C2)®" as follows:

tf = 2nH® ®H,

where H is as in (2.2). Then we have

Vlv = {eμe(C2)®n\Jfeμ = εeμ} (ε = ±), (4.1)

Each vector eμ is again a weight vector of weight μlεί -f —h μnεn. We easily see
dimVε

sp = 2n~1. The actions of the generators X f 9 H t (i =!,....,«) of Uq(Dn) on
(C2)®n are as follows:
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l- ® H
n— 1

Two representation spaces are preserved under these actions.
Next let us consider the following tensor product decompositions:

= v\ e e v {(n _ 1)/2] + 1 . (4.2)
Here V\ is the irreducible highest weight module of highest weight ε1-\ ----- h επ_ x +
εεn (fc = 0), εi + •••+£„-* (0<fc<n), 0 (fc = n). Note that (Kf ))A={0) only if
A = A^! + — h ^πεπ with /^{O, ± 1} for all i and (λ,λ) ^n-k. For later use, it is
convenient to introduce the following module:

Vk = the module generated from the vector 4Π) over Δ(Uq(Dn)).

Here 4n) is defined as follows:

fc-l

Here N = [] (g-2(fc~^ +

following projection:

if /c =

if

K0 coincides with K^ 0 KO . Let pε (ε = ±) be the

where 77 is defined by tf eμ = ^6^ (?/ = +). f commutes with the action of Δ(Uq(Dn)\
We need several lemmas similar to those in Sect. 3.

Lemma 4.1. A highest weight vector in Vε

k

(n} of unit length is given by pε(v(^).

Hereafter, we will use the convention Vε

k

(n) = {0} (k > n).

Lemma 4.2. Let λ = λ1ε1 + -•- + λnεn be a weight of Vε

k

(n\ then we have

In particular, we can state the following:
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(1) If there exists an integer j (1 g j ^ n) such that λj = ± 1, then

where εf = ±ε and λ' is defined in (3.2).
(2)

dim(Vj?">)0 = dim(Ff - 1!)0 (fc = 0),

= 2dim(n("~1))o + dim(Kf -^ (k = 1),

= dim (Ff"T υ)o + dim (F*^ '>)0 (* > 1).

We define the operators Z;±ω from A(X?) in ^(I^φ,,..!)) as follows: If
1 ̂  j < n — 1, then our definition is the same as in (3.3). Otherwise we set

(i = n-2),

As in the Uq(Bn) case, Zj±0) must be considered as operators in zl((/β(£)n)). By a
direct calculation, we have

Lemma 4.3. Let ε,η= ±. Then the following diagram is commutative.

Δ(xr")
ε(n-l)0/£2Λ®(n-l) '> , yεφ)

We state our propositions on the construction of vectors in (Vε

k

(n))λ.

Proposition 4.4. Let λ be a weight of K^n)(χ)(C2)®n such that λj = ± 1. We have

(V$n\ = ιf(V?*-l\..

Here ε' = ±ε and λ' is given in (3.2).

Proof. The proof is similar to that of Proposition 3.5. The difference is that
Lemmas 3.1, 3.4 and 3.2 are replaced by Lemma 4.1, 4.3 and 4.2. q.e.d.

Proposition 4.5. For 0 ̂  k ̂  n, (Kf % = pε((Klπ))0), where (K[n))0 is obtained induct-
ively as follows:

ε=±

Froo/. We prove by the induction on n. First we show the following:

(1) Vp<=(q-<k-»e+-+(-q)k-1e,+)®V<£Jl" (\<k^n\

(2) K?>c=(e+_+e_+)®^"-»),
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(3) V(ΐ}^(qk+le+_-(-qΓ(k+l)e_+)®V<£-1

1) (0 < fc ̂  n),

(4) Kjpc ®jf((qe+-+q-ίe-+)®V<Γl}).
ε= ±

The proofs of (1) and (3) are similar to those of (1) and (2) in Proposition 3.6. We
only deal with (2) and (4) here.

Let us prove (2). From the definition of v£\ we have

Applying Δ(Xί) ~Δ(Xn-2)9 we have (e+. +e_+)®v$ 1)eK(/l). The creation
operators Δ(X2),...9Δ(X~) produce (e+_ + e _ + ) ® V(ζ~l} from ( e + _ + e _ + ) ®
v(S'l\

Let us proceed to (4). We have
n-2

Δ(Xn }v(S} = e+ + ®'-

n-2

Therefore, pε(e+ + ® ~®e+ + ®(ge+_ + <3Γ 1 e_+)®(e+_ + e_+))eK (

0

π ) for ε= ±.
Note that pε commutes with Δ(Uq(Dn)). We immediately have (4).

If k =Ό, we have K[Λ) = V+ (Λ) ® K0~
 (Λ) and dim ( K0

+ (w))0 = dim ( VQ (n\ . If 0 < k ̂  n,
each vector ί;e(F[n))0 constructed as above is of the form v = p+(υ) + p~(v).
So we easily have

= dim(Kί(n))0 (0</c^n).

(1) ̂  (4) together with Lemma 4.2 show the equality of the sets in the inductive
construction of (Kj^Oo

This completes the proof, q.e.d.

5. Quantum R Matrices

Let us proceed to construct the quantum R matrices corresponding to the spin
representations. Following [5], we recall the characterization of R(x). Let Vλ, Vμ

be two irreducible representation spaces of Uq(= Uq(Bn\ Uq(Dn)). The quantum R
matrix R(x) for §(=B(

π

1),Z)i1)) is an element of Homc(Vλ®Vμ9Vμ®Vλ), and is
characterized uniquely (if it exists) by the following conditions:

(1) [Λ(x),JPO]=0 for all XeUq9 (5.1)

(2) R(x)(xqHo®XZ +Xt®q-HQ) = (qHo®Xt + xX£ ®q-H°)R(x). (5.2)

The definitions of X£ and H0 are in (3.1) for § = B(

n

1} and Dί,υ. Note that our R
matrix here is usually written as R(x), and is equal to PR(x) in [5], where P denotes
the transposition P(a ®b) = b®a.

Now let us assume that every irreducible component Fv in Vλ® Vμ appears
with multiplicity 1. The condition (5.1) means that R(x) must have the form
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where PveUomUq(Vλ® Vμ9 Vμ® Vλ] is such that Pv\v v, /O iff v' = v. By fixing the
normalization of Pv, the scalars pv(x) will be determined by the condition (5.2).

In this paper, we construct three R matrices. In the case of Btf\ there is just
one in Endc(Ksp® Ksp). For the consideration in the case of D(^\ we define the
map τ as follows:

/p4\®π τ

 ) //^4\®π

e μ i V l ® ®eμnvn H+ eμ^Φ φ ^ n - l V n - i Φ e - μ n - V , , -

Set σ(X?) = XT (l^i<n- 1), X* (i = n- 1), *±_ , (i = n). Then the following
diagram is commutative for ε = ± :

Thanks to this commutativity, we only need to consider two R matrices, which
are elements of Endc(V8"p<8) Ks~p) and Homc(KSp® Ks~, V~p® Fs"p), respectively.

The Case of B(

n

1}. From the above consideration, R(x) is of the form

*(*)= Σ pP(χ)Pΐ\
fc = 0

where P(^ is the projector onto V(£\ Let W(p be the weight space in V($®V($ of
weight λ. W(? φ {0} only i f λ = λ1ε1 + + λnεn with ^ejO, ± 1} for all ί. From the
condition (5.1), we easily see R(x)W(^ c ^(

λ

n). Putting k = n- (λ,λ), we have

TJ/(W) ^ /p2\®Λ

^Λ = (C } (5.3)
eμ®ev H-> e^,®---®^,

where y\, . . . , yt are determined from the condition

0}, Λ < <A. (5.4)

Let us define the operator u(j) acting on C2 = Ce+ ® Cβ_ as follows:

~

_ + _.

Next we define the operator Qf} acting on (C2)®* inductively,

Qf = u(-2j+\)® QfJ» + u(2j
(5 6)

From Propositions 3.5 and 3.6, we immediately have

Proposition 5.1. Put k = n — (λ, λ). Then the following diagram is commutative.

WM ~ (C2)®*

Pf I i Qf.
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To determine p(p(x)9 we need to show

Proposition 5.2.

(1) Pf(qH* ® X£)P(

k

n) = 0, Pγ\XZ ® q~Ho)P(^ = 0

(2) P^-2(qH°®Xo)P(k) = ~ <!4k~2Pk-2(XZ ®q~H°)P(

k

} (1 ^ * ̂  n\

P(Ά2(qHo®X^P(^=~q-(^ + 6}P(Ά2(X^®q-Ho}P(^ ( - l^Jkgπ-2),

where P^ = P(

0

n),

(3) Pi">(^°® XίJPi"* = P(

k

n\Xt®q-Ho)P(

k

n).

Proof. It suffices to check (1),(2) and (3) by applying these operators to the base
vectors in K^® Fg> constructed in Sect. 3. Put Z^ = gH°® J^o >Z2 = J^Q ® <7~H°
Since Zi and Z2 change only the first and second components of (C4)®" = V("p® F^,
it is convenient to represent the base vectors in V(£} = P(£)(V($®V§*) as
ul®u2®u({i~2\ where M1,w2eC4,Mίn~2 )eF|π~2 ). From Propositions 3.5 and 3.6,
each base vector has one of the following forms:

(A-l) (<Γ(2fc~1)/2*+-+(-)Y2fc~1)/2e-^^
®4n-~22)>

(A-2) (q-(2k-1)l2e+. +(^)V2 k~1 ) / 2e_

(A-3) (g(2Λ+3)/2e+_+(-)*+V(2^
®M?~2),

(A-4) (^2k+3)/2^_+(-)k+1^-(2k+3)/2^_+)®(^2fe+5)/2^+_+(-) fc+2^

(B-l)

(B-2)

(c-i)
(C-2)

(D)

Note that if a vector contains e_ _ in the first or second component, this vector
vanishes when we apply Z: or Z2.

Firstly, let us examine the case (A-l). Applying Zj and Z2 to the vector (A-l),
we get q2k~le-_ ® e _ _ ®u(

k~
2) and — q~2k+1e__ ® e _ _ ®u(

k

n~2\ respectively.
From Proposition 2.5, the vector £_ _ ® e_ _ ® 4"-~22) ιs contained in Vjni2 So only
the action of P["12 is non-trivial. Since P[nl2 is the identity operator on KJ"12, we
have the lemma. The proof in the case of (A-2) ~ (A-4) are similar.

Next, we consider the case (B-l). After applying Zλ and Z2, we get

ι2) (5.7)
and

-q-w-we_ + ®e__®u(k"-2\ (5.8)

respectively. It is easy to see that (5.7) and (5.8) are in V(fL2@V(f). So the actions
of P(k-2

 and P(k} are non-trivial. Let us consider the case of PfcΊ 2. From
Proposition 5.1, this projector acts on C2 ® C ® V (

k ~ 2 ) as u(2k - 1)® 1 ® id. Here
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C2 = Ce+ _ Θ Cβ_ +, C - Ce_ _ and u(j) is defined in (5.5). Applying Pfl 2 to (5.7-8),
we have

( 2 f c - l ) / 2

and

This shows the lemma. The cases (B-2) and (C-1,2) are similar.
We finish the proof by showing the last case (D). Applying Z^ and Z2, we get

q~ίe+- (χ)£+_ ®w[n~2) and qe_ + ®e_ + ®u(£~2\ In this case, the actions of the
three projectors Pj^l^Pj^ and P%\2

 are non-trivial. The actions on the first two
components C2(χ)C2 (C2 = O+_ ©Ce_+)are u(2k- \)®u(2k+ 1), u( — 2k+ 1)®
u(2k + 1) + w(2fc + 3)® M(- 2fc - 1) and n(-2fc-3)® κ(-2fc - 1), respectively. The
rest of the proof is left to the reader, q.e.d.

From Proposition 5.2, (5.2) reduces to the following recursive formula for p^n)(x):

pj"22(x)

Setting

we have

7/2 / »4l J -vn 4l + J v /7^"' 1 /Ύ 4l T 1 fj /7^' •*• V/7
I Tl T—Γ ^ί «Λ/t£
ί̂ 1! Λ -4i+l 11 Λ2i-l Λ -2 i+l ^' even)j-3 --4t+

i=l ^ ~^

(j+l) 4 i - 3 -

Π , -3_q-4 i + 3 ^i-l.^-^+l . = 2 q2l-l_q-2t+1

Summing up, we obtain the form of R(x) as follows:

'-J/ΓWβf (* = w-(λ,λ)). (5.9)

Here Qf is defined in (5.6). We identify W(? with (C2)θfe via (5.3).

The Case of D(

n

ί}. In this case, two R matrices are to be considered: (I)
R(x)eEndc(K8

+

p® F+) and (II) R(x)eHomc(Fs

+

p® V'p, V~p® V^). From (5.1), R(χ)
is of the form

n

k Ξ s(2)

where
(5.10)
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For k even, P^ is the projector onto V£(n\ For k odd, it is the map which sends
each vector p+(u)eV^(n} to p~(u)eVj^(n) if j = k and to 0 if ^ k. For the definition
of pε, see (4.3). As in the case of Uq(Bn), these R matrices have a block structure.
Let W(p be the weight space in (C2)®"® (C2)®" of weight λ. For ε = ±, we set

Wε(n) W

j^f)/{0} only if A = λ1ε1 + ••- -hλ^ with ^e{0, ±1} for all ί. Note that
Wε(n) c yε(fl) φ y^ where ε' = ( _ )*ε(fc = n - (A, A)). Putting fe = π - (A, A), we have

j0π) ~ fC2)® f e

λ [ ) (5.11)
^μ®^v ^ ^,® ®βμΛ'

The determination of { Ί, . . . , ;k} is the same as in (5.4). By abuse of notation,
define the projection pε (ε = ±) as follows:

(C2)®* Λ pε((C2)®fc) ci (C2)®fc

*μι®-®*μk ^ VM!®'"®^

where ?/ is the signature of the product μ^ - μk. Then we have the following
commutative diagram:

W(n) „ (C2)®k

Pε ϊ I P "

Wf» ^ Pη((C2)®k), (5.12)

where η = ε(-)*{j]λ'—l}.
Define θ(j) to be 1 ( > 0), 0 ( < 0). For the case of D(

n

l\ let us define the
operators ι/(;)eEndc(C2), Qf eEndc((C2)®k) as follows:

if

(Q(? = 0 ( j > k ) ) . (5.13)

The next proposition is a direct consequence of Propositions 4.4 and 4.5.

Proposition 5.3. Put k = n - (λ,λ). Set ε' = ε(-)\η = ε(-f{jlγ^~ί} and η' = η(-)k.
Ifj = k mod 2, then the following diagram is commutative for ε= ±:

Wε

λ

(n] £ /?*((C2)®fc) — ̂ -̂  (C2)®k

Pf J J Qf.
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Let P(f} be the projector onto V(£\ Then we have

Proposition 5.4.

(1) Pjl

(2) P

P(Ά2(4Ho®Xo)P(k} = - q~(4k+4}P(kl2(^o®q~H°)Pk) (0 ̂  fc ̂  n - 2),
(3) Pf'te*0® Xj)P(f} = P(f}(XS®q~Ho)P(f\

The proof is similar to that of Proposition 5.2. Thanks to this proposition, we
are led to the following formula:

pW(x) _xq2j~2-q~2j+2

p(β2(x)~q2j-2-xq-2j + 2'

Setting
[n/2]04i-2

— ^
i= 1

I
nW(γ\ —
Pi W- 11 4i

i = i q — i
we have

fl-q

t .0:even),

(r odd)

Fix s as in (5.10). Put k = n - (λ,λ\ η = (-f^λr~V and η' = η(-)s. Then R(x)
is obtained as follows:

R(x)= 0

Here βf is defined in (5.13). We identify W^(n) with p*((C2)®*) c (C2)®fc via (5.12).

6. Conjecture on the ID Configuration Sum

The quantum R matrix constructed in the previous section defines a vertex model
on the two dimensional square lattice Jίf. Consider R(x) in Endc(Ksp® Ksp). We
deal with (I) only and put Ksp - Ks

+

p in the case of Uq(Dn + l). Set

The matrix element R(x)Λβμv is the Boltzmann weight of the configuration such
that the fluctuation variables α, β, μ, v are placed on the left, lower, upper and right
bond around a vertex. This vertex model can also be formulated as a solvable face
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model as treated in [11]. We explain the formulation below. Let us consider the
square lattice &* dual to 5£. On each site i of &*, associate a site variable σi9

which takes values in the following set /:

( n 1
1 = I Σ */4/l f lo + 0ι + 2*2 + - + 2αM_! + an = l,α; eZ > for

U=° J
f n + i

H Σ ajΛj\a0 +u'=o

Here Λ 0,...,Λ I I(,Λ I I + 1) are the fundamental weights of the afΓine Lie algebra
g = Btf\ D(

n^ ί [16]. / is the set of level 1 integral weights in ZΛ0Θ - - - φZΛn(φ ZΛn+ J.
An element of / will be called a "local state." With each configuration of local
states (α,fc,c,d) around a face (ordered clockwise from the NW corner), we
associate the Boltzmann weight W(a, b, c, d) as follows:

W(a,b,c>d) = R(x)Λβμv if b = a + μ, d = a + a, c = a + μ + v = a + a + β,

= 0 otherwise.

Now let us turn to the calculation of the local state probabilities (LSPs). By
definition the LSP P(a) is the probability of finding a at a particular site, say i = 1,

P(a} = ~ Σ
^ config.

Z= £ \\
config. face

In the calculation, we fix the σ{ on the boundary of the lattice to a "ground state,"
which will be specified below, and take the infinite volume limit.

Hereafter, we will assume n ̂  2. Let π denote the projection from the weight
lattice of Dj^ to that of B(

n

1] induced from the embedding B(

n

1} c^D^l5 i.e.,

Let ί) be the Cartan subalgebra of Dn+ ^. Note that the vectors ^ (y = 1, ...,«-{- 1)
in I)* are contained in the weight lattice of Dj,1^ and π sends ε,- to ε^ (1^7^ n\
0 (j = n + 1). π(ί)*) is identified with the dual space of the Cartan subalgebra of Bn.
Next let σ = ( σ ί 9 . . . , σs) be a sequence such that σ7 = ± \ for all j. With each σ we
associate a "height" ht. The rule is given inductively as follows:

ht(φ) = Q9

Let μ = //iβi -f ••• + μnεn, v = v1ε1 -f ••• + vnβn be weights of the spin representation
of Uq(Bn). Set σ(μ, v) = (μjl9. . . , μjs), where j = jt iff μj + v; = 0 (;\ < - . - < ;s).

We will need the following limiting value of R(x)aβμv.

Proposition 6.1.

lim
*0™ fix

where
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(μ, v) = n -
I

[]
(6.1)

Now let us specify the ground states. The local states of our ground state are
constant along NE-SW direction. Hence, a ground state can be specified by a one
dimensional sequence of local states (p(j))jez. Hereafter, we deal exclusively with
the case 0 < q < 1, |x| < 1. For later use, it is convenient to label the ground states
as follows. Let Λ be a level 1 dominant integral weight of
or 1. We set for eZ,

AI (j: odd)

Λi+i- . O' even)

Λn + i (j: odd)

Let i be either 0

(«: odd) if Λ =

even)

1^1 -ί

" Λ
Ai + 1 - ί

Λ l - f

.Λ,+i

(7: even)

(7 = 1)

(7 = 2)

(7 = 3)

(7 = 0)

if Λ =

if = Λi9

Λ.+* (7=1)
Λ- (7 = 2)
Λ.+I-/ (7 = 3)
Λ I - * (7 = 0)

if Λ = (6.2)

The symbol = signifies the congruence modulo 4. These are the ground states for
/>$!. In the case of ̂ ^(π^))^ (Λ = Λi9Λn + hi = 0,1) are the ground states.
Note that Λ is still a dominant integral weight of D(^l i.

For our purpose of calculating the LSPs, Baxter's corner transfer matrix [10]
turns out be a powerful tool. In his argument, the essential part lies in the evaluation
of the "one dimensional (ID) configuration sum." For the preparation, let us
introduce a terminology. A sequence of local states p = (p(j})j^ ί is called a "Λ-path"
if it satisfies the following:

(1) p(J+ υ — p(j} is a weight in Ksp for all j,
(2) p(j) = p()2 if y » l .

Here p^ should be replaced by π(p(%) in the case of B(

n

1}. Let 0>(Λ) denote the set
of/i-paths. Set η(j}(p) = p(j+l]-p(j). ID configuration sum/(α,/I;<?) (ael) is defined
as follows:

f(a,Λ;q)= ^ω(p)

(6.3)

In the case of β*,1', we replace p(]2 with π(p(^) in (6.3). Let L(Λ) be the irreducible
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highest weight module with highest weight A, and let f) be the Cartan subalgebra
of g = B^^D^li. If g = B(n\ we consider L(A) as B(

n

1} module. For μeί)*, we set

L(Λ)μ = {vεL(Λ)\hv = μ(h)v for fteζ}.

Let δ be the null root. The generating function ^dimL(Λ)μ.iδq
l is the string

function studied in [12]. '
Now we can state our conjecture on the ID configuration sum.

Conjecture. With these notations, we have

/(α,/l; <?) = £ dim !(/!)„_ wί<.
i

We remark here that if we admit the conjecture in the case of D($l9 we can show
the one in the case of B(

n

1}.
With a in / of g (g = #π,Dn4.1), we associate its classical part αeϊ)*, where f)

is the Cartan subalgebra of 9. If a = £ 0//1/, then a = £ ajΛj Here

for

Set s(α, A) = j((α,ά)- (Λ, Λ)), ί(α, yl) = (ά - Λ, a - Λ). In the case of B(

n

l\ A should

be replaced by n(A).
We write down the explicit form of f(a,A;q) below.

if Λ = Λ0,/lι and ί(α,/t) even,

= qs(a'Λ}+ll2E(-l,q

4)/φ(q)n+1 if Λ = Λ0,Λ1 and t(a,A) odd,
1 if Λ = Λ.,Λ, + 1.

Here <?(<?) = Π 0 ~ Λ £fe *) = Π (1 - ̂ ~ 'Xl - ̂  ̂ ")(1 ~ **)•

Appendix

In this Appendix, we give a trigonometric version of Reshetikhin's recursive formula
for our R(x). We deal with the B(

n

1} case only. Hereafter, the upper (n) indicates
the rank of Bn. Let us consider the following isomorphism:

Here eμ. signifies eμ2 ® - - ® eμn if eμ = e/ll ® - - ® e^M. We identify these two vector
spaces. Let v be a vector in K^1)® K£~υ. The Reshetikhin's formula reads as
follows:
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R(n\x)e+ -®v = e+,® R(n~ 1}(x<Γ 4)(#("~ υ(<Γ4)Γ lv

n _

+ xe_ + <g) R(n~ l)(xq-4)(R(n~ 1](q~4)Γlv.
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