q-Weyl Group and a Multiplicative Formula for Universal \boldsymbol{R}-Matrices ${ }^{\star}$

A. N. Kirillov ${ }^{1}$ and N. Reshetikhin ${ }^{2}$
${ }^{1}$ LOMI, Fontanka 27, SU-191011 Leningrad, USSR
${ }^{2}$ Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

Received May 11, 1990

Abstract

We define the q-version of the Weyl group for quantized universal enveloping algebras of simple Lie group and we find explicit multiplicative formulas for the universal R-matrix.

1. For any semisimple complex Lie algebra \mathscr{G} there is a natural deformation of its universal enveloping algebra $U \mathscr{G}$ as a Hopf algebra over the formal power series over $\mathbf{C}[\mathrm{D} 1, \mathrm{~J}]$. This deformation $U_{h} \mathscr{G}$ is called a quantum universal enveloping algebra or quantum group [D1]. These algebras are important in the theory of quantum integrable systems [F] because with each $U_{h} \mathscr{G}$ one can associate a certain canonical element R in $\left(U_{h} \mathscr{G}\right)^{\otimes 2}$ which satisfies the Yang-Baxter equation

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} .
$$

Here $R_{i j} \in U_{h} \mathscr{G}^{\otimes 3}, R_{12}=R \otimes 1, R_{23}=1 \otimes R$ and $R_{13}=\sum_{i} \alpha_{i} \otimes 1 \otimes \beta_{i}$ if we rewrite R as $R=\sum_{i} \alpha_{i} \otimes \beta_{i}, \alpha_{i}, \beta_{i} \in U_{h} \mathscr{G}$.

But up to now there was no explicit formula for R, except for the cases $g=s l_{2}$ [D1], $\mathscr{G}=s l_{n}$ [Ro2]. Drinfeld (private communication) conjectured that there is a relation between the Weyl group and the universal R-matrix for general simple Lie algebras. In this paper we define a completion $U_{h} \mathscr{G}$ by the Weyl elements of $s l_{2}$ triples corresponding to simple roots. This completion gives us a description of the quantum Weyl group as well as explicit formulas for the element R.
2. Let \mathscr{G} be a semisimple Lie algebra of rank $n, a_{i j}$ its Cartan matrix, and d_{i} the length of the i-th root (then $d_{i} a_{i j}=a_{j i} d_{j}$).

[^0]Let h be a formal variable. For integers n and m we use the notations:

$$
\begin{aligned}
{[n]_{h}=} & \frac{\operatorname{sh}\left(\frac{n h}{2}\right)}{\operatorname{sh}\left(\frac{h}{2}\right)}, \quad[n]_{h}!=[n]_{h}[n-1]_{h} \ldots[1]_{h} \\
{\left[\begin{array}{c}
n \\
m
\end{array}\right]_{h} } & =\frac{[h]_{h}!}{[m]_{h}![n-m]_{h}!} .
\end{aligned}
$$

Following [D1, J] we consider an algebra $U_{h} \mathscr{G}$ over $\mathbf{C} \llbracket h \rrbracket$ with generators H_{i}, X_{i}, Y_{i} and relations:

$$
\begin{gather*}
{\left[H_{i}, H_{j}\right]=0, \quad\left[H_{i}, H_{j}\right]=a_{i j} X_{j}} \\
{\left[H_{i}, Y_{j}\right]=-a_{i j} Y_{j}, \quad\left[X_{i} Y_{j}\right]=\delta_{i j} \frac{\operatorname{sh}\left(\frac{d_{j} H_{j}}{2}\right)}{\operatorname{sh}\left(\frac{h d_{i}}{2}\right)} \delta_{i j},} \tag{1}\\
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{d_{i} h} X_{i}^{k} X_{j} X_{i}^{1-a_{i j}-k}=0, \quad i \neq j, \\
\sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{d_{i} h} Y_{i}^{k} Y_{j} Y_{i}^{1-a_{i j}-k}=0, \quad i \neq j
\end{gather*}
$$

This is a Hopf algebra with comultiplication $\Delta: U_{n} \mathscr{G} \rightarrow\left(U_{h} \mathscr{G}\right)^{\otimes 2}$:

$$
\begin{gathered}
\Delta H_{i}=H_{i} \otimes 1+1 \otimes H_{i}, \quad \Delta X_{i}=X_{i} \otimes e^{\frac{h H_{i} d_{i}}{4}}+e^{-\frac{h H_{i} d_{i}}{4}} \otimes X_{i}, \\
\Delta Y_{i}=Y_{i} \otimes e^{\frac{h H_{i} d_{i}}{4}}+e^{-\frac{h H_{i} d_{i}}{4}} \otimes Y_{i} .
\end{gathered}
$$

An antipode S and counit ε is defined by the Hopf algebra axioms:

$$
\begin{aligned}
& S\left(H_{i}\right)=-H_{i}, \quad S\left(X_{i}\right)=-e^{\frac{h d_{i}}{2}} X_{i} \\
& S\left(Y_{i}\right)=-e^{-\frac{h d_{i}}{2}} Y_{i} \\
& \varepsilon\left(H_{i}\right)=\varepsilon\left(Y_{i}\right)=\varepsilon\left(X_{i}\right)=0
\end{aligned}
$$

In $U_{h} \mathscr{G}$ there are important Hopf subalgebras $U_{h} b_{+}$generated by $1, H_{i}, X_{i}$ and $U_{h} b_{\text {- }}$ generated by $1, H_{i}, Y_{i}$. They are dual to each other over $\mathbf{C} \llbracket h^{-1}, h \rrbracket$ with respect to the pairing

$$
\begin{equation*}
\left\langle H_{i}, H_{j}\right\rangle=\frac{2}{h} d_{i} a_{i j}, \quad\left\langle X_{i}, Y_{j}\right\rangle=\delta_{i j}\left(1-e^{-h d_{i}}\right)^{-1}, \tag{2}
\end{equation*}
$$

defined on the generators. The pairing between other elements can be found from the Hopf algebra structure on $U_{h} b_{ \pm}$,

$$
\begin{aligned}
\langle a \otimes b, \Delta(c)\rangle & =\langle b a, c\rangle, a, b \in U_{h} b_{+}, c \in U_{h} b_{-} \\
\langle\Delta a, c \otimes b\rangle & =\langle a, c b\rangle, a \in U_{h} b_{+}, b, c \in U_{h} b_{-}
\end{aligned}
$$

The algebras $U_{h} \mathscr{G}$ are quasitriangular Hopf algebras, i.e. for each \mathscr{G} there exists an element R belonging to an appropriate completion of $\left(U_{h} \mathscr{G}\right)^{\otimes 2}$ in h-adic topology satisfying the relations:

$$
\Delta^{\prime}(a)=R \Delta(a) R^{-1}, \quad(\Delta \otimes \mathrm{id}) R=R_{13} R_{23}, \quad(\mathrm{id} \otimes \Delta) R=R_{13} R_{12} .
$$

From the description of $U_{h} \mathscr{G}$ as a double of $U_{h} b_{+}$it follows that this element is unique and it is the canonical element under the pairing (2) between $U_{h} b_{+}$and $U_{h} b_{-}$. The first coefficient in the expansion of R in powers of $X_{i}, Y_{i}\left(B_{i j}=d_{i} a_{i j}\right)$ has the form

$$
\begin{aligned}
R= & \exp \left(\frac{h}{2}\left(B^{-1}\right)_{i j} H_{i} \otimes H\right) \\
& \times\left(1+\sum_{i=1}^{n} 2 \operatorname{sh}\left(\frac{h d_{i}}{2}\right) e^{-\frac{h d_{i}}{2}} e^{\frac{h H_{i}}{4}} X_{i} \otimes e^{-\frac{h H_{i}}{4}} Y_{i}+\ldots\right) \\
= & \left(1+\sum_{i=1}^{n} 2 s h\left(\frac{h d_{i}}{2}\right) e^{-\frac{h d_{i}}{2}} e^{\frac{-h d_{i} H_{i}}{4}} X_{i} \otimes e^{\frac{h H_{i} d_{i}}{4}} Y_{i}+\ldots\right) \\
& \times \exp \left(\frac{h}{2}\left(B^{-1}\right)_{i j} H_{i} \otimes H_{j}\right) .
\end{aligned}
$$

For any Hopf algebra A one can define the adjoint action of A on itself by

$$
\begin{equation*}
a \circ b=\sum_{i} a^{i} b S\left(a_{i}\right) \tag{3}
\end{equation*}
$$

where a^{i} and a_{i} are the components of $\Delta(a): \Delta(a)=\sum_{i} a^{i} \otimes a_{i}$. The action

$$
a \bullet b=S^{-1}(a \circ S(b))=\sum_{i} a_{i} b S^{-1}\left(a^{i}\right)
$$

defines another adjoint action on A is not equivalent to (3) for noncommutative Hopf algebras. For $A=U_{h} \mathscr{G}$ we have

$$
\begin{gather*}
H_{i} \circ a=\left[H_{i}, a\right], \tag{4}\\
X_{i} \circ a=X_{i} a \exp \left(\frac{h H_{i} d_{i}}{4}\right)-e^{\frac{h d_{i}}{2}} \exp \left(-\frac{h H_{i} d_{i}}{4}\right) a X_{i}, \tag{5}\\
Y_{i} \circ a=Y_{i} a \exp \left(\frac{h H_{i} d_{i}}{4}\right)-e^{-\frac{h d_{i}}{2}} \exp \left(-\frac{h H_{i} d_{i}}{4}\right) a Y_{i} . \tag{6}
\end{gather*}
$$

Remark. Let \mathscr{G}_{h} be the minimal nontrivial orbit in $U_{h} \mathscr{G}$ under the adjoint action (4-6). Because \mathscr{G}_{h} is an irreducible representation of $U_{h} \mathscr{G}$ and at $h=0$ this is the adjoint representation of \mathscr{G}, we have $\operatorname{dim} \mathscr{G}_{h}=\operatorname{dim} \mathscr{G}[\mathrm{L}, \mathrm{Ro1}]$. Fix e_{i} a linear basis in \mathscr{G}_{h}, then the action of these elements on itself defines the quantum version of Lie brackets on \mathscr{G}.

In quasitriangular Hopf algebras an important role is played by the element

$$
u=\sum_{i} S\left(\beta_{i}\right) \alpha_{i},
$$

where α_{i} and β_{i} are coordinates of the element $R: R=\sum_{i} \alpha_{i} \otimes \beta_{i}$. One can show [D2] that
and for $U_{h} \mathscr{G}$ we have

$$
S^{2}(a)=u a u^{-1}
$$

$$
v=u \exp \left(-\frac{h H_{\varrho}}{2}\right) \in \text { center of } U_{h} \mathscr{G} .
$$

Here H_{ϱ} is an element corresponding to the half of the sum of positive roots in Cartan subalgebra $U(H) \subset U_{h} \mathscr{G}$ generated by elements $H_{i}, i=1, \ldots n$.
3. According to the decomposition (3) let us introduce regular generators on $U_{h} \mathscr{G}$:

$$
\begin{gathered}
E_{i}=e^{\frac{h d_{i} H_{i}}{4}} X_{i}, \quad F_{i}=e^{-\frac{h d_{i} H_{i}}{4}} Y_{i} \\
\bar{E}_{i}=e^{-\frac{h d_{i} H_{i}}{4}} X_{i}, \quad \bar{F}_{i}=e^{\frac{h d_{i} H_{i}}{4}} Y_{i} .
\end{gathered}
$$

Proposition 1. 1. The maps φ and $\bar{\varphi}$

$$
\begin{array}{lll}
\varphi\left(H_{i}\right)=H_{i}, & \varphi\left(X_{i}\right)=E_{i}, & \varphi\left(Y_{i}\right)=F_{i} \\
\Psi\left(H_{i}\right)=H_{i}, & \Psi\left(X_{i}\right)=\bar{E}_{i}, & \Psi\left(Y_{i}\right)=\bar{F}_{i}
\end{array}
$$

preserve the relations (2).
2.

$$
E_{i} \bar{F}_{j}=q_{i}^{\frac{a_{i j}}{2}} \bar{F}_{j} E_{i}, \quad \bar{E}_{i} F_{j}=q_{i}^{\frac{a_{i j}}{2}} F_{j} \bar{E}_{i}
$$

where $q_{i}=\exp \left(h d_{i}\right)$.
Let us define now the q-commutator as

$$
[A, B]_{q}=A B q-B A q^{-1}
$$

Proposition 2.

$$
\begin{aligned}
& \left(F_{i}\right)^{n} \circ F_{j}=q_{i}^{1 / 4\left(n a_{i j}+n(n-1)\right)}\left[F_{i}, \ldots\left[F_{i},\left[F_{i}, F_{j}\right] \frac{a_{i j}}{q_{i}^{4}}\right] \frac{a_{q_{i}+2}}{4}\right]_{q_{2}} \frac{a_{i j}+2(n-1)}{4} \\
& \left(\bar{E}_{i}\right)^{n} \circ \bar{E}_{j}=q_{i}^{1 / 4\left(n a_{i j}+n(n-1)\right)}\left[\bar{E}_{i}, \ldots\left[\bar{E}_{i},\left[\bar{E}_{i}, \bar{E}_{j}\right] \frac{a_{i j}}{q_{i}^{4}}\right] \frac{a_{i_{j}+2}}{4}\right]_{q_{t}} \frac{a_{i j}+2 n-2}{4}
\end{aligned}
$$

The proof follows from (7) by induction in n
Proposition 3. The q-Serre relations (2) are equivalent to the following ones:

$$
\left(F_{i}\right)^{-a_{i j}+1} \circ F_{j}=0, \quad\left(\bar{E}_{i}\right)^{-a_{i j}+1} \circ \bar{E}_{j}=0
$$

The adjoint action of regular generators has the following form:

$$
\begin{align*}
& \bar{E}_{i} \circ b=\bar{E}_{i} b-K_{i}^{-2} b K_{i}^{2} \bar{E}_{i}, \\
& \bar{F}_{i} \circ b=\left(\bar{F}_{i} b-b \bar{F}_{i}\right) K_{i}^{-2}, \\
& E_{i} \circ b=\left(E_{i} b-b E_{i}\right) K_{i}^{-2}, \tag{7}\\
& F_{i} \circ b=F_{i} b-K_{i}^{-2} b K_{i}^{2} F_{i} .
\end{align*}
$$

Representations of $U_{h} \mathscr{G}$ are isomorphic as a linear spaces to corresponding representations $U \mathscr{G}$. If V^{λ} is a representation of $U_{h} \mathscr{G}$ with highest weight λ, then

$$
v V^{\lambda}=\exp (-h(\lambda \mid \lambda+2 \varrho)) V^{\lambda}
$$

4. Let $\mathscr{G}=s l_{2}$. An irreducible finite dimensional representation V^{j} of $U_{h} s l_{2}$ is parametrised by half integers $j=0, \frac{1}{2}, 1, \ldots$. The action of generators H, X, Y, in the weight basis $e_{m}^{j}, m=-j,-j+1, \ldots j$ of the space V^{j} has the following form:

$$
\begin{gathered}
H e_{m}^{j}=m e_{m}^{j}, \quad X e_{m}^{j}=\sqrt{[j-m][j+m+1]} e_{m+1}^{j} \\
Y e_{m}^{j}=\sqrt{[j+m][j-m+1]} e_{m-1}^{j}
\end{gathered}
$$

The universal R-matrix for $U_{h} s l_{2}$ has the following form

$$
\begin{align*}
R & =R(H, X, Y \mid h)=\exp \left(\frac{h}{2} H \otimes H\right) \sum_{n \geqq 0} \frac{\left(1-q^{-1}\right)^{n}}{[n]_{h}!} q^{\frac{n(n-1)}{4}}\left(e^{\frac{h H}{4}} X\right)^{n} \otimes\left(e^{-\frac{h H}{4}} Y\right)^{n} \\
& =\left(\sum_{n \geqq 0} \frac{\left(1-q^{-1}\right)^{n}}{[n]_{h}!} q^{\frac{n(n-1)}{4}}\left(e^{-\frac{h H}{4}} X\right)^{n} \otimes\left(e^{\frac{h H}{4}} Y\right)^{n}\right) \exp \left(\frac{h}{4} H \otimes H\right) \tag{8}
\end{align*}
$$

It is easy to check that this is the canonical element in $U_{h} b_{+} \otimes U_{h} b_{-}$with pairing (2). The algebra $U_{h} s l_{2}$ can be completed by the element w, defined in each irreducible representation as

$$
\begin{equation*}
w e_{m}^{i}=(-1)^{j-m} e^{-\frac{j(j+1)}{2}+\frac{m h}{2}} e_{-m}^{j} \tag{9}
\end{equation*}
$$

Let us denote this completion by $\overline{U_{h} s l_{2}}$.
Theorem [KR].

1. The element w satisfies the relation

$$
\begin{equation*}
w X w^{-1}=-q^{1 / 2} Y, \quad w Y w^{-1}=-q^{-\frac{1}{2}} X, \quad w H w^{-1}=-H \tag{10}
\end{equation*}
$$

2. $\overline{U_{h} s l_{2}}$ is a Hopf algebra with

$$
\Delta w=R^{-1} w \otimes w, \quad s(w)=w e^{\frac{h H}{2}}, \quad \varepsilon(w)=1
$$

where R is the universal R-matrix for $U_{h} s l_{2}$.
3. Let $u=\sum_{i} S\left(\beta_{i}\right) \alpha_{i}$ be the element describing the square of the antipode, then

$$
w^{2}=v \varepsilon=u \varepsilon^{\frac{h H}{2}} \varepsilon
$$

where ε is the unipotent central element $\varepsilon^{2}=1, \varepsilon V^{j}=(-1)^{2 j} V^{j}$.
The element w has another interesting interpretation [VS] in representation theory of dual Hopf algebra to $U_{h} s l_{2}$.
5. In each $U_{h} \mathscr{G}$ module we can define the action of the Weyl elements of $s l_{2}-$ triples corresponding to simple roots of \mathscr{G}. Because $U_{h} \mathscr{G}$ is a semisimple algebra it is enough to define the action of \check{w}_{i} in irreducible representations. Let $V^{\lambda}={ }_{j}^{\oplus}\left(W_{j}^{\lambda} \otimes V^{j}\right)$ be the decomposition of V^{λ} into irreducible $\left(U_{h} s l_{2}\right)_{i}$ submodules. Define the action of w_{i} in V^{λ} as $w_{i}={ }_{j}^{\oplus}\left(I_{w_{j}}^{\lambda} \otimes\left(w_{i}\right)_{j}\right)$, where $\left(w_{i}\right)_{j}$ is the action of \check{w} in V^{j}, (see (9)).

Let us denote the algebra $U_{h} \mathscr{G}$ extended by $w_{i}, i=1, \ldots$, rank \mathscr{G} as $\overline{U_{h} \mathscr{G}}$. The definition of w_{i} implies the following relations in $U_{h} \mathscr{G}$:

$$
\begin{equation*}
w_{i} H_{j} w_{i}^{-1}=H_{j}-a_{i j} H_{i}, \quad w_{i} X_{i} w_{i}^{-1}=-Y_{i} q_{i}^{1 / 2}, \quad w_{i} Y_{i} w_{i}^{-1}=-X_{i} q_{i}^{-1 / 2} \tag{11}
\end{equation*}
$$

also,

$$
\Delta w_{i}=R(i)^{-1} w_{i} \otimes w_{i}
$$

where $R(i) \equiv R\left(H_{i}, X_{i}, Y_{i} \mid h d_{i}\right)$ and $R(H, X, Y \mid h)$ is defined by (8).

Theorem 1. The following relations hold in the algebra $\bar{U}_{h} \mathscr{G}$:

$$
\begin{align*}
& w_{i} \bar{E}_{j} K_{i}^{a_{i j}} w_{i}^{-1}=(-1)^{a_{i j}} q^{\frac{a_{i j}}{4}-\frac{a_{i j}\left(a_{i j}-2\right)}{8}} \frac{1}{\left[-a_{i j}\right]_{h d i}!}\left(\bar{E}_{i}\right)^{-a_{i j} \circ \bar{E}_{j}}, \tag{Ad1}\\
& w_{i} S\left(F_{j}\right) K_{i}^{-a_{i j}} w_{i}^{-1}=q_{i}^{-\frac{a_{i j}}{4}-\frac{a_{i j}\left(a_{i j}-2\right)}{8}} \frac{1}{\left[-a_{i j}\right]_{h d_{i}}!} S\left(\left(F_{i}\right)^{\left.-a_{i j} \circ F_{j}\right)} .\right. \tag{Ad2}
\end{align*}
$$

Proof. Let us first prove two auxiliary lemmas.

Lemma 1.

$$
\begin{gathered}
w_{i} \circ F_{j}=S\left(w_{i}\right)^{-1} K_{i}^{a_{i j}} F_{j} S\left(w_{i}\right), \\
w_{i} \circ \bar{E}_{j}=w_{i} \bar{E}_{j} K_{i}^{a_{i j}} w_{i}^{-1} .
\end{gathered}
$$

Proof. Let α_{k} and β_{k} be coordinates of $R\left(H_{i}, X_{i}, Y_{i} \mid h d_{i}\right)=\sum_{k} \alpha_{k} \otimes \beta_{k}$,

$$
\begin{aligned}
w_{i} \circ \bar{E}_{j}= & \sum_{k} S\left(\alpha_{k}\right) w_{i} \bar{E}_{j} S\left(w_{i}\right) S\left(\beta_{k}\right)=\sum_{k} \alpha_{k} w_{i} \bar{E}_{j} S\left(w_{i}\right) \beta_{k} \\
& =\sum_{n, m \geqq 0} a_{m} \frac{\left(\frac{h d_{i}}{4}\right)^{n}}{n!} w_{i}\left(\bar{F}_{i}\right)^{m} H_{i}^{n} \bar{E}_{j}\left(\bar{E}_{i}\right)^{m} H_{i}^{n} q_{i}^{m} S\left(w_{i}\right) \\
& =\sum_{n, m \geqq 0} a_{m} \frac{\left(\frac{h d_{i}}{4}\right)^{n}}{n!} w_{i} \bar{E}_{j} \bar{F}_{i}^{m}\left(H_{i}+a_{i j}\right)^{n} \bar{E}_{i}^{m} H_{i}^{n} q_{i}^{m} S\left(w_{i}\right) \\
& =w_{i} \bar{E}_{j} \sum_{k} \beta_{k} S^{2}\left(\alpha_{k}\right) K_{i}^{a_{i j}} S\left(w_{i}\right)=w_{i} \bar{E}_{j} K_{i}^{a_{i j}} u_{i}^{-1} S\left(w_{i}\right) \\
& =w_{i} \bar{E}_{j} K_{i}^{i_{j}} w_{i}^{-1} .
\end{aligned}
$$

The similar calculations give us the action of w_{i} on F_{j} :

$$
\begin{aligned}
w_{i} \circ F_{j} & =\sum_{k} S\left(\alpha_{k}\right) w_{i} F_{j} S\left(w_{i}\right) S\left(\beta_{k}\right) \\
& =\sum_{n, m \geqq 0} a_{m} \frac{\left(\frac{h_{i} d_{i}}{4}\right)^{n}}{n!} H_{i}^{n} E_{i}^{n} w_{i} F_{j} S\left(w_{i}\right) H_{i}^{n} F_{i}^{n} \\
& =\sum_{n, m} a_{m} \frac{\left(h d_{i}\right)}{n!} w_{i} H_{i}^{n} F_{i}^{m} q_{i}^{m} F_{j} H_{i}^{n} E_{i}^{m} S\left(w_{i}\right) \\
& =\sum_{n, m \geqq 0} a_{m} \frac{\left(\frac{h d_{i}}{4}\right)}{n!} w_{i} F_{i}^{m}\left(H_{i}-2 m\right)^{n}\left(H_{i}+a_{i j}\right)^{n} E_{i}^{m} q_{i}^{m} F_{j} S\left(w_{i}\right) \\
& =w_{i} \sum_{m \geqq 0} a_{m} \exp \left(\frac{h d_{i}}{4}\left(H_{i}^{2}+2 m H_{i}+H_{i} a_{i j} 0\right)\right) F_{i}^{m} E_{i}^{m} q_{i}^{m} F_{j} S\left(w_{i}\right) \\
& =w_{i} K_{i}^{a_{i j}} \sum_{k} \beta_{k} S^{2}\left(\alpha_{k}\right) F_{j} S\left(w_{i}\right)=w_{i} w^{-1} K_{i}^{a_{i j}} F_{j} S\left(w_{i}\right) \\
& =S\left(w_{i}\right)^{-1} K_{i}^{a_{i j}} F_{j} S\left(w_{i}\right) .
\end{aligned}
$$

Lemma 2. The linear spaces $V_{i j}=\left\{\left(F_{i}\right)^{n} \circ F_{j}\right\}_{n=0}^{-a_{i j}}, \bar{V}_{i j}=\left\{\left(\bar{E}_{i}\right)^{n} \circ \bar{E}_{j}\right\}_{n=0}^{-a_{t J}}$ are irreducible $\left(U_{h} s l_{2}\right)_{i}$ modules with highest weight $-a_{i j}$.

Proof. From relations (1) and from Proposition 1 we obtain the following structure of the adjoint action of $\left(U_{h} s l_{2}\right)_{i}$ in these spaces:

$$
\begin{gathered}
F_{i} \circ\left(F_{i}^{n} \circ F_{j}\right)=F_{i}^{n+1} \circ F_{j}, \\
E_{i} \circ\left(\left(F_{i}\right)^{n} \circ F_{j}\right)=\left[-a_{i j}+1-n\right]_{h d_{1}}[n]_{h d_{2}} F_{i}^{n-1} \circ F_{j}, \\
H_{i} \circ\left(F_{i}^{n} F_{j}\right)=\left(-a_{i j}-2 n\right) F_{i}^{n} \circ F_{j}, \\
\bar{E}_{i} \circ\left(\bar{E}_{i}^{n} \circ \bar{E}_{j}\right)=E_{i}^{n+1} \circ \bar{E}_{j}, \\
\bar{F}_{i} \circ\left(\bar{E}_{i}^{n} \circ \bar{E}_{j}\right)=\left[-a_{i j}+1-n\right]_{h d_{2}}[n]_{h d_{2}} \bar{E}_{i}^{n-1} \circ \bar{E}_{j}, \\
H_{i} \circ\left(\bar{E}_{i}^{n} \circ \bar{F}_{j}\right)=\left(a_{i j}+2 n\right) \bar{E}_{i}^{n} \circ \bar{F}_{j} .
\end{gathered}
$$

The maps

$$
\begin{aligned}
& \sigma\left(F_{i}^{n} \circ F_{j}\right)=\sqrt{\frac{[n]_{h d_{i}}!}{\left[-a_{i j}-n\right]_{h d_{i}}!}} e^{-\frac{a_{i j}}{-\frac{a_{i j}}{2}-n}}, \\
& \tau\left(\bar{E}_{i}^{n} \circ \bar{E}_{j}\right)=\sqrt{\frac{\left[-a_{i j}-n\right]_{h d_{i}}!}{[n]_{h d_{\imath}}!}} e^{-\frac{a_{i j}}{a_{i j}}},
\end{aligned}
$$

obviously define an isomorphism between $V_{i j}, \bar{V}_{i j}$, and $V^{-a_{i j}}$.
Now, to prove Theorem 1 let us combine these two lemmas with the explicit action of the Weyl element for $U_{h} s l_{2}$ and we immediately obtain relations (Ad1, Ad2).

Theorem 2. The elements w_{i} satisfy the following relations:

$$
\begin{align*}
w_{i} w_{j} w_{i}=w_{j} w_{i} w_{j}, & a_{i j}=-1, \\
w_{i} w_{j} w_{i} w_{j}=w_{j} w_{i} w_{j} w_{i}, & a_{i j}=-2, \tag{12}\\
w_{i} w_{j} w_{i} w_{j} w_{i}=w_{j} w_{i} w_{j} w_{i} w_{j}, & a_{i j}=-3 .
\end{align*}
$$

To prove this theorem it is sufficient to consider only rank $\mathscr{G}=2$ cases. From the relations (Ad1, Ad2) it follows that the left-hand side and right-hand side parts of (12) can differ only by a central element (in the appropriate rank 2 algebra, A_{2} for $a_{i j}=-1, B_{2}$ for $a_{i j}=-2, G_{2}$ for $a_{i j}=-3$). Acting by left-hand side and right-hand side parts on the h.w. vector we immediately obtain that this central element is unit.

The following two lemmas are useful for simplification of formulas (Ad1, Ad2).

Lemma 3.

$$
\begin{aligned}
& \bar{E}_{i}^{n} \circ \bar{E}_{j}=K_{i}^{-n} K_{j}^{-1}\left[X_{i}, \ldots\left[X_{i}, X_{j}\right]_{q_{i}^{4}} \cdots\right]_{q_{i}} \frac{a_{i j}+2 n-2}{4}, \\
& \quad F_{i}^{n} \circ F_{j}=K_{i}^{-n} K_{j}^{-1}\left[Y_{i}, \ldots\left[Y_{i}, Y_{j}\right]_{q_{i}}-\frac{a_{i j}}{4} \cdots\right]_{q_{i}}-\frac{a_{\mathrm{i}}+2 n-2}{4} .
\end{aligned}
$$

Lemma 4.

$$
\left.\left.S\left(\left[Y_{i}, \ldots,\left[Y_{i}, Y_{j}\right]_{q^{-n}}\right]_{q^{-n+2}} \ldots\right]_{q^{n-2}}\right)=-q_{i}^{-n / 2} q_{j}^{-1 / 2}\left[Y_{i}, \ldots\left[Y_{i} Y_{j}\right]_{q^{n}}\right]_{q^{n-2}} \ldots\right]_{q^{-n+2}}
$$

Now, we can rewrite relations (Ad1, Ad2) in the following more explicit form:

$$
\left.\begin{array}{rl}
w_{i} X_{j} w_{i}^{-1} & =(-1)^{a_{i j}} q^{\frac{a_{i j}}{8}+\frac{a_{i j}}{2}} \frac{1}{\left[a_{-i j}\right]_{h d_{i}}!}\left[\left[X_{i}, \ldots,\left[X_{i}, X_{j}\right]_{\frac{a_{i j}}{q_{i}^{4}}}^{q_{q_{i}}}\right]_{a_{i j}+2}^{4}\right.
\end{array}\right]_{q_{i}} \frac{-a_{i j}-2}{4} \quad K_{i}^{a_{i j}},
$$

6. Consider elements

$$
w_{i}=\check{w}_{i} q_{i}^{\frac{H_{i}^{2}}{8}}
$$

and define automorphisms

$$
T_{i}(a)=\check{w}_{i}^{-1} a \check{w}_{i}
$$

From the relations between w_{i} and generators of $U_{h} \mathscr{G}$ we obtain

$$
\begin{gather*}
T_{i}\left(K_{j}\right)=K_{j} K_{i}^{-a_{i j}}, \quad T_{i}\left(X_{i}\right)=Y_{i} K_{i}^{-2}, \quad T_{i}\left(Y_{i}\right)=-K_{i}^{2} X_{i}, \\
T_{i}\left(X_{j}\right)=(-1)^{a_{i j}} \frac{1}{\left[-a_{i j}\right]!}\left[\left[X_{i}, \ldots\left[X_{i}, X_{j}\right] \frac{a_{i_{j}}}{q_{i}^{4}} \int_{q_{i}} \frac{a_{i v}+2}{4} \cdots\right]_{q_{i}} \frac{-a_{15}-2}{4},\right. \tag{13}\\
T_{i}\left(Y_{j}\right)=\frac{1}{\left[-a_{i j}\right]!}\left[\left[Y_{i}, \ldots\left[Y_{i}, Y_{j}\right]_{q_{4}}{\frac{a_{i j}}{4}}^{\left.\frac{a_{i j}+2}{} \cdots\right]_{q_{i}}^{4} \cdots \frac{-a_{i j}-2}{4}},\right.\right.
\end{gather*}
$$

which coincides with Lusztig's automorphisms [L].
Lemma 5. The elements \check{w}_{i} satisfy the Weyl group relations:

$$
\underbrace{\check{w}_{i} \check{w}_{j} \check{w}_{i} \cdots}_{-a_{i j}+2}=\underbrace{\check{w}_{j} \check{w}_{i} \check{w}_{j} \cdots}_{-a_{t j}+2}
$$

It follows from Theorem 2 and relations (11).
7. From the definition of \check{w}_{i} we obtain the action of the comultiplication on the elements $\check{w_{i}}$:

$$
\Delta \check{w}_{i}=\tilde{R}^{-1}(i) \check{w}_{i} \otimes \check{w}_{i}
$$

where

$$
\tilde{R}(i)=\sum_{n \geqq 0} \frac{\left(1-q_{i}^{-1}\right)^{n}}{[n]_{h d_{i}}!} q_{i}^{\frac{n(n-1)}{4}} E_{i}^{n} \otimes F_{i}^{n}
$$

Let $s_{0}=s_{i_{1}} \ldots s_{i_{k}}$ be a decomposition of the element of Weyl group with maximal length in the minimal product of elementary reflections.

From relation Lemma 5 follows that the element

$$
\check{w}_{0}=\check{w}_{i_{1}} \ldots \check{w}_{i_{k}}
$$

is well defined and does not depend on the choice of decomposition of s_{0}.

Theorem 3. The universal R-matrix for $U_{h} \mathscr{G}$ has the following form:

$$
R=\exp \left(\frac{h}{2} \sum_{i j=1}^{n}\left(B^{-1}\right)_{i j} H_{i} \otimes H_{j}\right)\left(\check{w}_{0} \otimes \check{w}_{0}\right) \Delta\left(\check{w}_{0}\right)^{-1}
$$

or

$$
\begin{array}{r}
R=\exp \left(\frac{h}{2} \sum_{i j=1}^{n}\left(B^{-1}\right)_{i j} H_{i} \otimes H_{j}\right), \\
\widetilde{R}\left(i_{k} \mid s_{i_{1}} \ldots s_{i_{k-1}}\right) \ldots \widetilde{R}\left(i_{2} \mid s_{i_{1}}\right) \widetilde{R}\left(i_{1}\right) \tag{14}
\end{array}
$$

where

$$
\widetilde{R}\left(i_{l} \mid s_{i_{1}} \ldots s_{i_{l-1}}\right)=\left(T_{i_{1}}^{-1} \otimes T_{i_{1}}^{-1}\right) \ldots\left(T_{i_{l-1}}^{-1} \otimes T_{i_{l-1}}^{-1}\right) \widetilde{R}\left(i_{l}\right)
$$

and T_{i} are the authomorphisms in (14).
To prove this theorem it is convenient to introduce the following enumeration of positive roots. Let $s_{0}=s_{i_{1}} \ldots s_{i_{k}}$ be the decomposition of the maximal element of the Weyl group. The set of positive roots Δ_{+}can be considered as a set of roots $\alpha_{i_{1}}$, $s_{i_{1}} \alpha_{i_{2}}, \ldots, s_{i_{1}} \ldots s_{i_{k-1}} \alpha_{i_{k}}[\mathrm{~B}, \mathrm{~L}]$. According to this enumeration introduce elements

$$
E(p)=T_{i_{1}}^{-1} \ldots T_{i_{p}-1}^{-1} E_{i p}, \quad F(p)=T_{i_{1}}^{-1} \ldots T_{i_{p-1}}^{-1} F_{i_{p}}
$$

From relations in $U_{h} \mathscr{G}$ it follows (see [L] for details) that the elements

$$
\begin{gather*}
H_{1}^{m_{1}} \ldots H_{n}^{m_{n}} \quad E(1)^{n_{1}} \ldots E(k)^{b_{k}}, \tag{15}\\
\left(H_{1}^{v}\right)^{m_{1}} \ldots\left(H_{n}^{v}\right)^{m_{n}} \tag{16}\\
F(1)^{n_{1}} \ldots F(k)^{n_{k}},
\end{gather*}
$$

where

$$
H_{i}^{v}=\frac{h}{2} \sum_{j}\left(B^{-1}\right)_{i j} H_{j}
$$

form the bases in $U_{h} b_{+}$and $U_{a} b_{-}$respectively.
Lemma 6. With respect to the pairing (2) we have:

$$
\begin{equation*}
\langle E(s), F(t)\rangle=\delta_{s t}\left(1-e^{\left.-h d_{i s}\right)^{-1}}\right. \tag{17}
\end{equation*}
$$

It can be derived from the pairing (2) and from the definition of $E(p), F(p)$. From the formula for the action of comultiplication on \check{w}_{i} and from the definition of T_{i} it follows

$$
\Delta\left(T_{i}^{-1}(a)\right)=\widetilde{R}(i)^{-1}\left(\left(T_{i}^{-1} \otimes T_{i}^{-1}\right) \Delta(s)\right) \widetilde{R}(i)
$$

This formula gives us the action of comultiplication on elements $E(i)$.
Lemma 7. Bases (16) and (17) are dual with respect to the pairing (2) between $U_{h} b_{+}$ and $U_{h} b_{-}$:

$$
\begin{gathered}
\left\langle H_{1}^{m_{1}} \ldots H_{n}^{m_{n}} E(1)^{n_{1}} \ldots E(k)^{n_{k}},\left(H_{1}^{v}\right)^{m_{1}^{\prime}} \ldots\left(H_{n}^{v}\right)^{m_{n}^{\prime}} F(1)^{n_{1}^{\prime}} \ldots F(k)^{n_{k}^{\prime}}\right\rangle \\
\quad=\prod_{j=1}^{n} \delta_{m_{j} m_{j}^{\prime}} m_{j}!\prod_{p=1}^{k} \delta_{n_{p} n_{p}^{\prime}} \frac{\left[n_{p}\right]_{h d_{i}}!}{\left(1-e^{-h d_{i p}}\right)^{n_{p}}} e^{-\frac{h n_{p}\left(n_{p}-1\right)}{4} d_{i_{p}}} .
\end{gathered}
$$

The proof follows from the lemma and formula (18).

So for the canonical element R we have the representation (15).
8. Let us describe more precisely authomorphisms T_{i} as an authomorphism of Hopf algebras.

Theorem 4. Let z be an invertible element of the quasitriangular Hopf algebra A. Then the triple $\left(A, \Delta^{(z)}, R^{(z)}\right)$, where

$$
\begin{gathered}
\Delta^{(z)}(a)=(z \otimes z) \Delta\left(z^{-1} a z\right) z^{-1} \otimes z^{-1}, \\
R^{(z)}=z^{-1} \otimes z^{-1} R z \otimes z
\end{gathered}
$$

also forms a quasitriangular Hopf algebra.
Proof. Associativity of $\Delta^{(z)}$ is a consequence of the following equalities:

$$
\begin{aligned}
& \left(\Delta^{(z)} \otimes \mathrm{id}\right) \Delta^{(z)}(a)=(z \otimes z \otimes z)(\Delta \otimes \mathrm{id}) \Delta(a) z^{-1} \otimes z^{-1} \otimes z^{-1}, \\
& \left(\mathrm{id} \otimes \Delta^{(z)}\right) \Delta^{(z)}(a)=(z \otimes z \otimes z)(\mathrm{id} \otimes \Delta) \Delta(a)\left(z^{-1} \otimes z^{-1} \otimes z^{-1}\right) .
\end{aligned}
$$

From the definition of $R^{(z)}$ we have the relation

$$
\Delta^{(z)}(a)^{\prime}=R^{(z)} \Delta^{(z)}(a) R^{(z)-1} .
$$

The quasitriangular relations also follow from the structure of $R^{(z)}$ and from quasitriangularity of A.

Consider $z=\check{w_{i_{1}}^{-1}} \ldots \check{w}_{i_{k-1}}^{-1} \equiv \check{w}$ and denote the corresponding Hopf algebra structure on $U_{y} \mathscr{G}$ by $\left(U_{h} \mathscr{G}\right)_{w}$. As an algebra this is $U_{h} \mathscr{G}$ but the comultiplication now differs from the previous one for $U_{h} \mathscr{G}$ and has the form:
where $T_{w}(a)=\check{w} a \check{w}^{-1}$.

$$
\Delta^{(w)}(a)=\left(T_{w} \otimes T_{w}\right)\left(\Delta\left(T_{w}^{-1}(a)\right)\right),
$$

So, we see that automorphisms T_{i} are not automorphisms of $U_{h} \mathscr{G}$ as a Hopf algebra, $T_{i}^{-1}:\left(U_{h} \mathscr{G}\right)_{\grave{w}} \rightarrow\left(U_{h} \mathscr{G}\right)_{\tilde{w}_{i} \check{\sim}}$. But they are automorphisms of the Hopf algebra $U_{h} \mathscr{G}$ in the sense of the Theorem 4.
9. Remark 1. The same construction gives us the quantum version of a Weyl group for Kac-Moody algebras. The relations (14) are still true.

Remark 2. Elements $\check{w}_{i_{1}} \ldots \check{w}$ describes irreducible representations of the quantized algebra of algebraic functions over $G[\mathrm{~S}]$. The multiplicative formula for the R-matrix together with the construction of the dual double given in [RST] make explicit the way for a description of cell decomposition of $\mathbf{C}_{q}(G)$.
10. The authors would like to thank V. Drinfeld and M. A. Semenov-TianShansky for stimulating discussions. One of us (N.R.) would like to thank D. Kazhdan for useful remarks and Sarah Warren for help in typing.

When this work was completed one of us (N.R.) received the work by S. Z. Levendorskii and Ya. S. Soybelman where similar results are obtained.

References

[B] Bourbaki, N.: Groups et algèbres de Lie, Chap. 4-6. Paris: Hermann 1968
[D1] Drinfeld, V.G.: Quantum groups. Proc. of Int. Congr. of Mathematicians. MSRI, Berkeley, 798 (1986)
[D2] Drinfeld, V.G.: Quasicocommutative Hopf algebras. Algebra and Analysis 1, N2, 30 (1989) (in Russian)
[F] Faddeev, L.D.: Integrable models in (1+1)-dimensional quantum field theory. In: Recent advances in field theory and statistical mechanics, pp. 563-608 (Lectures in Les Houches, 1982). North-Holland: Elsevier 1984
[J] Jimbo, M.: q-Difference analog of $U \mathscr{G}$ and the Yang-Baxter equation. Lett. Math. Phys. 10, 63 (1985)
[KR] Kirillov, A.N., Reshetikhin, N.Yu.: Representations of the algebra $U_{q}\left(s l_{2}\right), q$-orthogonal polinomials and invariants of links. LOMI-preprint, E-9-88, 1988
[L] Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math. 70, 237 (1988)
Lusztig, G.: Quantum groups at roots of 1. MIT preprint, 1989
[RST] Reshetikhin, N., Semenov-Tian-Shanski, M.: Factorization problem in quantum groups. Geom. Physics, (1989)
[Ro1] Rosso, M.: Représentation irréductibles de dimension finite du q-analogue de l'algèbre enveloppante d'une algebra de Lie simple. Comptes Rendus Acad. Sci. Paris, Ser. 1, 305, 587 (1987)
[Ro2] Rosso, M.: An analog of P.B.W. theorem and universal R-matrix for $U_{h}(s l(N+1))$. Preprint 1988
[S] Soybelman, Ya.: Algebra of functions on the compact quantum group and its representations. Algebra Analysis 2, N1 (1990)
[VS] Vaksman, L., Soybelman, Ya.: Algebra of functions on quantum group $S U(2)$. Funct. anal. i ego pril. 22, N3, 1 (1988)

Communicated by A. Jaffe

[^0]: * Supported in part by the Department of Energy under Grant DE-FG02-88ER25065

