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Abstract. We consider a class of nonlinear Schrόdinger equations (conservative
and dispersive systems) with localized and dispersive solutions. We obtain a class of
initial conditions, for which the asymptotic behavior (ί -• ± oo) of solutions is given
by a linear combination of nonlinear bound state (time periodic and spatially
localized solution) of the equation and a purely dispersive part (decaying to zero
with time at the free dispersion rate). We also obtain a result of asymptotic stability
type: given data near a nonlinear bound state of the system, there is a nonlinear
bound state of nearby energy and phase, such that the difference between the
solution (adjusted by a phase) and the latter disperses to zero. It turns out that in
general, the time-period (and energy) of the localized part is different for t -> + oo
from that for t -> — oo. Moreover the solution acquires an extra constant asymptotic
phase eιy .

1. Introduction

This paper deals with the scattering theory of a class of conservative nonlinear
dispersive equations admitting more than one channel. By this we mean that the
asymptotic behavior is given by a linear combination of a localized (in space),
periodic (in time) wave (solitary or standing wave) and a dispersive part. For
nonlinear flows which are completely integrable (e.g. one-dimensional cubic
nonlinear Schrodinger, Korteweg-de Vries equations), some analysis of the
asymptotic system of, for example, localized part (solitons) plus dispersion can be
carried out using the inverse scattering transform [G-G-K-M,Z-S,Lax,C-K].
The inverse scattering transform decouples the localized from the dispersive part.
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The cases we consider are not integrable. The main new feature here is that
the localized and dispersive parts are interacting at all times. The spatially localized
part that emerges as t -> ± oo is identified with an exact solitary wave solution or
nonlinear bound state of the full nonlinear equation. For the above-mentioned
integrable systems the analogue of the solitary wave is the one-soliton. The model
we focus on is a class of two and three dimensional nonlinear Schrόdinger equations
(NLS). The methods we present can however be adapted to other nonlinear
dispersive systems.

Our main results are (see also Sect. 4):

(i) Asymptotic Stability (Theorem 4.2): Given initial conditions which lie in a
neighborhood of a solitary wave of energy Eo and phase y0, the asymptotic state
of the system (£-• ± oo) is given by a solitary wave of nearby energy E± and
phase y± plus a remainder which disperses to zero, i.e. the solution converges
asymptotically to a solitary wave, say in some 1/ norm with p > 2.
(ii) Scattering (Theorem 4.1): There is a ball in a Banach space of initial conditions
for which the asymptotic behavior (ί-> ± oo) of the solution is given by a linear
combination of a solitary wave of energy E± and phase y±

9 plus a remainder which
is dispersive. The remainder is purely dispersive in the sense that it satisfies local
decay and 1/ decay estimates of linear theory.

Previous results on the stability of solitary waves involves the use of energy
norms, e.g. H1 (see for example Ben, Ca-Li, Sh-Str, We2, We3, Ro-We, G-S-S). A
typical result of this type states that if the solution begins in some neighborhood
of the solitary wave orbit, then it remains in a neighborhood. Since energy norms
are insensitive to dispersive behavior, one cannot conclude, as above, that solutions
converge asymptotically to a solitary wave.

Earlier work on nonlinear scattering has focused on the situation where there
are no bound states. In the above terminology, these are problems with a single
(dispersive) channel (see for example Strl,Str3,G-V).

Cast into precise mathematical form, we prove that for a class of initial
conditions for the nonlinear Schrodinger equation (NLS), the solution Φ(t) is
given by

Φ(t) = e-iΘ^φm + φd(t\ (l l)

Θ=\E(s)-γ(t% (1.2)
oo

where ψE is a spatially localized solution of the nonlinear bound state equation
(with energy E) and φd(t) is a purely dispersive wave. As ί-» ± oo, we have that
E(t) -^E± and y(t)-• y ±. In completely integrable problems, one has E(t) = E+ = E~
and γ(t) = y+ = y~. Their values are determined by the "scattering data." The
decomposition of the phase Θ in (1.2) is reminiscent of Berry's dynamic and
geometric phase components [Ber]. The part γ(ή cannot be fully accounted for by
dynamical considerations.

While there has been considerable progress in understanding linear multi-
channel scattering theory (see [En, Sig-Sof] and those cited therein) in the past
ten years, little is known about the corresponding nonlinear situations. Questions
like when a bound state (temporally periodic, spatially localized solution) breaks
down due to nonlinear (e.g. repulsive) interaction, and the scattering theory of
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localized waves in the presence of impurities and inhomogeneous media are not
understood beyond heuristic considerations or finite time approximations.

Our approach to the problem begins with the simple physical observation that
if one starts with the linear Schrodinger equation which describes a bound
state and a dispersive wave (corresponding to the continuous spectral part of
the Hamiltonian), then the qualitative behavior should not change that much in
response to a small nonlinear and Hamiltonian perturbation in the dynamics, i.e.
we should still see a localized part which decouples after a long time from the
dispersive part. We make an Ansatz which incorporates this observation, from
which we derive equations governing the interaction of the two channels.

One set of equations describes the motion of the localized part of the solution
through a two-parameter family of bound states of our system. Visualized in terms
of the energy (E) and phase (y), this is a slow evolution of the bound state parameters
on a cylinder. The second is a nonlinear equation which describes a purely
dispersive wave moving under the effect of the nonlinearity, as well as the effective
potential coming from the presence of the localized part. We observe that,

— E(t\—yίήeL^R1) if the remainder wave is dispersive (with a sufficient decay
at at

E(t\
at at d d
rate) and that the remainder is dispersive if— E(t),—-yMeL^R1). Therefore, solving

at at
the coupled equations gives the required results. The modulating energy and phase
of the nonlinear bound state, E(t) and y(t) (or Θ(ί)), which govern the localized
part of the nonlinear evolution are sometimes referred to by physicists as collective
coordinates. Equations for collective coordinates have been derived using various
formalisms (e.g. averaging of conservation laws, direct perturbation theory [K-A,
K-M,Ne]). These equations are sometimes referred to as modulation equations.
In [We2] their validity was studied in the linear approximation for certain systems
which are conservative or small perturbations of conservative systems (e.g. weakly
dissipative). We believe that our present results are the first rigorous justification
of the collective coordinate description on an infinite time interval for nonintegrable
systems.

The system of equations describing the evolution of E and Θ has the form of
a perturbation of an integrable Hamiltonian system with a single degree of freedom.
Here E and Θ play the role of action and angle variables. In the large \t\ limit the
coupling to the infinite dimensional radiation field tends to zero and the (£, Θ)
system reduces to E(t) = 0, Θ(t) = E.

A final remark is that the problem we consider can be viewed as a kind of
restricted three body scattering, where the localized part corresponds to a bound
pair and the dispersive part is the "third particle" moving away as |ί|—>oo. It is
hoped that such an analogy can be developed further and may allow the application
of some powerful methods of phase space analysis developed for the linear ΛΓ-body
case.

Notation. All integrals are assumed to be taken over Rn unless otherwise specified.
9t(z), 3(z)-respectively, real and imaginary parts of the complex number z,

A = Laplacian on L2(Rn),
(x> = (l + x x)1/2, where xeRn,

= ί/*0> where / * denotes the complex conjugate of/,
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L p = L p(R n),
W = {f:(I-Δr2feL2},
B = {/:/eH\<x>1 +*/eL2},
II/IIB=II/IIHI + IK^> 1 + I I/II2,

C(I; X) = the space of functions, w(ί, x), which are continuous in ί, with values in X.

2. The Initial Value Problem, Solitary Waves and Linear Propagator Estimates

2.1. A Quick Review o/NLS in H 1

We shall consider the initial value problem for the nonlinear Schrodinger equation
(NLS) with a potential term:

^ = [ - ΔΦ(t) + /(x, I Φ(ί)|)] Φ{t\

Φ(0) = Φo. (2.1)

Here Φ(t) is considered as an element of H^R"), where n is the spatial dimension.
(In this paper we focus on dimensions n = 2 and n = 3.) Consequently, (2.1) is
understood in the sense of the equivalent integral equation:

Φ(ή = eiΔtΦ0 - i ] eiA«-s)ft I Φ(s)\)Φ(s)ds. (2.1')

The theory of well-posedness for the initial value problem in H 1 and in spaces
with specified spatial decay rates has been considered for general nonlinearities in
[G-V,K,H-N-T,C-W].

In the following /(x, u) will be chosen so that the global existence of solutions
to (2.1), perhaps under some restrictions on Φo, is known. We specialize here to
the case where

f(x,u)=V(x) + λ\u\m-\ l < m < ~ , (2.2)
n — λ

although the analysis holds for more general nonlinearities.
For the choice (2.2), the existence theory implies:

(i) λ > 0 (repulsive nonlinearity) global solutions for all ΦQGH1, i.e. ΦeQR 1 ; ! ! 1 ) .
(ii) λ < 0 (attractive nonlinearity)

(a) m < 1 + 4/n, global solutions for all ΦQGH1.

(b) m ̂  1 + 4/n, global solutions for all Φo such that || Φo ||Hi is sufficiently small.

Furthermore, solutions of class Cd^TJ H1) leave the following functional
constant in time:

m + 1

We shall require the following of the linear potential V(x).
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Hypotheses V. Let FiR"-*!*1 be a smooth function satisfying:

(VI) (x)3+k+ε\daV(x)\ ^ Ck for all multi-indices α e Z + with |α| = k ̂  3.
(V2) —Δ+V has exactly one bound state (isolated eigenvalue) on L2(Rn) with strictly
negative eigenvalue, E#.
(V3) V is a function of |JC|.

As we shall see later the restriction (V3) appears to be a technical convenience
which is a consequence of the available linear local decay estimates. Also, it is
clear from our proofs that we can work with considerably milder smoothness and
decay assumptions than in (VI).

Our approach will be to reduce the study of (2.1) to essentially two independent
problems. The first is the study of existence and certain decay properties of the
nonlinear bound states (solitary waves) of (2.1). Then, one has to study the evolution
equation for the dispersive part of the solution which one gets by linearizing around
a certain time-independent nonlinear bound state. In the small data case, this
involves linear spectral analysis of a time independent reference Schrodinger
Hamiltonian.

2.2. The Solitary Wave and Its Properties

We seek a time periodic, and spatially localized solution of (2.1) of the form

φ{x,t) = e-iEtψE(x).

φE then satisfies the equation:

- ΔφE(x) + / ( * , \ΦE(X)\)ΨE(X) = EφE(x\ ψEeH2(R"). (2.3)

We call an H 2 solution of (2.3) a nonlinear bound state or solitary wave profile.
The solutions of (2.3) have bedn studied by many authors (see for example
[Str2, Be-Li, Ro-We] and those cited therein). We will concentrate on the case
(2.2), with a radial potential V(x)= F(|x|). The result we now state follows from
variational and bifurcation methods.

Theorem 2.1. For λ > 0, let Ee(E^0)9 and for λ<0,letE< E*. Then there exists
a solution ψE>0 such that

(a) ψEeH2.
(b) The function E\-+\\ψE | |H 2 is smooth for EΦE^ and

Jim | | M H 2 = 0,

i.e. (£, φE) bifurcates from the zero solution at (E^, 0) in H 2 (and therefore, for n = 2,3
in Lp, where 2 ̂  p ^ oo).
(c) For all ε > 0,

and
(d)
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the expansion being valid in H 2 . Here, φ^ is the normalized (|| φ# | | 2 = 1) ground state
of— A+V with corresponding eigenvalue E^.

Proof. Parts of (a), (b), and (d) follow from standard theory of bifurcation from
simple eigenvalues (see for example [Nir]). To prove part (c) we observe,
by the weighted estimates proved below (Theorem 2.3), that \φE(x)\ ^ C<x>~ 2 .
It follows that φE satisfies an equation of the form [ — A + Q(x) — E~\φE = 0, where
Q(x) = 0(|xI ~ ι ) as |x | -*• oo. Part (c) now follows from linear theory (see for example
[Ag]).

A consequence of Theorem 2.1 which will be used is

Corollary 2.2.
(a) Let λ>0. Then, for all EeΩ, any compact subinterval of (E^,0), we have
\\ΨE\\H^CΩ\\ΦE\\2.

(b) Let λ<0. Then there is a Ec, — oo < Ec < E#, such that for EEΩ, any compact
subinterval of{Ec,EJ, H M

In our analysis of the dynamics of bound states, we will require various weighted
estimates of φE and dEφE. We summarize this in

Theorem 2.3. Let for X>0,EG(E^,0), and for λ<0,E<E^. Also, let E lie in a
sufficiently small neighborhood of E^. Then, for fceZ+ and s ^ 0:

\\<x>kφE\\Hs^CkfSJφE\\HS, t (2.4)

Theorems 2.1 and 2.3 summarize our requirements on solutions of the time
independent nonlinear bound state problem. These conditions are not optimal; they
are dictated by the known local decay estimates for the Schrodinger propagator
associated with —Δ + V (restricted to its continuous spectral part) which at present,
are far from optimal. These technical questions are currently under investigation.
Their resolution would enable us to relax restrictions on f(x, ξ) considerably (e.g.
removal of the assumption of spherical symmetry and certain limitations on the
growth rate of the nonlinearity).

The proof of Theorem 2.3 has the following key ingredients:

1. commuting powers of <x> through the Laplacian to derive equations for
Wj = (xyjφE,
2. the observation that

LEdEφE = φE, (2.6)

where

L E = - A + V + λ m φ l ~ X - E (2.7)

acting on L2(Rn). (Equation (2.6) follows from differentiation of (2.3) with respect
to E)
3. derivation of equations for Vj= (x)jdEφE, and
4. obtaining energy estimates for the control of the H 2 norms of Wj and ΌJ. The
proofs are carried out in Appendix B.

Here we wish to remark as well that since L£+ ^ 0, we have in the repulsive
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case (λ>0) that LE>0 and that LE

X is a positivity improving operator [R-S].
Therefore, the positivity of φE implies that dEψ>0 and that

έ "••'' > 0 for λ > 0,
= E0

i.e. the ground state bifurcation curve is monotonically increasing. This simplifies
certain analysis in the case λ > 0 and leads to arguments which are more global
in E. These details are presented as well in Appendix B.

2.3. Linear Propagator Estimates

Let L = - A + V on L2(Rn) and assume V satisfies hypotheses (V) of Sect. 2.1. We
denote by PC(L) the projection on the continuous spectral part of L (χ(0t00)(L)). We
assume that V satisfies a nonresonance condition [J-K, Mu]. To explain this
condition we state the following expansion obtained in these references for the free
resolvent.

Let ε(n) = 0 for n odd and ε(n) = 1 for n even. Also, let σ > — 1/2 and
5 > max(σ + l,2σ + 2 — n/2). Then one has the following expansion as z->0 with

{-Δ-z)-ι= X F,z("/2)-1-;(logz)ε(π)+ £ GjZj + o(zσ\ (2.8)
j=o i=o

where FpGj map H°-s to H 2 ' " s , where for s,<τeR\

Hσs = {/e^:<x> s(/ - Δ)σ/2feL2}.

We next introduce the generalized null space

M = {φ<ΞH2>n/2-2-°:(I + G0V)φ = 0} for n ^ 3 ,

M = {φeH 2 'π / 2- 2- 0 :(/ + Go V)φe Range (Fo), Fo V = 0} for n ̂  2,

where Go = ( - Λ)~1. The nonresonance condition is then

(NR) M = {0}.

Under these conditions we have the following local decay estimate [J-K, M]:

Theorem 2.4. For n > 2,

| |<x>-V- ί L ί P c (L)^ | | 2 ^C(F)<ί>- 1 ^l l<x> 1 + α P c (^ i l2 , (2.9)

where c(V) is a constant which depends continuously on | |<x> 2 + ΛK||, α > 0 is
arbitrary, σ^l+a,andδ = δ(n, α, σ) > 0. For n = 2,(t)1+δis replaced by {tin21).

Furthermore, we can use Theorem 2.2 to establish the following Lp estimates:

Theorem 2.5. Let2<p< for n ̂  3 and p>2 for n = 2. Then,
n — 2

\\e-iLtPc(L)gH, ^ C{V)\t|W*- /«(||Pc{L)g||,
1 + , (2.10)
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(2.11)

for some a with 1 » a > 0. Here, p'1 + q~1 = 1.

To prove (2.10) we write the propagator e~iLt as a perturbation of eιΔt:

e-ίLtPc(L)g = eiΔtPc(L)g - i j eiΔ{t-s)Ve-iLsPc(L)gds. (2.12)
o

By the free propagator estimate [ R - S ] ,

| | e " l i l f / ι | | p

we have

| |e- i L tP c(L)g\\ p ^ C\t\^-n^\\Pc(L)g\\q

+ C j 11 - s\(nlp-n>2) || Ve~iLsPc(L)g \\qds. (2.13)
0

N o w applying the local decay estimate (2.9) we have

| |e- ' L 'P c (L)g | | , :g C\t?"*-">»||

(K) f | t - s | ( π / p - n / 2 ) || <x>-"e- i t s P c (L)^ \\2
ds

from which (2.10) follows. It is straightforward to show that if g is more regular,
then \t\ can be replace by <ί> to obtain estimate (2.11).

3. The Equations for the Localized and Dispersive Parts

Equation (2.1) together with our special choice of nonlinearity/(•) can be written as

= Φ o eH 1 , n^2. (3.1)

To distinguish between localized and dispersive parts of Φ, we use the following
Ansatz:

(α) Decomposition:

Θ = \E(s)ds-y(t),

E(0) = Eo, y(0) = yo (3.2)
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Here, φE denotes the ground state of (2.3):

φEeH2, φ>0 (3.3)

for ££(£*, 0) if λ > 0 and Ee{ - oo, £*) if λ < 0, where

(β) Orthogonality condition:

The orthogonality condition ensures that φ(t) lies in Range PC(H(EO)), where H(E)
is defined in (3.3). Furthermore, the above use of a reference Hamiltonίan, H(E0\
is not really a restriction on the initial data φθ9 as we shall see in Sect. 5.

Using the above Ansatz, we derive the following equation for φ:

= 0 and jt<φEo,φ(t)) = 0. (3.4)

i [ Δ + V { x )

+ MΦE(t) + Φ\m~1(ΨE(t) + Φ)-λφE

t

(t)

+ y(t)ΦE(t)-idEΨE(t)E(t) (3.5)

We now rewrite (3.5) making H(E0), the reference Hamiltonian, explicit.

id4~ = (H(E0) - E0)φ + (Eo - E(t) + y(t))Φ + F(ί). (3.6)
ot

Here,
F ^ F 1 + F 2 ;

F i = yψE - iέdEψE,
and

^ 2 = F2,iin + F 2 > π / .

F 2 l i n is a term which is linear in φ:

1 i y + n^LΨΓ1Φ*, (3.7)

and F2tni is a term that is nonlinear in φ such that:

\F2,*(φ9ψ)\ £ \λ\clA(φ)\φ\2 + | φ Π , (3.8)

where \Λ(s)\ is bounded for s bounded, \A(s)\ -+0 as s^O, and c is independent of
φ and φ.

To impose (β) we multiply (3.5) by φEo and integrate over all space, equate the
real and imaginary parts to zero (condition (/?)) to get a coupled system for E and γ:

E(t)= - O £ ^ £ , ^ 0 > - 1 3 < F 2 , ^ 0 > , (3.9a)

1 ^ o > (3 9b)
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Equations (3.5) and (3.9) comprise a coupled system for the dispersive channel,
described by φ(t\ and the bound state channel, described by E(t), y\t). The function
φ(t) and the collective coordinates E(t% y(t) are used via (3.2) to construct the solution
of the full system (3.1). In the next section we state our main results concerning
this decomposition.

In studying the localized and dispersive parts of Φ(ί), we shall work with the
equivalent integral formulation of (3.6). To derive an integral equation for the
dispersive part, φ(t\ we introduce U(t,s), the propagator associated with the
homogeneous linear problem:

= (H(E0) - E0)u(t) + (Eo - E(t) - γ(t)Ht), (3.10)

that is

u(t)=U(t,s)f, U(s,s) = Id.

Let

u(t) = exp ( - i j [£ 0 - £(s)] ds - i(y(t) - y{s))\{t).

Then,

v(t) = exp(-ί(H(E0)-E0)(t-s))f,

and therefore

U(t,s) = exp( - i}(Eo - E(s))ds- ί(y(t)- y(s))\exp(- i(H(E0) - E0)(t- s)).

(3.11)

Equation (3.6) can now be rewritten as

φ(ή = I/(ί, O)0O - i J l/(ί, s)¥(s)ds. (3.12)

For purposes of estimation in 1/ or in a weighted L 2 space (see Sect. 5), we observe
that

\\U(t,s)g\\x=\\exp(-i(H(E0)-E0)(t-s))g\\x, (3.13)

where X denotes any of these spaces.

4. Scattering and Asymptotic Stability Theorems

We assume, as before, that n = 2 or n = 3. V(x) satisfies hypotheses (V) and we let
f(\x\,Φ)=V(\x\) + λ\Φ\m~1. We define the B-norm of a function g by

where a can be chosen arbitrarily small.
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Theorem 4.1 (Scattering). For n = 2 and n = 3 let

2 2
m>l+- + Γn n—\

and for n = 3 we require, in addition that m < 3. There exists a number δ0 such that if

(i) Φ(0)=Φo(|x|),

(ii) H Φ O H B ^ O ,

(iii) There exists E0ΦE^,, and Θo such that

(iv) V satisfies the (NR) condition of Sect. 2.3,

then

Φ(t) = exp ί - i J E(s)ds + iy(t)ME{t) + φ(t)) (4.1)

^(R 1 ) ( so that lim E(t) = E± exist
dt

A /
so that lim γ(t) = γ± exist),e lΛR 1 ) (so that lim γ(t) = γ±elΛR

dt

and φ(t) is purely dispersive in the sense that

Kx>-°φ(t)h = &«»-'-*) (4 2a)

for σ>2 and some δ>0ifn = 3 and

Kxyφ(t)\\i = (P«t\n2ty-1) for n = 2. (4.2b)

Moreover,

2 m - n / 2 ) ) . (4-3)

Remarks
1. In Sect. 5.4 it is shown that hypotheses (ii)—(iii) holds at least for all Φ o in an
open cone-like region with vertex at the origin.
2. Hypothesis (NR) is satisfied by gV(x) for all but a discrete set of #-values [Ra].
This hypothesis is a way of ensuring that the optimal local decay rates of Sect 2.3
apply to the dispersive part of the solution.
3. The use of the L 2 m norm is dictated by the dependence of the linear local decay
estimates on the weighted norm || < x > 1 + α / | | 2 (see Sect. 2). This is the source of the
restriction to the spherically symmetric case. Namely, we use the uniform spatial
decay rate of H 1 radial functions (see Appendix A) to estimate the weighted L 2

norm of the nonlinear term. The restriction m < 3 for n = 3 is required in order to
preclude local (in time) singularities in the estimate for ||(/>(ί)||2m (See also the
discussion following the proof of Lemma 5.6.) It is believed that a variant of these
estimates for the linear propagator holds with 1/ norms instead of weighted norms.
Such estimates would lead to extensions of our results to the non-spherically
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- ,
n ~ 2

symmetric case and the more natural upper bound on the nonlinearity m <

The following is a related stability result which says that if the initial data for
(2.1) lies near a particular nonlinear bound state of energy £ 0 , and phase y0, then
the solution Φ(t) converges, as t-> ± oo, to a nearby nonlinear bound state of
energy E± and phase γ±.

Theorem 4.2 (Asymptotic Stability). Let m and n be as in Theorem 4.1. Let
Ωη = (E^ E^ + η sgn (λ)\ where η is positive and sufficiently small. Then for all EoeΩη

and yoe[0,2π), there is a positive number ε(η,E0) such that if

where

dE(t) dγ(t)
then Φ(t) decomposes into localized and dispersive parts as in (4.1), where — ; — , — —

dt dt
are in L^R1) and φ(t) obeys the linear dispersive and local decay estimates (4.2), (4.3).

S. The Coupled Channel Equations

5.1. Local Existence

It is straightforward to prove, by a contraction mapping argument, that (3.5)-(3.6),
(3.9) together with initial conditions φ(0) = φoeH1, y(0) = yo, and E(Q) = E0 has,
for some T>0 a unique local solution φeCdO^ H1), E^iytyeC^O,!), with
E(t)e(E*,0) for λ>0 and E(t)e(Ec,EJ for λ <0. Thus, Φ(t) given by (3.2) solves
(3.1) and agrees with the unique H 1 solution discussed in our summary of the
existence theory in Sect. 2.1. In particular, the functional ^ f [ Φ ] and Jf\_Φ~\
(Sect. 2.1) are invariant on [0, T). It follows by Sobelev-Nirenberg-Gagliardo type
estimates that

for 0 ̂  t ^ T, where the upper bound in (5.1) is independent of T. If λ < 0 (attractive
4

nonlinearity) and m ̂  1 + -, we require, in addition that || Φo ||Hi be small for (5.1)
n

to hold with C, independent of T. For otherwise, solutions can become unbounded
in H1 in finite time (blow up). See, for example [Gl, Wei].

It follows from our Ansatz (3.2) that
^C /(| |ΦollHι, | |^ ( ί, | |H i) (5.2)

for ίe[0, T).

5.2. A Priori Estimates

In this section we obtain a priori estimates on φ(t), E(t), and y(ί), which arise in
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the decomposition of Φ(ί), (3.2), and show that the decomposition persists for all
time, ί, with the desired properties.

Since φ(t\ the solution of (3.5) is an H 1 function, we interpret (3.5) in the sense
of the equivalent integral equation:

φ(t) = U{t, 0)φ0 - i j l/(ί, s)Pc(H(E0))F(s)ds. (5.3)

Here, (7(ί, s) denotes the propagator displayed in (3.11) and F(s) = F(φ(s), φE(s))
is displayed in (3.6)-(3.8).

The first step is to use the local decay and 1/ decay estimates of the linear
theory (in Sect. 2.3) to derive decay estimates for φ(t). Let

= H(E0)-E0.

We will apply the propagator estimates of Sect. 2.3 to the associated unitary group
e " i L t . These estimates require that the potential of the operator L, V(x) -f λ | ψEo \m ~1,
satisfy (NR). We claim this is not a restriction. This is seen as follows.

Suppose V(x) + λ\\ltEo\
m~ι does not satisfy (NR). Then, we solve the initial value

problem (3.1) for some small time interval [0, Γ o ], with the decomposition (3.2)
augmented with the modified orthogonality condition

<ΨEO,ΦO> = 0 and jt<ψEiφφ(t)> = 0 (3.4')

in place of (3.4). Now consider the one-parameter family of potentials

Q(x;E(ή) = V(x) + A I ^ Γ " 1 , ίe[0, ΓO].

Proposition. For generic φ0, we have that Q(x; E(ή) satisfies (NR)/or some ίe[0, ΓO].

Proof. The implicit function theorem for analytic mappings can be used to show
that φE is equal to (E — £ * ) 1 / ( m ~ υ times an absolutely convergent power series in
E — E^ϊor E sufficiently near E^. (See part (d) of Theorem 2.1.) Thus, the mapping
E\-^ψE~x has a holomorphic extension to a complex E — neighborhood of E#. By
an argument of J. Rauch [Ra, pp. 164-165], V(x) + A|ι^£o |

m~1 satisfies (NR) at all
but a discrete set of E — values. Thus, if E(t) is not identically Eo, there will be
some toe[0, Γ o] for which Q(x;E(t0)) is nonresonant. The case where E(t) = Eo is

nongeneric, as this would require — £(ί = 0) = 0, which by (3.9a) leads to a
codimension condition. •

Having found a t0 at which V + λ\ψE{to)\
m~ι satisfies (NR), we continue the

solution for t ^ t0 using the decomposition (3.2), (3.4). By uniqueness of solutions
to the Cauchy problem, the solution obtained in this way corresponds to the
solution Φ(t) of (2.1) with data at t = 0, Φ(0), as in (3.2).

Due to the presence of weighted L 2 norms in our linear decay estimates,
estimation of the integral term in (5.3) will lead to weighted L 2 estimates of the
nonlinear term Θ(\φ\m). It is therefore natural, to seek estimates for φ(t) in L2 m.
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Proposition 5.1.

ί I ί

col\E(s)\ + cO2\y(s)\)ds9 (5.4)

l\E(s)\ + dO2\y(s)\)ds. (5.5)

Here, βr = m(l- μ), where μ = ^— —. (See Proposition 5.4 below.)
(m - \){n - 1)

Here, c^φ, φ) and d^φ, φ\ 1 ̂  i: ̂  4, are constants which depend on weighted
norms of φm and the H 1 norm of φ(t) for £e[0, T). Such weighted norms are all
controlled by the weighted estimates of Sect. 2.2. Also, c^a, b) and d^a, b) tend to
zero as a tends to zero while b lies in a bounded set. The precise form of cOi and
dOi is worth giving in detail for the purpose of understanding the behavior of the
product with E and y (see Proposition 5.5 below) as E-+E^. We have

m), C02 = Θ(\\dEφE\\lΛ

Furthermore, 1 — sp = - — , and δ > 0 is the number appearing in the linear

estimate (2.9). For n = 2,(ξ}1+δis replaced by <£ln 2 ξ>

Proof of Proposition 5.1. We begin by estimating (5.3) in I Λ Using (2.10)-(2.11),
we have

| |φ(t)II,^ IIe- i L tφ 01|, + j \\e-iL«-»Pc(L)F(s)\\pds

| | β + | |<x> 1 + f l P c (L)F(s) | | 2 ) ί /s . (5.6)
0

The projection operators, Pc = PC(L) can be removed at the expense of φ
dependent constants:

Lemma 5.2.
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Therefore, we have

II Φ(t) II, ̂  c 1 ( K ) < ί > 1 ' - HII tf>o II, + II Φo Hut + 1

+ | | < x > 1 + F(s)||2)<fe. (5.7a)

Similarly, we can estimate the weighted norm of φ(t):

I I , 1+

s. (5.7b)

To proceed, we require estimates on | |F | | , and | |<x> 1 + < l F| | 2 ,whereF = F 1 + F 2

(see (3.6)-(3.8)). For the terms | | F 2 | | , and | | < x > 1 + β F 2 | | 2 , with A(ψ) as in (3.8) we
have:

Proposition 5.3. Let p = 2m,m> 2, and p " 1 + g~1 = l. Then,

IIF2 | |,^||<χ>'^—MIΓJK^-VI^ + M^WII^II^IIL+IIΨI^IIΨII"- 1, (5.8)

where rΐ1=q~1-2~1 and r 2

 1 =(2q)~1 - p " 1 .

Proposition 5.4. Let p = 2m, m>2, and p~1 + q~1 = 1. Then,

1 + α F 2 1 | 2 g

+ c( 114II?. + II * IIΠIΦ I I H ^ 1 + α ) / < " " υ ll Φ llf.), (5.9)
2(1+ 0)

3 S 7 , / , ^ , ^ ( m _ 1 ) ( n _ 1 }

The proofs of Propositions 5.3 and 5.4 are presented in Appendix A. Here, we
only wish to remark that it is in handling the weighted norm of the nonlinear term
Θ(\φ\m) that the restriction to radial solutions is used to derive (5.8) and (5.9).

The inhomogeneous term in the φ equation, Fi9 can be easily bounded as
follows:

(5.10)

(5.11)

Propositions 5.3 and 5.4 together with estimates (5.10)—(5.11) imply Propo-
sition 5.1.

Our next step is to estimate γ and E, which appear in (5.10) and (5.11), in terms
of norms of φ and φ.

Proposition 5.5. Let [0, T) denote the time interval of local existence for the system
(3.5),(3.9). Then, for O^t^T,

+110(0111- + H^ίOIIS..! (5.12)
L l (5.13)

where CE and Cy depend on || ψm \\H2 and || φEo | |H 2 and tend to zero as these norms
approach zero.
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Proof of Proposition 5.5. From (3.9) we have that

^ 0 > | . (5.15)

To estimate the term | < F 2 , ψEo}\, we use our estimates on F 2 in Sect. 3. First, by (3.6),

ψEo9m)Uxy-°φ\\2. (5.16)

By (3.8),

I < ^ £ o , F a ^ z > I ̂  c I ̂  I ( | | ^ £ o ^ ( t A ^ ) II ŵ  II0II i w H- II IA^O II2IIΦII T^X ( 5 . 1 7 )

where m'" 1 = 1 — m" 1 .
Use of (5.16)-(5.17) in (5.14)-(5.15), and noting the behavior of φE for E near

£*, given in Sect. 2.2 yields the result.

Remarks
1. Our goal is to obtain a set of inequalities for norms that control the dispersion
of φ(t). The above estimates suggest the use of the norms

Mί(T)= sup <ty-*\\φ(t)||,, (5.18)
\t\ύτ

M2(T)= sup <ί>1+all<*>-*ΨWIl2, (5.19)

where <ί>1 + < 5 is replaced by <ίln 2 ί> when n = 2.
2. It turns out that with the linear local decay estimates we use, it is natural to
choose p = 2m. Better local decay estimates would permit using p = m + 1 for large
nonlinearities. This would improve the upper bound on range of nonlinearities for
which the above results are valid.
3. To show that the limits lim E(t) and lim y(t) exist, we prove that E and γ

ί-> ±oo f->±oo

are in L^R^dt). Linear theory suggests that the correct 1/ decay rate is
<ί>£p-1 = (t}{n/p~n/2). Therefore, the estimates (5.12)-(5.13) suggest that m be chosen

so that 2(1 — εp) > 1, and m(l — εp) > 1, where l—εp = - — = - — — . These reduce

to the constraint m > . We shall see further constraints on m imposed in the

following section. n ~~

5.3. Global Existence and Large Time Λsymptotics

In this subsection we derive closed coupled inequalities for MX{T) and M2(T) (see
(5.18)-(5.19)) which yield bounds on Mx and M 2 , independent of T. This implies
a rate of dispersion of φ(t) which in turn implies that E(t) and y(t) have asymptotic
values as ί-> ± oo.
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We first apply the estimates (2.9)-(2.11) to the initial data terms in (5.4)-(5.5).
We then multiply (5.4) by ( ί ) 1 " 6 2 - (5.5) by (t}1+δ « ί l n 2 ί > for π = 2) and take
the supremum over all | ί | ^ T to obtain:

MX(T) ^ C(V)( || φ0 \\q + || φ0 | |H, + || <x>* +aφ01|2)

C3( II φ(t) ||Hi

C5(ψ,dEψ) sup <ί> 1 + δ[ |?WI + \E(t)\l (5.20)

In the above estimate q~ι = 1 —(2m)"1. Similarly, we have

+ D4(ψ)M2(T)

s( II Φ(t) ||Hi)Aff(T)

(5.21)

In the constants C, and Dj are contained terms of the form

These terms are required to be bounded independently of ί. The range of
nonlinearities (powers of m) for which this occurs is determined with the aid of:

Lemma 5.6. For α < 1,

Proof.

t til t

j|ί-s|-«<s>-'ώ= f + \ =A + B.
0 0 ί/2

Estimating A and B individually, we get

ί/2 t

A ̂  (2/ty f <sy'ds, B ̂  (2/tγ J2 11 - s\-"ds,

from which (5.21) follows.
The most problematic term, regarding decay is the term ||φ||fΓ

OT in (5.9). This
leads to the restriction

2 2(1 + α)

n n— 1

where a is arbitrarily small and positive. Furthermore, the restriction α < 1 in
Lemma 5.6 implies

n n

The latter leads to the constraint m < 3 in dimension n = 3, as in the statements
of Theorems 4.1 and 4.2.
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To close the inequalities (5.20)-(5.21) we use (5.12)-(5.13) together with Lemma
5.6. This gives

sup \E(t)\ S CE(φE,φEo)\λ\[_M2(T) + M\(T) + M"&T)\ (5.22a)
\t\*τ

sup \γ(t)\ ^ Cy(φEiψEo)\λ\ίM2(T) + M\{T) + M*ΐ(T)l (5.22b)
\t\*τ

We then use (5.22) in (5.20)-(5.21). The results are summarized in

Proposition 5.7. Let (φ(t\E(t),y(ή) be the unique solution of (3.5), (3.9) of class

CdATfcH 1 ) x C^CT) x C^CT).
Then,

+ C2(ψ9 dEφ)[_M\(T) + C3( || φ(t) | | H ι )Af?(n (5.23)

M2(T) £ C(V) || (x}1+aφ0 \\2 + DUψ,dEφ)M2(T)

+ D'2(ψ, dEψ)lMl(T) + D'3( || φ(t) H H O M T ( Γ ) ] . (5.24)

Here, C\ and D are controlled by the maximum over | ί | ^ T of the H 2 norm
of ^ and dEφ.

To obtain closed inequalities for MX(T) and M 2(T), we observe that as E
approaches E#, the coefficients C\(φ,dEφ) and D\(\j/,dEφ) tend to zero and are
uniformly bounded on any compact subinterval of (£^,0) for λ > 0 and (— co,E^)
for λ < 0. These properties of CJ(^, 5£^) and D'^ψ, dEφ) follow from the bifurcation
analysis of the continuum of solutions (£, \j/E) in a neighborhood of E^ (Sect. 2.2).

To prove global existence for the system (3.5), (3.9) with the desired asymptotic
behavior, we first choose initial conditions E0,y0 and φ0 so that on the interval
of local existence, C\ and D\ are less than \ in magnitude. Then, by (5.24) we have

+ D'2(ψ9 dEφ)lMl(T) + D'3( || φ(t) H H O M T ( Γ ) ] . (5.25)

Substitution of (5.25) into (5.23) yields, after some manipulation,

M,(T) ^ σo( || φ0 \\q + || φ0 ||Ht + II <*y +aΦo \\i) + C[M\(T) + C5AfT(T)X (5.26)

where Q = C(K)(1 + 2Q), C[ = C 2 + Q D ^ and C"2 = C2C3 + C\D'2D3.
We now rewrite (5.26) as

where

and the data term

Let α^/ία*) = max α/(α). Let \E0 — E+\ = 2η, where η will be chosen sufficiently
ot > 0ot > 0

small. We first require that 7/ be such that φE and dEφE dependent constants in
(5.22) are less than η1/2. This is possible by the local analysis of φE presented in
Sect. 2.2.
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Now choose φ0, so that

and so that

Then by the continuity of Mί9 we have M ^ T ) ^ ^ , and therefore by (5.22) via
(5.25) that

CEη*ι\ty'~\ (5.27a)

C y i | 3 / 2 <ί>- 1 -*. (5.27b)

For n = 2, <ί> " x ~δ is replaced by <ί In2 ί> "*.
Integration of (5.27) yields

J |£(ί) |Λ^CV / 2, (5.28a)
-T

JΊfWIAgC'V'2, (5 2 8 b )

where C" is independent of 71 and η.
Thus if

Γm = sup {ί: I £ ( ί ) - £ 0 !<>/},

it follows that for η sufficiently small Tm = oo. For the right-hand side of (5.28) is
independent of T, and this ensures that

provided η is sufficiently small. It follows that all constants C(φ, dEψ) and D(φ, dEφ)
maintain their assumed bounds and we can take T-> oo to obtain

*/ (5.29a)
and

M2(oo)^Cη (5.29b)

for some C > 0.

5.4. Decomposition of the Initial Data Φo

Here we return to the Ansatz (3.2)-(3.4). Let Ee(E^O) for λ > 0 and Ee(- oo,E*)
for λ < 0. Consider the initial data which is nearby a nonlinear bound state:

Φ0 = JψE + δΦ. (5.30)

In general <<5Φ, ψg} Φ 0, so we write

with a view towards finding Eo and y0 such that
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We shall then take φ0 to be the initial data for the dispersive channel evolution.
Let

o E 0 (5.31)

Then, F[£,y ,0] = 0. We want to solve F = 0 in a neighborhood of (E,%0). Since
F is complex-valued, the equation F = 0 can be viewed as two real equations:

The Jacobian of this mapping at (£o,yo,0) is given by

d
0

(5.32)

0

By the results of Sect. 2.2 and Appendix B, we have that if Ee{E^ 0), for {λ > 0),
and Ee(E^ — ε, E^)9 for (λ < 0), the curve £ι—• || φE \\\ has no critical points. It follows
from the implicit function theorem that in some L 2 neighborhood of φEi the
decomposition

with condition (5.30) holds. Furthermore, since on any compact subinterval of

(E^, 0), for λ > 0, and (£„, — ε, £*), for A < 0, — 1 | φE \\ \ stays uniformly away from
a Hi

zero, the B-neighborhood of φ% can be chosen uniformly in £, where E varies over
such a compact subinterval. This resolves the question of initial decomposition for
Stability Asymptotic Theorem 4.2.

The proof of Theorem 4.1 follows the above lines. The constraint

<eiθoφEo>Φo-eiθoφEo> = 0 (5.33)

(see the statement of Theorem 4.1) prescribes a choice of Eo and y0, and therefore
an initial decomposition, (3.2). By Theorem 4.2, for each £ in a sufficiently small
interval with E^ as endpoint, there is an open ball about φE such that for all data
in this ball, the solution decomposes as in (4.1). The radius of this open ball may
shrink to zero, in general as E tends to E^. Thus, the set of data Φ o , on which the
constraint (5.33) can be realized contains the union of these open balls over E near
£*, or a cone-like region.

Furthermore, if E and γ are such that the constraint (5.33) holds, then

Finally, if || | | x denotes any norm used to measure φE (see Sect. 2.2), then we have

Therefore, the smallness required of certain constants in the a priori estimates
of Sect. 5.3, is ensured by a smallness condition on the initial data Φ o .
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6. Scattering Theory

The S matrix is constructed from the wave operator- Ω+ and Ω_ by the formula

S = Ί*+Ω_.

In our case, for each value of phase γ and energy E near E^ we construct wave
operators

Ω^{φ) = s- lim VE,γ(0,t)*e-iH^ Pc(H(E±))φ,
r-> ±00

where VEty(t, s) is the nonlinear evolution (the dispersive φ evolution) from time s
to time t which is coupled to the bound state channel (see (6.3) below).

To conclude that the S matrix is unitary, we need to show that there is a <5,
such that for all initial conditions, (E±

9γ
±

9φ±) satisfying

\E±-E+\<δ,

Pc(H(E±))φ±=φ±. (6.1)

there exists states Φ+eB with its asymptotic behavior given by

Φ±^e-mE^φ±+exp(-ί]E(s)ds-iγ(t))φ(E±X (6.2a)

with

E(t)^E± and γ(t)^γ± as ί->±oo. (6.2b)

The existence of such Φ follows from the global existence of solutions of the
following system of nonlinear integral equations:

t

E(t) = E~ + J gE(s)ds,
- oo

t

y(t) = γ~ + j gy(s)ds,
— oo

— oo

Here, gE,gv and F are expressions like the source terms in (3.9a), (3.9b) and
(3.5), respectively.

Remark. They are not exactly the source terms appearing in Sect. 3 for the following
reason. Since E(t) - £ ± ^L 1 (R 1 ;dt) for the construction of φ±, it is convenient to
work with the equations resulting, not from the Ansatz (3.2) but from the following
Ansatz:

The proof of existence of global solutions runs along analogous lines to the
one-channel case (cf. [R-S]). We view the system (6.3) as a mapping of a space M
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of vector valued functions to itself and seek a fixed point. We consider only the
case ί—• — oo. The case t-> oo is similar.

Let

Mη={vΞ= (Eilγilφ.y.veG^R) x C^R) x C^R H1),|||t;||| ^η},

where

R l

We then define

φ-(-,\x\) = Pc{H(E~))φ_, lim £(ί) = £~, lim
ί-» -oo ί-*-oo

For each (£(•),γ(-),φ-)eMη we set

Φ(t) = exp ί iy(ί) - i J £(w)ί/M )^(£(0) + <

and a mapping K on M^:

One can check that the estimates used to prove Theorem 4.1 apply in this context
to establish that K maps M^ to itself and for η sufficiently small, it has a fixed
point, the solution of (6.3). We then take this solution at ί = 0 as Φ_. Φ + is
constructed similarly.

Appendix A: Some Estimates of Nonlinear Terms

In this section we prove Propositions 5.3 and 5.4. To prove these estimates we
recall that F 2 is given by (3.6)-(3.8). We have that

Proof of Proposition 5.3. We start by noting that

l|F2llf^c|A|[||^--1^||f+||A(^2||f+1|0||^]. (A.2)

We now estimate the three terms on the right-hand side of (A.2) individually. First,

^Kxy^-'WnUxy-^w,, (A.3)

~1 = 2 " 1 + r ^ 1 .
For the next term in (A.2) we have

II A(φ)φ21|4 = II A^MΦ Hi, ύ II A^iψ)\\ϊ2 IIφ \\2

p, (A.4)

Finally, for the last term in (A.2) we have

£ I I * II2110 IIS-S 1 (A.5)
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Recall q~ι = 1 —(2m)"1 = l—p~1. We have also used the simple interpolation
result:

Lemma A.I. // 0 < θ < 1, and r = θa + (1 - θ)b, then

Proposition 5.3 follows from (A.3)-(A.5).

Proof of Proposition 5.4. The quantity to be estimated is

As in the previous proof, we estimate these three terms individually. First,

Φh. (A.7)

For the second term in (A.6) we have

|| (x}1+aΛ(φ)φ2||2 £ || <x>ί+aA(ψ)||Γ31|φ||2W, (A.8)

where 2 ~ 1 = r J 1 + m ~ 1 .
The estimate of the last term in (A.6), || <x> 1 + α 0 w | | 2 > *s m o r e involved due to

the absence of a spatially localizing factor. It is here that the assumption that the
potential V= K(|x|), and the initial conditions be spherically symmetric (thus,
giving rise to spherically symmetric solutions) is used. Namely, we have the
following [Str2].

Lemma A.2. LetfeW\Rn) andf = f{\x\). Then,

| / ( |x | ) |^CJxp-">/ 2 | | / | | H l . (A.9)

Now for the last term in (A.6) we have

so it remains to estimate || |x|1+α</>m | |2. Writing

| χ | 2 ( l + α ) | ^ | 2 m = ( | χ | ( »

and using Lemma A.2, we have

It follows that

II \X\ Φ IU^IIΦ.IIH 1 II 0 M2(m-2(l+α)/(π-l)) (A. 12)

Finally, we interpolate the last factor on the right-hand side of (A. 12) between L 2

and L 2 m:

\\Φ\\2,£\\Φ\\ί\\Φ\\L,

2(1 +α) , D /i w A 2 ^ 1 + α )
r = m —, (χ — μjr β = m(l—μ)/r, and μ = -—
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Appendix B: Weighted Estimates of Nonlinear Bound States

In this section we prove the weighted estimates stated in Sect. 2.2. We shall derive
equations for weighted nonlinear bound states and their derivatives with respect
to the energy parameter, E:

*J=<X>JΨE, Vj=<XydEψE. (B.I)

To obtain such equations, we must commute powers of <x> through the
Laplacian. For this we use the following simple observation:

<χ>3 J t

where [A, B~\ = AB — BA denotes the commutator of the operators A and B. We
shall restrict ourselves to spatial dimensions n = 2,3, the weights 7 = 0,1,2, and
the spaces H s with 5 = 0,1,2. This is what is required in the present paper. Our
proofs carry over in a straightforward manner to the general case of n > 3, j > 2,
and H s with s > 2, though with a bit of calculation and induction.

We begin with the equation of a nonlinear bound state u, and H 2 solution of

-Δu+Vu-Eu + λ\u\m~ XM = 0, (B.3)

which bifurcates from an eigenvalue, E*, in H 2 , i.e. ||w£||H2-*0 as £-•£„,.
Multiplication of (B.3) by <x> and application of (B.2) yields

-Δwί + Vw1-Ewι+λ\u\m~1w1

< X > < X >

Similarly, we can obtain an inhomogeneous equation for any Wj. For w2 we obtain

— Δw2 + Vw2 — Ew2 + λ\u\m~1w2

- 2 X VU +

 W + ( M

/ - ; ) | J C | 2 U . (B.4)

<x>2

(a) H 1 estimate of w^
The next step is to derive energy estimates which, for E near £ + , will give

control of the H 1 norm of w7. Multiplication of (B.3) by wx and integration over
all space gives:

- ^ ^ d x . (B.5)
\X/
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From (B.5) we obtain

1 + ||<x>2K|L||ιι||i (B.6)

From (B.6) it follows that by choosing E sufficiently near £*, that

I | W I I I H ^ C | | U £ | | 2 . (B.7)

(b) H 2 estimate of wx:
To estimate wι in H 2 we differentiate (B.3) with respect to xk, k = 1,2,..., n, to

obtain an equation for dkWιm.

- Δdkwί + Vdkwx - Edkwί

(B.8)

The H 2 estimate for wx is now derived from an energy estimate of the kind
used above, now for dkwί9 the solution of (B.8). Thus multiplication of (B.8) by
dkw1 and integration over all space yields:

-dkWldk\ 2 — ^ Vu \ " u I )dx. (B.9)
L \χ/ \ Λ /

Estimates of the type used to establish (B.7) can now be applied to conclude,
for E sufficiently near E^, that

(B.IO)

A similar analysis can be applied to w2 and dkw2 to conclude, using the H 2

estimates on w l 5 that for \E — E J sufficiently small,

\\*2\\H>£C\\UE\\H2. (B.ll)

We shall next outline the derivation of estimates for (x)jdkdEuE (j = 0,1,2 and
k = 0,1,2) in H 2 . First, we recall from Theorem 2.1, that there is a bifurcation
curve (w(ε), E(ε)\ where

where

and M satisfies the following equation:

εwm"x - £)β = 0.
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Now, since dε^axdE, differentiation of (B.12) with respect to ε yields

From the estimates for (x}juE it follows that || <x>Jw||H2 is uniformly bounded
for IE — E^ I sufficiently small. We therefore focus on \\(x}jdεu\\H2. Differentiation
of (B.14) with respect to ε yields

{-Δ+V + λεmum-1 - E)dεu = - λum + dεEu. (B.15)

As with wp we can now study the equation for Vj = (x}jdEϋ by commuting
powers of <x> through the Laplacian in (B.I5) and using the commutator relation
(B.2). We then derive energy estimates implying uniform control of the H 1

norm of Vj and dkvj9 using that |E — £ J is sufficiently small and the Sobelev
inequality:

2^
 2 n

' = r n-1

In this way the proof of the weighted estimates of nonlinear bound states in
Sect. 2.2 is completed.

Finally, in the repulsive case (λ > 0) we observe that certain arguments can be
made more globally in E so we give the details.

Proposition B.l. Let λ>0. Then for all k, I > 0,

Proof Suppose not. That is, there are sequences £/ j£* and Xj->oo, such that

for all j ^ l . (If Xj forms a bounded sequence we have an immediate contradiction.)
Since dEψ>0, we have that

This contradicts the exponential decay of φE{x).

Proposition B.2. Let n ^ 3 and λ>0. Then, for any fc ^ 0 and p ^

Proof.

^ cη sup (<

as E-^E^. Here, we take η > n.
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Communicated by J. Frohlich

Note added in proof. The authors have proved Scattering Theorem 4.1 and Asymptotic Stability
Theorem 4.2 for a large class of potentials V(x) and data Φ0(x), which are not necessarily isotropic.
The results hold for spatial dimensions π ^ 3 and in the case of power nonlinearity, \Φ\m"1Φ9

for mjn)<m< . A paper with the details is in preparation. A key ingredient is an LP-U
n — 2

estimate for exp( — iHt) obtained in the recent paper of Journe, J-L., Soffer, A. and Sogge, C:
"Decay estimates for Schrodinger operators", to appear in Commun. Pure Appl. Math.




