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Abstract. This paper constructs two representations of the quantum group Uqg' by
exploiting its quotient structure and the quantum double construction. Here the
quantum group is taken as the dual to the quantised algebra Uqg, a one parameter
deformation of the universal enveloping algebra of the Lie algebra g, as in DrinfeΓd
[6] and Jimbo [10]. From the two representations, the Hopf structure of the
quantised algebra Uqg is reexpressed in a matrix format. This is the very structure
given by Faddeev et al. [7], in their approach to defining quantum groups and
quantised algebras via the quantisation of the function space of the associated Lie
group to g.

Introduction

A newcomer to the field of quantum groups will encounter four essential papers
on the structure and definition of quantised algebras and quantum groups, namely
those by Jimbo [9, 10], Drinfel'd [6] and Faddeev et al. [7]. These works define
the concepts of quantised algebras and quantum groups using two alternative
approaches. The first two authors use a more mathematical formulation for defining
a quantised algebra, introducing a one parameter deformation of an universal
enveloping algebra of a Lie (or Kac Moody) algebra. The concepts are rather
intricate, and for this reason the approach of Faddeev et al. [7]—based on a
quantisation of the function space of the accompanying Lie group—may well be
more appealing initially, especially to the physics community. However the two
approaches remain rather disjoint, the connection between the two being elusive,
the reader only having claims of their equivalence in [7].

As discussed in Drinfel'd [6], the motivation for introducing the one parameter
deformation of the universal enveloping algebra comes from the classical
isomorphism between the function space of the (connected) Lie group G and the
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92 N. Burroughs

universal enveloping algebra of the associated Lie algebra gx:

Ug' s Fun (G),

i.e. any function on the group G defines a linear mapping of the universal enveloping
algebra Ug and vice versa. This isomorphism is between Hopf algebras. The
subtleties of this isomorphism will be ignored in this paper, see [6]. Thus a
deformation/quantisation2 of the function space should also produce a deformation
of the universal enveloping algebra. Hence on the quantum level we obtain the
isomorphism [6, 7]:

Uqg'^Funq(G) = Fun(Gq\ (1)

where Uqg denotes the quantised algebra, [6], Funq(G) the quantised functions
on the Lie group G, [7], Gq the quantum formal group corresponding to G, [17]
and Fun(Gq) the functions on Gq [17]. The quantised algebra, Uqg and quantised
function space, Fun^ (G) are defined as follows:

Quantised Algebra. We shall follow DrinfePd [6] in defining the quantisation of
a Lie algebra. For a general Lie algebra g, with a system of simple roots S, the
quantised algebra Uqg is an Hopf algebra over the ring C[[ft]], that is, a one
parameter deformation of the universal enveloping algebra Ug. It is generated by
{l9Hi9X*}; three generators for each simple root ô  in 5, the H( corresponding
to the coroots of g. These generators have the following Hopf structure:

sinh ( -
2

Δ(Ht) = 1 ®Ht +H& 1, Δ(X±) =X± ® qHi<2 + < Γ H ' 7 2 ® X? (2)

Here au is the Cartan matrix of g. The generators Xf are also required to satisfy
the ^-analogue Serre relations given in [6] and [10]. However by introducing
generators for each root of g, the use of these Serre relations can be avoided [2,14].
These quantisations are in fact quasi-triangular Hopf algebras [6], that is, there
exists an universal R-matrix which will be denoted by R. This is an element of
Uqg®Uqg. The quantised algebra Uqg as defined by Jimbo, [10] differs from the
above construction in that it is an Hopf subalgebra of the above, only the
combination kt = qHi/2 occurring and not H t itself. This Hopf algebra is only pseudo
quasi-triangular [4, 6]. The approach of Faddeev et al. [7] reproduces the
quantised algebra as defined by Jimbo [10].

The quantum group corresponding to the quantised algebra Uqg is defined as

1 A prime denotes the linear dual (Hopf). Fun is used to denote the C°° functions.
2 The deformation parameter is called Planck's constant in analogy with the quantisation of classical
mechanics, and denoted h. The quantity q = eH/2 is found to be useful
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the Hopf dual3 to Uqg, this definition being natural in the framework of
pseudo-groups as defined by Woronowicz [16]. From relation (1), the quantum
group is Fun^ (G).

Quantised Function Spaces. Contrast the above definition of quantised algebras
and quantum groups with that of Faddeev et al. [7] and Woronowicz [16]. This
construction assumes the existence of a matrix R (not to be confused with the
universal /^-matrix), that is valued in End(K(χ) V\ where V is some n dimensional
vector space over the ring C[[ft]]. R is assumed to satisfy the Quantum Yang
Baxter equation (QYBE):

^12^13^23 = ^23^13^12' (3)

An Hopf algebra A(R) is then defined with generators {1, ti}) satisfying the following
relations:

^ ( ί y ) = Σ ί Λ ® ^ (4)
k

Here the matrix T is a matrix of generators: (Γ)i<7 = ttj. For this algebra, the QYBE
(3) corresponds to an associativity condition. For R in the fundamental
representation of Uqsl(n), the Hopf algebra A(R) can be considered as the quantised
function space of Gl(n\ i.e. Funq(Gl(n)\ [7]. An application of a quantum
determinant condition reduces this to Funq(Sl(ή)).

From the algebra A(R% an Hopf algebra U(R) is defined, a subalgebra of the
dual to A(R). U(R) is generated by {1,/jj10}, which are defined by the following
evaluations:

(U±\T1...Tk)=R[±K...R<

k

±\ (5)

where the matrix of generators L ( ± ) is defined as (Li±))ij = l\j:). The two matrices
R{±) are: R( + ) = PRP9R

{~) = R~ί, with P being the transposition matrix on the
two factors V® V. In fact these generators do not freely generate U(R), see [7] and
Sect. 4. By manipulating duality and the evaluation structure in (5), it can be shown
that the Hopf structure:

(6)

is obtained for the generators li

if
) [7].

From the isomorphism (1), the Hopf algebra U(R) should be the quantised
algebra Uqsl(n), if R is the K-matrix for Uqsl(ή) in the fundamental representation.
In this paper this is proved by obtaining an explicit isomorphism between the

3 Due to the problems of dualising a tensor product, the dual to Uqg is not necessarily an Hopf

algebra. We define the dual Hopf algebra in terms of the Hopf structure induced on a dual basis of

the associated ring module
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generators {/{*>} and {q±Hit/2

9X^}9 i.e. U(R) is the quantised algebra Uqsl{n) as
defined by Jimbo [10].

The essential observation of our construction is the fact that the Hopf structure
of the T generators (4) follows from a representation of the quantised algebra Uqg,
Sect. 1. On observing that the Hopf structure of the algebra U(R), (6) is very similar
to that in (4), it may be expected that this will follow from a representation of the
dual to Uqg. In fact two representations are required, one for each of the matrices
L ( ± ). To reproduce the structure in (6), specific representations need to be chosen.
These are chosen in Sect. 3 by observing that the matrices L ( ± ) can be expressed
in terms of the universal K-matrix of Uqg (15), (16):

The Hopf structure satisfied by these generators, (6) follows from the
representations used, this being derived in Sects. 3 and 7; the mixed relation in
L ( ± ) being derived from the dual of the quantum double in Sect. 7. On restricting
to the Lie algebra sl(ή), we prove that {ίl7} and {/ί} do not generate F\mq(Sl(n))
and Uqsl(ή) freely, quantum determinant relations holding on the matrices T,L{±\
and a diagonal relation between L ( ± ). Section 6 illustrates the construction with
Uqsl(2). The dual to the quantum double is introduced in Sect. 7, this producing
the possibility of constructing the quantum double from the quantum group Uqg'.
Section 8 encodes the Hopf structure of the quantised algebras Uqsl(ή) into a matrix
format by employing the construction of Sect. 3 and the universal R-matrices of
Uqsl(n\ as derived in [2, 14]. This also allows a systematic construction of all
the commutation relations of the generators of Uqsl(n) as used in [2].

In the following sections, the notation l\f] will not be employed for the
generators of Uqg in the matrix formulation. The symbol σ ί is preferred.

1. Algebra Representation Structures of Hope Algebras

In this section an Hopf subalgebra of the dual to an Hopf algebra A will be defined
via an algebra representation of A. The commutation relations are expressed in a
matrix form by defining a matrix valued in the dual to A. The resulting Hopf
algebra is identical to that used to define a quantum group in [7].

Consider a quasi-triangular Hopf algebra (A, R) [6] consisting of an Hopf
algebra A over the ring K = C [ [ / ι ] ] , and an universal fi-matrix Re A® A that
relates the two coalgebra maps A and T°Δ:

ToΔ{a)R = RΛ(a), VaeA. (7)

Let there be an algebra representation of A in an n dimensional K-module K,
p:A^End(V)^ Mat(n,X). The individual matrix elements pu define a mapping
Pi/.A^K via the evaluation a-+(ρ(a))ip and hence PijEA\ the dual of A. The pi}

will generate an Hopf subalgebra of A which will be denoted by A(R\ following
[7]. The Hopf structure oϊA(R) is induced from the Hopf structure of A by duality,
the coalgebra being given by:

(Δpφ a®b)= (pij9 ab) = £ ρik(a)pkj(b).
def k
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The fact that p is an algebra representation is necessary here, in order to expand
the product of two elements of A. Since α, b are arbitrary, we deduce that:

ΔPij=ΣPik®Pkj- (8)
k

To derive the algebra structure, we shall exploit the fact that A is quasi-triangular.
From (7) the universal R-matrix relates the two coalgebras of A, the very structures
that induce the commutation relations of the dual:

PijPkM = Pij ® pkι(Δa) = pkl ® p^To Aa) = pkl ® p^RAaR ~ι).
def

Now use the coalgebra structure (8) to expand the multiplications:

PijPkM = Pka ® Pic ® Pab ® Pcd ®Pbl ® Pdj( l

where Rp =p®p(R), an n2 x n2 matrix of End(K® V). A summation on repeated
indices is implied. This simplifies on defining a matrix p which is valued in the
dual, pe Mat {n,A') by (p)ιJ = p ί 7. Then in an obvious notation, [7] we obtain:

(9)

The coalgebra can be expressed in the form Δ(ργ) =pt®Pi£Mat{n,Af®A'\ the
subscript labelling the endomorphism space.

Consider the case when the Hopf algebra A is the quantised Lie algebra Uqsl(n)
and the representation p is the fundamental representation. From the Peter and
Weyl theorem, the fundamental representation generates a dense subspace of the
function space Fun (Sl(n)% with a determinant constraint on the generators. Thus
we can define the quantised function space Funq(Gl(n)) as the bialgebra A(R), and
¥unq (Sl(ή)) as the quotient Hopf algebra, defined by introducing a quantum
determinant constraint [6, 7, 13]. We denote the generators of Fun^(G/(n)) by
{l,ί0}, reserving p for the representation.

2. Borel Subalgebras and the Quantum Double

The Borel Hopf subalgebras of the quantised algebras Uqg will be discussed in
this section, emphasising the various isomorphisms between the Borel subalgebras
and their duals. This analysis introduces the important observation that the Hopf
algebra4 Uqb°+ used in the construction of the quantum double D(Uqb + \ [6] can
be realised as the Hopf algebra Uqb'_. This essentially fixes the coalgebra
anti-isomorphism Uqb'+ -• Uqb°+ used in the quantum double construction [6].
Hence the quantum double D(Uqb + ) is isomorphic, as a C[[/ι]]-module, to the
tensor product Uqb+ ® Uqb'_.

First consider the following theorem that relates Hopf subalgebras and biideals5:

4 Here Λ° denotes the dual Hopf algebra A' to A, with the comultiplication reversed relative to that
induced by duality
5 A multiplicative ideal / that is also a coideal, i.e. Δ(I)czI®A+A®I
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Theorem 1. Given an Hopfsubalgebra B of an Hopf algebra A over the ring K, then
the annihilator space:

is an ideal and coίdeal with quotient:

Proof. The annihilator space B1 is obviously a K-submodule. The ideal structure
of B1 is considered first. Let χeB1, ζeA', then:

χζ(B)=χ®ζ(ΔB)=0 since ΔBc:B®B.

Hence χζeB1. Similarly for the reversed product ζ χ. So B1 is an ideal. It is
required to show that for χeB1, Δ(χ)eB1(S>Af +A'®BL. So it is sufficient to
evaluate this ona®b, for a,beB. This is zero as required since B is a subalgebra,
i.e. a-beB. Since B1 is a biideal, the quotient is well defined as an Hopf algebra.
This can be proved to be isomorphic to the dual Hopf algebra B' by considering
the evaluations on B.

The alternative situation where B is an Hopf ideal of A also follows by similar
considerations.

This theorem can be applied to the quantised Lie algebras Uqg. The Hopf
subalgebras of most interest are the Borel subalgebras. The Borel subalgebras are
denoted Uqb+, and are generated by {l,HhX^} respectively. They induce the
following quotient structure on the dual:

This quotient structure implies that if Uqg' is quasi-triangular, then the Borel
subalgebras Uqb+ are also quasi-triangular. However, the Borel subalgebras are
only pseudo quasi-triangular, i.e. there is an universal /^-matrix but it is valued
in an embedding Hopf algebra, Uqg for example, [4, 6]. Thus we deduce that Uqg'
is not quasi-triangular. This has important implications in Sect. 3. Similar reasoning
applies to the dual of the quantum double, Sect. 7, since the Hopf subalgebras
Uqb + c D(Uqb + ), Uqb'_ a D(Uqb+ ) induce a similar quotient structure to that
in (10).

Consider a general algebra anti-isomorphism, coalgebra isomorphism 3 of Uqg
that interchanges the Borel subalgebras:

For example: //,-->/ίi,Λ'/
± ->Xf. On the dual Hopf algebra, the morphism S

induces a coalgebra anti-isomorphism, thus reversing the comultiplication:
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where: S'ζ(a) = ζ(Sa) for all aeUqg, ζeUqg'. On taking the quotient with π * we
induce an Hopf isomorphism (anti-coalgebra) S':Όqb'±^Όqb'τ. Hence Uqb\^
Uqb'_ as Hopf algebras. Thus the two Hopf subalgebras of the quantum double
D(Uqb + ) can be taken to be Uqb+ and 9f(Uqb'+) = Uqb'_. Hence, introducing the
dual bases {ζs}eUqb + 9{ηs}eUqb

f

+, a basis for the quantum double D(Uqb + ) is
{Cs® ^'fa')}* [6] with the universal K-matrix given by the canonical element of
Uqb+®Uqb'_, [6]:

The inverse of the universal Λ-matrix is, [4]:

R). (12)

The symbols S and So denote the antipode and skew-antipode respectively [1].
In the rest of this paper, the two maps 5,3' will be understood as restricted

to the Borel subalgebras:

3:Uqb_-+Uqb+, 9':Oqb'+^Uqb'_. (13)

Recall that the universal K-matrix for Uqg is obtained via a quotient mapping
π:D(Uqb + )^>Uqg [6], that can be taken to satisfy π\Uqb+ = 1 [4]. The resultant
K-matrix for Uqg is independent of the isomorphism 3\ a change in S' being
compensated by a change in the quotient map π.

3. Representations of the Dual Uqg'

It is desired to reformulate the Hopf structure of the quantised algebra Uqg into
a matrix form similar to that achieved for the quantum group in Sect. 1. Hence
a representation of the quantum group Uqg' is required. This guarantees the
coalgebra relation (8). However the formulation of the algebra into a matrix
equation similar to (9) cannot be accomplished until an universal Λ-matrix is
introduced. Since Uqg' does not possess an fl-matrix, Sect. 2, it is necessary to find
an homomorphism of Uqg' into a quasi-triangular Hopf algebra. The chosen algebra
is Uqg, this giving us compatibility with the matrix formulation of the quantum
group Uqg

f in Sect. 1.
Given a representation p:Uqg->End(V,K) we can construct a representation

of Uqg' (more strictly a representation of the QUE algebra equivalent, [6]) by
taking the quotient to the Hopf algebras of (10) and using representations of Uqb + .
However, since the Hopf algebras Uqb± are only pseudo-quasi-triangular, [4] it
is necessary to use a representation of Uqg in which the Hopf algebras Uqb+ are
embedded, this giving access to an universal R-matrix. We define the two
representations σ± =p°φ±°π± of Uqg'. Here φ± are algebra homomorphisms of
Uqb

r

± into Uqg, with coalgebra properties to be determined. As before the individual
matrix elements are elements of the dual, i.e. σf. e Uqg. Since the maps σ± are
representations we have the coalgebra structure (compare to (8)):
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To define the homomorphisms </>*, we observe that the generators σf.eΌqg can
be expressed in a form reminiscent of the universal R-matrix of Uqg:

ξseUqb±

= lά®pijoφ±( (14)
ξseUqb± J

Here the following dual bases have been defined:

{ξs}sUqg, {ξ°}eUqg',

for the index s in some suitable index set.
The projection operator π± reduces the sum over the basis of Uqg' to that

over Im(π±) = Uqb
f

±9 implying that σf.elJqb±. In this expression the paired
elements are dual: π±ξs(ξt) = δs

t. Thus the term in brackets is very similar to the
universal K-matrix of D(Uqb + ), (11). The representations are chosen to maximise
this identification. If we choose φ+ =πoι9 /, we obtain from (11), (14):

σ+=ld®Pij(RUqg)eUqb + . (15)

Hence the representation φ+ is equivalent to the sequence of maps:

where the first map is given by evaluation on the first position of R.
The second representation σ" is more difficult. It involves the algebra

anti-homomorphism 3 as follows:

Uqg' - ^ Uqb'_ - ^ U q b + - U Uqg-2-End(F,K)

Fig. 1

i.e. φ~ = π°S°3. The Hopf algebra Uqb+ has been embedded in the quantum
double, which allows us to use the quotient mapping π:D(Uqb+)-+Uqg.This leads
to the identity mapping in Fig. 1 since π\Uqb+=l [4]. The antipode has to be
included to obtain an algebra homomorphism. The only other canonical
anti-algebra homomorphism is the skew antipode. It is observed that σ~ is defined
with the algebra anti-homomorphism 9 (13) acting on the quotient Hopf algebra
Όqb'_ (10). However this Hopf algebra is isomorphic to Uqb__. In fact, by using
the dual to the quantum double, Sect. 7 the roles of Uqb_ and Uqb'_ are
interchanged.

Since (S'~1ξs,3ξt)=(ξs,ξ
t) = δt

s, the matrix of generators σ~ can be verified
to be (using (12), (14)):

σ~ =Pij®ld(R^g) = Pij®So(RUqg)eUqb_. (16)

Note that the evaluation structure between the matrices t and σ is that of [7]:

(t,σ+) = R», (σ-,t) = R'-1. (17)
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The two homomorphisms σ± have now been constructed, with the embedding
homomorphisms:

φ+=πo3\ φ-=πoSo3. (18)

Note that both φ± are coalgebra anti-homomorphisms since they contain 3' and
the antipode S respectively. The various homomorphisms can be summarised in
the (non-commuting) diagram:

Fig. 2

All the maps are available from the quantum double construction. The map 9 is
arbitrary, it is only required to be an anti-algebra isomorphism and coalgebra
isomorphism such that it exchanges the Borel subalgebras 9:Uqb+^>Uqb+. The
above combinations of maps are independent of 9 up to the arbitrary isomorphism
n\Uqb+. This is proved in Sect. 7. This can also be deduced from the expressions
(15), (16). Note that since Uqg' is not isomorphic to Uqg, any Hopf homomorphism
Uqg'^>Uqg has a non-zero kernel, which is a biideal. The possible biideals
correspond to the following Hopf subalgebras of Uqg:Uqh, Uqg (g subalgebra of
g) and the Borel subalgebras (of g and g). The Borel subalgebras Uqb+ produce
the maximal subalgebras of Uqg that can be generated by the above construction
involving representations.

The multiplication structure satisfied by the generators σ ± can now be deduced.
We can proceed in two ways. Using the definitions (15) and (16) in terms of the
universal K-matrix, we can use the QYBE equation to derive (6). This is carried
out in [3]. Alternatively these can be derived totally in terms of the representation
structure of σ±. This course is pursued here. Hence by duality we have:

Since φ±oπ±ζeUqg, the existence of an K-matrix may now be used to deduce a
matrix form of the algebra structure. The calculation is identical to that in
Sect. 1, with the inverse of the Λ-matrix occurring where the R-matrix was used
before. The Hopf structure of the generators σ ί e Uqb + can now be expressed as:

If the fundamental representation of Uqsl(ή) is used, then the Borel subalgebras
Uqb+ are generated6 by {l,σΐ}. This follows from (15), (16) since the fundamental
representation is faithful on the Chevalley generators, and the universal K-matrix
of D(Uqb+) is the canonical element of Uqb+®Uqb'_, [6]. The Borel subalgebras

6 As defined by Jimbo [10], i.e. only the combination /c, = qHi'2 occurring
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are generated as QUE algebras [6], since in the classical limit σ ± -> / + hη ±

9 where
η ± are matrices of generators for the Lie algebra sl(n).

The commutation relations between the two sets of generators σΐ still has to
be derived. These are more difficult than the calculation of those within the two
sets, and their form depends upon the choice of the representations σ± =p°φ±oπ±.
Compare with the previous result where Rp

2ι
σtσt = σ t σ i ^21 depends only on

the morphisms φ± (18) being algebra homomorphisms, coalgebra anti-
homomorphisms. The following result is proved in Sect. 7:

R2iσtσϊ = σ 2 σ i R i v w h e r e Rp

2ί=P®p(T°R). (20)

The equations in (19), (20) are the Hopf structure given in [7], for U(R) (6). The
duality structure in (5) is also reproduced from (17) and the coalgebra relations in
(19).

4. Quantum Determinants and Constraints on Generators

In this section we restrict our analysis to the quantised algebras Uqsl(n) with p its
fundamental representation (42). We consider the definitions of the generators {ti}}
and {σΐ}, Sect. 1, (15), (16) and the constraints on these generators that are imposed
due to the form of the universal R-matrix and the quantum determinant condition
on the representation p. The occurrence of the constraints in the quantised function
approach of [7] through the definition (5) is also considered, ultimately being a
consequence of the algebraic relations satisfied by the K-matrix in the fundamental
representation, (23). The determinant constraint on the quantum group must be
imposed to obtain the correct duality. For the fundamental representation (42), p
satisfies no further conditions; hence A(R) and U(R) are dual, [7].

The diagonal parts of σ + and σ ~ are only affected by the coroot prefactor of
the universal R-matrix; this having a form [6, 2, 14]:

Since the diagonal parts (15), (16) only differ by an antipodal action, we obtain
the constraint [7]: σ7. = σ ΐ " 1 , *e[l,n], since £(//,) = -Ht.

All other constraints are consequences of the quantum determinant condition
satisfied by the representation p. The quantum determinant can be expressed in
terms of a quantum Levi-Civita symbol:

13 '" [O otherwise.

Here {//7c..} denotes a permutation of the integers 1.. .n, Sn the permutation group
on n objects, and l(ij, k..) the length of the permutation, i.e. the number of inversions
to reach {1,2,3..}. For example, if n = 3 then /(3,2,1) = 3.

The quantum determinant is expressed in the form:
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or

ί 1ί 2 . . .ί J lί2 = det ί(ί)A (21)

by defining a vector Ω in VΘ{n)'Ώiii2 in=εq

iιi2 in. We note that this definition
for the quantum determinant is specific to the Hopf structure in (4) with the Uqsl(n)
K-matrix in the fundamental representation, (42), i.e. K-matrix (51). The appropriate
definition for other representations and quantum groups are most easily treated
using the comodule structures of [12, 13]. These will not be discussed.

Consider the bialgebra Funq(Gl(n)) generated by {1,^-} satisfying (4) with the
matrix R in the fundamental representation of Uqsl(n). Then the quantum
determinant, as defined by (21), has the properties:

1. Group like [1]:

Λ(det, (ί)) = det, (t) ® det, (t) e Fun, (Gl(n)) ® Fun, (Gl(n)).

2. Multiplicative, for commuting generators; s±t2 = ί 2

5 i :

det, (s-t) = det, (s) det, (t) e Fun, (Gl(n)) <g> Fun, (Gl(rή).

3. Invariant under transposition:

det,(ί Γ )=det,(ί).

4. Lies in the centre of the bialgebra Fun,(G/(π)), i.e.:

[det,(ί), ί l 7 ]=0.

Note that the matrices s-t and tτ satisfy Eq. (4) as required for the quantum
determinant to be well defined. Properties 1 through 3 follow from the definition
(21). Property 4 is a consequence of the quantum determinant condition on the
representation p used for the K-matrix in (4):

det» = l. (22)

This is the quantum generalisation of the determinant condition for a
representation of Sl(ή). Note that p satisfies the algebra (4), Sect. 1. Equation (22)
follows from observation [6], using (21), (42).

Relation (22) introduces four algebraic relations on the K-matrix in the
fundamental representation. For example, consider the combination:

Or:

Here we have used the duality between multiplication in Uqsl(n)' and
comultiplication in Uqsl(n\ and the quasi-triangular and counit properties of the
universal R-matrix [6]:

Δ®ld(R) = R13R2\ ε®Id(Λ) = l.

There are three similar equations with contraction of the ε tensor on other indices.
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All the determinant constraints of [7] are consequences of these algebraic relations
and definition (5).

Consider the commutation of the quantum determinant with the t generators:

= (RUn+ lR2,n + I* Rn,n + l ) ί

W + l ί l ί 2 ' 'Λn

(Rl,n+ lR2,n + 1' "Rn,n+l)Ωl..n

= tn+ίdctq(t)Ωίn.

The second line follows on using the algebra (4), and the last line from the
eigenvector equation (23). Hence we deduce the commutivity: [det^ (ί), ί y] = 0. Since
detq (ί) is also group-like, det^ (ί) — 1 defines a biideal, and hence the quotient is well
defined as an Hopf algebra. This is F\mq{Sl(ή)). The necessity for taking this
quotient in the work of Faddeev et al. [7] is a consequence of the evaluation
structure in (5), and the algebraic relation (23):

Hence (det^ (t) — 1, σ +) = 0. Similarly for σ ". Thus we must set detq (ί) = 1 to obtain
the correct duality structure. Similarly for the quantum determinant constraints

==(Rn+ ί,ίRn+ 1,2* "Rn

— Ωqi ϊ

Similarly for the matrix σ~. Hence definition (5) imposes the determinant
constraints. In contrast, these determinant constraints are transparent from the
viewpoint of our construction, since the generators {ί0} and {σΐ} are defined in
terms of the representation /?, Sect. 1, (15), (16) respectively. Since {ί0} are defined
directly from p, we obtain det^(ί) = l. By definition σ± =p°φ±oπ±; hence we
deduce:

{is)eSn

= ( Σ (-4)ms])PninPn-un-r--Puι,Φ
±°π±(a))

Hence:

d e t f - . ( σ ± ) = Π σ ± = l , (24)
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using in the second expression the fact that σ 1 are triangular (valid for a
representation taking the Borel subalgebras to triangular matrices). Notice that
the determinant is defined with a q~x relative to (21). This is consistent with the
differences in the algebra relations in (9), (19) since Rp(q)~ι =Rp(q~1).

Finally, note that the antipode is intimately related to the determinant
constraints, an antipodal mapping not existing in Fun9 (Gl(n)). However Funq (Sl(n))
has an antipode, since the dual is an Hopf algebra. In the matrix format, the
antipode is defined by [7]:

S(t)'t = t'S{t) = I. (25)

This implies7 that detjί)~* = detfl(S(ί)). However since the only invertible element
in Funq(Gl(n)) is the identity, we must quotient by det^(ί) = 1 if an antipode is to
exist. Equation (25) also implies that S(t) = t[0, a relation given in [7], where:

\tco)kj ==( — (l) €jiι..im-ιiίir 'h- lik- ih+ lik" -tmim- i

Here t^ denotes the comatrix of ί, i.e. t with row k and column j removed.

5. Borel Structure Isomorphisms

In this section the matrix format (6) of the Hopf structure of the quantised algebra
Uqsl(n) will be discussed, demonstrating the incorporation of the Borel structure
of Uqsl(n) and the quotient structure of Uqsl(n)' in the matrix formulation. The
representation is assumed to take the Borel subalgebras Uqb± to upper and lower
triangular matrices respectively.

The generators σ^,σj generate isomorphic subalgebras. This is demonstra-
ted by matrix transposition. Since σ + and σ~ are lower and upper triangular,
transposing is expected to produce some type of isomorphism. We have
R\2

Tl =R2i> where Tf is transposition in position i; hence:

or

2 1 1 2 2 1 21*

Since the determinant conditions, (24) are also invariant under transposition, matrix
transposition induces an algebra isomorphism σ~τ-^σ+. By considering the effect
of transposing the coalgebra relation Δσ^ =Xσ^(χ)σ f e], it can be proved that this

k

is also a coalgebra anti-isomorphism. Due to this isomorphism, only the
commutation relations for σ + need to be evaluated. The algebra relation
R2iσΐσϊ = σ 2 ~ σ ^ 2 i *s invariant under matrix transposition; hence the
commutation relations must be invariant under the transformation of generators
implied by σ~Γ<-»σ+. This transformation corresponds to the algebra isomorphism,
coalgebra anti-isomorphism //f-> —Hh Xf -+ —q±1Xf.

1 A proof of this fact is not as obvious as it would appear from (25), since S{t) and t do not commute
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By Theorem 1, we know that the Borel subalgebras induce a quotient structure
on the quantum group, as given in (10). This structure can be demonstrated in
the matrix format. The strictly lower triangular terms of the t matrix generate the
biideal Uqb+ (valid for any representation taking Uqb+ to upper triangular
matrices). The biideal property can also be deduced from the form of the K-matrix
(51), and the coalgebra relation in (4). Taking the quotient with Uqbi sets the
strictly lower triangular terms to zero. By transposing and acting with the antipode,
(or skew antipode) we obtain the σ+ Hopf structure (6), i.e. Uqb'+,Uqb+ are
isomorphic as Hopf algebras (the homomorphism involves two coalgebra anti-
homomorphisms). Similar reasoning applies to the strictly upper triangular terms.

6. An Example: Uqsl(2)

The quantised algebra Uqsl(2) is generated by the generators {1,H9X
+,X~} with

the Hopf structure given in (2). In this example we shall construct the quantum
group and express the commutation relations of Uqsl(2) in the matrix form (6).
This involves constructing the matrices σ±eMat(n, Uqb±) (15), (16). The
fundamental representation will be used [6]:

P(H) =
,0 - 1 ,

The universal K-matrix has a form [6]:

p(X-) =

- )• (26)

The dots indicate irrelevant terms since they project to zero under the represen-
tation; p(X±n) = 0 for n > 1. The universal Λ-matrix in this representation can be
proved to be:

(27)

This differs from the expression in [7] due to a different choice of representation,
see (29). From Sect. 1 we have the following Hopf structure for the generators tVj

of the quantum group:

q
0

0

0

0
1 (
0

0

0
q-q'1

1

0

0

) o
0

a

Expressing the t matrix as: t =
k'

I, the Hopf structure reads:

kW± =q~1W±ki k'W± =qW±k\

W+W~ = W~W+.



Quantised Algebras and Quantum Groups 105

ΔW+ =W+®k'+k®W+,

ΛW~ = W~ ®k + kr® W~.

Compare this to the Uqsl(2) Hopf structure in (2). The quantised function space
Funq(Gl(2)) is generated by {l ,ί 0 }, and the quantum determinant constraint
quotients this to the Hopf algebra Funβ(S/(2)):detg(ί) = kk' -q~1W+W~ = 1.

The Hopf ideals Uqb± can now be constructed. Observe that the following
elements generate the Borel ideals:

hk'-\,k'k-\,W-eUqbi,

k'k?-l9k?'k-l9'W
+eUqb±.

Hence the following quotient structure is obtained for Uqb'+:

k'=k~\

kW+ =

Δk =

ΔW+ =

This is isomorphic to the Hopf subalgebra Uqb+ under the identification k = q~H/2,
W+=X+. The combination k occurs instead of H, corresponding to the
quantisation of the Lie algebra s/(2) as defined in [9]. This isomorphism is
transposition and antipodal action as discussed in Sect. 5. A similar analysis holds
for υqb'_.

The matrices σ± will now be constructed from the definitions (15), (16). Using
the universal R-matrix in (26), the following can be verified:

qm 0 \ -Jq qiqq^XΛ
q-^X* <ΓH/V ° \ 0 q^2 J {

The Hopf structure of Uqsl(2) can be reproduced from the formulae (6), using (27).
Observe that only the combination qH/2 occurs and not H itself. It is interesting
to observe that with this combination it is unnecessary to go to the enveloping
algebra, since the commutation relations close. This is also true of Uqsl(3), but
not for the higher dimensional Lie algebras Uqsl(n). This is due to the commutation
relation, (52):

adqea'eβ=eaeβ-eβea=(q-q-1)eγei+β,

which produces a product of generators. In this commutation relation the roots
α, β are such that α 4- β is not a root and there exists a non-zero overlap of simple
roots in α, β and no inclusion. Hence three or more simple roots are required. The
notation is further explained in Sect. 8.

Instead of the fundamental representation p, any other representation may be
used. Of greatest interest is the representation p' defined by:
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where alpha is an arbitrary constant. This is related to the fundamental
representation by p' =pτ°So for the specific value α = — q~x. Notice that two
algebra anti-homomorphisms are involved, transposition and the skew-antipode.
A direct calculation of σ ± is unnecessary since the results for p can be employed:

Similarly σ~' =S{σ~)τ, and so the following matrices are obtained:

0 QHI2

The q factors can be removed by a renormalisation X± -+β±1X±, for some
/?eC[[/ι]]. The Λ-matrix for this representation is:

RP = pτ (x) pτ(RUqSl{2)) = p® p(Jo R\

since S o ® So(RUqSl(2)) = RUqSl{2r

This is the structure given in [7], under an appropriate change in normalisation
oϊX±.

7. The Dual to the Quantum Double

The dual to the quantum double is introduced in this section since there exists a
basis of this Hopf algebra that is particularly suited to the quotient structure
induced by the Borel subalgebras of Uqg. The dual to the quantum double is also
important since it allows us to prove that the quantum double itself can be
constructed from the dual algebra Uqg

f. This establishes that the constructions of
σ± are consistent, i.e. that they are independent of the arbitrary isomorphism 9'.
The remaining commutation relation between σ + and σ~ (20) is derived in this
section.

Recall that the quantum double D(Uqb + ) has two Hopf subalgebras
Uqb + , Uqb'_ and a quotient mapping to Uqg. If we denote the dual to the quantum
double by D'(Uqb + ), then Theorem 1 implies that D'(Uqb + ) has the following
structure:

Quotient Structure:

Hopf Subalgebra Structure:

Uqg'czD'(Uqb + ).

Here the quotient maps π± are understood as those corresponding to the ideals
of the quantum double. These quotient homomorphisms will not be distinguished
from those corresponding to Uqg

f. The quotient structure of Uqg\ (10) is induced
on restriction to the Hopf subalgebra Uqg' of D'(Uqb+).
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Note that due to the original isomorphism Uqb+®Uqb'_^D(Uqb+) (as a
C[[7t]]-module), Sect. 2, the projection π~ takes D'(Uqb + ) to Uqb_.

Define the following dual bases:

{ηs}eUqb'+, (η\ζt)=δ%

{ηs}eUqb_, {ζs}eUqb'_9 (ζ'9ηt)=δ%

where

H (30)

The quantum double D(Uqb + ) has a basis {ζtζ
s}8, since it is isomorphic (as a

C[[/i]]-module) to the tensor product Uqb+ (x) Uqb'_. D'(Uqb+) is isomorphic (as
a C[[/ι]]-module) to the tensor product Uqb'+®Uqb_<=(Uqb+®Uqb'_)'; hence
a suitable basis for this algebra is {f/'tyj, where the elements η\ηs.ha\e their
definitions extended to:

We also note that η° = η0 = 1 is the identity map. This definition is dual to the
process of embedding Uqb+,Uqb'_ in the quantum double D(Uqb+) as Hopf
subalgebras.

The chosen bases are dual, that is:

In passing we note that the following Hopf structure holds in D'(Uqb + ):

1. η^η* have an identical algebra structure to the analogues in Uqb_9 Uqb'+,
2. ηs, η* commute,
3. the coalgebra structure of ηS9η

f is the same as that in Uqb_, Uqb'+ only on
projection by the appropriate ideal.

Observe that the complications in the Hopf structure are now in the coalgebra,
while those in the quantum double are in the algebra, (35) and [6].

The Hopf ideals can now be explicitly written down:

In particular: ηsφUqbi,ηsφUqbi. Thus the quotient structure is:

n + (η%)^δQtη\ π-(η%)=δOsηt. (31)

The following diagram is commutative:

Uqb+cJ—>D(Uqb + )

ϊ \

8 This is shorthand for the more clear expression {ζt®ζs}
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The map i is a duality map, taking an element to its dual. For example, for the
Borel Hopf algebra Uqb+, ι:ζs-+ηs. Hence we obtain: ι°π+(ηs) = ζs. But we also
have: 9°π~(ηs) = ζs from (30) and (31). This implies that if we define an algebra
anti-isomorphism on the dual D'(Uqb+) by:

then the following diagram is commutative:

•I

Fig. 3

Hence the following is equivalent to the quantum double construction:

uqg' -^υqb_-^ uqb+ - U uqb'+ -£-» u.b°+

Fig. 4

The two mappings produce the dual bases {9°π~(ηt)}, {9f°π+ °ϊ{ηt)} for the Hopf
subalgebras Uqb+ and Uqb°+ of D(Uqb + ). Since the Hopf homomorphism
π:D(Uqb+)-+Uqg is unique once π\v b+ is given, [4,6] we deduce that the
combinations πs°9°π~ and πs°9'°π+ are 9 independent, (up to the arbitrary
isomorphism π\v b+). The notation π9 stresses the 9 dependence of π. Recalling
that σ+ =π i 9 °ι9 / °π + and σ~ =S°π&

o9°π~ implies that σ± are independent of 9,
a conclusion also indicated in Eqs. (15), (16). This ^-independence (up to the
arbitrary isomorphism n\v b+) is necessary for the construction to be reasonable,
since 9 is not intrinsic to the quantised algebra Uqg.

The algebra structure of the σ± generators will now be derived from D'(Uqb + ).
The representation p is extended to a representation of the quantum double
p:D(Uqb+) ->End(K, K) such that p quotients through Uqg. The starting point is
the definition of multiplication in the dual:

( - ) VηeD'(Uqb + ). (32)
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Hence the commutation structure of σ± can be obtained by relating Δη and
T°Δη for a general element ηeD'(Uqb + ). Since the action of the projectors π± is
known on the base elements (31), we shall expand Δη as:

Δη = (ΔηΛqζ*>® ζtζ
s)η*ηp® ffηM. (33)

By acting on the objects in (33) with the two homomorphisms S'°π+, S°3°π~,
mapping D'(Uqb+)-^D(Uqb+\ we obtain:

d'°π+ ®S°3oπ-(Aη)=η(ζqζ
s)ζq®S(ζs)9 (34)

because from (30), (31): SΌπ

 + {η°) = ζseUqb'_, 3oπ-(ηs) = ζsGuqb + . The matrices
m,μ are the matrices of multiplication and comultiplication for Uqb+. Since
Δ{ζv) = mv

tqζ
q®ζ\ Δ(ζv) = μpsζp®ζs (from duality), the first two relations can be

manipulated into a coalgebra form:

η(ζv)ToΔ(C), η(ζu)Δ(ζu).

Returning to (32), the universal K-matrix can now be used to obtain the results
in (19). For the mixed algebra relation, (20) it is necessary to consider the
commutation structure of the quantum double, since we are required to relate the
elements ζqζ

s,ζuζv. The commutation relations of the quantum double, between
elements of the Hopf subalgebras Uqb + , and Uqb°+ can be expressed in terms of
the matrices m, μ as [6]:

<PtfTCv=μΓ™rMs (35)

Hence we multiply the expression η(ζqζ
s)ζq ® S(ζs) in the third relation of (34) by

appropriate terms in order to generate the m, μ matrices required in (35). So:

η{ζqζ')ζq ® S(ζs)'(ζw ® SζJ = iί(μfw <.CfCβ)Cr ® S(ζr)

Note that the occurrence of the antipode is necessary, such that the indices are in

the correct order. On observing that R~x =S®ll Σζs®ζs I (12), we return to
(32) to obtain: V s '

(σ + σΰ,>ί)=(Py®pw,ToΛ-i(5/oπ + ®Soβoπ-(Γo4ι/))ΓoΛ).

Thus on rearranging as in Sect. 1, using the fact that p is a representation and
that η is arbitrary, the structure:

is obtained, as quoted in (20).
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8. The Quantised Lie Algebras An

The Universal R-matrices for the quantised Lie algebras9 An are derived in [2]
and [14]. Hence the Hopf structure of Λn can be expressed in the matrix form (6)
by the construction of Sect. 3. In [2,14] a system of generators for An based
on the full root system of An is defined, this being contrasted to that of [6,10]
which only use the simple roots. This system of generators occurs as the matrix
elements of σ±, and the relations (6) allow all the commutation relations to be
systematically derived. The fact that all the commutation relations are of the form
of the adjoint structure, (36), as defined in [2], shows that this adjoint structure
is sufficient to describe the algebra structure of An, and justifies the original
definition.

The definitions of [2] will be summarised here for clarity:
Let Φ+ denote the positive roots.

The positive roots are ordered by the length of the minimal word in the Weyl
group needed to generate it from the end root of the Dynkin diagram; ocv The
length of the word for the root α = £ α se Φ + , j ^ i, is μ(α) = (j + i) — 2.Sθ(x<β
if μ(α) < μ(β). "ZW

The generators in each Borel subalgebra are ordered by the corresponding
roots: Pa<Oβittot<β,PΛ,Oβ two arbitrary generators corresponding to the
positive roots α, β.

Define the ordered products: Π » Π > ' where the <, > denote an ascending
and descending order of generators respectively, when read from left to right.

The adjoint map is defined by:

adqPxO^PxOβ-q^OβPx, (36)

for oc<β, with the anti-symmetry condition ad q P α O/ 3= — ad q0^ Pα. The
generators eh /, will be employed, the index i corresponding to the simple roots
of g. These are related to the generators used in the introduction and most of the
literature by [2]:

The following generators are then defined (for each positive root α) by:

ex= ΓΓ (ad,es)e,,/a= f Γ (ad,/,) /,. (37)

j

The generators ea,fΛ corresponding to the root α = £ αs (for i ̂  j, αs simple) are
s = i

denoted by eψfβ respectively. The order of the indices is suggestive of the
definitions (37). Note that in this notation eii = ehfii=fi. We shall also employ

the definition Hu = £ Hs.

9 With an abuse of notation, the symbol Λn will denote the quantised object corresponding to this
Lie algebra, i.e. Uqsl(n + 1)
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The universal K-matrix for An takes the form [2]:

with:

Here αtJ is the Cartan matrix and λ=l — q~2. Eqisa ^-analogue exponential. The
universal K-matrix can also be expressed with the generators in a reversed order
[2]. This form will be important for calculating the matrix σ~ (50):

Π X ^ ; ) (39)

This is proved from (38) by recalling that the antipode S is an algebra
anti-homomorphism and using the relation S®S(R) = R. The (skew) antipode
does not preserve the adjoint structure (36); hence it is necessary to define an
alternative definition of the adjoint action. Define [2]:

2Ld'qPa'Oβ=PaOβ-q-^OβPa, a<β. (40)

This differs by a q^q~x transformation from the previous adjoint definition (36).
The following system of generators is an alternative set to (37):

< = Γ Γ (**;«.)•«*/:« = ΓΓ (ad;/.)-/,.
se[ij-ί]

The following can be proved by induction:

S(ea) = -q2q-H*e'a, S(fΛ) = - < Γ 2 W ; , (41)

for αe Φ + , the sum of m + 1 simple roots.
The fundamental representation of Uqsl(n + 1) will be used [6]:

u, (42)

where E^ is the matrix with value one at position ij and zero elsewhere. It is
necessary to evaluate the representations of ea9fa. Noting that Est Euv = δtuEsv,
these can be calculated to be:

The matrix σ+ eMat(n + 1, Uqb+) is defined as (15): σί =ld^ρij(RAn). Once this
is evaluated the Λ-matrix in this representation can be obtained by Rp = p(σ+).
The most difficult part of evaluating σ+ is the treatment of the coroot dependent
prefactor of R (38):

( ^ 7
\ 2 ij

For this it is required to know the inverse of the Cartan matrix. The only property
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that we require is that:

This is valid for all ij = 1 to n + 1. (Take a " 1 = 0 and a~n

1

+ί = 0).
y h \

Using this equation we may proceed to calculate Id ® p ( exp - £ αfτ* i/. ® ff7 I:

0 = 1

n Λ + 1 π i n

= Σ Σ (V—ji.Wϊ,,- Σ H. Σ ^ - Σ
1 l l i l j i

I

/ is the identity matrix. Define the matrices /, = ^ ^jj- Hence we have:
7 = 1

f //Axpf-ξ f ^ -

- " Σ ^ T Π^(Λ (43)
2/=in + l / s = 1

The matrices Ks have been defined as: Ks(x) = I +(x — l)/ s. They are diagonal
with x in the first 5 positions, and 1 in those remaining.

Returning to the universal /^-matrix, (38), we can now complete the calculation
of the matrix σ+ by projecting in the second position the non-coroot part to the
representation space End(K):

<xeΦ+

= ' + Σ ^ V / 2 ( " J + % £ , + !,,•• (44)

It is essential that the generators are in an ascending order such that no cross
terms occur in expanding the product. Compare this to the K-matrix in the form
(39), used in the calculation of σ~, which would generate cross terms.

Collecting together the results (43) and (44), the matrix σ+ can be evaluated.
It takes the form:

s=l

It is advantageous to define the following combinations of elements due to their
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occurrence in the matrix σ + :

- v iHi v H - v '
L . L s j 4 L M , i

ωk=q «•=! qs=k , k = l..n, a n d ωn+ί=q ί = i . (45)

This allows the coroot dependent part to be written as:

The matrix σ+ now takes the form:

σ+="ΣωkEkk+ Σ λqiW-'+1>ωJ+1eljEJ+u. (47)

The elements ωfc have the following algebra:

Mktkt = Qektωk, ωk+ιesk=q~1 eskωk + χ,

ω Λ e s ί = estωk if sφk,t + \φk, (48)

and a similar algebra under the transformation: est-+fts, ωk->ωk

ι.
Now consider calculating the matrix σ~. The starting point is the expression

(39) for the universal /^-matrix, since this avoids the production of cross terms
when expanding the following product:

αeΦ +

= I-qλ Σ ^'2U'i+1)S(fji)EiJ+v (49)

The expression (16) for σ~ implies that the quantity of interest is p®\ά{R\ Using
the above formulae (49) and (46), this becomes:

p®\ά{R)Jl-qλ
\

= ΣωkEkk-qλ
k = l

We now deduce by operating with the antipodal map that:

Σ (50)

The only remaining calculation to complete the matrix formulation of Uqsl(n + 1)
is to find the K-matrix in this representation. The easiest method is to use the
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expression (47) for σ+ and Rp = p(σ+). The various components are:

and thus:

p( Π Ks(qHs))=I®I+(q-\) Σ E
\s=l / k=l k=l

Throughout this calculation the element En+ln + 1 has to be treated separately.
However this asymmetry cancels to give the final result:

iq-q-^ΣEtjΘEjX (51)
i<j /

This was quoted in [2] and also given in [6].
To summarise: the universal K-matrix for Uqsl(n + 1) (38) is used to construct

two triangular matrices valued in Uqsl(n + 1), defined by (15), (16):

RAnl σ

These are found to have the form (47), (50):

σ+="ΣωkEkk+ X λqM'
k=l l^i^j^n

where ωk is defined in (45). These encode the Hopf structure of Uqsl{n +1) in the
matrix form (6). It is obvious from the above form for σ± that σ+ and σ~ generate
isomorphic subalgebras: the Borel subalgebras. An isomorphism was given in
Sect. 5; matrix transposition inducing the following transformation of generators:

eij^-q'^-'fj, or ex~-qm+ίfx.

This can easily be verified to be an algebra isomorphism and anti-coalgebra
isomorphism as stated in Sect. 5.

The ordering of the generators required for the definition of the adjoint action
and universal /^-matrix used in [2] can be read off from the matrix σ + . It is given by
the orthogonal projection onto the main diagonal.

The results of expanding the matrices in (6), i.e. finding the commutation
relations will now be stated. The proof is long and so omitted. Note that expressing
the algebra in this matrix form allows all the commutation relations to be
systematically derived. Only partial results were given in [2], only those that were
required being calculated. All the commutation relations within a Borel subalgebra
take the form of the adjoint structure; in particular there is no mixing between
the two definitions of the adjoint (36), (40). This suggests that the adjoint structure
(36) and generators (37) are intrinsic to the algebra structure of the quantised Lie
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algebra An. (Of course the alternative definition of adjoint (40) leads to a structure
that is just as self consistent.)

In order to simplify the notation we shall treat the roots set theoretically with
respect to the simple root decomposition using some base S, in addition to all

V

previous interpretations and conventions. Hence the root α = ]Γ αί5 v ^ u will be
considered as the set {αj^^ y].

 i=u

Expanding K 2 i σ i ± σ ί = = ί 72 : σ i :^2i gives:

For α + / J e Φ + , α < β ,

e*+β =*dqea'eβ =eaeβ -q~γeβeΛ9

For α + βφΦ+ and an/? = 0 or a c β or β^a,

ad9 ea-eβ = eaeβ - eβea = 0,

*dqf*fβ=fafβ-fβf*=O, *<β.

For cx+βφΦ+ and anβΦ0, α = α-hy, β=y+β9

adqea'eβ=eaeβ-eβea=(q-q-1)eγei+β9

*dqfa fβ=fjβ-fβfa = (q-q-1)fyfi+β, (52)

with yeΦ+,<x<y<β. Note that the pair evei+β commute, and similarly for the
pair of / generators.

Expanding the relation R2χ
σtσ2 = σ ^ σ i ^ 2 i produces:

For all roots α e Φ + ,

For ocnβ = 0 or α c= /?,/? — aφφ+ (i.e. β encloses α),

H'ey, β<7,

„ P>y

Forαn)?#0, α = α

[e.,/,]=(9-ί- i)«-H 'es/ί, « < ^ (53)

The algebra satisfied by the ω^ was given in (48). Alternatively the full Hopf
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structure with the generators H, can be used. This is reproduced for completeness:

The coalgebra structure for Uqg is given by the relations Δσf. = YJo^k®σ^j. It
can be verified that the following structure is obtained: k

Δea = l®e<x+ea®qH*+(q-q-1) £ eβ®qHβeβ,,

(54)

ββ
β + β'=a
β,β'eΦ+

β

This is the structure originally given in [2].

β>β'
β + β'=α
β,β'eΦ+

Conclusion

In this paper the Hopf structure of the quantised algebra Uqg is expressed in a
matrix form (6) by defining two representations of the quantum group Uqg'. In
order to achieve this matrix formulation there are two requirements: we require
a representation of the dual Uqg\ this giving the coalgebra expression (8), and an
universal R-matrix such that the algebra can be constructed (9). However the dual
Uqg' is not quasi-triangular, Sect. 2, and hence it is necessary to embed Uqg' into
a quasi-triangular Hopf algebra, and use a representation of this algebra. The
most obvious choice is the quantum double of Uqg' [4], denoted by D(Uqg'). The
construction in Sect. 3 exploiting the quotient structure of the quantum group
Uqg

f (10), is interpretable in this fashion, that is, there exist two morphisms:
D(UqQ')->Uq9 which when restricted to Uqg' map onto the Borel subalgebras;
Uqb + , Uqb_. These will be algebra homomorphisms, coalgebra anti-homomor-
phisms. Our construction gives an expression for the matrices of generators L 1

defined in [7] in terms of the universal R-matrix of Uqg and a representation of
Uqg, (15), (16). When using the fundamental representation of the quantised algebra
Uqsl(n\ we deduce that the Borel subalgebras Uqb± are generated by L 1 , the
quantum determinant condition arising naturally. The case for other quantised
algebras is more complex; additional representations must be used since the
fundamental representation no longer generates the function space of the associated
Lie group. These cases are more easily treated by using the quantum double D(Uqg\
our construction deriving ultimately from the quasi-triangular structure of this
Hopf algebra [4]. However the construction for general Uqg will be very similar,
matrices L*, being defined by (15), (16) for each irreducible representation required
to generate the quantised function space FunJG). Alternatively it is expected that
the quantum groups Funq(G) are attainable from Funq(Gl{rή) by applying
functional constraints.

The matrix formulation of [7] naturally leads to a system of generators based
on the whole root system, as in [2, 14], contrasting to that based only on the
simple roots as used in [6,10]. The construction of the matrices L* for the general
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Lie algebras, [5] will produce a system of generators based on the whole root
system, and should reproduce the adjoint structure presented in [15], an extension
of that for Uqsl(n), [2, 14].

Acknowledgements. I am indebted to Alan Macfarlane for our many discussions on quantum groups,
his help in preparing this manuscript and initiating this work by a question: why does the relation
R21L

(

1

+)L(

2~
) = L(

2~
)L(

1

+)/?21 occur in the algebra of Faddeev et al and not the corresponding relation
K21L

(

1~
)L(

2

+) = L(

2

+)L(

1~
)/?21? The answer proposed in this paper is that it is a consequence of the

algebraic structure of the quantum double, that is, a consequence of the requirement that the quantum
double is quasi-triangular.

On completion of this work, [8] and [11] came to the attention of the author. Paper [11] extends the
analysis of [7], an universal K-matrix being defined via a homomorphism A(R) to U(R). Paper [8]
considers the constructions of [7] from a universal aspect using quantum doubles. The relations (15)
and (16) are obtained in both these works.
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