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Abstract. A one parameter quantum deformation SμL(2,<C) of SL(2,(C) is
introduced and investigated. An analog of the Iwasawa decomposition is
proved. The compact part of this decomposition coincides with SμU(2),
whereas the solvable part is identified as a Pontryagin dual of SμU{2). It shows
that SμL(29 (C) is the result of the dual version of Drinfeld's double group
construction applied to SμU(2). The same construction applied to any compact
quantum group Gc is discussed in detail. In particular the explicit formulae for
the Haar measures on the Pontryagin dual Gd of Gc and on the double group G
are given. We show that there exists remarkable 1 — 1 correspondence between
representations of G and bicovariant bimodules ("tensor bundles") over Gc.
The theory of smooth representations of SμL(2, (C) is the same as that of
SL(2, <C) (Clebsh-Gordon coefficients are however modified). The correspond-
ing "tame" bicovariant bimodules on SμU(2) are classified. An application to
4D+ differential calculus is presented. The nonsmooth case is also discussed.

0. Introduction

Despite 60 years of intensive efforts of many eminent physicists quantum theory is
not yet fully compatible with the (special) theory of relativity. The failure of the
program of constructive quantum field theory is one of many manifestations of this
incompatibility. More detailed analysis shows that the difficulty lies in small space
distances. It seems that the four-dimensional smooth pseudoriemannian manifold
is a good model of our space-time only in the macro-scale. The description of the
space-time in sub-micro level may require the new tools provided by a
noncommutative generalization of differential geometry [2, 9,12].

It is not clear what the symmetry properties of the space-time in the sub-micro
scale are. The idea that the symmetry properties are described by a quantum group
[3, 8,10] is very attractive. By virtue of the correspondence principle the symmetry
group should be a deformation of the Poincare group.

The Poincare group is the semidirect product of Lorentz and translation
groups. Therefore at the first step we should construct a quantum deformation of
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the Lorentz group. The present paper completely solves this problem. We
introduce a one parameter family of quantum groups. All relevant notions such as
comultiplication, counit, coinverse and the Haar measure are introduced and
discussed in detail. Finite-dimensional representations are investigated. For a
special value of the parameter one obtains the classical Lorentz group.

Throughout the paper by (quantum) Lorentz group we mean the (quantum)
SL(2, C) group. Only in the last section we briefly discuss the quantum analog of
the 50(3,1) group. In many places we refer to the terminology introduced in [8],
replacing however the word "pseudo" by the recently more fashionable term
"quantum".

The paper is organized in the following way. In Sect. 1 we discuss the
commutation relations defining the algebra of continuous functions on the
quantum Lorentz group. These relations are imposed on matrix elements of the
fundamental representation acting on the two-dimensional space of "undotted
spinors". To derive the relations we shall assume that the fundamental represen-
tation obeys the usual properties known in the theory of spinors and that the
quantum Lorentz group contains SμU(2) (where μ e [ — 1, l]\{0} is a fixed
parameter) in the same way as SL(2,(fc) contains SU(2).

The Iwasawa decomposition theorem (Theorem 1.3) is the main result of
Sect. 1. It shows that the quantum Lorentz group is in a certain sense the product
of two subgroups. The first one is the SμU(2) subgroup mentioned above. The
second "solvable subgroup" is (as we shall see in Sect. 5) isomorphic to the
Pontryagin dual of SμU(2).

It turns out that for any compact quantum group Gc there exists a quantum
group G that contains Gc and the Pontryagin dual of Gc combined in a canonical
nontrivial way. G is called the double group built over Gc.

The construction of the double group is carried out in Sect. 4. Sections 2 and 3
contain necessary preparatory material. In Sect. 2 we introduce the convolution
product and the Fourier transform of "continuous functions" on a compact
quantum (matrix) group Gc. The quantum space Gd of all characters on Gc is found.
Section 2 may be regarded as a supplement to [10]. Section 3 is devoted to the
Pontryagin duals. By definition (cf. [8]) the Pontryagin dual of Gc is the quantum
space Gd endowed with the natural group structure. We study in detail the
comultiplication, counit, coinverse and Haar measures related to Gd. We show that
Gd is unimodular if and only if the Haar measure on Gc is central. The duality
between Gc and Gd is described by a unitary bicharacter u. At the end of Sect. 3 finite-
dimensional representations of Gd are investigated. It turns out that there exists
natural 1 — 1 correspondence between the set of all representations of Gd acting on
a finite-dimensional vector space K and the set of all homomorphisms of the
algebra of smooth functions of Gc into B(K). In Sect. 4 we use the dual version of
Drinfeld's construction [3] in order to introduce the double group G built over Gc.
As a quantum space G is homeomorphic to the cartesian product Gc x Gd. G
contains Gc and Gd as subgroups. However the quantum group G is not a direct
product of Gc and Gd. The point is that inside G the "elements" of Gc do not
commute with "elements" of Gd. This noncommutativity is described by a
homeomorphism σ^: Gd x Gc-+Gc x Gd defined by (4.9). Using this homeomorph-
ism we introduce the group structure (the comultiplication, counit and coinverse)
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on G. It turns out that there exists on G a left and right invariant Haar measure (G
is unimodular!).

A large part of Sect. 4 is devoted to finite-dimensional representations of the
double group. Restricting a representation π of G to Gc (Gd respectively) we obtain
a representation πc of Gc (πd of Gd respectively). We show that π is uniquely
determined by the pair (πc, πd) and that πc and πd satisfy a certain compatibility
condition. Conversely any pair (πc, πd) satisfying the compatibility condition gives
rise to a representation of G. The compatibility condition turns out to be
equivalent to the fundamental formula of the theory of bicovariant bimodules
(formula (2.39) of [12]). Due to this fact there exists one to one natural
correspondence between representations of G and bicovariant bimodules over the
algebra of smooth functions on Gc.

In Sect. 5 the general theory developed in Sects. 2, 3, and 4 is applied to the
group Gc = SμU(2). It turns out that in this case the double group obeys all the
properties considered in Sect. 1. This way the construction of the quantum Lorentz
group is completed. Section 6 is devoted to the study of finite-dimensional
representations of the quantum Lorentz group. To our surprise we discover the
existence of non-smooth representations. At the end of this section we classify the
bicovariant bimodules over SμU(2). An independent description of the 4D+-
differential calculus is given.

Many quantum groups that we deal with in this paper are not compact. The
non-compactness causes the difficulties of a conceptual and technical nature. The
first problem is related to the fact that no general theory of non-compact quantum
groups exists. In particular no precise definition of non-compact quantum group is
yet formulated. In our opinion it is too early to formulate the general theory of
quantum groups in an axiomatic way (as was done for the compact case in [10]). At
first we have to elaborate a number of examples in order to collect the necessary
experience in the subject. We believe that the present paper makes an important
step in this program.

Technically non-compactness means that we work with non-unital
C*-algebras. Let us remind (cf. [8]) that in the category of such algebras a
morphism φeMor(A,B) is by definition a linear, multiplicative, *-preserving
mapping from A into M(B) such that φ{A)B is dense in B. In this definition and in
the rest of the paper M(A) denotes the multiplier algebra of a C*-algebra A. In
particular if A is the algebra of "all vanishing at infinity continuous functions" on a
non-compact quantum group then the comultiplication ΦeMor{A,A<g)A) is an
*-algebra homomorphism acting from A into M{A®A). Since in general
M(i)®M(i)CM(i(x)4 the Hopf-algebra formalism does not work in non-
compact case.

The second difficulty produced by the non-compactness is related to the
necessity of working with unbounded elements affiliated with C*-algebras.
According to [13], a is an element affiliated with a C*-algebra A if a is an
unbounded (satisfying certain conditions) multiplier densely defined on A. In this
case we write aηA. Let A be the C*-algebra of "all continuous vanishing at infinity
functions" on a non-compact quantum group G and a be a matrix element of a
finite-dimensional representation of G. Then in general a is unbounded and the
relation a e A can not hold. Instead of this relation we require that aηA.
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Let A be a C*-algebra. Elements of M(A) are the only bounded elements
affiliated with A. If A is unital then aηA iff aeA. Elements affiliated with a
C*-algebra can be transported by morphisms: if aηA and φ e Mor(^4, B) then φ(a)
is a well defined element affiliated with B.

All non-unital C*-algebras considered in this paper are of the form

neN

where N is a denumerable set and An are C*-algebras with unity. Any element aηA
is of the form

a = Σ@<*n, (0.1)
neN

where aneAn for any n. If lim||αJ|=0 (sup||αj <oo respectively) then aeA
n n

see Remark on attached sheet of paper (a e M(A) respectively). It is clear that the
set of all elements affiliated with A is endowed with the natural *-algebra
structure (it is a pro-C*-algebra, cf. [6]). One can easily verify that the Pedersen
ideal Ao of A is the set of all elements of the form (0.1) where an = 0 for all except
a finite number of n. Let

B= ΣΦBm

meM

be another C*-algebra of considered form and

be a linear mapping. We say that φ is proper if for any meM there exists a finite
subset NmQN such that for all aeA0,

One can easily check that any φ e Mor(^4, B) is proper. If φ is proper then φ(a)m

depends only on a finite number of components of a. Therefore φ admits a natural
extension to the set of all elements affiliated with A. We shall also use the notion of
proper linear mapping in a more complicated setting. In some cases φ is defined
only on a dense *-subalgebra stf CA of the form

where for each n, srfn is a dense unital *-subalgebra of An. By definition

Σ®n^ = {α e^o ^ej/ π forany n}.

If φ is proper then φ admits a natural extension to the set of all elements aηA such
t an k
Let

that an e kn for all n.

A=Σ*An9 A'=γ?A'k
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be C*-algebras of considered form and

be dense *-subalgebras. We set

=

If B and B' are C*-algebras of considered form and

φ':s/'-+B'9

are proper linear mappings, then φ®φf is proper and admits a natural extension to
stf®rstf'. In what follows, dealing with proper linear mappings we shall freely use
their natural extensions without any further comment.

In the paper we constantly consider tensor products of C*-algebras. Dealing
with elements of such tensor products it is in some cases convenient to use "the leg
numbering notation". We shall explain this notation in the simplest possible case:

Let A9B and C be C*-algebras and φ12eMor(Λ®B, A®B®C\
φ13eMor(A®C, A®B®C) and </>23eMor(£(x)C, A®B®C) be canonical em-
beddings, i.e.

φί2(χ®y)=χ®y®ic,

φί3(x®z) = x®IB®z,

for any x e A, y e B, and zeC(IA (IB and Ic respectively) denotes the unity of M(Λ)
(M(B) and M(C) respectively)). For any cηA®B, bηA®C, and aηB®C we set

Clearly c1 2, b139 and a23 are affiliated with A®B®C. The reader should notice
some ambiguity hidden in this notation. If bηA®C then bί3 is the corresponding
element affiliated with A® B®C, where B is a C*-algebra that is determined by the
context.

We shall also use the © and © products introduced in [10]. If uηB(K)®A and
vηB(K)®B (where K is a finite-dimensional vector space and A, B are C*-algebras)
then

u©w = uί2v13.



386 P. Podles and S. L. Woronowicz

Clearly u©v η B(K)®A®B. Similarly if uηB(K)®A and wηB(L)®A (where
K, L are finite-dimensional vector spaces and A is a C*-algebra) then

w©w = w13w23.

Clearly u©w η B(K®L)®A.
Dealing with linear mappings acting between tensor products of C*-algebras

one may use the diagram notation that generalizes that introduced in [11] (see
Appendix A for details).

1. First Encounter with Quantum Lorentz Group

Introducing a quantum group one has first to define the algebra of "continuous
functions" on it. In most cases this algebra is introduced in terms of generators and
commutation relations. Usually the generators are matrix elements of the
fundamental representation of the group and the relations reflect (specific for each
considered quantum group) desired properties of this representation. For example
in the case of SμU(2) the commutation relations mean that the fundamental
representation is unitary and irreducible and that the tensor square of this
representation contains the trivial representation.

We follow the same methodology introducing the quantum Lorentz group
SμL(2,<£), μe[-l, l]\{0}. We start with the two-dimensional fundamental
representation

(; 0
corresponding to the representation of classical Lorentz group acting on the space
of "undotted" spinors. Copying the classical case we shall assume that the tensor
square of w is equivalent to w°®wx

9 where w° is one-dimensional trivial
representation and dimw^S. It means that there exist EeB(<Cι,(C2®(D2) and

such that

(1.2)

(1.3)

and E'E φ 0 (£(1) is the (w© w)-invariant vector generating the subspace related to
w°; Έ is the (w©w)-invariant functional killing the three-dimensional subspace
related to w1).

Let w be the complex conjugate of w:

w = wj®*, (1.4)

where j denotes an antilinear, multiplicative invertible mapping acting on the
algebra of all complex 2x2 matrices: M2((C) 3m-^mje M2((C). The representation
w corresponds to the representation of the classical Lorentz group acting on the
space of "dotted" spinors. Having in mind the classical case we shall assume that
w©w is irreducible and that w©w is equivalent to w©w. The latter means that
there exists an invertible linear mapping λeB(<C2®<£2) such that

(1.5)
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In order to specify E, E'J, λ entering formulae (1.2)—(1.5) we shall assume that
SμL(2,(C) contains SμU(2) as a subgroup and that w and w restricted to SμU(2)
coincide with the fundamental representation of SμU(2). This representation will
be denoted by wc. It means that relations (1.2)—(1.5) must be satisfied if we replace w
and w by wc.

Let (ε l 5ε2) be the canonical basis in (C2. Using the known properties of the
fundamental representation of SμU(2) (cf. [9]) we see that

) ( % - ) (1.6)
zj \-μ xz2, zt )

for any zuz2,z3,z4e(D and up to a numerical factor,

' = E* = hermitian conjugate of (1.7)

where se<£. In order to fix the value of s we notice that G = (E*(
(id(χ)/l(χ)id)(/l®2i) intertwines w©w with itself. Therefore (we want w©w to be
irreducible) G is a multiple of identity,

and s= —μ 2 ( s = — 1 leads to an equivalent theory).
We shall write relations (1.1)—(1.5) in an expanded form. By virtue of (1.4), (1.1),

and (1.6), , ^

and taking into account (1.7) one can easily verify that (1.1)—(1.5) are equivalent to
the following set of relations:

ocβ = μβoc, (1.9)

<xy = μyoc, (1.10)

ocδ-μβy = I, (1.11)

βy = yβ, (1.12)

βδ = μδβ, (1.13)

yδ = μδy, (1.14)

δvL — μ~xβy = I, (1-15)

βα* = μ ~ 1 α * β + μ~ 1 ( l — μ 2 ) ^ * ^ ^ (1.16)

yα* = μα*y, (1.17)

<5α* = α*(5, (1.18)

y jg* = j 8 * 7 , (1.19)

5)8* = μjS*(5 - μ(ί - μ2)a*y, (1.20)
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δγ*=μ-1γ*δ, (1.21)

αα* = α*α + (1 - μ2)y *y, (1.22)

jSjS* = >S*/? + (1 - μ2) [δ*δ - α*α] - (1 - μ2)2 y *y, (1.23)

π = y y, (1.24)

δδ* = δ*δ-(ί-μ2)y*γ. (1.25)

This way we have found the complete list of relations defining the algebra of
continuous functions on the quantum Lorentz group. The construction of algebra
itself is however much more complicated than in the compact group case
(generators α, β, γ, δ are unbounded, whereas we are interested in the C*-algebra of
"continuous, vanishing at infinity functions"). This construction is carried out in
the forthcoming sections where also comultiplication, counit, coinverse and Haar
measure will be considered.

In the remaining part of this section we investigate formal properties of the set
of relations (1.9)—(125). In particular we discover a remarkable version of the
Iwasawa decomposition.

In many formulae in this paper, the square root of μ is involved. In order to
avoid the double meaning possible in the case μ<0 we shall use the following
convention:

If μ<0, then for any xeR,

μx = \μ\xeiπx.

Moreover we set

I f μ > O t h e n S μ = R + .
It is well known that the group G = SL(29 C) admits the following decomposi-

tion: G = K- AN, where K and AN are subgroups of G:

K = SU{2) = {UEG:U- unitary},

n

0, a~y J

We shall show that a similar result holds for the quantum Lorentz group.

Remark. In the classical case the solvable subgroup admits the further decomposi-
tion: AN = A-N, where A is abelian and N is a nilpotent subgroup of AN. However
we were not able to find any analog of this decomposition in the quantum case.

Let H be a Hubert space and M2(B(H)) be the set of all 2 x 2 matrices with
entries belonging to B(H). An element w e M2{B(H)) is said to be an SμL(2, (C)-
matrix if the matrix elements of w

0 <>•")
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satisfy the relations (1.9)-(l -25). If in addition w is unitary then we say that w is a Kμ

(or Sμ£/(2))-matrix). A matrix wc is an SμU (2)-matήx if and only if

T)
where αc, yc e £ ( # ) satisfy the relations

χ**e+y*ye=i, (1.29)

αcαc* + μ2yc*yc = J , (1.30)

μyc*c=<*cyc> (i 3 2 )

μyfocc = occγf. (1.33)

If (1.28) is unitary then these relations are automatically satisfied.
Let wdeM2{B(H)) be a matrix with the left-lower-corner element equal to

zero. One can easily check that wd is an SμL(2, (C)-matrix if and only if

( 0 ; ^ J (1.34)
where a,ne B(H) satisfy relations

aa* = a*a, (1.35)

an = μna, (1.36)

na* = μ~ιa*n, (1.37)

nn* = n*n + ( l - μ 2 ) ( ( « * « ) - ^ α * ^ . (1.38)

If in addition SpaCSμ (this condition replaces the inequality "a > 0" in (1.26)) then
we say that wd is an ^iVμ-matrix.

Remark. According to Manin a quantum group is just the set of all matrices whose
matrix elements satisfy assumed commutation relations [5]. E.g. SμU(2) is simply
the set of all 5μ(7(2)-matrices. In our opinion this point of view, hardly accepted in
the compact case, is at the moment completely useless in the theory of non-
compact quantum groups (the theory presented in [4] is not yet generalized for
non-unital C*-algebras).

In the following propositions G is one of the following three symbols: SμL(2, <C),
SμU(2), ΛNμ. Moreover we say that two operators p,qeB(H) doubly commute if
pq = qp and pq* = q*p.

Proposition 1.1. Let w1 and w2 be G-matrices. Assume that matrix elements of w1

doubly commute with matrix elements of w2. Then wxw2 is a G-matrix.

Proof. The case G = SμL(2,(ϋ) has to be verified by direct computations. The
computations become trivial if one remembers that (1.9)—(1.25) are equivalent to
(1.2)—(1.5). We know that the product of unitaries is unitary and the iSμί7(2)-case
follows. The same is true for ANμ-case (the product of triangular matrices is a
triangular matrix and tγt2 eSμ for tί912 eSμ). Q.E.D.
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As a simple conclusion we get immediately

Proposition 1.2. Let H1 and H2 be Hubert spaces and wγeM2{B(Hι)\
w2 e M2(B(H2)). Assume that w1 and w2 are G-matrices. Then wιθw2

EM2{B{H1®H2)) is a G-matrix.

In what follows we assume that \μ\ < 1. We end this section with the following
version of Iwasawa decomposition.

Theorem 1.3. Let w be an SμL(2, (£)-matrίx. Then there exists unique decomposition
of the form

J w = wcwd, (1.39)

where wc is an SμU(2)-matrix and wd is an ANμ-matrix. Matrix elements of wc doubly
commute with matrix elements of wd. Moreover the matrix elements of wc and wd

belong to the C*-algebra generated by matrix elements of w.

Proof At first we notice that any SμL(2, (C)-matrix is invertible: Using (1.9)-(1.15)

one can easily check that / -io\
d' ~μ β) (1.40)

-μγ, a )
is the inverse of (1.27).

Let p, q, r be elements of B(H) such that

It means that

where x,β,γ, and δ are matrix elements of w (cf. (1.27)). Clearly p is positive
selfadjoint. Using relations (1.9)—(1.25) one can verify that

(1.41)

(1.42)

(1.43)

(1.44)

βp = μ-2*q-μf. (1.45)

We claim that
(1.46)

qp = μ~2pq. (1.47)

Indeed using (1.44), (1.45), and (1.15) we have

Similarly one can prove (1.47).
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We shall also use the equality

μ-2q*q-qq* = (ί-μ2)(p2-I). (1.48)

The proof of this formula consists in complicated and boring computations. The

difference „ „
μ-2q*q-qq*-(l-μ2)(p2-I) (1.49)

is a linear combination of monomials of the form afa2a%aA. (where ak e {α, /?, γ9 δ},
k = 1,2,3,4). Using (1.16)—(1.25) one may convert (1.49) into a linear combination
of monomials of the form afa%a3a4. Then using (1.9)—(1.15) one easily verifies that
(1.49) vanishes. The details are left to the reader.

Let Sβl^:IR+-><C be the function such that \SQRμ{t)\ = t1/2 and SQRμ(ήeSμ

for any ί e R + . Clearly SQRμ is continuous and

SQRμ(μ-2t) = μ-1SQRμ(t) (1.50)

for all ί e R + . If μ > 0 then SQRμ coincides with the arithmetic square root.
Relation (1.46) shows that p is invertible. Let

a = SQRμ(p). (1.51)

Then a is normal, Sp acSμ and

a*a = p. (1.52)

Using (1.43), (1.47) and taking into account (1.50) we obtain

*α , cry =

' 1
qa = μ'1aq, qa* = μ~1a*q. (1-54)

According to (1.46) p is invertible, so is a. Let

n = a*-χq. (1.55)

Using (1.54) and remembering that a is normal we see that (1.35)—(1-37) hold.
Moreover, by virtue of (1.47) and (1.52), (1.38) is equivalent to (1.48). It means that
wd introduced by (1.34) is an

It turns out that

The only non-trivial part of this equation (the equality of matrix elements standing
in the right-lower corner) follows easily from (1.46) (cf. (1.52) and (1.47)).
Remembering that SμL(2, (C)-matrices are invertible and using (1.56) we conclude
that the matrix

is unitary. Let αc, βc, yc, and δc be matrix elements of wc:
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Using (1.40) to compute w^1 we get

αc = α α " S (1.57)

β^-μ-^n + βa,

yc = ya~\ (1.58)

δc= — μ~1yn + δa.

Multiplying both sides of (1.44) and (1.45) from the right by α * " 1 and using (1.53)
and (1.54) we see that

so that wc is of the form (1.28). According to the remark following formula (1.33), wc

is an 5μ(7(2)-matrix. Moreover using definitions (1.57), (1.58), (1.55) and taking into
account (1.53), (1.54), (1.41), and (1.42) one can easily verify that a and n commute
with αc, yc, αc*, and yf.

To prove the uniqueness of the decomposition (1.39) we notice that due to the
unitarity of wc we have a*a = p and a*n = q. Using the first formula, remembering
that a is normal (cf. (1.35)) and taking into account the spectral condition we obtain
(1.51). The second formula implies (1.55). It shows that wd is uniquely determined,
so is wc. Q.E.D.

2. Compact Quantum Groups

In the first part of this section we recall the basic results of the theory of compact
quantum groups [10] mainly in order to introduce convenient notation. In
particular we introduce the convolution product of "continuous functions" on a
compact quantum group. In the second part we describe a discrete quantum space
of all characters of any compact quantum group, implementing in this way the
program announced in [8].

Let Gc = (Λc,u
c) be a compact quantum group (i.e. compact matrix pseudo-

group in the sense of [10]), j / c be the dense *-subalgebra of Ac consisting of all
smooth elements, Φc be the comultiplication, κc be the coinverse and ec be the
counit related to Gc. The subscript "c" stands for "compact" and will distinguish Gc

among other quantum groups considered in this paper.
In [10] the convolution products of the form a * ξ, ζ * a, and ζ * ξ (where a e sίc,

ζ, ξestfc) were considered. In the present paper we also need the convolution
product of elements of sic. Let hc be the normalized Haar measure on Gc. For any

Q consider linear functionals ρfl, ρ'aeA'c introduced by the formulae:

ρa(b) = hc(bκ;1(a)), (2.1)

for any b e Λc. Then the convolution product of two elements a,bejtfc is defined by
the formula

= ρ'a*b. (2.2)
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In order to check the second equality it is sufficient to assume that a and b are
matrix elements of irreducible representations and use the orthogonality relations
(cf. [10], Theorem 5.7). The simple computations are left to the reader.

Let us notice that the convolution product is associative:

ζ = b*(a*ξ)9 (2.3)

ξ * (b * a) = (ξ * b) * a,

(a*b)*c = a*(b*c), (2.4)

for any a,b,ce sίc and ξ e st'c. Indeed we have (b * a) * ξ = (ρ'b * a) * ξ = ρ'h * (a * ξ)
= b*(a*ξ) and similarly ξ * (b *α) = ζ * (b * ρa) = (ξ * b) * ρa = (ξ * ft) * a. To prove
(2.4) we notice that according to (2.3) b * (ρa * ξ) = b * ρα^ for any fe e «β/c. Therefore

for any ae^c and £e j / c

r . Inserting ξ = ρb and using once more (2.2) we obtain

Qa b ( 2 6 )

for any a, be stfc. Remembering that the convolution product of elements of s0'c is
associative we get

Q(a*b)*c = Qa*(b*c)

and (2.4) follows (the Haar measure restricted to s/c is faithful).
Let

be the complete set of mutually non-equivalent irreducible unitary representations
of Gc. The carrier Hubert space of ua will be denoted by Ha:uaeB(Ha)®Ac. We
know that dimi/α<oo. According to the general theory [10],

(2.7)

(2.8)

{ y (2.9)

Using the leg numbering notation one may write ul2u
a

l3 instead of wα0wα.
We recall ([10], Theorems 5.6 and 5.7) that in general the Haar measure on Gc is

not central. Its modular properties (in the sense of Tomita theory) are described by
a holomorphic family (fz)ze(C of linear multiplicative functionals on s/c. In
particular the orthogonality relations for the matrix elements of ua contain the
operator Fa e B(Ha) introduced by the formula

. (2.10)

It is known that Fa is positive invertible for any α e Gc.
Let

Ad= l*B(H*). (2.11)
aeGc

The canonical projections Ad^B(Ha) will be denoted by πα. In general the sum
(2.11) is infinite and Ad has no unity. In what follows, Id will denote unity of M(Ad).
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Let Ad0 be the Pedersen ideal of Ad: x e Ad0 if and only if the set

{αeG c:πα(x)Φθ}

is finite. The above set will be called central support of x.
For any x e Ad0 we set

hdL(x)= Σ MJra(F^πa(x)), (2.12)
aeGc

KR(x)= Σ MaTra(Faπa(x)), (2.13)
aeGc

where Fa is given by (2.10), M a = Tr a F a and Trα denotes the trace on B{H*)
(normalized in such a way that Trα/α = dimifα). Clearly hdL and hdR are positive
linear functionals on Ad0. We shall see later that hdL (hdR respectively) is left (right
respectively) invariant Haar measure on the dual of Gc.

The following object plays the central role in our paper:

u = Σ@wα. (2.14)
αeGc

Clearly u is a unitary element of the multiplier algebra M(Ad®Ac). Relations
(2.7H2.9) mean that

(id®Φ) = uί2u13, (2.15)

(id®ιcc)u = tι*, (2.16)

(id®ec)u = Id. (2.17)

Let us notice that u e Ad®rsrfc (see Sect. 0 for the meaning of symbol (χ)r) so the left-
hand sides of (2.16) and (2.17) are well defined.

Now we shall briefly discuss the Fourier analysis on Gc. For each α e i c w e
denote by hca (ahc respectively) the linear functional on Ac such that (hca) (b) = hc(ab)
((ahc) (b) = hc(ba) respectively) for any b e Ac. Similarly for any x e Ad0 we introduce
hdLx> hdR

x> χhdu χhdReA'd. The Fourier transform of an element ae<$/c is
introduced by the formula

^ α = (id<g)ftcφ* (2.18)

Using the orthogonality relations for the matrix elements of irreducible represen-
tations of Gc one can easily check that

is a linear bijective mapping and that the inverse mapping

is given by the formula

^-1x = (hdLx®id)u. (2.19)

We have the usual formulae:

(2.20)

(2.21)
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for any a,be<stfc. Relation (2.21) can be checked by direct computation: Using
(2.18) and (2.16) we have (&a)* = (id®a*hc)u = (id®(a*hc)<>κ~1)u*. On the other
hand ((a*hc)oK;1)(b) = (a*hc)(κ;\b)) = h£κ;\b)aη = hAκc(a*)b) for any bes/e

and (2.21) follows. To prove (2.20) we combine formulae (2.18) and (2.16). Taking
into account (2.1) we obtain

u. (2.22)

Now (2.20) follows from (2.15) and (2.6). Moreover using (2.5) instead of (2.6) we get

F{μ * ξ) = {^a)(ιd® ξ)u (2.23)

for any aesrfc and ξes/'c. Let us also notice that

hdL(^a) = ec(a) (2.24)

for any α e j / c . This formula follows immediately from (2.19) and (2.17).

Let Gd be the quantum space (cf. [8]) related to the C*-algebra Λd. Formula
(2.15) means that (Gd, u) is a quantum family of characters of Gc. The following
theorem shows that (Gd,u) is the quantum space of all characters of Gc:

Theorem 2.1. Let B be a C*-algebra and v be a unitary element of M(B®AC) such
that

= vί2v13. (2.25)

Then there exists unique ψ e Mor^4d, B) such that

v = {ψ®iά)u. (2.26)

Proof. If (2.26) holds then for any α e < ,

(id® hca)v* = ψ(^a), (2.27)

and for any x e Ad0,

ψ(x) = ̂ vo^-\χ), (2.28)

where

is the linear mapping introduced by the formula: for any aes/c,

JV* = (id® ftcΦ* (2-29)

The uniqueness of ψ is proved (Λd0 is dense in Ad). To prove the existence we
consider the linear mapping

ψ:Ad0^M(B) (2.30)

introduced by the formula (2.28). We shall prove that this mapping is a *-algebra
homomorphism:

ψ(xy) = ψ(x)ψ(y), (2.31)

ψ(z*) = ψ(z)*9 (2.32)

for any x,y,zeAd0.
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We know (hc is the Haar measure) that (id®hc)Φc(x) = hc(x)Ic for any xeAc.
Therefore for any a e Ac,

(id®id®ftc)(id®Φc) [ ( J ® φ * ] = (id®ftc) [(/®α)i?*]®/c.

The right-hand side equals to 2Fv(a)®lc. To compute the left-hand side we use
multiplicativity of Φ and formula (2.25). We get

(id®id®

and (v is unitary)

(id®id®Λc) [(J® Φc(α))t>f3] = (^,(α)® J > .

Let beAc. Applying to both sides of the above equation (id®fe*Λc) we obtain

Repeating the above computations with v replaced by u one obtains

Comparing the last two relations and taking into account (2.28) we see that

(2.33)

for any x, y e Ad0. Any element z e Ad0 is of the form z = xy*, where x, y e Ad0. Then
z* = yX* and (2.32) follows immediately from (2.33). Moreover inserting in (2.33) y*
instead of y and using (2.32) (with z replaced by y) we obtain (2.31).

This way we proved that (2.30) is a homomorphism of * -algebras. Remember-
ing that Ad0 is a union of an increasing sequence of C*-algebras we conclude that
(2.30) is continuous and can be extended to Ad.

Let aestfc. Using definition (2.1) we see that

ρ*a{b) * ρa(bη

for any beAc. Therefore (cf. (2.29))

((id® ρ » * = (id® ρ*)ϋ* = &&&*)).

On the other hand using (2.28), (2.32), (2.21) and once more (2.28) we obtain

Comparing the last two equalities we get

v (2.34)

for any a e stfc.
Let XG B. Then x® J c e B®AC and (x®Ic)veB®Ac (v is a multiplier of B®AC).

Therefore for any ε > 0 there exist bl9b29...9bNeB and aί9a29...9aNes/c {stfc is

dense in Ac) such that
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Then

and (id®hc does not increase the norm)

It shows that B^v{s/C) is dense in B, so are Bψ(Ad) (clearly B\p{Ad)^B^v(stfc)) and
ψ(Λd)B. It means that ψ satisfies the nondegeneracy condition and ψ e Mor(^4d, B).

To end this proof we have to check (2.26). We know that (2.28) and
consequently (2.27) hold. Let

v' = (ψ®id)u.
Then for any a e srfc,

If the Haar measure hc were faithful then we could conclude that υ—v\ In the
general case using (2.34) we have

Inserting a * ξ (where ξ e A'c) instead of a and taking into account (2.5) we obtain

(id ® ρa) u(id ® ξ) v = (id ® ρa) f'(id ® ξ) υ' = (id (x) ρa) ι;(id (x) ξ) v'.

Remembering that (ιd®ρ^v = lFv(a) and that B^V(J^C) is dense in B we have

(id®£)ι; = (id®£)ι/

for any ξ e A' and relation v = v' follows. Q.E.D.

Remark. If B = CB(H) (the algebra of all compact operators acting on a Hubert
space H) then υ is (called) "strongly continuous" representation of Gc acting on H.
In this case it follows immediately from Theorem 2.1 that υ is an orthogonal direct
sum of finite-dimensional irreducible representations. If moreover veB(H)®Ac

then v is (said to be) norm-continuous. In this case ψeMor(Ad,B(H)\ the non-
degeneracy of ψ means that there exists a central projection EeAd such that
ψ(E) = IB(H) and only a finite number of nonequivalent irreducible representations
may enter into the decomposition of v.

3. Duals of Compact Quantum Groups

In this section we use the universal property (Theorem 2.1) to introduce the group
structure on the quantum space Gd. We shall proceed according to the program
described in [8]. All notions related to the group structure on Gd will be given in an
explicit way. It turns out that in the general case Gd is not unimodular: The left
Haar measure is neither right invariant nor central.

At first we shall prove that the quantum space Gd carries a natural group
structure. In the theorem formulated below, sdd denotes the flip automorphism of
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Ad®Ad and md denotes the multiplication map defined on Ad®rAd:

md(x®y) = xy, (3.2)

for any x,ye Λd. Moreover we shall consider a proper linear mapping κd acting on
Ad0. We recall that for any such mapping κd®ids#c (κd®κd9 κd®idAd, idAd®κd

respectively) admits the natural extension to a linear mapping acting on Ad®rstfc

(Ad®rAd respectively). We shall also use the leg numbering notation.

Theorem 3.1.

1. There exists unique ΦdeMor(Ad,Ad®Ad) such that

{Φd®id)u = u23u13. (3.3)

This morphism is coassocίatίve, i.e.

(Φd®id)Φd = (id®Φd)Φd. (3.4)

2. There exists unique ^ e M o r ^ C ) (i.e. ed is a ^-character) such that

(ed®id)u = Ic. (3.5)

ed and Φd are related by the equality

(ed®id)Φd = (id®ed)Φd = id. (3.6)

3. There exists unique linear antίmultiplicative bijective proper mapping

κd:Ad0^Ad0 (3.7)

such that
{κd®id)u* = u. (3.8)

Moreover for any xeAdwe have

κj[κjtx*)*) = x9 (3.9)

Φd(κd(x)) = sdd(κd®κd)Φd(x)9 (3.10)

md(κd® id) Φd(x) = ed(x)Id, (3.11)

md(id®κd)Φd(x) = ed(x)Id. (3.12)

In what follows, Φd (ed, κd respectively) will be called the comultiplication
(counit, coinverse respectively) related to Gd.

Proof. To prove the existence and uniqueness of Φd we set in Theorem 2.1,
B = Ad®Ad and v = u23u13. It is sufficient to verify condition (2.25).

Using multiplicativity of Φc and (2.15) we have

Setting Φd = ipwe see that (3.3) coincides with (2.26). In the same way one can prove
the existence and uniqueness of ed. In this case we take B = C and v = Ic. The reader
can easily notice that ed coincides with π 0 , where 0 e Gc is the trivial representation
of Gc.
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To show formulae (3.4) and (3.6) we notice that according to (3.3) and (3.5),

([(ed®id)Φd]®id)u = u,

([(id ® ed) Φd~\ ® id) u = u,

and use the uniqueness statement in Theorem 2.1.
The uniqueness of (3.7) can be easily established. Indeed using (3.8) and (2.18)

we have

d) = (id®hca)u

for any a e <stfc. To prove the existence we have to go deeper into the representation
theory of compact quantum groups ([10], [11]).

It is known that for any representation α e Gc there exists a complex conjugate
representation ά e Gc. The relation between α and ά is described by an antilinear
invertible mapping

This mapping induces the antilinear multiplicative mapping

B{Ha) 3m-+mje B(H*) (3.13)

introduced by the formula m^jjnj'1. It is also known that 7Jα = 7B(i fa), and
consequently for any meB(H%

(mjy = m. (3.14)

With this notation we have (cf. [11] p. 55, last formula)

w « = φ α y ® * . (3.15)

For any x e Ad0 we set

κd{χ)= Σ®Mχ*))J

aeGc

According to this definition κd(x) is an element of Λd0 such that

π δ (^W) = (πα(x*))j (3.16)

for any α e όc. Clearly κd is linear (as a composition of two antilinear mappings)
and antimultiplicative (hermitian conjugation is antimultiplicative and (3.13) is
multiplicative). Using (3.14) one can easily verify (3.9). It shows that κd is bijective.

We shall prove (3.8). Using (3.16) one can easily check that

where m{ and ut are elements of B(Ha) and stfc respectively such that
Taking into account (3.15) we obtain

(πα ° ^ ® i d ) w* = \f = (π s ® id) u

for any αe Gc and (3.8) follows.
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We shall prove (3.10). Using (3.8), (3.3), and (3.1) we have

{{βdd{κd®κd)Φdo κd

 x]® id)u = ([sdd(κd®κd)ΦJ®id)w*

= (ίsdd(Kd® Kd)] ® id)wf 3u% 3 = (sdd®id)u13u23

= u23u13 = (Φd®id)u.

Therefore sdd{κd®κd)Φdoκd

ι = Φd and (3.10) follows. In a similar way one can
prove (3.11) and (3.12). Using (3.3), (3.8), (3.2), unitarity of u and (3.5) we have

(lmd(κd®id) Φ J ® id)u* = ([md(κd® id)] <g> id)u*3w*3

MW* = Id®Ic = Id®(ed®id)u*,ed

([md(id®κ:ίί)Φ(ί]®id)w*=([md(id®κ:ίi)]®id)M?3Mf

and (3.11) and (3.12) follow. Q.E.D.

Applying ed to both sides of (2.18) and using (3.5) we obtain the dual version of
(2.24):

ed(^a) = hc(a) (3.17)

for any a e stfc.
Gd endowed with the comultiplication, counit and coinverse introduced in

Theorem 3.1 is a non-compact discrete quantum group. It is the Pontryagin dual
of Gc [8]. The essence of the duality is contained in the unitary u. In order to stress
the properties (2.15) and (3.3), we say that u is a (Gd, Gc)-bicharacter. In a more
standard approach (cf. [3]) the (Gd, Gc) duality is described by a bilinear form < , >
defined on Ad x J/C. The relation of this form with the bicharacter u is the following:

One can easily check that any element xηΛd is of the form x = (id®ξ)u, where
ξ G $t'c is uniquely determined. Then

for any a e srfc.
Now we shall show that hdL and hdR introduced by (2.12) and (2.13) are left and

right respectively Haar measures on Gd.
For any oc,β,γe Gc we set

(3.18)

Clearly τy

a

β is a (non-unital in general) *-algebra homomorphism

It follows immediately from (2.14) and (3.3) that

uv*(j)uβ*= £®(τ^(χ)id)uα*. (3.19)
αeGc
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Proposition 3.2. For any ot,β,y the following conditions are equivalent;

(i) τΊβ is an embedding,
(ii) a

(iii)
(iv) βc<x®y.

Proof. Taking into account the orthogonality relations for matrix elements of
irreducible representations we see that ocCβ®y if and only if there exist matrix
elements a, b, c of wα, uβ, and uγ respectively such that hc(a*bc)ή=0. On the other
hand by virtue of (3.19) τ ^ + 0 if and only if /ic(c*5*α)φ0 for some α, b, c as above.
We also know that τΊβ + 0 if and only if τlβ is an embedding (B(Ha) is simple). The
equivalence (i)<=>(ii) is proved.

We shall use notation of [11]. If ocCβ®y then there exists non-zero
seMor(α,/?(χ)y). In this case I-β®seMor(β®(x, β®β®y) and
(ϊ®Iγ)(I-β®s)eMor(fϊ®oc,y% where TeMor(β®β, trivial representation) is given
by the formula

for any keHβ and leHβ. Using this formula one can easily check that
(F®Iy)(Iβ®s)^0. Remembering that y is irreducible we see that yCβ®a and the
implication (ii) => (iii) is proved. In the same way one checks implications
(iii) => (ii) and (ii) o (iv). Q.E.D.

It follows immediately from Proposition 3.2 that for any oc,βeGc we have

τβy = 0 and τΊβ = 0 for almost all y e Gc ("almost all" means "all except a finite
number of). Taking into account (3.18) we see that for any x e Λd0 and any β e Gc,

(πβ®πy)Φd(x) = 0,

(πy®πβ)Φd(x) = 0

for almost all y e Gc. Due to this property we may apply id®h d L, id®hdR, hdL®id,
hdR®id to Φd(x) (for xeAd0).

Let F be the element affiliated to Ad such that πa(F) = Fa and let (/JZ 6 C be the
family of linear multiplicative functionals on s/c describing the modular properties
of hc. Using Theorem 5.6 of [10] one can verify that for any ίe(C,

F< = (id® f)u (3.20)

= (id®/_ f)ιι . (3.21)

We shall prove

Theorem 3.3. For any x e Λd0 we have

(id®hdL)Φd(x) = hdL(x)Id, (3.22)

(hdL®id)Φd(x) = hdL(x)F\ (3.23)

(id®hdR)Φd(x) = hdR(x)F-2, (3.24)

(hdR®id)Φd(x) = hdR(x)Id. (3.25)
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Proof. For any xeAd0 and any ί e R w e set

*&(*)= Σ M α Tr α (nπ α W).
aeGc

Then hdL = hd

ί and hdR = hl. We claim that for any aestfc,

hd(^a) = ft+i(a). (3.26)

Indeed using (2.12), (3.20), (2.23), and (2.24) we have

{a *ft+,)) = ec(a *ft+1) = ft+ 1(a).

Let ζ be a proper linear functional on Ad (ζ(x) depends only on finite number of
components of x e Ad) and a e sic. Then

Φd(^a) = Φd(id®hca)u* = (id®id(S)hca)uf3uξ3. (3.27)

Applying to both sides £®id we obtain

id

Using (3.26), remembering that fz are multiplicative and taking into account (3.21)
we have

This way we proved that

-1 (3.28)

for any x e Ad0. Inserting t = ± 1 we obtain (3.22) and (3.24). In order to prove (3.23)
and (3.25) we proceed in a similar way. Applying (id®£) to both sides of (3.27) we
get

where b = (ζ®'ιd)u*. Trying to rewrite the right-hand side of this equation as a
Fourier transform of some element of sίc we use the modular properties of hc: bhc

= hcb', where b' = f_ί */?*/_ x = (F£F®id)w*. Therefore we have

(id® C) Φj^a) = ̂ {UFζF® id) w*] a), (3.29)

and instead of (3.28) we obtain

for any xeAd0. Inserting f = + 1 we obtain (3.23) and (3.25). Q.E.D.

Remark. Relation (3.22) ((3.25) respectively) shows that hdL is left (hdR is right
respectively) Haar measure on Gd. Let us notice that hdL is not invariant under
right shifts: formula (3.23) shows that the corresponding modular function
should be identified with F2. We also have the following nice formula:

for any x e Ad0. The proof is left to the reader.
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Hint: Show that

for any a e srfc.
Applying ed to both sides of (3.29) and using (3.6) and (3.17) we get

[ιι*(Jd<8>β)].

Let x e Ad0. Inserting in the above relation hdLx = F~ 1xFhdL instead of ζ and using
(2.18) and (2.13) we obtain

(hdL®K)\_{x®a)u*-\=(hdR®hc)[κ*

Clearly x®a may be replaced by any element of the Pedersen ideal of Ad®Ac.
Inserting u(x®ά) instead of x®a we get

(KL®K) lu(x®a)u*]=(hdR®hc)(x®a) (3.30)

for any x e Λd0 and a e srfc.
At the end of this section we shall show that there exists a natural 1 — 1

correspondence between representations of Gd acting on a finite-dimensional
vector space K and homomorphisms of sίc into B(K).

Let K be a finite-dimensional complex vector space and

vdηB(K)®Ad.

Then vd is of the form

vd=Σmi®xi, (3.31)
i

where m\m 2 , . . . ,m ( d i m X ) 2 is a basis in B(K) and xtηAd (i = l,2,...(dimK)2). We
know that each xt is of the form

xi = (id®ξi)u*, (3.32)

where ξt e srf'c. For any a e s/c we set

(3.33)

Then ξ is a linear mapping from sίc into B(K). Clearly any linear mapping from $ic

into B(K) is of this form and corresponding vdηB(K)®Ad is uniquely determined.

Theorem 3.4. Let K, vd, and ξ be as above. Then the following two conditions are
equivalent

1. vd is a nondegenerate representation of Gd acting on K, i.e.

(id®ed)vd = IB(κ) (3.34)

and

(id®Φd)vd = vdl2vdl3. (3.35)

2. ξ is an algebra homomorphίsm acting from stfc into B(K), i.e.

Wc) = W > (3-36)
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and

ξ(ab) = ξ(a)ξ(b) (3.37)

for any a,besrfc.

Proof. It follows immediately from (3.32) and (3.5) that ed{x^ = ξ£Ic). Therefore
(ιά®ed)vd = γjm

iξi{lc) = ξ(lc). It shows that formulae (3.34) and (3.36) are
equivalent.

Let 4 j (U,fc = l,2, ...(dimKf) be structure constants of B(K):

Then (3.35) is equivalent to the relation

AJ ( 3 3 8 )
whereas (3.37) is equivalent to the relation

^ (3.39)
k ( ) Σ

Assume that (3.39) holds. Then using (3.32) and (3.3) we have

= Σ

and (3.38) is proved. Conversely if (3.38) holds then repeating the above
computations we show that

= Σ 47ΐ(i

and (3.39) follows. Q.E.D.

Remark. One can easily check that the correspondence vd*-+ξ is natural in the
following sense: \ίv\ and vj are non-degenerate representations of Dd acting on
finite-dimensional complex vector spaces Kί and K2 and ξ1, ξ2 are corresponding
algebra homomorphisms then the set of intertwining operators

coincides with

{teB(KuK2):tξι(a) = ξ2(a)t for all a

4. Double Groups

In this section we construct a quantum group G that contains Gc and Gd as
subgroups. As a quantum space, G is homeomorphic to the cartesian product of Gc

and Gd, however as far as the group structure is considered, Gc and Gd are placed in
G in a nontrivial manner.
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In the next section we shall see that in the case Gc = SμU(2) the group G should
be identified with the quantum Lorentz group.

To understand better the content of this section we consider the classical case.
Let G be a locally compact topological group and Gc, Gd be closed subgroups of G.
Assume that the mappings

φ:GcxGd3(x,y)->χ.yeG,

ψ:GdxGc3(y,x)->y xeG

are homeomorphisms. Let σ# = φ ~1 o ψ. Then

σ*:GdxGc-+GcxGd (4.1)

is a homeomorphism. It turns out that σ^ cannot be arbitrary. It must be
compatible with the multiplication rules in Gc and Gd. In particular denoting by
ec* 6 Gc and ed^ e Gd the neutral elements we have

σ*(ed*>x) = (x>ed*)> ( 4 2 )

σ*(y,O=(βc*»y) (4 3)

for any x e Gc and y e Gd. Moreover if Φc^ and Φd% denote the multiplications in Gc

and Gd respectively:

Φc*:GcxGc3(xux2)->x1x2eGc,

then one can easily check that

σ*(id x ΦCJ = (ΦC5iί x id)(id x σj(σ* x id), (4.4)

σ * ( φ d * x i d ) = ( i d x φ d*) ( σ * x i d ) (id x σ * ) ( 4 5 )

Conversely assume that locally compact topological groups Gc and Gd and a
homeomorphism (4.1) satisfying conditions (4.2)-(4.5) are given. Then setting

(xl9 y±) {x2, y2) = (XiXi, y\y2), (4.6)

where xί9x2eGC9 yί9 y2 e Gd and (x'l9 y\) = σ^(yί9 x2), we introduce a multiplication
(binary operation) on G = GcxGd and G endowed with this multiplication is a
locally compact topological group. The neutral element e^ of G and the inverse of
an element of G are given by the formulae

e*=(e*c>e*d)> ( 4 7 )

(xΛΓ^σ^y-^x-1). (4.8)

We say that the group G is the twisted product of Gc and Gd.
In this section we show that the twisted product construction can be done for

quantum groups. We restrict ourselves to the case when Gc is a compact quantum
group and Gd is the Pontriagin dual of Gc. In this case there exists a natural
homeomorphism (4.1). We shall use the notation introduced in Sects. 2 and 3.

Let
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be the *-algebra isomorphism introduced by the formula:

σ(a® x) = u(x®a) u*

for any a e Ac and x e Λd.

It follows immediately from (2.17) and (3.5) that

(4.9)

(4.10)

(4.11)

These formulae correspond to (4.2) and (4.3). We shall prove (cf. (4.4) and (4.5)) that

(id®σ)(σ®id)(id®Φd) = (Φ ί ί®id)σ, (4.12)

(σ®id)(id®σ)(Φc®id) = (id®Φc)σ. (4.13)

Assume that aeAc and xί9x2eAd. Using definition (4.9) we obtain

(id® σ) (σ®id) (α® xλ ® x2) = (id® σ) uΐ2(x1 ® a® x2)u%2

= u23uγ3{xγ®x2®ά)u\3u%3

= [(Φd®id)w] (xϊ®x2®a) [(Φd®id)u*] .

Therefore for any a e Ac and x e Ad we have

(id® σ) (σ®id) (a® Φd(x)) = [(Φd®id)w] (Φd(x)®a) [(Φd®id)w*)]

= (Φd®id) [u(x®a)u*]=(Φd®id)σ(a®x)

and (4.12) follows. Similarly we prove (4.13). For any aί,a2eAc and x e Ad we have

(σ® id) (id® σ) (at ® a2 ® x) = (σ® id) w23(«i

2) [(id® Φ c)u].= [(id® Φc)(iι)

Therefore for any α e Ac and x e ^4d we have

(σ®id)(id®σ)(Φc(α)®x) = [(id® Φc)u] (x®Φc(a)) [(id® Φc)w*

= (id® Φc) [w(

and (4.13) follows.
According to (2.16) and (3.8)

(κd®κc)u = u,

Remembering that κd®κc is antimultiplicative we obtain

σsdc(κd®κc)σ = scd(κc®κd),

where sdc: Ad®Ac^Ac®Ad is the flip automorphism (sdci
XEAC and yeAd) and scd = sjc

1.

Combining (4.9) and (3.30) we see that

{hdL®hc)σ = hc®hdR.

(4.14)

for any

(4.15)
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Now we shall introduce the basic notions related to the twisted product G = GC

x Gd. The C*-algebra of "all continuous, vanishing at infinity functions on G" is
introduced by the formula

A = Ac®Ad.

The Pedersen ideal in A will be denoted by Ao. One can easily check that
A0 = Ac®algAd0. We shall also use the algebra of "all smooth functions with
compact support"

stf is dense in A. The comultiplication, counit and coinverse related to G are
introduced by the formulae (cf. (4.6)-{4.8)):

Φ = (id®σ®id)(Φc®Φ ί ί), (4.16)

e = ec®ed, (4.17)

κ = sdc(κd®κc)σ. (4.18)

Clearly Φ e Mor(,4, A® A) whereas e is a proper linear multiplicative *-functional
defined on sϋl and K is a proper linear antimultiplicative bijective mapping acting
on si. Moreover remembering that Φc(^c)C<stfc®alf,<stfc one can verify that
Φ(α)ej/® r j ? for any α e j ? . The terminology used above is justified by the
following

Theorem 4.1. The comultiplication Φ, counit e and coinverse K introduced by
(4.16)—(4.18) satisfy the following equalities:

(id®Φ)Φ = (Φ®id)Φ, (4.19)

and for any aεJtf:

(e® id) Φ(a) = (id® e) Φ(a) = a, (4.20)

κ(κ(a*)*) = a, (4.21)

m(κ® id) Φ(a) = e(a)I, (4.22)

m(id®κ)Φ(a) = e(a)I, (4.23)

Φ(κ(a)) = s(κ®κ)Φ(a). (4.24)

In the above relations id denotes the identity map acting on A, s: A®A-^A®A is
the flip automorphism: s(a®b) — b®a (a, be A) and m: A®rA 3 a®b^abηA is the
multiplication map. The unity of M(A) is denoted by I.

Proof Using (4.7) and taking into account the coassociativity of Φc and Φd one can

easily check that

= (idc®ψ®idd)(Φc®Φd),

= (idc®ψ'®idd)(Φc®Φd),

where
ψ = (id® id® σ) (id® Φc® id) (σ®id) (id® Φd),

ψ' = ( σ ® id® id) (id® Φd® id) (id® σ) (Φc® id).
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On the other hand using (4.12) and (4.13) we obtain

ψ = (<j®σ) (id® σ®id) (Φc® Φd) = ψ'

and (4.19) follows. In the similar way using the relations (3.6), (3.9)-(3.12),
corresponding relations for Gc and (4.10)-(4.14) one can prove (4.20)-(4.23). In fact
(4.19)-(4.23) become trivial when one uses the diagram notation (see Appendix A
for details). Equation (4.24) follows from (4.20H4.23) (cf. [1]). Q.E.D.

Theorem 4.1 shows that the noncommutative space G is provided with a group
structure. We say that G is the double group built over Gc.

L e t
 L ur,u

h = hc®hdR.
Clearly h is a positive functional defined on the Pedersen ideal Ao of A Using the
results of Sect. 3 one can easily show that (/ι®id) and (id® h) can be applied to Φ(a)
for any a e Λo. We have

Theorem 4.2. h is left and right Haar measure: for any aeA0,

(ft® id) Φ(a) = h(a) /,

(id® ft) Φ(α) = ft(α)J.

Proof The above relations follow easily from (4.15), (4.12), (4.13) and invariance
properties of ftc, hdR and hdL (cf. (3.22) and (3.25)). See Appendix A for the
details. Q.E.D.

Theorem 4.2 shows in particular that the quantum group G is unimodular. In
the present paper we do not touch the uniqueness of the Haar measures on non-
compact quantum groups. In our opinion the uniqueness up to a positive factor
(and the existence) of the left and right Haar measures will be proved within the
future general theory of quantum groups.

In the remaining part of this section we investigate the structure of finite-
dimensional representations of G. We describe the remarkable 1 — 1 natural
correspondence between the set of representations of G and the set of bicovariant
bimodules [12] over Gc.

In order to simplify the exposition we shall assume that the counit ec defined
originally on sίc admits the continuous extension to the whole Ac. Then
e c eMor(4,C). This is the case for Gc = SμU(N).

L C t (4.25)

pd = ec®idAd. (4.26)

Clearly the morphisms pc e Mor(^4, Ac) and pd e Mor(^4, Ad) correspond to embed-
dings GC^G and Gd^G respectively. The following theorem shows that Gc and Gd

are subgroups of G:

Theorem 4.3. We have

cPc = (Pc®Pc)φ i ®dPd = (Pd®Pd)φ >

κcpc = pcκ,
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Proof. The above relations follow immediately from definitions (4.16)-(4.18) and
formulae (4.10) and (4.11). Q.E.D.

It follows immediately from (3.6), the corresponding relation for Gc and
definition (4.16) that

(pc®pd)Φ = id, (4.27)

(Pd®Pc)Φ = σ (4.28)

We recall that v is a representation of G acting on a finite-dimensional complex
vector space K if vηB(K)®A and

(id®e)v =

(id®Φ)v = v®v. (4.29)

In the similar way one defines representations of Gc (cf. [10]) and Gd.

Theorem 4.4. Let K be a finite-dimensional complex vector space, vηB(K)®A,
vc = (id®pc)v and vd = (id®pd)v. Assume that v is a representation of G. Then vc and
vd are representations of Gc and Gd respectively,

v = vc®vd (4.30)
and

vd®vc = (id®σ)(vc®vd). (4.31)

Conversely if vc and vd are representations of Gc and Gd respectively acting on K
satisfying relation (4.31) then v introduced by (4.30) is a representation of G,
vc = (id®pc)v and vd = (id®pd)v.

Proof If v is a representation of G then using Theorem 4.3 we see that vc and vd are
representations of Gc and Gd respectively. Moreover applying (id®pc®pd) to both
sides of (4.29) and using (4.27) we obtain (4.30). Similarly applying (id®pd®pc),
using (4.28) and (4.30) we get (4.31).

Assume now that vc e B{K)®AC and vdηB(K)®Ad are representations of Gc and
Gd respectively and that relation (4.31) holds. Applying (id®Φ) to both sides of
(4.30) we obtain (cf. (4.16))

)v = (id®idAc®σ®idAd)(id®Φc®Φd)(vc®vd)

= (id®idAc®σ®idAd)(vc®vc®vd®vd)

= vc®vd®vc®vd = v®v.

In the next to the last step we used (4.31). It shows that v is a representation of G.
The remaining relations are obvious. Q.E.D.

In practical cases (see the next section) the compatibility (4.31) may be difficult
to prove. We shall formulate this condition in a form easy to verify. Let ξ be a
linear mapping from s/c into B(K). For any aestfcwQ set

ξ*a= Σmι®(ξi*a),
i

a*ξ= Σmi®(a*ζi)>
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where m'ef^K) and ξf6«β/c' are related to ξ by formula (3.33). Clearly ξ*a,

Proposition 4.5. Let vc and vd be representations of Gc and Gd acting on K and ξ be
the linear multiplicative mapping from sic into B(K) related to vd via formulae
(3.31H3.33).

Then condition (4.31) holds if and only if

(a*ξ)vc = vc(ξ*a) (4.32)

for any a e srfc.

Remark. Verifying (4.32) it is sufficient (due to the multiplicativity of ξ) to check it
for generators of the algebra stfc. For example if Gc = SμU(2) then it is sufficient to
consider a = oc,y, α*, and y*.

Proof Let ζ be any proper linear functional on Ad and

a = (ζ®id)u*.

Clearly aes/c and any element of sίc is of this form. Using formulae (2.15) and
(3.31H3.33) one can easily check that (leg numbering notation!)

a*ξ = (id®ζ®id)u2

<

3vdl2. (4.34)

Assume that (4.31) holds. Taking into account (4.9) we have

Therefore

Applying (id(x)£®id) to both sides of the above relation and taking into
account (4.33) and (4.34) we obtain (4.32). Conversely if (4.32) holds then reading
the above formulae in reverse order we get (4.31). Q.E.D.

The remaining part of this section heavily depends on concepts and results
contained in [12]. We shall use letters " D C " (means Differential Calculus) to
indicate references to formulae and theorems contained in that paper.

Theorem 4.6. Let vbea finite-dimensional representation of G. Then there exists a
bicovariant s/c-bimodule (Γ, ΦΓ,ΓΦ) such that

1 ° The space i n v Γ of left-invariant elements of Γ coincides with the carrier space of
v.
2° For any aGs/c and ω e i n v Γ we have

aω=γj{miώ){ξi*a), (4.35)
i

ΓΦω=Σ(nJω)®vcj, (4.36)
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where m\ njeB(inyΓ), ξ{esί'c and vcjejtfc are related to v in the following way:

(id®pc)υ=Σnj®vcj,
(4.37)

Any bicovariant sέ\-bimodule such that the space of left-invariant elements
is finite-dimensional arises in this way. The correspondence

representations <-+ bimodules

is bijective and natural in the following sense:

1° If v1 and v2 are finite-dimensional representations of G and Γ1 and Γ2 are

corresponding bimodules then any operator intertwining v1 and v2 uniquely
extends to a bicovariant bimodule homomorphism Γ1-*^. Conversely any
bicovariant bimodule homomorphism Γι-^Γ2 restricted to left-invariant
elements intertwines v1 with v2.
2° Tensor product of representations corresponds to the tensor product of
corresponding bimodules.
3° Complex conjugate representation corresponds to the complex conjugate
bimodule.

Proof. We will indicate the main points only. Let ωl9 ω 2 , . . . , ωN be the basis in i n v Γ
and (mju) and (nJ

kl) be matrices corresponding to ni and nj:

j

We set
fu=Σ<{ζi°K), (4.38)

k9l=ί,2,...,N. Then (4.35) and (4.36) coincides with (DC 2.14) and (DC 2.35). One
can check that the assumptions of Theorem DC 2.5 are satisfied: (DC 2.15) and
(DC 2.16) follow from the multiplicativity of ξ, (DC 2.36) and (DC 2.37) mean that
(4.37) is a representation of Gc and (DC 2.39) is equivalent to (4.32). It proves the
existence of the desired bimodule. The remaining details are left to the
reader. Q.E.D.

Remark. In May 1987 after a seminar in IHES (Bures sur Yvette) devoted to
differential calculi on quantum groups Connes conjectured that bicovariant
bimodules over the algebra of "smooth functions" on a quantum group are (in
natural way) labeled by representations of another quantum group. He proposed
the name "structure group" for the latter group. We tested this idea for SμU(2)
group arriving in the summer of 1987 to the commutation relations (1.9)—(1.25).
Next we found the complete set of irreducible representations for these relations.
Analysing the representations we discovered in March 1989 the Iwasawa
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decomposition. This result suggested that the structure group is a combination of
the original group and its Pontryagin dual. At this moment we started to analyse
the formula (DC 2.39) which seems to be the most important relation of the theory
of bicovariant bimodules. Unfortunately the indexes labeling the functionals fkl in
this formula are rather related to the basis contragradient to (ωk) then to (ωk) itself.
This is why the position of summation indexes in (DC 2.39) is strange. Using
consequently the indexes related to (ωk) (cf. (4.16) where the order of indexes k, I on
the right-hand side is opposite to that on the left one) we arrived at the
compatibility condition (4.31) with σ introduced by (4.9). The definition (4.9) is in
turn the key formula in the present paper.

In our analysis of finite-dimensional representations of G we assumed that ec is
norm continuous. If this is not the case then in Theorem 4.4 and 4.6 one has to
assume additionally that the matrix elements of v belong to 3l.

5. Double Group Built over SμU(2)

In this section we apply the general theory developed in Sects. 2, 3, 4 to the
quantum group SμU(2) introduced in [9]. The Pontryagin dual and the double
group will be described in detail. In particular we shall construct a two-
dimensional representation w of the double group obeying all the properties
discussed in Sect. 1. In a certain sense (see Theorem 5.4) the algebra of all
continuous vanishing at infinity functions on the double group is generated by
matrix elements of w. These results allow us to identify the double group built over
SμU(2) with the quantum Lorentz group introduced in Sect. 1.

In the remaining part of the paper Gc = SμU(2), Gd is the Pontryagin dual of
SμU(2) and G denotes the corresponding double group. Consequently Ac9 Φc, κc9...
(Ad9 Φd, κd,..., and A, Φ, K, ... respectively) will denote the objects related to SμU(2)
(the Pontryagin dual of SμU(2) and the double group built over SμU(2)
respectively). We shall assume that |μ |<l and μφO.

Let £:«c/c-»M2(<C) be the linear multiplicative mapping such that

° ' μ ' N " '' (5.1)
( α ) (

0, 0 y ζ(c) V 0 , μ1'2

To prove the existence of ξ it is sufficient to check that the matrices standing on the
right-hand sides of (5.1) satisfy the commutation relations characteristic for
generators of s/e The easy exercise is left to the reader.

Let ξij (i,j= 1,2) be linear functionals on sίc such that

for any xestfc. According to (5.1),

U C -1/2 U C * I/2' 12 C [ ( 5* 2^

All other ^/x) (i,j = l,2; x = /?αc, yc, αc*, y*) vanish.
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The structure of the Pontryagin dual of Sμ 1/(2) (for |μ| < 1) is described in detail
by the following

Theorem 5.1. Let wd be the representation of Gd corresponding to ξ via formulae
(3.31H3.33). Then

where a,nηAd satisfy relations (1.35)—(1.38) and SpaCSμ.
2° The comultiplication, counit and coinverse act in the following way:

\ (5.4)

ed(a) = l, ed(n) = 0, (5.5)

κd(a) = a~1, κd(n)=-μ~ίn, (5.6)

κd(α*) = ( α - 1 ) * , κJtn*)=-μn*. (5.7)

3° Elements a and n generate Ad in the following sense:
For any bounded operators a, ή acting on a Hilbert space H such that a is

invertible, SpάcSμ and the relations (1.35)—(1.38) with a,n replaced by ά,ή are
satisfied there exists unique nondegenerate representation π of Ad acting on H such
that a = π(a) and n = π(ή).

Proof Ad 1°. In the considered case the decompositions (2.11) and (2.14) assume
the following form:

Ai=Σ*B(H'),

where us is the irreducible (2s + l)-dimensional unitary representation of
Gc = SμU(2) acting on the Hilbert space Hs and s runs over the set of all non-
negative integers and half-integers. In what follows πs denotes the canonical
projection Ad-^B(HS). Let

be the corresponding decomposition of wd: each ws

d = (id®πs)wd is a 2 x 2-matrix
with entries belonging to B(HS). According to (3.31H3.33)

Statement 1° of the theorem asserts that all ws

d (s = 0,1/2,1,...) are ANμ-
matrices. We shall use induction with respect to s.

For 5 = 0 the statement is trivial. For s=l/2, remembering that

yc>
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and using (5.2) we obtain

W1 / 2 =
d

'(

\

(

\

t

μ

Ό
0

-1/2
5

o,

, 0;

0 N

A* 1 ' 2 ,

| /

1' \

\

V/2,
, o,

(
[μ

μ

— 1/

0
~ 1/

0

\

P.

—

Podles £

0

μ2), 0
(5.8)

and elementary computations show that wd

12 is an ^JV^-matrix.
Assume now that wd is an AN μ-matήx. We know that wd is a representation of

Applying ( id®π 1 / 2 ®π s ) to both sides of this relation we get

[id®(π 1 / 2 ®π s )Φ d ]w ί ί = w]/ 2®w5, (5.9)

and using Proposition 1.2 we see that

[ id®(π 1 / 2 ®π s )ΦJw d

is an A/Vμ-matrix. According to Proposition 3.2 (πi/2®κs)°Φd restricted to

B(Hs+ί/2) is an embedding (spin (s +1/2) representation of SμU(2) is contained in
the tensor product of spin 1/2 and spin 5 representations). Therefore ws

d

+1/2 is an
ANμ-matήx and the proof of Statement 1° is complete.
Ad 2°. (5.3) is a representation of Gd and relations (5.4)-(5.6) follow immediately
from this fact. Using (5.6) and remembering that κd followed by * is an involution
we obtain (5.7).
Ad 3°. According to (5.8) and (5.9),

~l/2 Q

0, μ1/:

and
(π 1 / 2 ® πs) Φd(a) = π 1 / 2(α)® πs(a).

We also know (cf. Proposition 3.2) that (π 1 / 2 ®π s )Φ d restricted to B(HS+1/2) and
B(HS~112) are embeddings. Taking into account these facts and using the
mathematical induction one can easily show that

Spπs(a) = {μ~\μ~s+1,...,μs}. (5.10)

A detailed analysis of the commutation relations (1.35)-(1.38) shows that if
(a, ή) is a pair of bounded operators acting in a irreducible way on a Hubert space
H satisfying these relations and condition SpάcSμ then H is finite-dimensional.
For each 5 = 0,1/2,1,... there exists one and only one (up to unitary equivalence)
such a pair (άs,ήs) acting on (2s + l)-dimensional Hubert space: There exists an
orthonormal basis {|m,s>:m= —s, —s + 1, ...,5} such that

as\m,s)=μm\m,s},

In particular Spάs coincides with (5.10).
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Assume for the moment that the pair (πs(a), πs(ή)) is reducible. Then passing to
an irreducible subspace we would find a pair (a, n) satisfying the all considered
requirements, acting on a Hubert space of dimension smaller than 2s + 1 and such
that Sp a contains μs. According to the above mentioned analysis such a pair does
not exist. Therefore (πs(a), πs(ή)) is irreducible, (άs, ήs) must be equivalent to (πs(a),
πs(rή) and Statement 3° follows. Q.E.D.

Corollary 5.2. There exists an orthonormal basis {|m,s>:m = — s, —5+1, ...,5} in
Hs such that

πs(α)|m,s> = μ|m,s>,

Let sίά be the *-algebra of elements affiliated with Λd generated by a,a~γ,n.
We set c = a*a~x. According to (5.11) πs(c) = (signμ)2s/s for all 5. Hence c = c* is in
the center of s/d and c2 = Id. For μ>0, c = Id.

Proposition 5.3. The elements

ckaιnrn*\ (5.12)

where k = 0,1 (for μ>0,k = 0), l-integer, r, t = 0,1,2,... form a linear basis in s/d.

Proof According to (1.35)—(1.38) any element of sid is a finite linear combination of
elements (5.12). To end the proof it suffices to show that these elements are linearly
independent.

Assume that

is a nontrivial linear combination of elements (5.12). We have to show that

β + 0. (5.13)

To this end we choose fe0, Zo, r0, and ί0 such that

ftoioroio + 0, (5.14)

for all k, /, r, t such that r +1 > r0 +1 0 and

for all k, I such that l>l0. In the following lim+ Λim~ respectively ̂  denotes lim,
s-> oo ys-> oo J s-> oo

where s runs over integers (half-integers respectively). Using (5.11) we get

lim lim 1 <m,s|πs(Q)|m + ί0-
m-» oo s-»oo

for

for
and (cf. (5.14)) relation (5.13) follows. Q.E.D.
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Now we are able to give the detailed description of the double group built over
SμU(2)(ίoτ\μ\<ί).

Theorem 5.4. Let us consider the following four elements affiliated with
A = Ac®Ad:

(5.15)

Then

] = ac®n-μy*®a \

t = yc®a,

xf®a~ι.

1° a,β,y,δ satisfy relations (1.9HL25).
2° The matrix

w =
α, β

γ, δ
(5.16)

is a representation of G.
3° The comultiplicatίon, counit and coίnverse act in the following way:

(5.17)

Φ(δ) = y®β + δ®δ,

e(oL) = e(δ) = \, e(β) = e(y) = O,

φ) = δ, κ(β)=-μ~1β, κ(y)=-μy, κ(δ) = <x,

κ(oc*) = δ*, κ(β*)= — μβ*, κ(y*)=—μ~1y*, κ(δ*) = oc*.

4° Elements oc,β,y, and δ generate A in the following sense:
For any bounded operators α, β, γ, $ acting on a Hilbert space H and satisfying the

relations (1.9)—(1.25) with oc, β, y, δ replaced by α, /?, y, 3 there exists a unique
representation πof A acting on H such that α = π(α), $=π(β\ y = π(y\ and $=π(δ).

Proof
Ad 1°. Using the known commutation relations satisfied by αc and yc (cf.
(1.29HL33)) and by a and n (cf. (1.35)-(1 38)) one can verify that elements (5.15)
satisfy relations (1.9)—(1.25) (cf. the proof of Proposition 1.1).

Ad 2°. Relations (5.15) mean that

w = wc®wd.

Therefore (cf. Theorem 4.4 and Proposition 4.5) it is sufficient to show that

for x = occ, yc, α*, and y*. By easy computation this relation is equivalent to

(wc®wc) (λ®I) = (λ®I) (wc®wc), (5.18)
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where / l :C 2 (g)C 2 ->C 2 ®<C 2 is the linear mapping defined by

2

λ{Si®Sj)= Σ ίk/WrfXΦε,,

where ί,j = l ,2;(ε 1 , ε2) is the canonical basis in <C2 and wcli are matrix elements of
wc.

Using (5.2) one can check that

λ = μ-1/2I-μ-3/2E E*

(E is introduced in Sect. 1) and (5.18) follows.
Ad 3°. Like in the proof of Theorem 5.1 this statement follows immediately from
the fact that w is a representation of G.
Ad 4°. It follows immediately from the Iwasawa decomposition (Theorem 1.3),
Theorem 5.1.3° and the corresponding result for Gc (Theorem 1.1 of
[9]). Q.E.D.

Let si be the *-algebra of elements affiliated to si generated by α, β, y, and δ. To
simplify the notation for any integer 5 we set

α s if ^
s if s < 0 *

Similarly
ΓαJ if

W ) " 1 i f

With this notation we have (cf. [9, Theorem 1.2])

Proposition 5.5. The elements

occsy
n

cy*m, (5.19)

where s-integer and m,n = 1,2,... form a linear basis in stfc.

We end this section with the following

Proposition 5.6. The elements

ocjyy*^*8'*?,, (5.20)

where r, r' are integers and s, t, s\ ί' = 0,1,2,..., form a linear basis in si.

Proof. According to (1.9)—(1.25) any element of si is a finite linear combination of
elements (5.20). We have to show that these elements are linearly independent. By
virtue of Proposition 5.3 and Proposition 5.5, the elements

αcβ]£y*w<g>cWnl>ι*ί, (5.21)

where s,/-integers, m,n,r,ί = 0,1,2,... fe = 0,1 (for μ > 0 , fe = 0), are linearly
independent.

According to (1.29)—(1-33) for any integers r,r' we have
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where o(|yc|) is a linear combination of elements (5.19) with n + m>ί. Using this
formula, definitions (5.15) and commutation relations (1.31)—(1-33) and
(1.35HL38) we obtain

where Q = (r' + s' — s)(t + t') + r'(s'—s) and o(|yc|
ί+ί') is a linear combination of

elements (5.21) with n + m>t + t'. Due to this formula the linear independence of
(5.20) follows easily from that of (5.21). Q.E.D.

6. Finite-Dimensional Representations and the Groups Related to SμL(2, <E)

In this section we investigate finite-dimensional representations of G = SμL(2, <C).
We shall prove that the theory of smooth representations is the same as that of the
classical Lorentz group. There exist however non-smooth finite-dimensional
representations.

Let j ^ h o l be the subalgebra of stf generated by α, β, y, and δ. We say that a finite-
dimensional representation v of G is smooth (holomorphic respectively) if the
matrix elements of v belong to J / (^hoi respectively). It follows immediately from
(5.17) that Φ(j/)Cj/(8)alg^ and

Φ « o l ) C ^hol® alg^hol (6.1)

Using Proposition 5.6 one can easily prove

Proposition 6.1.

1° There exists linear multiplicative bίjection

such that

) = ccc, q{β)=-μyΐ,
(Ό.2)

2° There exists linear bisection

such that

m(x®y*) = xy*

for any x,ye^hol.

Let us notice that q is an isomorphism in the sense of Hopf-algebra theory, i.e.

(o.3j
ecoq(χ) = e(x)

for any xej/h o l. Indeed one can easily verify that these relations hold for
x = oc,β,γ,δ and that the involved expressions are multiplicative with respect to x.
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Having in mind Proposition 6.1 one can construct linear mappings

p9p:s/-+s/c

such that

for any x, y e j ^ h o l . By virtue of (6.3),

) = e(x)q(y)*

(6.5)Φc°P(χ)=(P®P)Φ(χ),

ec o p(x) = e(x), ec o p(χ) = e(x)

for any xestf. Moreover, using (4.20) and (6.1), for any x,ye s/hol we get

(p®p) o Φ(xy*) = q(x)®q(y)*, (6.6)

(p®p) ° Φ(xy*) = g(y)*® g(x).

Comparing these two relations we obtain

(6.7)

for any xes/ (scc denotes the flip automorphism of ΛC®ΛC). Relation (6.6) shows
also that the composition (p®p) o Φ is an invertible linear mapping acting from si
onto <stfc®alg£#c. The inverse of this mapping will be denoted by ψ:

= q-\x)q-l(yr (6.8)

for any x, y e s/c. Using this formula one can check that

Φoψ(x®y) = (ψ®ψ)(id®scc ®id)(Φc®Φc)(x®y), (6.9)

pψ(x®y) = xec(y), (6.10)

pψ(x®y) = ec(x)y (6.11)

for any x,ye^c.
The following Proposition shows that the classification of finite-dimensional

smooth representations of SμL(2, <C) is equivalent to that of pairs of commuting
representations of SμU(2).

Proposition 6.2. Let Kbeα finite-dimensional complex vector space, v e B(K)®s/,
vi = (id®p)v and v2 = (id®p)v. Assume that v is a representation of G. Then v1 and
v2 are representations of Gc,

v = (id®ψ)(vί©v2) (6.12)

^2®^i=(id®5c c)(^i®^2) (6.13)

Conversely if vγ and v2 are representations of Gc acting on K and satisfying
relation (6.13) then v introduced by (6.12) is a representation of G, v1 =(id®p)ι; and
v2 = (id®p)v.
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Remark. Relation (6.13) means that the smeared operators corresponding to vί

commute with that of v2: for any fί9f2es/'C9

[(id®/1)t; l5(id(x)/2)i;2] = 0. (6.14)

Proof. We essentially repeat the proof of Theorem 4.4. If v is a representation of G
then using (6.5) we see that vx and υ2 are representations of Gc. Moreover applying
(id®/?®/?) to both sides of the relation

(id® Φ)v = v®v
we get

and (6.12) follows. In the similar way (6.13) is implied by (6.7).
Assume now that vί9v2eB(K)®jtfc are representations of Gc and that (6.13)

holds. Applying (id®Φ) to both sides of (6.12) we obtain (cf. (6.9)):

(id® Φ)v = (id® ψ0ψ) (id® id^c®sc c®id^c) (id® Φc® Φc) (vt ®v2)

= (id®i/;®t/))(id®idy4c®5cc®id^c)(i;1 ®vλ ®v2®v2)

= (id®ψ®ψ)(vί©v2©vί©v2) =

In the next to the last step we used (6.13). It shows that v is a representation of G.
The remaining relations are obvious (cf. (6.10) and (6.11)). Q.E.D.

Relation (6.14) is obviously satisfied if one of the representations vl9 v2 is trivial.
For any 5 = 0,1/2,1,... we consider representations ws and ws of G acting on Hs

such that
(id® p)ws = us, (id®p)ws = / β ( H

(id® p) ws = IB{Hs)^sίc, (id® p) ws = us.

According to (6.2), w1 / 2 coincides with the representation w introduced by (5.16).
Similarly vv1/2 coincides with w.

In the following theorem " ~ " denotes the equivalence of representations.

Theorem 6.3.

1° For all s,s' = 0,1/2,1,3/2,...
ws®ws' (6.15)

are mutually non-equivalent, irreducible smooth representations of SμL(2, (C).
2° Any smooth finite-dimensional representation v of SμL(2, <C) is equivalent to a
direct sum of representations of the form (6.15).
3° For any s,s'=0,1/2,1,3/2,...,

Θ " (6.16)

(6.17)

where the summation runs over s" = \s — s'\, \s — sΊ + 1,..., s + s' and

ws®ws'~xvs'®ws. (6.18)

Moreover ws is the complex conjugate of ws.
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Proof.
Ad Γ. Using (6.12) and taking into account (6.8) we see that matrix elements of ws

(ws' respectively) belong to j / h o l {stf*0\ respectively). Therefore (cf. definitions (6.4))

(id® p) (ws® ws) = us® 1s,, (6.19)

(6.20)

where Ir = IB(Hr)®A (r = s,sf) is the trivial representation of SμU(2) acting on W.
According to Proposition 6.2 the above relations completely determine represen-
tation ws©ws>.

Let K be a (ws®ws')-mvariant subspace of HS®HS'. Then (cf. (6.19)) K is
(ws©/s,)-invariant and (us is irreducible) K = HS®L, where L is a subspace of Hs.
Similarly using (6.20) we see that K = L®HS\ where LcHs. Therefore either
K = HS®HS' or K = {0} and the irreducibility of (6.15) follows.

Remark. Modifying in a suitable way definitions (6.4) and using the above method
one can show that ws'®ws is also irreducible.

Assume now that ws®ws' ~ wr®wr' (s, s\ r, r' = 0,1/2,1,3/2,...). Then (cf. (6.19))
us©ls, ~ur®Ir, and s = r. Similarly using (6.20) we obtain sf = r'. Statement 1° is
proved.
Ad 2°. Let v be a smooth representation of SμL(2, C) acting on a finite-dimensional
vector space K and vί9 v2 be the representations of SμU(2) introduced in
Proposition 6.2. Representation υx can be decomposed into direct sum of factor
representations (cf. Theorem 5.8 of [10]):

where Is = IB(K*)®AC i s the trivial representation of Sμ(7(2) acting on Ks. Taking into
account (6.14) we see that v2 is of the form

U2s>

where for any s, v2s is a representation of SμU(2) acting on Ks. Decomposing v2s

into a direct sum of irreducible representations and remembering that (6.19) and
(6.20) determine ws®ws' completely we obtain desired decomposition of v.
Ad 3°. According to (6.4) the restrictions of p (and p) to s/hol and &iξol are
multiplicative. Therefore (6.16) and (6.17) follow from the similar decomposition
for us@us' (cf. Theorem 5.11 of [9]).

Using (6.16) ((6.17) respectively) one can easily check that ws (ws respectively) is
the only (2s-fl)-dimensional irreducible subrepresentation of w φ ( 2 s ) (wφ ( 2 s )

respectively). Remembering that w is the complex conjugate of w we conclude that
ws is the complex conjugate of ws.

Similarly one can verify (6.18): ws®ws> (ws'®ws respectively) is the only (2s +1)
(2s/ + l)-dimensional irreducible subrepresentation of vv @ ( 2 s ) 0w @ ( 2 s )

(w® (2s'>©wφ(2s) respectively). According to (1.5) w φ ( 2 s ) ©w® ( 2 s / ) -w® ( 2 s '>©w φ ( 2 s )

and (6.18) follows. Q.E.D.
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Let τ be the element of M(Ad) such that

πs(τ) = (-l)2sIs (6.21)

for s = 0,1/2,1,.... Then τ belongs to the center of M(Ad) and /c(χ)τ commutes with
the bicharacter u. Therefore (cf. (4.9))

σ(Ic®τ) = τ®Ic. (6.22)

Let us notice (cf. (5.11)) that τ=f(a), where / is the function defined on the set of
all integer and half-integer powers of μ such that /(μm) = ( — l)2 m. Clearly / is
multiplicative and using the first relation (5.4) we get

Φd(τ) = τ(x)τ.

It means that τ is a one-dimensional representation of Gd. Taking into account
(6.22) and using Theorem 4.4 we see that τ = Jc(χ)τ is a one-dimensional
representation of SμL(2, C). In particular

Φ(τ) = τ(x)τ. (6.23)

This representation is not smooth: τ φ si. Indeed according to Theorem 6.3.2° the
trivial representation is the only smooth one-dimensional representation of
SμL(2,<£). We believe that

Conjecture 6.4. Any finite-dimensional representation v of SμL(2, (C) admits unique
decomposition of the form:

where vt and v2 are smooth.

To support this conjecture, one can easily show that the trivial representation
and τ are the only one-dimensional representations of SμL(2, C) (use Theorem 4.4).

According to (6.21), τ is unitary and

Spτ = {-1Λ}=Z2.

Therefore the formula xp(x) = x(τ) introduces a monomorphism ψ e Mor(C(Z2), A).
Let Φ2:C(Z2)-^C(Z2)(g)C(Z2) be the comultiplication related to the group
structure of Z 2 . Due to (6.23) the diagram

C(Z2) - ^ C(Έ2)®C{Έ2)

A®A

is commutative. It means that ψ defines the quantum group epimorphism
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The kernel of this epimorphism is a normal (quantum) subgroup of SμL(2, (C) of
index 2. It will be denoted by SμL

+(2,C). The algebra A+ of "all continuous
vanishing at infinity functions on SμL

+(2,C)" is introduced by

A+=A/J,

where J is the closed two-sided ideal in A generated by τ — IA. One can verify that

where Ad = £ Θ B(Hs+1/2)cAd. Therefore
+

00

where Af = AJAJ is isomorphic to £® B(HS) (s runs over all nonnegative
integers). s = 0

Let peMoτ(A,A/J) be the canonical epimorphism. The comultiplication
related to SμL

+(2, (C) is the only morphism Φ+ e Mor(A+,A + ®A+) such that the
diagram

A >A®A

P®P

is commutative. The existence of Φ+ follows easily from (6.23); the uniqueness is
obvious. In the similar way one can define counit and coinverse related to
SμL

+(2X).
As in the classical case SμL(2,(C) contains ΊL2 as a normal subgroup. The

embedding Έ2CSμL(2,(£) is described by a morphism χeMor(A,C(Z2)) intro-
duced by the formula χ = χ'®ed, where χ'eMor(Ac,C(Έ2)) is defined by

and

for any teZ2 (t= ±1). One can easily check that the diagram

Φ

A®A

x®χ

C(Z2) —^ C(Z2)®C(Z2)

is commutative (Z2 is a subgroup of SμL(2, C)). Moreover for any x e A,

(id®χ)Φ(x) = x®IC(Z } o (χ®id)Φ(x) = IC(Z2)®x (6.24)

(cf. Sect. 6 of [7]). This equivalence means that the subgroup Z2 is normal (any
Z2-left-invariant "function on SμL(2, <C)" is Z2-right-invariant).
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The quotient group SμL(2,<C)/Z2 will be denoted by SOμ(3,1). The algebra of
"all continuous vanishing at infinity functions on SOμ(3,1)" is introduced by

Λe v e n = {x e A: (id® χ) Φ(x) = x® JC ( Z 2 )}.

Clearly Aeyen is a non-degenerate C*-subalgebra of A ("nondegenerate" means that
the embedding Aeveno>A belongs to Moτ(A+,A)). One can verify that

where ^4*ven is the C*-subalgebra of Ac spanned by all even order monomials of α, γ,
α*, and γ*. Due to (6.24), Φ e v e n S Φ\Aeven belongs to M o r μ e v e n , , 4 e v e i W e v e n ) . Φ e v e n

is the comultiplication related to SOμ(3,1). In a similar way one can introduce
counit and coinverse related to this group.

One can easily check that τ e M ( i e v e n ) . Therefore one can repeat for SOμ(3,1)
the procedure that produced SμL

+(2,<E) out of SμL(2,C). On the other hand the
normal subgroup Z 2CS μL(2,C) is in fact contained in SμL

+(2,<E) (χ admits
factorization χ = χ+ °p, where χ+ eMoτ(A+, C(Z2)) Therefore one can repeat for
SμL

+(29 <C) the procedure that produced SOμ(3,1) out of SμL(2, C). In both cases we
obtain the same quantum group denoted by SOμ (3,1). The algebra of "all
continuous vanishing at infinity functions on SOμ(3,1)" is given by

One can easily check
SOμ(3).

Summarizing we
groups:

0 >

0 — • S,

0 > S

^even+ = i 4
e v e n ( g ) i 4

 +

that SOμ

+(3

obtain the

0

I
z 2 -
1

uL
+(2,<® -

Λ „0,(3,,, -

0

, 1) is the double group

following commutative

0

1
> Έ2 >

1
— + SμL(2,<C) >

1
— * SOμ(3,l)

1
0

(cf. Sect. 4) built over

diagram of quantum

0

I
z 2 — • o

I

0

All rows and columns are exact.
Analysing the proof of Proposition 5.6 one can show that Jns/ = {0}.

Therefore the theory of smooth representations of SμL
+(2, <C) is the same as that of

SμL(2, C): Theorem 6.3 with SμL(2, C) replaced by SμL
+(2, C) and ws, ws' replaced

by their restrictions to SμL
+(2, C) still holds. Moreover it seems (cf. Conjecture 6.4)

that any finite-dimensional representation of SμL
+(2, C) is smooth (τ restricted to

SμL
+(2, C) is trivial). As in the classical case (6.15) is a representation of SOμ(3,1)

(and SOμ(3,1)) if and only if s + s' is integer.
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We would like to combine Theorem 6.3 with Theorem 4.6. A bicovariant
j^c-bimodule Γ is called tame if the corresponding representation of SμL{2, (C) is
smooth. Let Γsr (s, r = 0,1/2,1,3/2,...) be the bicovariant j2/c-bimodule correspond-
ing to the representation ws©wr. Taking into account Theorem 4.6 and 6.3 we
obtain

Theorem 6.5.
1° The bimodules Γsr (s,r = 0,1/2,1,3/2,...) are indecomposable. Γrs is the
complex conjugate of Γsr and

c Σ
s",r"

where the summation runs over s" = \s — s'\9 \s — s'\ + 1 , . . . , s + s\ r" = \r — r'\,

2° Any tame bicovariant srfc-bimodule such that the space of left-invariant
elements is finite-dimensional is a direct sum of bimodules of the form Γsr.

For the completeness we describe the structure of Γ1 / 2 '°. Let (ωί,ω2) be the
canonical basis in i n v Γ 1 / 2 > 0 = C 2 . Then any element ωeΓ1/2"° is of the form

ω = ω1aί+ω2a2,

where aua2e^c are uniquely determined and combining (5.2) with (4.35) we get

α ω 1 = μ 1 / 2 ω 1 α ,

α * ω 1 = μ " 1 / 2 ω 1 α * ,

γ*ωί=μ~1/2ωίγ*,

γω2=μ~1/2ω2y — μ~3 / 2(l —

= μ1/2ω2oc*,

Moreover denoting by ΓΦ the right action of SμU(2) on Γ 1 / 2 > 0 we have

ΓΦ(ω2)= —

In [12], the 4D+-differential calculus was introduced. Now we give an
independent description of this calculus.

Let Γ = Γ1/2> 1 / 2 and Γ be the external algebra built over Γ. We know that the
restriction of w©w to SμU(2) contains trivial subrepresentation. Therefore Γ
contains bi-invariant element. Denoting this element by τ we have

Aa r /π fτΛ0-0Λτ even
Λ = [ t ' ^ O ( τ A f l + flΛτ U d θ l S odd

for any homogeneous element θ e Γ* of grade dθ. In particular

da = τa — aτ
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for any aejrfc. One can check that

where ωx and ω2 are elements of Γ1/2'° introduced above and * denotes the
canonical bimodule antihomomorphism rll2'°-*Γ0ΛI2.

A. Appendix

In the paper we deal with linear mappings acting between tensor spaces built over
"elementary" vector spaces Ac and Ad. In most cases the mappings are introduced
as compositions of tensor products of "elementary" mappings such as mc, md, Φc,
Φd, ec, ed, κc, κd, hc, hdL, hdR, σ,.... The traditional tensor notation becomes illegible
if the number of elementary mappings entering a single formula is large. Dealing
with such cases it is convenient to use the diagram notation that generalizes the
one introduced in [11]. We recall that in this notation mappings are represented
by diagrams consisting of lines of approximately vertical direction and vertices.
Lines represent identity mappings acting on the elementary vector spaces. To
make our diagrams more readable we shall use "coloured" lines associating a
definite colour with each elementary vector space. In what follows continuous (for
Ac) and dashed (for Ad) lines will be used.

The line is called incoming (outgoing respectively) if it has a free upper (lower
respectively) end placed on the horizontal line that bounds the diagram from
above (below respectively). Each line either is incoming (outgoing respectively) or
starts from (ends up at respectively) a vertex. Lines must not intersect.

Diagrams with N incoming and M outgoing lines represent linear mappings
acting from A1®A2®...®AN into A\®A'2®...®A'M (where Al9 A2,...,AN

(A'ί9A2,...,A'M respectively) are elementary vector spaces corresponding to the
colours of incoming (outgoing respectively) lines). If M = 0 (no outgoing line) then
the diagram represents a mapping into C, i.e. a linear functional defined on
A1®A2®...®AN. Similarly if JV = O (no incoming line) then the diagram
represents a mapping from (C, i.e. an element oί A\®A2®...®Af

M. If M = N = 0
(no external line) then the diagram represents a complex number.

The mapping represented by a diagram α will be denoted by [α]. The diagram
representing the tensor product [α] ® [/?] is obtained by drawing α side by side β (α
on the left). Let us notice that the composition [α] © [/}] is well defined only if the
number and colour composition of outgoing lines of β coincide with the number
and colour composition of incoming lines of α. The diagram representing [α] o [/}]
is obtained by placing the diagram α below the diagram β and connecting the lower
ends of β with the corresponding upper ends of α.

Each "elementary" mapping will be represented by a single vertex diagram. It
consists of a small circle (containing inside the symbol denoting the considered
mapping) and suitable incoming and outgoing lines attached to it. To simplify the
diagrams we shall use

and
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(™d) and

respectively. The flip automorphisms: scc:Ac®Ac->Ac®Ac, scd:Ac®Ad^Ad®Ac,
sdc:Ad®Ac->Ac®Ad and sdd:Ad®Ad^>Ad®Ad will be represented by diagrams

respectively. Each of the above diagrams consists of four lines and one vertex (the
lines do not intersect!). The mappings <C3λ^>λIceAc and (C3λ-^λIdηAd will be
represented by diagrams

respectively. ' '
In the diagram notation, relations (3.4), (3.6), and (3.11H3.12) mean that

\ _

A\ \
\ \ J

(A.1)

s d J \ / l e d J

(A.2)

Y φ
I
I

(A.3)

Similarly the relations (3.22) and (3.25) can be rewritten in the following form

I
I
I
I

A (A.4)
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Replacing in the above diagrams ed, κd, Id by ec, κc, Ic respectively, hdL and hdR by
hc and drawing continuous lines instead of dashed ones we obtain the correspond-
ing relations for Gc. We number these relations from (A. 5) to (A. 8). The relations
(4.10H4.15) describing the properties of σ have the following form:

(A.9)=

1 Ί
1
1

1
1

j

1
_ I

w (A.10)

(A.12)

The basic notions related to the double group G are introduced in the following
way(cf. (4.16H4.18)):

(A.11)

Φ =
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Now we can easily prove the relations (4.19H4.23) of Theorem 4.1. Using (A.I),
(A. 5), and (A. 10) we have

(Φ®id)Φ =

\ _

= (id®Φ)Φ

and (4.19) follows. Similarly using (A.9), (A.2), and (A.6) we get

(e®id)Φ = = id

and in the same manner one can verify the second part of (4.20). Using (A. 10), (A.7),
(A.9), and (A.3) we compute

m(κ®ίd)Φ —

and (4.22) follows. In the same manner one can verify (4.23). Relation (4.21) easily
follows from definition of K, (A.I 1), (3.9) and an analogous formula for κc. Finally
we show that the measure h is left and right invariant. Using (A. 12), (A. 10), (A. 8)
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and once more (A. 12) we get

(h®id)Φ =

L I
I
I
I
I J L I ί J

Similarly one can verify the second relation of Theorem 4.2:

(id®h)Φ =

i J i J
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