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Abstract. Let J# be an infinite dimensional Hilbert space and 2(#°) the set
of all (orthogonal) projections on J#. A comparative probability on () is a
linear preorder <X on Z(#) such that O=<XP=I, 1X0 and such that if P LR,
QO LR then PXQ<>P+R=XQ+Rforall P, Q, Rin 2(#). We give a sufficient
and necessary condition for < to be implemented in a canonical way by a
normal state on Z (), the bounded linear operators on .

1. Introduction and Notation

Let o be a Hilbert space. () denotes the set of all (orthogonal) projections on
#. If E is a closed subspace of #, and ¢es# then P and P, denote the
corresponding projections. We drop the E and ¢ if no reference to the subspaces is
required. &, () is the subset of all one dimensional projections and £, () is the
subset of all those projections Py such that E is a separable (finite or infinite
dimensional) subspace of #. Lower case Roman subscripts as in P; or P, will
generally be used for indexing sequences and nets. N, R and C denote the natural
numbers, the reals and the complex numbers respectively. All vectors of #
appearing may be assumed to be normalised. P,, is denoted by 1, or just 1 of no
confusion arises and the zero vector is denoted by O. The orthogonal complement
of P (i.e.1— P) is denoted by P*. If P, Qe 2(#) and P<Q* then we write P L Q.

Definition 1.1. Let 5# be a Hilbert space. A preorder relation < on 2 () is called
an elementary comparative probability (ECP) iff the following axioms are satisfied
by all P, Q, Re P(H#):

Al PXQ or O=XP,
A2 P=Q and Q=XR=P=XR,
A3 0P, 1XO.

* Permanent address



582 S. A. Mutangadura

An ECPX is called a comparative probability (CP) iff < satisfies:
A4 If PLR, QLR then PXQ<P+R=XQ+R VP, Q, ReP(H#). 0O

Recall that a (normalized) Gleason measure on 2 () is a mapping
u:P(H#)—[0,1] which is o-orthoadditive and satisfies u(I)=1. If dim s# =3, and
A remains separable, then by Gleason’s theorem [1], the set of all Gleason
measures is exactly the set of all normal (i.e. -weakly continuous) states on Z (),
the bounded linear operators on . If # is no longer separable then Gleason’s
theorem still holds providing the g-orthoadditivity is strengthened to complete
orthoadditivity or providing one assumes the generalized continuum hypothesis
(see Kalmbach [2] Chapter 3) with only the o-orthoadditivity.

It is clear that every normal state w on #(#) induces a CP <, on 2(H#)
according to the prescription:

P=,0<0(P)=w(Q). M)

The purpose of this paper is to investigate the inverse problem. Specifically we wish
to find the sufficient and necessary conditions for a CP on (), where J# is a real
or complex infinite dimensional Hilbert space, to be implemented by a normal state
(=completely additive Gleason measure) in the sense of (1) above. The special and
somewhat pathological case dim # =2 was resolved in [3], where the question of
uniqueness of implementation was also investigated. It is worth noting that the case
dim s# =2 is extra special in that not all the axioms can be brought to bear on <;in
particular A4 has no effect and is replaced in [3] by:

A5 P=Q<Q'<P' VP, Qe P(#).

We shall use the notation P~ to indicate PXQ and Q=<P; and P<Q to
denote PXQ and QX P. If E is a subspace of #, the set [P] is defined to be all
Q€ E such that Q= P and [#(E)] to be the set of all [Q ] such that Q is in #(E),
the subscript E being dropped if E=#.

2. Preliminaries

The existence of states that are not normal shows that not every CP can be
implemented by a normal state. In fact one can also show that for every dimension,
finite or infinite, examples exist of CP’s that cannot be implemented by states,
normal or not. We need to impose some sort of “‘continuity” condition on < forit to
be implementable by a normal state.

Definition 2.1. Let < be an ECP on 2 (s#). We say that < is weakly continuous (or
just continuous if no confusion arises) if whenever the net P; in 2(#°) converges
weakly to P and P,<P;<XP, Vj, then P,<P=P,. O

Let < be an ECP on 2 (s#). Recall that the interval topology on 2 (#) induced
by the linear preorder < is generated by a neighbourhood base consisting of <
intervals of the form (P, Q), where P<Q, [0, P) where O< P, and (P,1] where P<I.
Continuity of < can be reformulated in terms of the strength of the < (interval)
topology relative to that of the weak topology on 2(s#) (induced by the weak
topology on #(#)). Before showing this we first explain some notation: P; P

and PjéP imply convergence in the weak and in the < topologies respectively.
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Proposition 2.2. Let <X be an ECP on P (#'). Then X is continuous if and only if the <
topology on P(H) is weaker than the weak topology on P(H).

Proof. Let < be continuous. Suppose P; is a net in () such that P,— P, where
O<P<]1 Let P’ and P" be such that P'<P<P” so that (P,P") is a =
neighbourhood of P. Then for some j,, P;e (P, P") Vj=j,, lest we should find a
subnet P;, such that Vj,, P, <P’ or P”<P . This would by continuity of < imply
that P=< P’ or P"<XP,a contradlctlon Hence P; =P, Only trivial modification is
required should P~O or P=1. Thus the < topology is weaker than the weak
topology on Z(#).

Now let the < topology be weaker than the weak topology. Let P;— P and let
P’, P" be such that P'<XP,<P" Vj. Suppose that P"< P, then there exist Re Z(H’)
such that P=XR and such that (P”,R] is a =< neighbourhood, and hence by
hypothesis, a weak neighbourhood of P. Thus there exists je N such that P;e (P, R]
which implies P< P;, a contradiction. Hence P P". A similar argument establishes
that P’<P and the result follows. O

Let 5 be an infinite dimensional Hilbert space. As is the case when dealing with
normal states on % (), separability of # is a natural condition when dealing with
continuous CP’s on 2 (). This is obvious from the following:

Proposition 2.3. Let # be any (not necessarily separable) Hilbert space and < be a
continuous CP on P ().

i) Let of <« P, (H) be any set of mutually orthogonal (one dimensional) projections
such that VPe of, O<P. Then < is at most a countably infinite set.

ii) If E is a subspace of A such that Pe ?,(E)=>P=Q, then P;=0.

Proof. i) If o is a finite set there is nothing to prove; so assume that it is infinite.
Now for any Pe o define o/ (P)tobe {Q e o/ : PXQ}. We note that o/ (P) s a finite
set for each P e o/, otherwise we can find in .o/ (P) a sequence Q; such that 0,0
and hence, by continuity of <, Q jéO. This contradicts the requirement that for
all j, O<P=X9;.

Now let {P;: je N} be a countably infinite subset of «¢. Clearly P; =,0as j—00.
Hence we must have o/ = | | o/ (P;) and the result follows as each M (P)) is finite.

jeN

i) Theresultisclear for E separable, so assume that Eis not separable. Let Z be the
set of all projections P in Z(F) such that P~O. Then & is a nonempty < closed
subset of (). Let Py, be an (operator theoretic) increasing net in Z. Then Py, is
evidently a weakly convergent net which weakly and hence X converges to PF,
where Fis the closure of the linear span of U;F;. Thus, by Zorn’s lemma, & has an
operator theoretic maximal projection Q, say. But we cannot have Q< P since
Q'eZ and Q'L Q=0+Q'eZ by axiom A4. Hence Py~O as required. [

Weak continuity of a CP =< on 2 () immediately implies a number of useful
topological properties for the < topology. We list some of these below:

Proposition 2.4. Let # be an infinite dimensional Hilbert space and < be a continuous
CP on P(H). Then the following are all true.

1) P(H) is X connected.

i) P () isorder complete,i.e. every non-empty subset of ?(#) has an inf and a sup
with respect to X and hence P(#) is <X compact.

iii) In the < topology, P(H) is pseudometrizable and complete.
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Proof. i) Let J=K*, where K is the set of all ¢ e # such that P,~0. Then, by
Proposition 2.3 (i), J is separable. Thus, if J is infinite dimensional, 2 (J) is weakly
and hence =< connected. By Proposition 2.3 (ii), P;=1,,, and the result follows at
once for Jinfinite dimensional. If Jis finite dimensional the above argument may be
used with J replaced by J;, where J,, is any separable infinite dimensional subspace
of # containing J as a subspace.

i) This follows from (i) see, for example, [7, Chap. 1 J].

iii) Let J be asin (i). Then, by Proposition 2.3, 2(J) is weakly and hence < second
countable. Hence [#(J)] is a regular second countable topological space under the
induced =< topology and is therefore < metrizable by Urysohn’s metrizability
theorem. The corresponding metric pseudometrizes 2(J) (or #(J,,)) and hence also
P(H). Since P () is order complete it is complete as a pseudometric space. O

3. Results

In this section, #,, Y, and # are defined as follows: #, is an infinite dimensional
real or complex Hilbert space. Y, e, is a fixed non-zero vector and J# is its
orthogonal complement in #,. #(#) is endowed with a continuous CP <. We
start with a number of technical results.

Lemma 3.1. Let x and y be any positive reals such that x+y<1. Then for any
Re P, () there exist sequences P; and Q; in P ,(H) satisfying :

) P;LQ;Vj.

ii) P,—~>xR.
iii) @;—yR.
Further, if R is infinite dimensional, then we may choose that for each j, Q;< R and
P;<R.

Proof. The case R=0 is trivial. So assume that R= P, for some ¢ € #. Let &, be
any orthonormal sequence in the orthogonal complement of ¢. Clearly we can
find another orthonormal sequence #,, also in the orthogonal complement of ¢

g
satisfying (&, |n,>=T =#)()1y)i‘_ Vn. Note that I'<1 for all allowed x and
v. Thus {aé,+x*¢|bn,+y*¢p>=0 Vn, where a=(1 —x)* and b= — (1 —y)?*. Since
aé,+xt¢p-xt¢ and bn,+y*¢—y*¢ in the weak Hilbert space topology,
Pge yxt¢——XxPy and Ppe 1 44—>yP;. Hence the result is true for Re 2, ().

Now let Re Z(#) be finite dimensional with R= Z P, , where P, € 2, (#) V]

and Py 1P, if j+k. Since we can always ﬁnd N mutually disjoint infinite
orthonormal subsets of an infinite orthonormal set we can make use of the
constructionin the first part of the proof to erect, for each P, , sequences Py and Q
such that

1) Py—xP,,, Qu—>yP,, as k—oo,
i) Pyl QyVj k,
iii) Py L Qi Vi J's k,
iv) P ik Pje and ij-LQj’k’ if j#j’ or k+k'.
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Hence Z Py —>XxR and Z Q;—>YR as k— co. Further, Z Py L 2 Q; Yk, and
1

the result follows for R ﬁmte dimensional. = &

Finally we consider the case where R is infinite dimensional. Let R,~ R, where
R, is finite dimensional for all n. From the above case we can construct, for each #,
sequences Q,; and P,; in 9’,(% ) such that Q,;1 P, Vj with Q,.~*yR, and
P,;—*>xR, as j— 0. Since yR,—yR and xR,—> xR, we can clearly find sequences
from the Q,; and the P,; with required property. The last statement of the lemma
follows by apphcatlon of this last case to the situation where # =F and
R=I1;(=Pg); completing the proof of the lemma. O

Lemma 3.2. Let P; and Q; be sequences in 2,(#’) both weakly converging to one limit
in B(H). Then P; and Q; both X converge to one limit in P(H).

Proof. There clearly exists a separable subspace # of # such that for all je N,
P,e?(A') and Q;e P(A). As A is separable the unit ball of (") is weakly
metrizable, say with metric d,,. Let pseudometric d generate the < topology on
P(A). Since P; and Q; are both d,, Cauchy, they are also both dﬁ Cauchy By

d< completeness there exist P and @ in () such that P, =, Pand 0, ——»Q We
wish to show that P~Q. If this is not the case, then d<(0, P)> 0, so that
d<(P;, Q))+0=d, (P;, Q;)+0 as j— oo by continuity of <. This contradicts the
hypothesis of the lemma. Hence the result. O

The following result shows a limited form of joint X continuity of ortho-
addition on 2 ().

Proposition 3.3. Let sequences Py and Py in Z,( ) satisfy the following conditions :
i) Pp,=>Pre (),

i) Pp = Pre?(H#),

iii) Pg, L P Vj, keN.

Then there exist Pg. and Py, in P(A) such that Pg. = Py, Pp.=Pg, Pg. | Pp and
such that PEJ,+PF}_—§+PE,+PF'.

Proof. Let & be the minimal subspace of 5# such that Vje N, Py, & =E; (that is
L =38p U Ej). If & is infinite dimensional, then 2(Z) is also complete under

the < pseudometrtc Hence there exists Pg. e #(&) such that Py =~ P;. The same
conclusion can be reached if & is finite dimensional by taking Py. to be the norm
(=weak) limit of a suitable subsequence of the Pg, . Similarly let # be the minimal
subspace of # such that Vje N, Pp # =F;. Again there is a Pr.€ (M) such that
Pp.>Pg. Clearly # 1 % so that Py, _LPF Now we show that Py + Pp, ——»PE
+ Pr.. We examine three cases:

Case i. Py, and Pp are both = increasing.
Let ]>k then PE +Ppk<PEk+PF =Py, + Py, where both inequalities follow

from axiom A4. Hence Pp + Py is also =X increasing. Thus [P + Py, ]—>
<sup (Pg,+Pp)=[Pg + Pp] “and the result follows.
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Case ii. Py, and Pg, are both < decreasing.

From case (i) above, [Py + Pg,]-=> Zinf (Pg,+Pp) =[Py +Pr].
JjeN

Case iii. One of Py, and Pp is X increasing and the other < decreasmg

Assume, without losmg generahty, that Py, is the < increasing one. Then
Pg.+ Py, and Pp.+ Py are X decreasmg and X increasing respectively and hence
both =< converge to P,E +PF But by axiom A4, Pg. + Py, =Py, + Pp, = Pg,+ Pp.Vj,
and the result follows.

Now let Py, and Py, satisfy the hypothesis of the proposition but otherwise be
arbitrary. Let PE +Pp be a < convergent subsequence of Py + Pg,. The sub-
sequences Pg, and Pf, will in turn have subsequences which will fall in one of the
three cases above. Thils every = convergent subsequence of Py, + Py, = converges
to Py + Py and proof of the proposition follows. [J

Lemma 3.4. For any Pe P, (#) such that P<1, the following statements are
equivalent.

i) P~O.

it) For some x>0, there exists a sequence P; in P,(H#) such that P;—xP and
P; 30.

iii) For each ye|0, 1] there exists a sequence P; in Z,(H#) such that P;,—yP and
N

Proof. (i)=>(ii), (iii) = (i), and (iii) = (ii) are trivial. We prove the result by showing
(ii)=> (i) and then (i)=>(iii)
(i) =():

Condition (ii) implies the following:
(a) Q;~*>yP and y§x=Qj—§—->O.
(b) For P finite dimensional, Q;,—(x+y)P=> Qj—é»O if0<y<xand x+y=1.

Result (a) is a straightforward consequence of Lemmas 3.1 and 3.2 but (b) needs
more work because joint = continuity of ortho-addition on 2(s#) has not been
established. We now give a proof By Lemma 3.1 there exist sequences Py, and P,
in #(#) such that Py, L Py Vj, Py —*>xP and Py, —yP. Lemma 3.2 and result
(a) respectively give Pg, ——+O and Pp,—=0. Moreover, because P is a finite
rank projection and P<1 we can arrange that K=(U;E )l is infinite dimensional
and O< Py. Consequently, there exists a < decreasing sequence P, in 2, (K) such

that O<P, Vj and Py =,0. Since an appropriate subsequence of the P, can
always be found we may assume that Pp <P, Vj. Thus by A4 and Lemma

3.3, P ,+Pp,= Py, + P, — O, giving the result (b). Repeated application (finitely
many tlmes) of result (b) eventually leads to P~ O for P finite dimensional.
Now let P be infinite dimensional. There exists a sequence of finite dimensional

projections P;, such that P; < PVj and, such that Pj’—é—>P. It is clear that for any
te[0,1], P,—>¢P and Pj—§—>0t0gether imply that for each fixed j, if the sequence
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i ——>tP] ask— o, then Jk—>0 ask— co. This gives P; = OVj. Again thisleads to
P=~0 and so wwe have (i1) = (i).

(i) =(iii). Let x, ye [0 1] be such that x+y=1. Then by Lemma 3.1 there exist
sequences S; and T; in #,(s#) such that S; 1L T;Vj and such that S;—>xP and
T,~yP. Hence S;+ T, P=0. This clearly implies that §; =N} and T—»O
and the result follows Hence the lemma is proved. O

Proposition 3.5. Let Re 2, () be such that dim R and dim R* are both infinite and
such that O<Rand O<R*. Let P;and Q; be sequencesin P ,(H) such that P;—">sR,

Q,~*>tR, P,2>P and Q,2>Q. Then Q< P<>t<s.

Proof. First we note that s, £ [0, 1] and that given any x € [0, 1] there always exists a
sequence S; in Z,(#) whxch weakly converges to xR. If s=¢ then by Lemma 3.2,
P~Q.So we let s> ¢; we wish to show that Q < P. Now there exists sequences Q and
P;in #,(#) such that 0,~*>R, P;~*>(s— )R, P; 1 0,;Vj and such that for allj,
P <R, QJ<R Lemma 3.2 gives P, +Q =P Furthermore there clearly exist
P<R and Q<R such that P, =p and such that 0,—=»>@. As O<R and s— >0,
Lemma 3.4 gives O<P. Because O<R* and dim Ri is infinite, there exists S < RE
such that O < Sandsuch that for all j large enough, S<P Lemmas 3.2 and 3.3 give
0; +S——>Q+S and A4 gives 0+S=P. Hence we have Q=0<0+SZP
as required. Since < is a linear preorder, the proof of the lemma is complete. [J

Lemma 3.6. Suppose there exists an infinite dimensional projection Re P (#) such
that R~0. Let P and Q be any projections in P(#) such that P L R and such that
0O < Rwithdim (R — Q) infinite. Suppose that the following are true for any xe [0,1]:

) P-¥sx(P+Q) with P, P
iiy B,~xP with B,-% P,
Then Py~ P,.

Proof. Since dim (R — Q) is infinite (required in case dim P is finite) we can set up
sequences S;in #(#’) and T;, where T; < RVj, such that S; L T, Vj, k, and such that
S; LT,Vj, k, and such that S;—xP, T,—~xQ. Hence S;+ T;—>x(P+Q) and
Lemmas 3.2 and 3.3 give the required result. [

Proposition 3.7. Let K be the set of all ¢ € # such that P,~O. Define J to be K*, the
orthogonal complement of K in . Let the sequences S; and T; in 2,(#) satisfy:

) S;2%ssP,, S;-258.
i)y TP, 55T,
Then s<t<S=XT.

Proof. If t=sthen by Lemma 3.2, S~ T. So we let # < s and the proposition will have
been proved if we can show that S<T. Define J, to be Jif J is infinite dimensional
and otherwise to be any fixed but arbitrary infinite dimensional separable subspace
of # containing J as a subspace. Let P, and P,, be both infinite dimensional
projections such that P; =P, +P,, and such that O<P;,, O<P,,. There exist
sequences S j, S,;, T;; and T,; and projections S;, S,, T; and T, such that
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(@) S;;—sP;, and Slj—é»Sl,
(b) S,;~2>sP,, and S,;=>S,,
© T;,~1P,, and T,;5>T,,
(d) Tp;~2>tP,, and Tp;->>T,.

Furthermore, since J; and J, are both infinite dimensional, we can arrange that
S1;S Py, T;= Py, 8y P,2T21<P,2 for all j and also that S; <P, , S,<P,,,
T,<P; and T,<P;,. Now S, ;+S,;—>sP; and T} ;+ T, ;—1P; so that Lemmas
3.2 and 3.6 give S’ I+S21—§>S and TIJ+T21i>T By Proposition 3.3, T~T,+ T,
and S=S;+S,. Proposition 3.5 gives 7T;<S; and 7,<S, so that by A4,
T+ T,<T,+5,<S,+S,. Hence T<S. This completes the proof. O

Lemma 3.8. Let J be defined as in Proposition 3.7. Then for each P € P (# ) there exist
areal te[0,1] and a sequence P, in P(H#) such that P,—~tP; and Pk——é—-)P.

Proof. Define J, as in Proposition 3.7 but with the extra requirement that Jg" be
infinite dimensional if J % J,,. Then, where appropriate, Lemma 3.6 implies that the
statement of Lemma 3.8 is true if and only if the same statement is true when J is
replaced by J,,.

Itis clear that for any ¢ € [0, 1], there is a sequence in 2(J,,) weakly converging to
tP;,. Moreover such a sequence is automatically < convergent to a (unique)
f () e[P(J,)] for some [P (J,)] valued function f defined on [0, 1]. We wish to show
that f'is < continuous, where the < topology on [#(J,)] is the obvious one arising
from the natural ordering induced by <. Let the metric d,, generate the weak
operator topology on the unit ball of £(J,) and let the pseudo-metric d generate
the < topology on 2 (s#). We will also, in an obvious sense, regard d as a metric
generating the above mentioned X topology on [#(J,)]. For each se[0, 1], let the
sequence Q;(s) in 2(J,) satisfy Q;(s)—>sP;,, O j(s)éQ(s)eﬂ(Jo), and we may
assume that dy,(Q;(s),sP;,) <1/j for all j by taking a suitable subsequence. For
any ¢>0 there exists §>0 such that |s—¢|<d implies that d,,(sP,,, tP,°)<a/2
Choosing j, such j, =4/¢, we have d, (Qj(s) Q;(?)) <& whenever [s—t| <6 and j 2.
Hence it follows from the weak continuity of < that for any &> 0, there cx1st
0’>0 and j; such that d%(Q;(s),Q;(1))<e whenever |s—1|<é&’ and Jj=j
Now suppose the sequence t,—¢ on [0, 1]. Then there exists k, such that |t, — ]| < 6’
for k=k,, and hence we have d(Q;(t), Q;(t)) <e whenever k=k, and j=j;
Since  dX(Q;(t), Q())—»0 and dL(Q;(1),Q(t))»0 as j—oo, we have
d<(f(t), f (t)) dS(Q(tk) Q(?)) <& whenever k=k,. This gives the desired con-
tinuity of f. The continuity of f implies that the range of fis < connected and isa <
interval. Since f(0)=[0] and f(1)=[P,,] and since P; =l,, the lemma is
proved. O

We remark that by Proposition 3.7, the function f defined in the above lemma is
strictly < increasing and hence injective. We are therefore able to make the follow-
ing definition:

Definition 3.9. Let J be defined as in Proposition 3.7. Define the real < continuous
function u: 2(#)—[0,1] as follows:

u(P)=t if an only if there exists a sequence P, in #(#’) such that P,—*>tP,
and PkiP. a0
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We now wish to extend the preorder < to all of 2(#,). The extend preorder will
not necessarily satisfy all of the axioms of a CP and, in particular, axiom A4 will be
replaced by a weaker one. First, we prove a lemma.

Lemma 3.10. Let [P]==XsupP,(# ). Then [P1NnP,(HK) is not empty.

Proof. Let Pd,j—é»P esupZ,(#), and let Py be a weakly convergent
subsequence of P, . Then, since the range of the weak limit of P, is one
dimensional, Py ~>1P,, for some @, € #’, where 0<¢<1. By Corollary 3.6, t=1
and the proof is complete. O

Let Pre P(H\P(H), then Priyy+0. Define Yy to be Pryo/|Prisol|, then
Y may be written as ad,+ by, +c&, where & Ly, £ L ¢, and ¢, is a fixed vector
in 5 such that P, is <-maximal in 2,(#) (Lemma 3.10). Accordingly, any
Pre P (H)\P(#) may be “canonically” decomposed, with respect to the pair
(do, Vo), as follows:

Pp=Pp+ Py =Pp+Payyipyo+ce>

where b=+0, Pre P(H), £ L, & L ¢,. Moreover, the decomposition is essentially
unique, that is:

Pp+Pogo s byo+ce =Pr+ Pygorpyo+ce are canonical decompositions implies
that E=E’', a=a', b=>b', and cf=c'¢’.

Lemma 3.11. Let Py, be a net in P(H,) weakly converging to Ppe P (#,). If
Py, 4P, g0+ bp0+c,e; ANA Pt Pag s o +cx are the canonical decompositions of Py,
and Py respectively then

i) Py,—Py and

.. w
ii) Paﬂl’o +bjvotc;é; ago+byo+ce:

Proof. Since we can always find appropriate subnets, we assume, without loss of
generality, that Py > A€ B " (#) and P, 4 1y yo+c,e,—— Kk Py, fOr some positive &
and some ¢ € #,. Thus we have

PE+P,,¢O+,,,,,0+¢§=A+kP¢=Pa¢0+bwo+c¢l//o=kP¢cj10$¢=m(a¢0+b1/10+c{)

for some m such that |m|=1. This in turn implies that k=1, leading to the desired
result. O

Suppose that a, be C with b=0. One easily shows that there exists a unique >0
such that |a]> +|b|*> =|a+tb[*. Furthermore, ¢ depends continuously on a and b.
Now we define the function fi: 2(#,)—R as follows:

A(Pg)=u(Pg) if PgeP(K).

ﬂ(PE+Pa¢o +b¢o+c¢)=H(PE)+N(P(a+zb)¢o+c¢) >
where
PE+Pa¢o+bwo+c§€g’(]fo)\g(«#)

is in canonical decomposition and where |a? +|b]* =|a+tb|*, 1=0.
Lemma 3.12. [ satisfies the following :
(a) [ is weakly continuous on P(H)\P(H).

(b) If Pye P, (H) then there exists a sequence Py, in P(H NP (H) such that
Py =P, and such that i(P,)— i(Py).
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Proof. Llet Pp—>PreP(H)\P(#) and Ilet P+ Pyigorbyotey; and
Pg+Poyy + byo+ce D€ the canonical decomposition of Pp, and P respectively. As
b=+0, Lemma 3.11 implies that Py + P 4 15,)00+c;6,— Pe+ Pla+ibypo+ce» Where ¢
and ¢; have obvious meaning. The weak continuity of u gives i(Pp,)—fi(PF) as
required. This proves part (a).

To prove part (b) let P, 4 4 p,y0+c;¢, A0 Prg, +c¢ be the “canonical forms” of Py,
and P, respectively. Explicit calculation shows that the choice ¢;¢;=c¢, b;=a|/1/j
and a;=a}/1—1/jVj, ensures the desired convergence for the case where a+0. If

a=0 we make the choice a;=0, {;=¢, ¢;=c]/1—-1/j and bi=c)/1jVj. O
Define the preorder < on 2(5#,) as follows:

PLO<i(P)<(Q).
dis clearly an ECP on 2(#,) and as such, an extension of <. It also satisfies (cf.
axiom A4):
A'4. Let Py, Pre P(K) and let Py, P e P, (H,).
(b) If Py L P, and Pyl Py then Pp<dPy<>Pp+ Py, Pp+P,.

Lemma 3.13. Let Py, Pre P(K) be finite dimensional and let Py, P, e P, (H) be
such that

i) PgLPy, PrLP,.
ii) Pp=Pg, P,XP,.
Then Pp+P,=Pg+P,.

Proof. If P,~O then the result is clearly true. Now let O<P,. There exists
P.c P (#)suchthat P, L Pp, P; | Pgand P,< P, . Using the continuity properties
of Lemma 3.12 we can find P, € 2, (#,), where y is a linear combination of { and v,
and satisfies P,<JP,JP,. By axiom A'4 we have: Pp+P,JPp+P Py

+ P, P;+P,. Hence the result. O

Proposition 3.14. Let Pye P (3t) be finite dimensional and let Pye P, (H#') be such
that Py L P,. Let sequences Py and P, in P(#) and in P, () respectively be both
= increasing with Py, finite dimer%vional for all j. Suppose PEj—é—>PE and P, j—§->P¢
with Py, \ Py Nj, then Pg +P, —Pg+P,.

Proof. By Lemma 3.13, Pg + P, is X increasing, hence X convergent. Py is
finite dimensional, hence there exist strictly < increasing sequences Pg, and Py,
in Qé,}f ) and Qg(% ) respectively such that Pg is finite dimensional for all j,

Pg—~>Pg, Py —=>P, and such that Pg 1 Pg for all j and k. By Proposition

33, P§j+P$j—£>PE+P¢; moreover Pg + Py is strictly < increasing. Clearly the
sequences Py + P, and Py +P, converge to the same limit and the result
follows. 0O

Proposition 3.15. Let Py € 2, (#): 1=<j< N < oo be such that P, | P, if j+k. Then

N N
(5 7o) g e
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Proof. Suppose that the result is true for some Nz1.Let Py :1<j< N+1satisfy the
hypothesm of the proposition. Let Py= Z Py, p(Pg)=t and pu(P,,  )=s, then

u(Pg)= Z u(P,). Clearly we can find < increasing sequences Py, and P, , with the
Py, ﬁmtje dimensional, such that
(i) Pg,—tP,, Py —>sP; (J as defined in Proposition 3.7)
(ii) Py =Py, P, =P, ., and
(iii) Pg, L Py V).
By Proposition 3.14, PEJ.+P¢J_3>PE+P,,,N“, so that u(Pg+P,,, )=s+t.

Hence
N+1 N N+1
/t( Z Pdlj)='u(PlﬁN+1)+‘u<‘Z Plllj)= Z #(Plllj) >
j=1 j=1 j=1
and the result is true for N+1. But it is trivially true for N=1 and the proof is
complete. [
Corollary 3.16. Let the sequence P, in P () be such that P, | P, if j+k. Then

”<Z P¢j)=_ZN ”(P‘bj)'

jeN
Proof. Define Py = Z P,,. Then Vn, Z u(Py)=pu(Pg)<p Z P¢> Hence

the sum Z p(Py,) is absolutely convergent Since p is < continuous and
1 1

PE”——é—> Z P,,, the result follows. O
j=1

4. The Main Result

Corollary 3.16 together with Proposition 2.3 imply that p is in fact a completely
additive Gleason measure on Z(#°). Hence we have the main result:

Theorem 4.1. Let 5 be an infinite dimensional (not necessarily separable) Hilbert
space and < a CP on P (#). Then the following statements are equivalent :

1) < can be implemented by a normal state.
i) < is weakly continuous. 0O

This result shows that, subject to the usual condition that quantum expectation
values should respect the weak operator topology on the appropriate algebra of
observables, there is nothing gained by departing from the traditional formulation
in which expectation values are represented by normal states.

Acknowledgements. The author would like to thank Professor Abdus Salam, the International
Atomic Energy Agency, UNESCO and the Swedish Development Cooperation for their support
and hospitality at the International Centre for Theoretical Physics, Trieste, Italy.



592 S. A. Mutangadura
References

1. Gleason, A.M.: Measures on the closed subspace of a Hilbert space. J. Math. Mech. 6, 885-893
(1957)

2. Kalmbach, G.: Measures and Hilbert lattices. Singapore: World Scientific 1986

3. Ochs, W.: Gleason measures and quantum comparative probability. Quantum Probability
and Applications II (Heidelberg Proceedings), pp. 388—396. Berlin, Heidelberg, New York:
Springer 1985

4. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. I. Berlin,
Heidelberg, New York: Springer 1979

S. Gaal, S.A.: Point set topology. London, New York: Academic Press 1964

6. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. 1. London, New York:
Academic Press 1980

7. Kelly, J.L.: General topology. Amsterdam: Van Nostrand 1955

Communicated by H. Araki

Received August 19, 1989; in revised form Februar 27, 1990





