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Abstract. We consider a simplified model of vorticity configurations in the
inertial range of turbulent flow, in which vortex filaments are viewed as random
walks in thermal equilibrium subjected to the constraints of helicity and energy
conservation. The model is simple enough so that its properties can be
investigated by a relatively straightforward Monte-Carlo method: a pivot
algorithm with Metropolis weighting. Reasonable values are obtained for the
intermittency dimension D, a Kolmogorov-like exponent y, and higher moments
of the velocity derivatives. Qualitative conclusions are drawn regarding the
origin of non-gaussian velocity statistics and regarding analogies with polymers
and with systems near a critical point.

Introduction

Three dimensional incompressible flow can be approximated by following the
evolution of a collection of vortex tubes, and discretizations that consider finite
collections of tubes lead to vortex approximations [1,4,7,18,21]. One can consider
the finite approximations as models of the Navier-Stokes equations and examine
their statistical properties to the hope of gaining an understanding of turbulence.
One must of course be aware that the properties of finite systems do not necessarily
survive the passage to the limit of a continuous system. In particular, the finite
systems greatly simplify the geometric complexity of the microstructures that occur
in real turbulence.

The inertial range of scales in turbulent motion is the range of scales intermediate
between the scales on which the fluid is stirred and the scales on which its energy
is dissipated. These scales play a key role in the dynamics of turbulence. In the
inertial range, turbulent flow can be viewed as being in approximate thermal
equilibrium. If one represents the flow on these scales by a collection of vortex
tubes, one can appeal to methods of analysis adapted from other branches of
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statistical mechanics [10,11,13]. The analyses and the calculations in earlier work
along these lines are quite difficult. In the present paper we present simplified
models of vortex configurations in the inertial range, simple enough so that their
properties can be examined by relatively simple mathematical tools and also so
that the results are easy to interpret. The price of relative simplicity is of course
a certain unfaithfulness to the true equations of motion.

What one really wants to do is to consider a microcanonical ensemble of vortex
configurations, i.e., an ensemble of vortex configurations with a given energy E,
each possible configuration having an equal probability, and then calculate averages
of flow quantities in that ensemble. The number of possible configurations is of
course too large, and simplified ensembles have to be considered. One first assumes
that the flow in a small subregion can be viewed as being in a local thermal
equilibrium (as is routinely done e.g. for Boltzmann's equation) and thus that one
can work in the inertial range only. In addition, one can constrain vortex tubes
to have an axis made up of links on a regular lattice [8,10], thus reducing the
number of configurations. In addition, in the present paper, unlike [8,10], we shall
disregard the "internal degrees of freedom" of the vortex tubes, i.e., the effect of
the variation of their local cross-section on the total energy; the tubes can then
be viewed as filaments of zero cross-section. Furthermore, the filaments will not
be required to be closed. The boundedness of the energy will require that the
filaments be self-avoiding; such filaments can be generated by a pivot algorithm
[22,24] modified by Metropolis sampling [5].

Even though the model is simple and the numerical method used to investigate
it straightforward, the amount of computer time needed to complete the calculations
is formidable, and the results are not complete. The reason for the large amount
of labor emerges as one of the qualitative conclusions from the model. The results
obtained are consistent with earlier results and conjectures. The model shows how
global conservation properties can produce an inertial range, and provides a
heuristic explanation for the appearance of non-gaussian velocity statistics. The
vorticity (intermittency) dimension D is in acceptable agreement with earlier results
(but one must be careful to notice that it is defined differently here than in earlier
calculations). The inertial exponent γ that characterizes the energy spectrum is as
close to what one knows as the model allows. Analogies with polymer systems
and with critical phenomena appear naturally. In particular, support is given to
the notion that as the viscosity tends to zero, a turbulent flow approaches a critical
point. This observation explains the difficulty in extracting information about
inertial exponents from numerical calculations; the inertial exponent is a critical
exponent and as such is difficult to calculate.

The qualitative behavior of the model supports the conjectures made in [7-9]
that the inertial range properties are due to the appearance of folded vortex tubes,
which behave on large scales as self-avoiding walks, and on small scales contain
a large number of folds (= "hairpins") that are needed to satisfy the constraint of
energy conservation. Most importantly, it will be shown that the energy controls
the amount of vortex folding, as measured by the HausdorfΓ dimension of the
support of the vorticity, thus providing a clear-cut version of an earlier heuristic
argument [8,11].
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The rest of the paper is divided into the following sections: vortex methods;
vortex folding; some scaling properties of fluid turbulence; polymers, self-avoiding
walks and the pivot algorithm; simple models of folded vortex tubes; properties
of the filament models; numerical results; and conclusions.

Vortex Motion

The equations of motion of an ideal incompressible fluid in three space dimensions
are

jjf =-<£•?)& (la)

div u = 0, ξ = curl w, (Ib, Ic)

where D/Dt is the material derivative, V is the differentiation vector, u is the velocity,
and ξ is the vorticity. We shall consider a flow without boundaries, and assume
that initial conditions ζ(t = 0) are available when needed. Equations (Ib, Ic) can
be solved for u and yield

(2)

where * denotes a convolution and K is the matrix kernel

4πr3

where r = (xi9x2,x^) is the position vector and r = \r\. Equation (2) is known as
the Biot-Savart formula. Equations (1) have the following Lagrangean representa-
tion:

^ = w = K*£, (3a)

where x is a point moving with the fluid and u is the velocity at x. Equation (3a)
is supplemented by the constraints

div ξ = 0, J ξ-dΣ = constant (in space and time), (3b, 3c)

where Σ is a cross-section of a "vortex tube," i.e., a set of integral lines of ξ issuing
from a closed curve nowhere tangent to ξ. Equation (3a) states that ξ moves with
the flow, and Eqs. (3b,3c) express the conservation of angular momentum in a
flow of constant entropy. If the flow is viscous rather than ideal, a Laplacian of ξ
must be added to Eq. (la) and a noise term to Eq. (3a). (For details, see e.g. [14].)

It is a well known fact that in turbulent flow vortex tubes stretch [2,13]. As a
result, the "enstrophy" Z = $\ξ\2dx increases, possibly to infinity in a finite time
[6,7]. In general, dZ/dt > 0. The energy E of the flow can be written as
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The last expression is the "Lamb integral" [23]. We must have dE/dt ^ 0 in the
absence of a stirring force. An additional invariant is the helicity H = $ξ-udx.

The problem of solving Eqs. (3) is equivalent to the problem of solving
Eqs. (1) and is equally intractable. A more tractable problem is obtained by dis-
cretizing Eqs. (3): Consider a finite collection of vortex tubes of finite cross-section
that approximate an initial vorticity distribution, and consider the motion of these
tubes as defined by Eqs. (3). To define the motion one has to make a decision as
to the evolution of the cross-sections of the tubes. This is not a trivial matter, since
the cross-sections can flatten or distort in various ways; here we want to make the
simplest possible assumption and assume that the cross-sections of the tubes start
out as circles and remain so; the radii of these circles can vary. One can show that
the solutions of Eqs. (1) can be approximated by a collection of vortex tubes with
circular cross-sections [1,3,4,7, 18] whose number must of course increase as the
approximation is improved.

We consider the motion of a fixed number of such approximating vortex tubes.
The statistical mechanics of such a collection of tubes is interesting because it sheds
light on the behaviour of numerical algorithms, and also because it constitutes a
plausible cartoon of turbulence in which the great variety of micro-structures that
appears in real fluid mechanics is replaced by the set of those structures that can
be constructed from tubes of fixed circular cross-section. One cannot always claim
that the results obtained from this model carry over to real turbulence as the
number of tubes is increased; for example, spectral densities derived from discrete
models do not necessarily survive a passage to the limit of a continuous vorticity
distribution [13].

Vortex Folding

We now present a heuristic analysis that explains why tubular vortices in a finite
collection must fold. Consider a single long vortex tube V of unit circulation; V
has a non-zero, small, circular cross section, with a radius that can vary along
the tube. Suppose V can be approximately covered by N circular cylinders
/;,* = 1,...,N, of equal lengths / and radii P;,ί = 1,...,ΛΓ. The energy E can be
approximated by E (see Eq. (4)):

N N N

= Σ Σ £« + Σ $ι.
i j = 1 » = 1

where

Let t_i be a vector lying along the axis of the cylinder / f, originating at the center
of /„ of length |ί,| = /, and pointing in the direction of ξ in It (assumed to be
constant). If /, and /, are far from each other and \i-j\is the distance between
them, then

E .ίi=\i-i\
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Assume this last relation holds approximately whenever i Φ j. If i = 7, Eu is a
function of the radius pi of /,,£,,•-» oo as pt->0 (for an analysis, see [10]). Thus

with dEa/dpi < 0. We shall call the double sum on the right-hand side the "exchange
energy" and the single sum the "self-energy."

Suppose now that the tube V is stretched by the velocity field that includes
the velocity field that it itself induces, in such a way that its volume is_ preserved.
Suppose that the support of the new stretched tube V can still be approximated
by a collection of cylinders of lengths /; their number ΛΓ will be larger than N, and
most of their cross sections will be smaller than before. Thus the sum ££„ will
increase because it will have more and larger entries. As the radii tend to zero,
this sum will diverge. If E, the total energy, remains bounded, then the double sum
over i, 7 must decrease, i.e., the tube must fold. Thus the vortex segments It arrange
themselves in such a way that they shield the incipient singularity due to the
singular Biot-Savart kernel. Note that this phenomenon has no analogue in two
space dimensions, where there is no stretching and where "self-energies" can be
safely subtracted from the total energy in defining a Hamiltonian.

A simple one-dimensional cartoon of Eq. (6) is:

where N is finite and fixed, the ίf are Ising-like spins, i.e., vectors that can point
either up (tt = 1) or down (ίt = — 1), \i — 7! is the distance between the position of
ti and tp and Eit is a function of a parameter p"1 that increases monotonically.
Suppose the "spins" are located at the nodes of a regular lattice, most of whose
nodes are empty. The "spins" can move to empty locations or flip (i.e., change
signs); ρ~ 1 increasing is interpreted as a stretching of the "spins." In [9] a sequence
of spin configurations is constructed, such that the "energy" E remains fixed. The £„
increase, and thus the double sum must decrease; this requires the "spins" to bunch
up as closely as possible on the lattice, with neighboring "spins" having opposite
signs.

An interpretation of vortex folding in terms of capacity theory [16] can be
found in [7, 8], and an analogy with the instability of the ground state of a collection
of fermions to the formation of Cooper pairs can be found in [13].

A vortex tube cannot intersect itself as it evolves; this is a consequence of
helicity conservation [26] and of the smoothness of the Euler flow map [19]; thus,
to a first approximation, one can view a vortex tube as a non-self-intersecting tube
folded so as to satisfy the constraint of energy conservation.

Some Scaling Properties of Fluid Turbulence

We now list some of the properties of turbulence in an incompressible fluid that
we shall be studying with the model described below.
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Consider a compact set A filled with fluid. The enstrophy in A is ZA = J | ξ\2dx.
An ε-support of the vorticity is a set Λε such that Λ

f \ξ\2dx^(\-ε)$\ξ\2dx,
\ *

i.e., a set that contains all but a fraction ε of Z. Suppose one can construct a
smallest Λε (up to negligibly small changes) for a given ε. Call it the ε-support of
the vorticity and denote it also by Λε. One can readily see that as a result of vortex
stretching Λε shrinks. It is consistent with the available numerical results and
theory to assume that for t large enough the Hausdorff dimension Dε of Λε tends
to a limit D + 3 as ε -»0. (For example, for the model problem ut + (u2/2)x = 0,
ξ = ux, Λε for t > t+ and any ε < 1 is the set of points where the shocks are located,
with ί^ = time of formation of the first shock, and D = 0 for ί > t+.) D, if it is well
defined, is a measure of the intermittency of the flow (for more details, see [7,8,10]).

An attempt was made in [7] to estimate D by extrapolation from a noisy initial
value problem; it yielded the value D ~ 2.5. A more robust calculation [8] based
on scaling arguments yielded a dimension ~ 2.35 for a set containing Λε. Both
calculations took into account in an essential way the changes in the non-zero
cross-sections of the vortex tubes. An experimental study of the Hausdorff
dimension of a vortex sheet in a turbulent flow [30] (not quite the same problem)
yielded a similar value D ~ 2.35.

The energy spectrum E(k) of homogeneous turbulence is calculated by the
integration of the Fourier transform of the trace of the velocity correlation tensor
over the sphere of radius k = \k\, where k is the wave vector dual to the separation
r. In other words, let the velocity at a point x be u(x) = (ul9u29u3). The velocity
correlation tensor is ^fj.(r) = <Mί(x)M7 (xH-r)>, where the brackets denote an
ensemble average. The Fourier transform of R^r) is φij(k) = (2π)~3l2$ei-LRij(r)dr9

and the energy spectrum is defined as E(k) = J φn(k)dk. Clearly, the mean energy
ι*ι-*

1 °°
at a point is i<w 2> =- J E(k)dk. Similarly, the vorticity correlation tensor is

Qij(L) = < ζ ι ( x ) ζ j ( x + £)>» where ξ = (ξι9ξ29 £3) is the vorticity. Its Fourier transform

is φij(k\ and the vorticity spectrum is Z(k) = J Ψu(k)dk9 with <£2> = J Z(k)dk.
\k\ = k 0

The relation Z(k) = k2E(k) follows from the definition ξ = cuήu (see [2]). It is
generally believed that in the inertial (= equilibrium) range E(k) ~k~y, where y is
the inertial (Kolmogorov) exponent. A widely accepted value for y is y = 5/3. In
some recent work it has been postulated that y = 5/3 is a "mean-field" value and
that intermittency corrections proportional to (3 — D) are needed to account for
the effect of fluctuations. It has been shown in [8,10] that y = 5/3 already takes
into account the effects of intermittency and fluctuations; y = 5/3 and D < 3 are
fully compatible.

Polymers, Self-avoiding Walks and the Pivot Algorithm

We now present a short discussion of polymers and self-avoiding walks that will
soon be connected with the preceding discussion of vortex tubes.
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A polymer can be viewed as a long string of beads connected by rods, randomly
placed in space, with arbitrary angles between with rods [17]. If <r^> denotes the
average distance between the first and the N-th bead, one expects <rN> ~ JVμ for
large N, where μ is a characteristic exponent. In the simple model of a polymer
that we just described one obtains μ = 1/2 by the central limit theorem. If one
requires that the polymer be self-avoiding, i.e., if one assumes that the beads have
a finite volume and two of them cannot simultaneously occupy the same location,
then μ = μ0 = the Flory exponent. Intuitively, μ0 > 1/2; an elegant thermodynamic
argument [17] yields μ0 = 3/5 (the Flory value) in three dimensional space. More
generally, additional constraints on the polymer produce different values of the
exponent μ.

A polymer can be modelled as a random walk on a lattice. If the constraint
of self-avoidance is not imposed, the random walk can be generated by a random
walker who leaves the origin in a cubic lattice and at each step has an equal
probability of stepping forth in each of the 6 available directions. We shall call
such a walk a "free" walk. If the polymer is self-avoiding, the walker must be
prevented from visiting the same location twice; the result is a self-avoiding walk
on a lattice. At equilibrium one assumes that each possible self-avoiding walk of
N steps has an equal probability of occurring. If <r^> is the average end-to-end
length of a self-avoiding walk with N steps, /*0~log<rN>/logN for large N.
Numerical experiments with such walks corroborate the heuristic value μ0 = 3/5
[24]. Let ρ(x) be the monomer (= bead) number density at a point x, i.e., the
number of monomers per small volume surrounding x. The correlation function
for the monomers is R(r) = <p(x)p(x + r)>; R(r) is independent of x in a statistically
homogeneous suspension of polymers. R(r) is proportional to the conditional
probability that there be a monomer at x + r given that there is one at x. In a
statistically isotropic suspension, R(r) = R(r). The polymer spectrum is defined as
the Fourier transform of R(r), i.e., (2π)~3/2$ei-LR(r)dr. If R depends only on r, the
spectrum depends only on k = | fc | .

Given the exponent μ, one can estimate the correlation function for the polymer
[17]. Take a point on the polymer; there are on the average N ~ r1/μ beads in a
sphere of radius r centered at that point; there are ~ r(1/μ)~1 beads between r and
r + dr; the bead density at a distance r is thus ~r(1/μ)~Vr2 = r(1/μ)~3, i.e., the
correlation function for small r behaves as r(,1/μ)~3 (r must be small to avoid
corrections due to the finite length of the polymer and the possible presence of
other polymer chains in the ambient medium). If k = | fc | is the absolute value of
the wave number, a simple calculation or even a dimensional analysis yields a
spectrum ~ fe~1/μ for large k.

We will wish to make an analogy between polymers and vortex tubes and thus
compare the polymer spectrum with the energy spectrum defined above. To obtain
the analogue of the vorticity spectrum Z(fc) one has to integrate the polymer
spectrum over a sphere of radius fe, which adds a factor ~ fc2, and then to obtain
an "energy" spectrum one has to divide by fc2, and thus for a polymer E(k) ~ fe~1/μ

for large fe. In particular, for a self-avoiding polymer, E(k) ~ fe~5/3, and for a "free"
polymer E(k) ~k~2.

Consider the center line of the polymer. Its Hausdorff dimension is D = 1/μ,
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as can be read from the scaling relation N = <rN>1/μ. Thus E(k) = fc~v, y = D, where
y = 1/μ. Thus, for a polymer, dimension and inertial exponent are related, with

The problem of generating lattice self-avoiding walks on the computer in order
to calculate μ is far from trivial. An effective algorithm for doing so is the pivot
algorithm described in [25]. Consider the set of automorphisms of the cubic lattice;
they can be represented by the set of matrices with columns gί9 i = 1, 2, 3, such that
9i = σι Jπ(o> where σt = + 1, / = 1, 2, 3, π(i) is a permutation of (1, 2, 3), and /, is the
unit vector in the direction j. One can readily generate an algorithm that generates
one of these matrices, with each matrix having an equal probability of being chosen.

To construct self-avoiding walks with N steps, start with a simple self-avoiding
walk (for example, a straight line). Pick a point on that walk other than an end-point,
with all points having an equal probability of being picked. Turn all the points to
the right of the point picked by an automorphism chosen at random ("to the right"
means "furthest from the first point as one travels along the chain"). Check if the
resulting walk is self-avoiding. If it is, take it; if it is not, consider the preceding
self-avoiding walk to be the next member of the sequence of walks; then repeat
the procedure. In [25] it is shown that this algorithm produces a sequence of
self-avoiding walks with the right probability distribution and with high efficiency
(0(N) operations for generating a new N-step random walk independent of the
earlier ones in the sequence). Computational details and a description of the various
precautions that must be taken are also contained in [25]. It should be mentioned
that in particular a certain number of steps must be taken before the sample walks
are used or else the result may be unduly influenced by the starting configuration.
The exponent μ0 can be evaluated from the formula μ0 ~ log <rN>/log N. The error
in μ0 as a function of the number n of configurations over which one averages can
be estimated as follows: suppose σN is a measure of the uncertainty in <rN>. Then
an estimate of the statistical error in μ0 is

eN = |(log«rN> + (7N)/logΛO - (log«rN> - σN)/logN)\. (6)

If the successive sample walks were statistically independent one could easily
estimate σN. However, the sample walks are not independent. In fact, the limit
N-κx) defines a critical point for self-avoiding walks and the achievement of
independence is hampered by the phenomenon of critical slow-down [5]. If one
estimates σN by the standard deviation, as if the successive estimates were
independent, the resulting value of eN is an underestimate of the error. We shall
not carry out an analysis of this situation. The reasons for this cavalier procedure
will be described in due course. The fact that the limit JV -> oo is a critical limit
will be of significance for the final conclusions of this paper.

A Simple Model of Folded Vortex Tubes

Our simplified model of an ensemble of vortex tubes will be an ensemble of
self-avoiding walks, endowed with a direction so as to make the links in the walk
into vectors, and subjected to a weak form of an energy conservation constraint
patterned after Eq. (5).
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It is important to note at the outset that by losing information about the
structure of the vortex cores (and thus replacing the tubes by filaments) we lose a
lot of information. The analysis in earlier work ([7-9]) relies heavily on a careful
balancing of the energy increases due to the reduction in vortex cores during
stretching and the energy decreases that result from folding. What will be displayed
below is more a cartoon than a complete model. A careful analysis must be made
of what information can be expected from such a model. However, the simplicity
of the model leads to calculations that are conceptually simple and thus the result
is informative.

It was shown above that the energy of a vortex system could be approximately
divided into a self-energy (that cannot be evaluated without information about
vortex cores) and an exchange energy defined by the double sum in Eq. (5). The
analogue of that double sum on the lattice is

where et is a unit vector pointing in one of the six directions (±1,0,0), (0, ±1,0),
(0, 0, ± 1), i is an index characterizing the location, and | i — j \ is the distance between
the locations i and j (specifically, between the centers of the lattice links that issue
from locations ί and j). The length of the lattice links can be taken as 1 without
loss of generality. By the time a vortex tube has become a filament the self-energy
is large so the exchange energy E should be small. On the other hand various
filaments can absorb and emit energy so no specific bound can be placed on E. A
reasonable version of energy conservation is one in which each self-avoiding vortex,
i.e., an oriented self-avoiding walk, is assigned a statistical weight proportional to
exp ( — E/T)9 where E is given by (7) and T is a small "temperature."

There are various reasons to require that the filaments be self-avoiding
(conservation of helicity, in particular, see below). However, if the energy E is to
be finite (and thus the weight attached to a configuration not be zero) the filament
must not contain the same segment twice. One can of course construct walks that
have in common lattice points but not lattice bonds and still have a finite energy;
this is an artifact due to the fact that we measure distances between segments by
looking at the distance between their centers. Self-avoidance should be viewed as
the simplest manifestation of energy conservation; it is only to a collection of
self-avoiding walks that a weight exp( — E/T) can be meaningfully assigned.

T is a measure of the uncertainty in the model. It is not a real temperature - we
are in a microcanonical, not a canonical, ensemble, and the energy would be
constant if it were computed exactly, taking the cross-sections into account. The
total energy available to a filament depends on the other filaments and on the
evolution of the self-energy, which is not taken into account because the
cross-sections are not known. T = oo produces a self-avoiding filament. T very
small may lead to a single realizable configuration that minimizes E. We wish to
pick T small enough to have an effective energy constraint but not so small that
there are no fluctuations. In effect, we have a one-parameter family of models, and
we are interested in the models that correspond to the smaller values of T. In
practice, T "small" will turn out to define the model adequately. To generate such
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energy-constrained, self-avoiding vortex filaments one need only modify slightly
the pivot algorithm described above by a Metropolis rejection technique [5]: given
a self-avoiding walk with energy E = Eold, generate another self-avoiding walk by
the pivot algorithm, calculate its energy £new, and accept this new walk with
probability p = mm [l,exp( — (£old — £new)/^)] If a new wa& is not accepted, the
previous walk is taken as the next in the sequence of realizations of the walk. The
ergodicity and detailed balance conditions for the modified sampling follow trivially
from those for the pivot algorithm.

All the energy constained vortex filaments will be self-avoiding, and we shall
refer to them simply as energy constrained filaments. One can endow both a free
random walk and a self-avoiding walk with a direction and thus obtain a "free"
vortex filament or a "self-avoiding" vortex filament. These will be used in the
numerical work below.

The model suggests that given collection of three-dimensional vortex elements
in a vortex collection, the function of their coordinates defined by E in (7) could
be used as an effective Hamiltonian for generating ensembles,

where the ξt are vortex elements. This Hamiltonian is the three dimensional
analogue of Onsager's two-dimensional Hamiltonian [26] where self-energy is also
omitted.

The conjecture made in [8, 10] was that the equilibrium configuration of vortex
filaments can be approximated by allowing vortex tubes to stretch subject only to
the constraints of energy and helicity conservation. It was further conjectured that
energy conservation creates folded tangles which affect the Hausdorff dimension
of the support of the vorticity, and that the large scale behavior of vortex tubes
was determined by the constraint of conservation of helicity, which is equivalent
to self-avoidance. It was further conjectured that the effects of a vortex cross-section
of finite capacity and of the vector nature of the vorticity conspire to create a
spectrum with the same exponent as the self-avoiding walk, i.e., a Kolmogorov
spectrum. We shall check some of these conjectures on our models, noting that
one important ingredient (a variable cross-section) is missing.

A discussion of hairpins that does not rely on a vortex representation can be
found e.g. in [29].

Properties of the Filament Models

We now list various computable properties of the model, the values they can be
expected to assume, and their relation to properties of real fluid turbulence.

The Hausdorff dimension D of the vortex filaments can be calculated as before:
D = 1/μ, μ = lim (log <rN >/log N). One should be very careful when one tries to

N-*ao

identify this quantity with the dimension D calculated, e.g., in [8], which is strongly
dependent on the variation in the cross-section of the tubes.

In the case of vortex filaments, it is no longer true that in E(k) ~k~y one has
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y = 1/μ, since the vector nature of the vorticity must be taken into account. Let
ί(ί) = (fι(t)ff2fe)»f3(c)) be the vorticity at a position r in physical space. The
correlation between ξ(0) and ξ(r) is the average of £ if(0)^.(r). Consider a sphere
of radius r = |r|, and the function '

Φ(')= Σ Σ£(°Kί(?:')
Ir ' l^r l

Suppose φ(r) has the form φ(r) ~ rμ\ μ' = constant. An analysis that follows
step-by-step the analysis of the correlation function and the spectrum in the polymer
case yields E(k) ~ k~y for large k with y = 1/μ'. Note that μ' / μ; the simple relation
between y and D in the polymer case is lost.

To estimate μ', consider a vortex filament on a lattice, having N links, generated
by the algorithms described in the preceding section. Let ξ(j) = (ζι(j), £2(Λ £3(7))
be the vorticity vector at the location j along the filament; ξ(j) points in one of
six possible directions. For large N,

where <rN > is the average distance between the first and JV-th links (say between
their centers), and <$#> is the average value of the sum

N 3

ΦN = Σ Σ <Eι( J'Kiί Joλ Jo fixed

j=ι ί = ι

φN replaces the N of the scalar formula for μ. Note that φN is simply the scalar
product of ΣέO) with a ξ at a fixed location; to avoid edge effects, i.e., to avoid
the consequences of the fact that the constraint of self-avoidance and energy
conservation are less restrictive at the ends of a finite filament than in the middle,
pick JQ far from the ends (e.g., in the middle). An error estimate for μ' can be
obtained by the obvious generalization of (6):

eN = |log«rN> + σN)/log«φN> - σ'N) - (log«rN> - σN)/log«</>N> + *'„))!, (9)

where σN9σ'N are estimates of the uncertainties in <rN>, <</>#>> respectively. A crude
estimate of eN can be obtained by calculating σN, σ'N as if the successive estimates
of Γjy, φN were independent.

Note that φN ̂  rN, and thus μ' g: 1, y ̂  1. These inequalities remind us forcefully
that the filament model is unrealistic; the cross section of vortex tubes has an
important role. In particular, an unstretched vortex configuration is a straight line,
and thus μ' = 1, y = 1, while for an unstretched vortex configuration in a real fluid
γ > 3 (the condition that Z(/c), the vorticity spectrum, be integrable and thus ξ, the
vorticity field, be locally in L2). A local cascade non-intermittent model yields γ = 2
(see [10]); the discrepancy between these models is a reflection of the drastic and
unrealistic assumptions in local cascade models. Note furthermore that a spectrum
with y ^ l has an infinite energy density (as indeed it should with vortex filaments
carrying the vorticity). The implications of these facts for numerical computation
are discussed in the concluding section of this paper.

To see what the computed values of μ' and γ = 1/μ' in the model can tell us
about real flow, consider a few simple situations. As was already stated above, for
an unstretched filament μ' = 1, 7 = 1. If the vortex filament is free, the orientations
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of the vortex segments are uncorrelated, μ' = oo, y = 0 (this situation was already
discussed in [11]). μ' thus measures the amount of disorder in the system. If the
turbulence spectrum is created by the constraints, one should expect 1 < μ' < oo,
0 < y < l , corresponding qualitatively to the inequalities for the Kolmogorov
exponent y0 = 5/3: 0 < γ0 < 3, 0 < y0 < 2 that yield a value of y intermediate between
0 and the value that corresponds to a non-turbulent medium.

Note that in the model dy/dD < 0, the opposite situation from the polymer
case; however, for a fluid dγ/dD>09 since as D increases in the model, the
corresponding fluid vortex is more stretched, and thus the support of the enstrophy
is smaller. Another manifestation of this discrepancy between reality and our model
is that in a fluid that starts from rest the value of D decreases to its equilibrium
value [7], while here the value of D will increase to its equilibrium value.

Given a vortex filament, the velocity field at a point x in space is obtained by
a discrete form of the Biot-Savart law (2):

u(x) = ΣK(x-Xj)ξp (10)

where the sum is over the filaments, x} is the center of the y'-th link and ξj is its
vorticity vector. This formula can be differentiated to yield derivatives of u.

Given a random variable η with mean 0, its skewness S and flatness F are
defined as S = <fy3 >/<^2 >3/2, F = {η4 >/<^2 >2, where the brackets denote averages.
We shall be calculating below the skewness and flatness of the derivatives of u.
For a gaussian variable, S = 0, F = 3. Note that even for a free filement, the
components of the velocity vector cannot be gaussian. For a free filament, the
large N limit of (10) behaves like

where vv is vector valued Brownian motion. Such integrals have been analyzed in
[27,28] for the simpler case of scalar w and a kernel in L2, and the result is not
gaussian; such integrals are not mere sums of independent variables to which the
central limit theorem applies. The Biot-Savart kernel produces a non-gaussian
velocity field. Note however that the skewness of the velocity derivatives should,
in our model, be zero; that skewness is a measure of energy transport across scales
[2] and thus should be zero at equilibrium. To evaluate that skewness in an
equilibrium model one needs either a Kubo formula [15] or a model of hairpin
formation and removal [12] that is beyond the resolution of the present model.

Numerical Results

We shall now display numerical results from calculations with free, self-avoiding
and constrained filaments. In each case, N, the number of links in the filament
and n, the number of realizations of the filament, are numerical parameters. In the
constrained case Γ, the "temperature," is an additional parameter. In the case of
a free filament, each realization can be generated from scratch by allowing a random
walker to perform N steps on a lattice, and successive realizations are independent.

(a) Results for Free Filaments. These are included as a check on the validity of
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the overall procedure. A detailed convergence study as a function of N and n will
not be displayed in this case. With N = 801, n = 105 we obtain μ = 0.488 ± 4 x 10~ 3

(the error estimate is simply the standard deviation of the estimate). The exact
value is of course μ = 0.5. The corresponding computed dimension is D = 2.049 +
0.016 (the exact values is D = 2). The calculated value of μ' is μ' = 96 +?, where ?
denotes the fact that the estimate (6) is indefinite, one of the arguments of the
logarithms being negative. The exact value is μ' = oo. The corresponding computed
value of y is y = 0.01 + ?, the exact value being y = 0.

The skewness of du/dx calculated at the mid-point of the filament, is 5 =
- 0.037 ± 0.076, an estimate quite compatible with S = 0. The flatness F of du/dx
evaluated at the same point is F = 4.89 ± 0.11, a non-gaussian value, as we expect.
A single filament, most of which is contained within a box of size ~ N1/2, does not
represent homogeneous turbulence, and thus it is not clear that one should compare
this value to the value ~ 3.4 in homogeneous turbulence [2]. In a wake F takes
values between 3 and 4.5 [20].

With values of N within our computational grasp (see the discussion below) it
was not possible to evaluate velocity differences u(x) — u(xf) for | x — x' \ large enough
to have u(x),u(x') independent and yet have both x and x' within a region with a
substantial number of segments, thus the decay of the flatness of the velocity
differences as the distance |x — x'| increases cannot be compared with what happens
in experiments. The correlation tensor has the correct qualtative form, but as
explained in [2], this is mostly a consequence of div u = 0 and sheds little light on
the model.

(b) Self-Avoiding Filaments. These are generated by the pivot algorithm. The values
of μ converge rapidly (for a detailed analysis, see [25]). With N ̂  500, n > 104, the
estimates of μ are within 1% of the Flory value μ = 0.6, with error estimates under
1%. The corresponding dimension is D = 1.66. The skewness S of du/dx is also
zero with great accuracy.

In Tables I and II we display computed values of μ' and F for several moderate
values oϊN and n. The first N configurations are discarded to reduce the dependence
on the initial configuration. The error estimates are calcuated as if the successive
realizations were independent. They are thus underestimates, but should not be
catastrophically off since the acceptance rate of the pivot algorithm at these values
of N is around 50% (i.e., about 50% of the proposed foldings turn out to be
self-avoiding and are accepted); this value is consistent with the estimates in [25].
Furthermore, the moves in the pivot algorithm are quite radical, and thus
independence of successive realization should not be far from being an acceptable

Table I. μ' as a function of N and n for a self-avoiding filament (y = 1/μ')

π\N 401 501 601 701 801

104

5.104

105

2.105

2.96 ±0.25
2.65 ±0.1 5
2.76 ±0.1 6
2.56 ±0.1 2

1.83 ±0.06
2.67 ±0.10
2.44 ±0.06
2.53 ±0.03

2.04 ±0.24
2.34 ±0.1 8
2.63 ±0.20
2.78 ±0.1 8

3.19 ±0.49
2.74 ±0.36
2.54 ±0.39

4.75 ±0.63
2.95 ±0.40
2.90 ±0.33
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Table II. The flatness F as a function of N and n for a self-avoiding filament

n\N 501 601 701 801

104

5.104

105

3.51 ±0.14
4.28 ±0.08
4.66 ±0.06

5.90 ±0.1 8
6.02 + 0.1 3
5.98 ±0.10

3.71 ±0.12
6.11+0.23
5.67 ±0.14

4.11 ±0.16
3.18+0.05
3.81 ±0.05

Table III. D = l/μ as a function of N and n for a constrained random
walk, Γ=14

n\N 501 701 901

104

5.104

105

2.45+0.06
2.36+0.02
2.33 ±0.01

2.47+0.04
2.44+0.02
2.44 ±0.02

2.53 ±0.01
2.48+0.01
2.48 ±0.01

supposition. A careful analysis of critical slow-down as N -> oo has turned out to
be impractical because of the slow convergence.

From Table I it appears that μ' converges to ~ 2.5, and thus γ converges to
~0.4. This is a key result in the present paper. The value 0.4 is intermediate
between 0 and the no-intermittency value (here, γ — 1), just like the Kolmogorov
exponent. The calculation shows that an inertial exponent can be generated by a
non-local constraint, and under the assumption of thermal equilibrium. F, the
flatness, converges more slowly, but remains above the gaussian value F = 3, as
can be seen from Table II.

(c) Constrained Random Walks. This is of course the main model; it contains an
additional parameter, the "temperature" Γ, which we would like to choose as small
as possible in order to enforce the constraint of energy conservation, as discussed
before. If T is too small the acceptance ratio, i.e., the fraction of moves in the
weighted pivot algorithm that is accepted, becomes very small and the results are
not significant.

The exponent μ that determines the dimension D = \/μ converges reasonably
well. In Table III we display values of/) obtained with T = 14 and various choices
of N and n. The error estimates are obtained from (9), where the uncertainty is
estimated as 10 times the standard deviation, a plausible estimate since the
acceptance ratio is 15%. It is reasonable to conclude that D at this value of T is
around 2.5; if one disregards the difference in definition, this conclusion agrees
with earlier determinations of related dimensions [6-8]. The runs summarized in
Table III are as large as we can afford; remember that the calculation of the energy
E is 0(N2), and at these values of N fast summation methods are not very helpful.
The slightly larger values of D for a larger N may be a consequence of the fact that
a fixed T produces a more severe constraint for a larger filament (with a larger
set of possible values of E). In Table IV we display some computed values of the
flatness which are consistent with the runs previously described. The skewness is,
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Table IV. The flatness F as a function of N and n

for a constrained random walk, T = 14

n\N 501 701

104

5.104

105

1.96 + 0.36

3.71+0.5
3.76 ±0.4

2.27 + 3.0
6.41+2.6

5.26 + 0.7

as before, near zero. In the calculations here, the first 5N configurations are
discarded.

It is important to examine the dependence of μ and D on the "temperature"
T. For T= 10, N = 501, n = 104 we found D = 2.58, with an acceptance ratio of
9%, which makes the uncertainty large. Longer runs with the same values of T
and N have a steadily decreasing acceptance ratio. With larger values of N and
T = 10 the acceptance ratio tends to zero - the configurations get stuck at a fixed
point. On the other hand, for T > 15 the calculated values of D decrease - at T = 21
they remain just above 2. Thus T= 14 seems to be the smallest practical value.

In none of the cases do we display the energy E. In the free case the energy is
infinite, in the self-avoiding case it should be positive, and in the constrained case
it should be smaller than in the self-avoiding case. All these expectations are fulfilled,
but the values of E depend on N9 and we have not been able to find a convincing
scaling that will clearly present the dominant trends.

One of the most interesting quantities is of course γ = 1/μ'; unfortunately, the
calculation of μ' does not converge as a function of N for the values of N we can
afford. A calculation with N = 701, n = 105 costs about 10 hours of Cray XMP
time, and at N = 701 we are very far from convergence. The reason is clear; if

Fig. 1. A self avoiding walk
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Fig. 2. A constrained random walk

D = 2.5, then rN ~ NOΛ; even with N = 1000 most of the segments are within a
sphere of radius less than 10 - too close to the scale on which the folds are forming
to distinguish the large scale structure of the vorticity field which we conjecture
is dominated by the constraint of self-avoidance. In particular, with N = 501,
T = 14, n = 105, <</>N > is negative, presumably as a result of the folds; with N = 701,
T = 14, n = 105, <</>„> is positive, with μ1 calculated as - 2.36 ± 0.37.

To show the qualitative effects of self-avoidance and energy conservation, we
display in Figs. 1 and 2 some typical configurations. In Fig. 1 we display the first
100 links in a self-avoiding walk with N = 501, after n = 104 steps. In Fig. 2 we
display the first 200 links in a constrained walk, with T= 14, after n = 104 steps
with N = 501. The energy constraint creates tangles which presumably simply
avoid each other in the large, since there should be no energy gain or loss in getting
complicated tangles close to each other.

Conclusions

The model described above is a simplified version of a model of the inertial range
in which the flow is dominated by vortex filaments in thermal equilibrium. The
model has similarities to a polymer system for which it is known that a critical
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point is approached as the number of links N tends to infinity. Since vortex filaments
become longer and thinner as the viscosity tends to zero, this analogy gives a
concrete content to the conjecture that a turbulent flow approaches a critical state
as the viscosity tends to zero, as is suggested by the strong coupling between scales.
The Biot-Savart law that produces a velocity field from the filamentary vorticity
produces non-gaussian velocity statistics.

The Hausdorff dimension D of the support of the vorticity produced by the
model is near 2.5, in agreement with the values of D calculated in earlier work.
The difference in the definition of D should be noted.

For a self-avoiding filament model there is an inertial range exponent, with a
value that corresponds to an intermittent flow. This observation shows how an
inertial range can be produced by global constraints in an equilibrium model. The
conjecture that such an exponent is also produced in the constrained filament
model could not be verified because of limitations in computing power. One could
argue that in spectral calculations (see e.g. [31]) one tries to stay as far as possible
from the critical point v = 0 (v = viscosity) while still having an inertial range, a
strategy that is difficult to follow with vortex methods or vortex models. The
calculations here should make one wary of all numerical determinations of
Kolmogorov's exponent. Calculations of that exponent based on vortex methods
must take the vortex cores into account.

Note that the model shows clearly, simply and unambiguously, that as the
energy constraint is tightened, the dimension D increases (and thus the filaments
fold more). This is the simplest analysis of the effect of energy conservation on
folding.

An application of the phenomenological Hamiltonian (8) to the dynamical
smoothing of vortex interactions will be presented elsewhere. The idea will be that
a manipulation of the Hamiltonian H can reduce the amount of folding and thus
reduce the amount of labor; this idea generalizes the heuristic algorithm in [12].

Note: the programs used to perform the calculations above are available from
the author.
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