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Abstract. We consider the equations which describe a stationary motion of a
viscous compressible barotropic fluid in a bounded domain in IR3 with a free
boundary determined by the surface tension. By means of some a priori
estimates we prove the existence of rotationally symmetric solutions (in reality
with some additional symmetry) for a sufficiently small external force and in the
case of rotationally symmetric force and domain (where also we need more
symmetry, respectively).

1. Introduction

In this paper a free boundary problem for a viscous compressible barotropic fluid is
considered. The stationary motion of the fluid in a bounded domain Ω c= IR3 with a
free boundary S is described by the following equations [24] :

Qf in Ω ,

div (υo) = 0 in Ω ,
(1.1)

vn = Q on S ,

Tn-(nTn)n = Q on S ,

where Av= — μAv — vV div υ, v = v(x) is the velocity of the fluid, ρ = ρ(x) the density
y^p=p(ρ) the pressure (which is a given function of ρ), f=f(x) the external force
field per unit mass. The viscosity coefficients μ and v satisfy the thermodynamic
restrictions

μ>0 , v^μ . (1.2)

We also use the deformation tensor T with elements

T^-pδtj+Tμυ) , ιj-1,2,3 , (1.3)
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where

^^ and L4

By ή we denote the unit outward normal vector to 5, and by τ any unit tangent
vector.

The unknown free boundary surface S is determined by the equation

σH=nTn\s+Po , (1.5)

where σ is the coefficient of surface tension and H is the mean curvature of 5.

By virtue of (1.1)2 3 the total mass of the fluid ( M= J ρ ) can be assumed a
M \ Ω /

constant and we denote by ρ =— (\Ω\ = vol (Ω)) the mean density of the fluid. So,
|&2|

we prescribe the additional condition

M . (1.6)

Moreover, in the case of closed surface the following condition must be satisfied
(see [11, 13] and [19] Chap. 15):

f #rafo = 0 , (1.7)
s

which by Eqs. (1.1) implies

o . (1.8)

In this paper we prove the existence of solutions to a stationary free boundary
problem for the motion of a drop of a viscous compressible barotropic fluid. We
follow the method of Pukhnachov [34]. Hence the proof is divided into two steps.
First, after having found an a priori estimate we prove the existence of solutions to
the Navier-Stokes system in a prescribed domain. Next we show the existence of a
free surface for given velocity and pressure. Having a priori estimates in Sobolev
spaces for solutions of nonlinear Navier-Stokes equations (veH3, pεH2) a
solution of the free boundary equation has to be found in Sobolev-Slobodetskii
spaces (HΊ/2).

Let us describe the first step in more detail. To show the solvability in Sobolev
spaces for the compressible stationary Navier-Stokes Eqs. (1.1) in a prescribed
domain we use the method of Valli [62]. Therefore we need a priori estimates which
are obtained by the method of Valli-Zajaczkowski [63] which however needs some
extra consideration because in our case SeH112. Moreover we must have the
solvability of the linear Stokes problem (3.1), (3.2) and of the hyperbolic Eq. (2.13).
The sketch of the proof of the regularity of solutions to the Stokes problem (3.1),
(3.2) was shown to the authors by Solonnikov. The proof is based on the method of
Solonnikov-Shchadilov [47]. Since in [47] the boundary is assumed to be of class C3,
and we need this result for SeHΊ/2, we repeat the relevant considerations to show
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that fεH1, geH2, SεH1'2 imply veH3, peH2 (Theorem 3.2). Moreover, we
prove that S e H5/2, feL2,geHί imply v e H2, p e H1 (it is interesting to underline
that in the case of the Laplace equation S e H3/2 does not imply veH2, but S e H512

imply veH3; see the book by Maz'ya-Shaposhnikova [25]). For the reader's
convenience we show the existence of solutions to (3.1), (3.2) in the Appendix.

We prove the existence of solutions of our problem by the method of successive
approximations where at each step we need the solvability of the Stokes problem
(3.1), (3.2). From Solonnikov-Shchadilov [47] we know that in the case when the
domain Ω is obtained by rotation about some vector B, the right-hand side of the
Stokes system must be orthogonal to B x x. Because at each step of successive
approximations we find a solution and a domain it may happen that the domain has
rotational symmetry about B. Hence to satisfy the condition of solvability to the
Stokes problem we assume the symmetry of the domain and of the right-hand side at
each step: so in other words the method of successive approximations is constructed
in such a way that the necessary symmetry conditions for solving the Stokes
problem (3.1), (3.2) are satisfied. That symmetry implies that the solutions also have
the same symmetry and the necessary solvability condition is automatically
satisfied.

Note that there is another method of solving the stationary Navier-Stokes
compressible equations (see H. Beirao da Veiga [7]) but we do not know how to
apply that method to our boundary conditions and for SeHΊ/2.

The hyperbolic Eq. (2.13) was considered in the papers of Beirao da Veiga [7],
Friedrichs [17], and Valli [62], but our proof of the existence of solutions of (2.13)
needs only that SeH1/2 (see Lemma 2.6). Therefore for the reader's convenience,
using the uniqueness from [7], we give a simple proof of solvability for this equation
in H\ M

Among the three parameters M (total mass), Q=TJΓ, (mean density) and

\Q\ = vol (Ω), only one is arbitrary. Assuming that Mis arbitrary we get Ω from (1.6),
because ρ is a solution of the considered problem, and then the mean density is
determined.

Finally, we have to underline that the technical condition ξ ̂ >| μ [see (4.6)] must
be assumed to prove Lemmas 4.1, 4.2.

Now, we make some comments on the literature concerning free boundary
problems for the Navier-Stokes system. In the last fifteen years free boundary
problems for Navier-Stokes systems have been intensively studied, starting from
papers of Pukhnachov [34-37] who considered the stationary incompressible fluid
motion. His method (which was later used by other authors [10-16, 26, 29-32,
38-41, 45, 49-54]) consists of the following. First, the incompressible fluid motion
is considered in a prescribed domain and then a free boundary is found from a
surface equation for the given velocity and pressure (these two problems are usually
called auxiliary problems). Using the above procedure the solution of the problem is
constructed for small data by the method of successive approximations.

A significant part in Pukhnachov's scheme is the investigation of the Stokes
system in a prescribed domain. This investigation is based on the theory of general
elliptic boundary value problems (see Agmon et al. [1 ] and Solonnikov [48]) and on
the existence and regularity properties for weak solutions of the boundary value
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problem (3.1), (3.2) for the Stokes system, which were proved by Solonnikov and
Shchadilov [47].

Stationary flows with a free boundary having no contact with a rigid wall (most
convenient for mathematical treatment) were considered by Pukhnachov [34-37],
Osmolovskii [28], Ladyzhenskaya and Osmolovskii [22], Bemelmans [10-13],
Antonovskii [3,4], Fujita-Yashima [18]. In [10-13,22,28, 34-37] the solvability of
these problems was established in Holder spaces.

In the case when a free boundary contacts a rigid wall the pressure and the
derivatives of velocity may have singularities at the contact points. The singulari-
ties depend on the contact angle Θ (in the case Θ = 17/2 they vanish). The problem
for Θ = Π/2 was solved by Sattinger [41]. For arbitrary 6)6(0,77) such problems
were considered by Solonnikov [49-53]. In these papers the solvability of stationary
incompressible motions in open containers were investigated. The solvability of the
considered problems was proved in weighted Holder spaces.

Some stationary plane noncompact free boundary problems for an incom-
pressible fluid were considered by Pileckas [29-31], Pileckas and Specovius-Neu-
gebauer [32], Solonnikov [54], and Socolescu [43,44]. The auxiliary problem
(solvability of the Stokes and Navier-Stokes systems in a prescribed domain) for a
three-dimensional noncompact free boundary problem was considered by Pileckas
and Solonnikov [33]. In these papers motions under gravity in open basis where
noncompact free boundary surfaces appears were treated. In the above problems
weighted Holder spaces with weights connected with the unboundedness of the
domain were used.

Two-fluid stationary free boundary problems were considered by Rivkind
[38-40], Bemelmans [10,14], Erunova [15,16], and Sokolowskii [45]. In [38-40,
11-13] motions of an incompressible drop with a smooth surface in the second fluid
or in the air were investigated. The problem of two incompressible fluids in a
container was analysed in [15-16]. In this case the surfaces of fluid have contact
with walls of the container and at the contact points the solutions may have
singularities. In [15,40] the solvability of this problem was established in weighted
Sobolev spaces. In [45] a problem on the common motion of two incompressible
fluids down an inclined plane was considered. Note that in this case free boundaries
of fluids are noncompact.

Several nonstationary free boundary problems for incompressible fluid were
considered by Solonnikov [55-60], Beale [5,6], Allain [2], and Bemelmans [14]. All
these papers dealt with evolution of a finite mass of fluid with smooth free
boundaries. Teramoto [61] considered a nonstationary flow with noncompact free
boundary down an inclined plane.

Nonstationary flows for compressible fluids were considered by Nishida [27].
The authors do not know of any paper dealing with a free boundary problem for

the stationary compressible Navier-Stokes equations.

2. Notation and Auxiliary Results

Let Ω be an arbitrary domain in Rπ with boundary dΩ = S. We denote by Hl(Ω),
/^O, the Sobolev-Slobodetskii function space, endowed with the usual norm
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I ||/fβ, and by I \ptΩ, l^p^oo, the usual norm inLp(Ω). Hence, || ||0,β = l L.
scalar product in L2 (Ω ) is denoted by ( , )Ω . H l ~ l /2 (S), / ̂  1 an integer, is the space
of traces of elements uεHl(Ω). The usual norm in Hl~1/2(S) is denoted by
II I/-1/2.S- For ^!» / an integer, define H{)(Ω) = {uEHl(Ω):dku/dnk = Q on
S,k = Q,...,l—l}. The same notation will be used for spaces of vector fields defined
in Ω and on S. We shall usually omit the subscript Ω in the above norms if no
confusion can arise. Also, the summation convention will be used.

Writing dΩ = SeHl~1/2 will mean that S is locally determined by a function
φeHl~112, i.e. for each beS there exists a neighbourhood Ubc:S which in some
local coordinates {y} is given by the equation yn — φ(y'), y' = (yi,--,yn-i)eo}d
= {y' '• \yt\ < d, I = 1 , . . . , n — 1 }, where yk and xl are connected by the relation

3

Λ= Σ ««(*|-*z) > θ3/ = «ϊ(*) >

For vectors u,veH1(Ω) let us introduce

^ xx . (2.1)

We recall that the vectors for which E(u, u) = Q form a finite dimensional affine
space of vectors such that (see [47])

u = A+Bxx , (2.2)

where A,B are constant vectors.
We define H(Ω) = {u:E(u,u)<co, u n = Q on S}. If Ω is a region obtained by

rotation about a vector B we denote by 7/(ί2) the space of functions in H(Ω)
satisfying the condition

(κ,Ko)0 = 0, (2.3)

where u0 = Bxx; otherwise we set H(Ω) = H(Ω) (see [47]).

Lemma 2.1 [47]. Let SεHΊβ. Then for each ueH(Q\

(2.4)

Note that the proof in [47] is for SeC2, so it suffices to use the embedding
(S^cC2^).

Lemma 2.2. For each ueH(Ω),

ύ) . (2.5)

Proof. Using the inequalities

(2.4) and (2.7) from [47] gives estimate (2.5).
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Note that Lemmas 2.1, 2.2 imply the equivalence of the norms \\u\\! and
E(u,u)1/2forueH(Ω).

In a bounded domain Ω (or in R+), consider the following problem:

divu = g in Ω ,
(2.6)

u-n = Q on S

(in the case of R+, S is the plane {x3 = 0}).

Lemma 2.3. Problem (2.6) has a solution u e H(Ω) if one of the following conditions is
satisfied:

a) Ω = R3+, geL2(Ω).
b) Ω is a bounded domain with boundary SeLip, geL2(Ω) and

(0,l)β = 0 . (2.7)
In both cases

HIi^Φlo (2-8)

Proof. Let φ be the solution of the Neumann problem

Aφ = g in Ω ,
(2.9)

dφ/dn = 0 on S .

Then u=Vφ satisfies (2.6) and one gets (2.8) from the well-known results for
problem (2.9).

Remark 2.1. The more complicated case when (2.6)2 is replaced by u\s = 0 was
considered in [21 ], where the solvability and estimate (2.8) were proved for bounded
domains Ω with Lipschitz boundary.

Lemma 2.4. Let SeH5/2, aeH5l2(S), bεH3/2(S). Then these exists a vector field
veH3(Ω) such that

v ή = a , τT'(v)ή = b on S (2.10)
and

Nl3.0^(|H|s/2.S+IHl3/2.S) - (2.11)

Proof. Note that the boundary conditions (2.10) are invariant with respect to
rotation of variables and vectors, i.e. if we use new coordinates {y} connected with

3

{x} by the relations yk= Σ αfcΛ> &?>ι = niι and a new vector w with components
3 1 = 1

wk~ Σ akivι we obtain for w the same conditions (2.10). Hence it is sufficient to
1=1

prove the lemma locally. The general case follows by a partition of unity. Assume
that the boundary S in the coordinates {y} is given by the equation

y3=φ(y^y2)=φ(y') > φ(θ)=o ,

where φe#5/2. Let τ1=(-/ι3,0,/ι1)/(/ι?H-/ιi)1/2., τ2 = (0,-Λ3,/ι2)/(/ιi+/ι|)1/2 in
(2.10), where n = (nί9n2,n3) and \n\ = 1. Then by (2.10) the vector w defined in the
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domain {y :y$«p(yf)} satisfies

w1=Q , w2 = 0 , w3 = a/n3 , ^- = Q on S ,

•nl-nl) dy± \n

-^L = ̂ L—^ ^TT-l 2 12\ 2 ~ ^~~\ ' OI1

dy3 nl(nl-nl-nl) dy2 V « 3 ,

Since n = -- — , -- -, 1 l/(H-|Γ>|2)1/2, the expressions in (2.12) are
Jl

defined for a sufficiently small neighbourhood of the point y1 = 0. Now the existence
of w satisfying (2.12) and the inequality | |w||3^c(||fl| |5 /2 f S+ ||^||3/2,s)
^c(|H|s/2,s+ ll*l |3/2,s) follows from the results of [25] (see Chap. 7) and from em-
bedding theorems.

Let BR = {x:\x\<R} be a ball in R3. Consider the following problem:

C + div(ιιC) = G inBR ,

Lemma 2.5. Let G^Hl(BR), ueH3(BR\ u n\dBR = Q and \u\^tBR<j9 where y is a
sufficiently small constant. Then problem (2. 1 3) has a unique solution ζeH% (BR ) such
that

\\Clic\\Gl (2-14)

Proof. Let ζεeH4(BR)r\H2

0(BR) be a solution of

ε Δ2ζ. + ζc + div («C.) = G in BR ,

where ε is a positive constant. Multiplying both sides of (2.15)! by £ε, intergrating
over BR and using ||w||3 <y with y small enough, one easily gets

Analogously, multiplying (2.15) by Δ2ζε gives

BR

J
BR

(2.17)

Consider the last integral on the right-hand side of (2.17):

/= J div(uζε)Δ
BR

Embedding theorems give

/= J div(uζε)Δ2ζεdx= J
BR BR

(Z.loJ
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Moreover, by interpolation inequalities,

\Vζε\p^cδ\\Δζε\\0 + c(δ)\\ζε\\0 , <5e(0,l) , /> = 4,oo . (2.19)

Hence, for small y, (2.16)-(2.19) imply

βμ2cε||^IMcε||^||cε||^^||^||2
2 . (2.20)

The last estimate yields the existence of a subsequence ζε such that ε||/d2Cε||0-»0,
ζε->ζ weakly in HQ(BR) and strongly in H1 (BR) as ε->0. Passing to the limit in (2. 1 5)
shows that ζ is a solution of (2.13). Estimate (2.14) follows from (2.20).

Consider now the problem

λ+div(vλ) = g (2.21)

in a bounded domain Ω with SeC2. Assume that

\vn\s = Q , geH2(Ω) . (2.22)

Lemma 2.6. Let conditions (2.22) be satisfied and let \\v\\3 < y, where y is sufficiently
small. Then Eq. (2.21) has a unique solution λeH2(Ω) satisfying

μi|2^φ||2 . (2.23)
Proof. Let R be large enough to satisfy Ωc:BR. We can find extensions u and G of v
and g such that

K
(2.24)

\\G\\2,BR^c\\g\\2,Ω , Hk^ΨIU

Let ζ be the solution of (2.13) with these u and G. By (2.14) and (2.24), ζεH2(BR)
and

l|c||2.ai,^N|2f0 (2.25)
Using the trace operator to Eq. (2.13)x one can see that λ = ζ\Ω satisfies (2.21).
Moreover,

It was proved in [7] that problem (2.21), (2.22) has a unique solution λ eL2(Ω) for
every geL2(Ω). Hence the lemma is proved.

Remark 2.2. The condition J gdx = Q implies that J λdx = Q.
Ω Ω

3. On the Stokes Problem in a Prescribed Domain

Let ΩciR3 be a bounded domain with boundary S. Consider the following
boundary value problem for the Stokes equations :

f9 divv=g in Ω , (3.1)

v n\s = 0 , (T'(v)ή-(ή T'(v)'n)n)\s = Q on S , (3.2)
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where g satisfies the condition

0 . (3.3)
Ω

For a bounded domain Ω obtained by rotation about vector B, the function / must
satisfy the condition

J/ M o ί fe=0, (3.4)
Ω

where u0 = Bxx. Note that (3.3), (3.4) are necessary conditions for the existence of a
classical solution to (3.1), (3.2) (see [47]).

By a generalized solution to problem (3.1), (3.2) we mean a vector v e H(Ω) and a
function peL2(Ω) = {peL2(Ω) :(/?, l)β = 0} which satisfy the integral identity

I E(v, η) - (p, div η)Ω = (/, η)o - (v - μ)(g, div η)Ω (3.5)

for all ηeH(Ω), and such that άivv=g. Here E(v,η) is defined by (2.1). The
problem

divv=g , v-n\s = Q (3.6)

has a solution such that veH1(Ω) and

INi.o^ΦIko (3-7)

If η in (3.5) is divergence-free, then u = v — v satisfies

^E(u,η) = (f,η)Ω-^E(v:η) . (3.8)

By the Riesz theorem, for f,geL2 (Ω) satisfying (3.3), (3.4) there exists a solution to
(3.8) such that ue{v€H(Ω):divv = 0} and

Having found v = u + v, identity (3.5) implies that there exists peL2(Q) (see
[21, 47]). Let η be a solution to (3.6) for g =p. Then from (3.5) we get the estimate

|p|o.0^c|/|o,0 + c(ξ + Aί) | | f f lo. Q (3-10)

Therefore we have shown (see [21, 47], in reality we repeat the considerations from
[47]).

Theorem 3.1. Let SeLip. Then for any g,feL2(Ω) satisfying (3.3), (3.4), problem
(3.1), (3.2) has a unique generalized solution (v,p)eH(Ω) xL2(Ω) such that

Ω+||0||o,Ω) . (3.11)
Let us now establish the differential properties of the generalized solution.

Theorem 3.2. Let f e HS(Ω\ geH1 +S(Ω), SeH5/2+s and let (3.3), (3.4) be satisfied.
Then the generalized solution (v,p) of problem (3.1), (3.2) belongs to H2+S(Ω)
xHί+s(Ω)and

||ι+s.ιι) > *=<u . (3.12)
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Remark 3.1. In the case SeC3 the same result was proved in [47]. Theorem 3.2 was
shown by Solonnikov (private communication). For the reader's convenience we
present the proof in the Appendix.

Let us now consider the nonhomogeneous Stokes problem corresponding to
(3.1), (3.2). Hence instead of (3.2) we have

vή\s = a , (T'(υ)ή-(nT'(v)n)n)\s = b . (3.13)

Using Lemma 2.4 and Theorem 3.2 one has

Theorem 3.3. Let fεHl(Q\ geH2(Ω\ SeH1'2, aeH512, bεH3/2, let (3.4) be
statisfied, and let

\adσ = \ gdx . (3.14)
s Ω

Then there exists a solution (v,p) of problem (3.1), (3.14) such that veH3(Ω),
peH2(Ω)and

Ha+ILp 2^^(||/||ι + lkl l2+lkl l5/2,s+| |^ |3/2,s) - (3.ιs)
Remark 3.2. Suppose the right-hand side functions of problem (3.1), (3.13) do not
depend on φ (in the cylindrical coordinates), symmetry conditions (5.4), (3.14), (3.4)
are satisfied and Ω is cylindrically symmetric which satisfies symmetry condition
(5.1). Then there exists a cylindrically symmetric solution to the problem (3.1),
(3.13), which satisfies symmetry conditions (5.6).

4. Existence and Uniqueness for Compressible Navier-Stokes Equations

In this section we prove the existence and uniqueness of solutions to the
compressible Navier-Stokes system in a bounded domain with prescribed
boundary. First we consider the following linear problem which follows from
problem (1.1):

= K inΩ (4.1)

vn = Q on S ,
(4.2)

τkT'(v)n = Q on S,&=1, 2 ,

/ — \ ^\
where A=—— A—- Pdiv, η = o — Q, Pι= g _ >0, p0=^r, Q is defined in

ρ ρ Q 3ρ
Sect. 1 and

$ηdx = Q . (4.3)
Ω

We also consider the following equation

div (wη) + ρ div v = G , (4.4)
where

wn = Q on S . (4.5)

First we obtain an a priori estimate for solutions of the above problem. To do
this we follow the methods of [62] and [63] restricted to the stationary case.
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To obtain the a priori estimate we assume

ξ^jμ - (4.6)

Lemma 4.1. Let (v, η)eH3(Ω) x H2(Ω) be a solution of (4.1) + (4.5), weH3(Ω) and
let (4.6) be satisfied. Then

where
Y1=c(\\K\\2

0 +\\G\\l) (4.8)

and Si can be made arbitrarily small.

Proof. Multiplying (4.1) by v, (4.4) by -=-η, integrating over Ω and adding these
expressions one gets ^

β \ 1 ' Q J Ω\ Q ' '

Using (4.2) the first term on the left-hand side is

μ . t± ^~r _ i i Λ Λ i Λ Λ I Λ

ρ J

Ω \dXj dXj dXj dxj

+4 f f-? ̂  ί (dί
Q \ 3 y

The second term on the left-hand side of (4.9) vanishes because of the Stokes
formula and (4.2)! . Finally the third term on the left-hand side of (4.9) is estimated
by

where the embedding H3(Ω)a #£(β), βc=lR3, has been used.
Summarizing

-lw\\l\\η\\ϊ , (4.10)
£2

where
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Using Theorem 3.2 to the Stokes problem

Άv+p±Vη = K in Ω ,

in Ω ,
(4.12)

vn = v on S ,

f ;Γ'(ιO>ϊ=0 on 5 ,

and (4.3) gives

Hi+Nlϊ̂ l<Mί
By the interpolation inequality

estimates (4.10), (4.13) and the Korn inequality one obtains (4.7) for sufficiently
small ε2 ? £3 and βj = β4 .

Now we prove the main estimate for problem (4.1), (4.2), (4.4).

Lemma 4.2. A solution (v,η)eH3(Ω)xH2(Ω) to problem (4.1), (4.2), (4.4) with
conditions (4.3) and (4.6) satisfies the estimate

lilkll3, (4.ιβ)

w e #3 (Ω) <2«d satisfies (4.5).

. We consider problem (4.1)-h (4.4) locally. We restrict our attention to a
neighbourhood of the boundary, because the considerations in interior subdomains
are simpler.

We need some notation. Let us introduce a partition of unity ({Ωj , {(J). Let Ω
be one of the Ω, 's and ζ(x) = ζi(x) the corresponding function. Let ώ be such that
ώcβ and ζ(x) = l for xeώ. Considering a neighbourhood of a boundary we
assume that Ωn*Sφ0, ώnSΦO. Let βeώnS=S=Ωr^S. Introduce local coordi-
nates {y} connected with {x} by the relation

Λ= Σ α«(^ι-A) , «3* = Λ*(/ί) , * = 1,2,3 , (4.17)
/ = !

where αfcί is a constant orthogonal matrix such that S is determined by the
equation j3 ̂ (̂  9y2\ FeHΊI\ and β = (^ : \Vi\<d, i= 1,2, F(^0 <y3<F(y') + d,
y' = (j2 ? j;2)}. Simultaneously we introduce a new vector u' (where u replaces v, η and
so on) by the formula

3

and scalar p' defined asp'(y)=p(x)\x=X(y), where x = x(y) is the inverse transfor-
mation to (4.17). Further, we introduce new variables by

ί=l.,2 , z3=Λ-^(Λ,Λ^3) , >^Ω , (4.18)
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which will be denoted by z = Φ(y), where Fis an extension of F, so FeH4(Ω). Let
= {z:\Zί\<d, i = ί,2,0<z3<d} and ύ(z)=u'(y')\y=φ-ί(z). Finally, set

z

We also asume that ^ = τ-L Vzvyk

Moreover, we introduce the operator δj[α(z) = Λ~1[β(z1.,...,z/ + λ,
zί+1,...,zn) — a(z)\ 7^2, n = 3, which satisfies the formulas δl

n(a-b) = al

hδ
l

h

Using this notation we write Eqs. (4.1), (4.4) in the form

lv+p1?ή=K+k1 i n β , (4.19)

f'(wή) + ρ£vv = & + k2 i n β , (4.20)

where v = vζ, ή=ηζ, K=Kζ, G = Gζ, 1= -^ ί?2-- PdTv, ^v=P ,
Q Q

Moreover, we set zα = τα, α = l, 2, z3=«.

By taking the operator V of (4.20) multipled by ̂ -̂ and adding the result to
(4.19) one has ρ

PlVη = μ(Δv-V^ΰ)-^- VV-(^η) + K+^- VG + k^ , (4.22)
Q Q

where &3 = — ̂  Vk2+kl. Differentiating (4.19), (4.20) once with respect to τ,
Q

applying the operator δl

rt, l< 3, multiplying by δl

hvτ, -4- δl

hήτ, respectively, integrat-
ing over Q and summing one gets ^

(W),τδίήτ+Plδi(f^
J

. (4.23)

Now we consider each term on the left-hand side of (4.23) separately. For the
second term we have

ί
Ω

Ω

The first term on the right-hand side of (4.24) gives

* ί (^^^(ίί^-H^^^A^

(4-24)

(4 25)
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where P is a polynomial and the boundary term vanishes because

In obtaining estimate (4.25) we have used the facts that

IMo,β^Ψτ||o,Q for ueH^Q}, /<3, Λ-arbitrary (4.26)

andz=z(;;)e//4(Ω), so

where theorems of embedding were used. Below using theorems of embedding
similar considerations will be done also however this will not be mentioned
explicitly.

The other terms in (4.24) are estimated by

^(|*j3.<Λi3.e!*k^
(4.27)

By (4.26) the third and fourth terms on the left of (4.23) are estimated by

ll3,fl)|^l3,fl(lk1ι.β+lflτllι. f l)| |«l2.fl (4.28)
if we integrate by parts and use the fact that the boundary term J (^(z^^δlv^δlή^
vanishes. dQ

The first term on the left-hand side of (4.23) is

1 / 9 \

2ρ *' τ £ V ^ / Q

where E(u, v) = \ (F.w,+ Ϋ } u i ' ) ( f i v ί + F/z . ) and { } can be estimated byN ' / j V I J ' j l / V l j ' J I / { J J

Q.

Summarizing,

Q
(4.31)

where

.β)ihiι>βμιι.β,
and the following inequalities have been used:

j δJίΛ1.τ^»r&gβ||»||>fl+c(|»||lιβ+|,A||f>fl) ,
Q (4.33)
ί5iΛ2,X^ώ^e||ίn||§>fl+c/'(||zj3>c)(||ί|i>c||w|l>c+|»||l,e) -
Q

Letting h to 0 in (4.31), using (4.6) and the Korn inequality one obtains

Q+\\v\\2

3:Q) . (4.34)
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Applying the operator δl

h, /<3, to the third component of (4.22), multiplying by
Vnδ

l

hή and integrating over Q yields

||Fn^/?||g>e^c||?2τJ|g,Q+^||?zzJ|^Q+ε(||^||i>β+||ϋ||2;Q)+c(jr2+z3) , (4.35)

where d=diam Q [see explanation after (4.18)]. Using that dzi/dyj = δij+ VyFi and

0 = 0 the first two terms in the right-hand side follow from

where

and

To get this estimate we have used the following inequalities:

f δlVΛV-(wJ n n\ \
Q

where the boundary term which appears in estimating the left-hand side vanishes in
the same way as in (4.25), and

Letting h to 0 in (4.35) we have

||^|S.fl^c|»«tlS.e+M+ε)(li?|lc+i ί||!fQ+c(Ar2+jr3) . (4.36)

Equation (4.19) can be written in the form

(β + fy?&vv=-β(??v-?£vΰ)+p1fή--K-kl . (4.37)

Differentiating the third component of (4.37) with respect to τ yields

(4-38)

From (4.34), (4.36), and (4.38) one obtains

. (4.39)
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Differentiating with respect to τ the Stokes problem

, mQ ,

divz£'=divz5' in Q ,

vnz = ΰnz-ύn on£ , (4

τzTz(v)ήz = τzTz(ΰ)nz-ϊff(v}nζ on § ,

v-nz = 0 on δβ\ί ,

τz7»-z = 0 ondQ\§,

where «z = (0, 0, 1) and τz = (1 , 0, 0), τ^ = (0, 1, 0), and using Theorem 3.3 gives

. (4.41)

Applying the operator δ%,h>Q, to the third component of (4.22), multiplying by
Vnδlή and integrating over Q one obtains

, (4.42)

where analogous considerations are carried out as in the case of inequality (4.35).
Hence letting A to 0 we have

. (4.43)

Differentiating the third component of (4.37) with respect to n shows that

. (4.44)

Now (4.43) and (4.44) imply

(4.45)

Finally, from (4.39), (4.41), and (4.45) we have

. (4.46)
Going back to the old coordinates, summing over all neighbourhoods of the
partition of unity and using Lemma 4.1 implies

IIHII+l'ίllI+I»»«i§+ll(d iv»)»ll^c(rf+e)(|»lli+ll'/lli)+<? l r2 , (4-47)
where τ signifies that near the boundary only the tangent derivatives appear. Using
Theorem 3.2 to the Stokes problem (4.12) gives

||ι;||i + ||ι,||l^c(||divι;||l+||Λ:|?) . (4.48)
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Hence from (4.47) and (4.48) for sufficiently small d and ε we get (4.15). From
Lemma 4.2 we have

Theorem 4.3. Let v,ηbea solution to problem (4.1), (4.2), (4.4). Let (4.3) and (4.6) be
satisfied. Let A = \w\^ be sufficiently small. Then

Mi+IMIî ι(l*ll?+NI!). (4.49)
Now we prove the existence of solutions to the linear problem (4.1), (4.2), (4.4)

with conditions (4.3) and (4.6), where weH3(Ω) is treated as a given function
satisfying (4.5). We follow the method of [62].

First, we consider the case of ξ/μ large enough. Defining

π = ρPlη/μ-(ξ/μ+l/3)divv (4.50)

we transform the problem into two problems

in Ω ,

μ-π) in Ω , ^ ̂

vή\s = Q on S ,

τkΓ(v)n\s = 0 , £ = 1,2 , on S ,
and

ρ(ξlμ+l/3ΓlQPιη/μ + <liv(wη) = ρ(ξ/μ + l/3Γ1π + G in Q

f ι , = 0 .
Ω

We solve (4.51), (4.52) by means of a fixed point theorem. Having determined
(η*, π*) on the right-hand side of (4.51)2, we first get (v, π) from the Stokes problem
(4.51), and then η from (4.52). A fixed point of the map

Φ:0/*,π*)->fa,π) (4.53)

is a solution of (4.51), (4.52). Set

K! s JO/*, π*) e H2 (Ω) x H2 (Ω): J i

(4.54)

Using Theorem 3.2 to the Stokes problem (4.51) (this problem is equivalent to the
problem considered in Sect. 3 so the same results hold) we have (for the reader's
convenience we repeat the considerations in [62])

(4.55)

In the case of a domain Ω obtained by rotation about the vector B, K must satisfy
condition (3.4). We have to underline that we used Theorem 3.2 in the case SeH1'2.
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By Lemma 2.6, if

H3^302Λ(£ + /'/3Γ1 -, (4.56)

where c3 = c3(Ω) is determined by embedding theorems, for solutions to problem
(4.52) one obtains the estimate

(4.57)

Assuming that the right-hand sides of (4.55) and (4.57) are less than B, which may be
satisfied if

^ , (4.58)

and if ξ/μ is large enough, we obtain ||π||2<-#, ||^|||^5. This means that
ΦCKJd/^. The set K^ is a convex compact subset of Z=Hί(Ω)xHί(Ω).
Moreover, Φ\Kι-+Kl is continuous in the Z topology. Hence by Schauder's
theorem, Φ has a fixed point.

In this way we have proved the existence of solutions to (4.51), (4.52) for
sufficiently large ξ/μ and small ||w||3.

To prove the existence of solutions of problem (4.51), (4.52) in the general case
(ξ/μ arbitrary, ξ ̂  2/3 μ) we use the same continuity method as in [62], applied to the
following operators :

H2(Ω),v ή\s = Q,τΓ(v)n\s = Q, f 17 = 0} ,
Ω }

xH2(Ω\ J Gdx

where £0/μ0 is large enough and such that (4.56) is satisfied (see the previous part of
the proof). It can be easily proved that the set T= {t e [0, 1 ] : for each (K, G) e Γthere
exists a unique solution

(v,η)eX of 4(tMj) = (*,<?)}

is nonempty and T= [0, 1] (see [62]).
Hence we have proved

Theorem 4.4. Let KeHl(Ω\GeH2(Ω\ξ> (2/3)μ, S 6 HΊ/2, weH3(Ω) and suppose
A = \w\$is sufficiently small (see (4. 56) and assumptions of Theorem 4.3) . Then there
exists a solution (v,η)eH3(Ω)xH2(Ω) of problem (4.51), (4.52) such that

(4.59)
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Now we are in a position to prove the existence of solutions to the nonlinear
problem (1.1). Set

) , v n\s = 09τ T'(Ό)ή\s = Q9lη = 0, Ha + lhlk^} >

where D will be chosen later. To use Theorem 4.4 we must require that D^A.
Setting

G = 0 (4.60)

in (4.51) and (4.52), Theorem 4.4 implies the map

Ψ:(w,σ)^(v9η) . (4.61)
From (4.59) and (4.60) we have

IH^+IÎ ^ (4.62)

Choosing D and |/|| 1 so small that the right-hand side of (4.62) is less than D we get
Ψ(K2)^K2. On the other hand, K2 is convex and compact in Z± = H2 (Ω) x H1 (Ω)
and ψ is continuous in the topology of Z1 . Hence by Schauder's theorem, Ψ has a
fixed point which is a solution to (1.1). Therefore we have proved

Theorem 4.5. Let fεH^Ω) with l / f j sufficiently small, SeHΊ/2. Assume (4.6).
Then there exists a solution (v,η)eH3(Ω)xH2(Ω) to problem (1.1) and

\\υl+\η\\2ίc\\fl . (4.63)

Remark 4.6. Suppose a bounded domain Ω is obtained by rotation about the vector
B and satisfies symmetry conditions (5.1). Suppose / satisfies symmetry conditions
(5.4) and \\f\\i is sufficiently small. Then there exists a symmetric solution to
problem (1.1) determined by Theorem 4.5 and satisfying (5.6).

5. Variation of a Free Boundary

Let Ω(1) and Ω(2} be two domains given by

Ω® = {x:r<ζ®(θ)} , ί=l ,2,

where £(ί)(0) = RQ + R(i}(θ),R0 = const and R(ί)(θ) satisfies the symmetry conditions

l ( i ) dlR(i)

) = (- l ) l - r (π/2-f l ) , 7=0,1,2,3 . (5.1)

Assume that R(i) e H7/2 (0, π). Using the implicit function theorem one can show (we
omit the simple but cumbersome calculations) that the surfaces Γ(ί) = 9Ω(ί) are then
of class HΊ/2. Suppose additionally that

(5.2)

with sufficiently small ε0.
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Consider in Ω(1) and Ω(2) the boundary value problem (1.1) with the additional
condition

M . (5.3)

Assume that the right-hand side of (1.1), /, has norm ||/||C2(β(i)) sufficiently small
and satisfies the symmetry conditions: ( f r , f φ , Λ) = (/i , 0,/β), the functions ff, fθ

depend only on (r, θ) and

( - l ) ' f (r,π/2-θ) ,

(-l)' + 1 j ( r , π / 2 - 0 ) , 7 = 0 , 1 . (5.4)

Then the necessary and sufficient condition for the solvability of problem (1.1) is
satisfied and by virtue of Theorem 4.5 and Remark 4.6 there exists a solution

, ρ(ί)) of (1.1) in Ω(i} such that ρ(ί) admits the representation

where ρ(ί) = M/O(l)|, |β(<)| = volfl ( < )= (Λo + Λ(l)(θ))3 sin0c/0,
^ o

f f7(i)(x)</* = 0 , (5.5)
β(0

and (v(ί\η(i}) satisfies the following symmetry conditions: v(i},η(i} depend only on
r f) (1^ i^ n®} — (ιιW 0 ;?(ί)ϊr, t7, ^fr , vφ , fθ j — ^i7Γ , υ, ι̂ θ ,

^ (r, π/2 + θ) = (-1)' -gjf- (r, π/2 - θ),

-l)ί + 1 -^-(r,π/2-0) , 7 = 0,1,2,3 , (5.6)

(-1)' —^τ-(r,π/2-θ) , 7 = 0,1,2 .

Moreover, (t>(i),ί/(ί)) obeys the estimates

m , i=l,2 . (5.7)

Note that for sufficiently small ε0 in (5.2) the constant in (5.7) can be chosen the
same for all jR(ί) satisfying (5.2).

We now compare (v(1\ ρ(1)) with (υ(2\ ρ(2)). For this purpose we construct a
transformation which maps Ω(1) onto Ω(2). Let x^^,^,^) and (r,φ,θ) be
Cartesian and spherical coordinates in Ω(1} and let y = (y1, y2, 3^3) and (r, φ, θ) be the
same coordinates in Ω(2\ Introduce the transformation

>M) , (5.8)
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where λ(t} is a smooth cut-off function with λ(t) = 0 in a neighbourhood of / = 0 and
= l for ί^l/4, and ωe//4(Ώ(1)) satisfies the boundary condition

(5.9)

and the inequality

|ω|4>flα,^c||JR'1>-Λ«2>|7/2>(0p.) . (5.10)

One can easily show that the transformation (5.8) maps Γ(1) onto Γ(2) and for
sufficiently small ε0 its jacobian is bounded away from zero. Hence (5.8) defines a
one-to-one mapping y = Φx of Ω(1) onto Ω<2). From (5.8)-(5.10) one gets the
estimate

2tVίtπ) (5.11)

Let us rewrite problem (1.1) for v(ί\ ρ(1) in the new coordinates y:

(5.12)

where v(ί\y) = v(ί\φ-ίy), ή«\y)=ηV(φ-1y), ?(y)=f(φ-ly\ V=A(y)V,
An

ή = - — — = Bή,A and Ί" are matrices with elements
\An\

Subtracting equations (1.1) for (v(2\ ρ(2)) from system (5.12) we get the follow-
ing boundary value problem for the differences u(y) = ϋ(l\y) — v(2\y),

, (5.13)

u n\rm=b , T'(u)ή-ή(n T'(u)n)\rm = d
with

= -r (ή<»u)-r •(&*»)
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Using inequalities (5.7), ι = l, 2, (5.11) and the formulas

ρ (i) = 3 M/(2π ](R0 + R (ί) (0))3 sin θdθ)
o

one gets the estimates

,

2k^^^ ,

Here |/| = ||/||C2(Ω(2)), and the constant c(\f\) is small for small |/|. Note that in
deriving (5.14) we also use imbedding theorems, the properties of the function/? and
the estimate

One easily verifies that the right-hand sides of system (5.13) satisfy condition (3.14).
Hence we can get an estimate for u, Q using Theorem 3.3 (u, Q is a solution of the
Stokes system). Since (see (5.5))

ί Q(y)<fy
β(2>

inequalities (3.15) and (5.14) yield

Hkî +llGlkî ^
Hence for sufficiently small |/|,

Consider the functions Ψ(i>(χ) = ( -p(ρ®)+n . T'(v(ί))n)\Γ(i) . Since the solutions
(v(ί\ ρ(l)) satisfy the symmetry conditions (5.6), Ψ(i)(x) is a function of θ only and
satisfies conditions (5.1). Therefore, we have proved the following

Theorem 5.1. The functions Ψ(i)(θ) = (n'T(v(i))n-p(ρ(i)))\r=R+Rii)(θ) satisfy the
symmetry conditions (5.6) and obey the estimate

(5.16) follows from (5.15).
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6. Existence of Solutions

To prove the existence for the original problem (1.1), (1.5), (1.6) we shall use a
method of successive approximations. Before describing this method we transform
Eq. (1.5). Assume that the free boundary Γ is specified by Γ = {x : r = R0 + R(φ, θ)}.
We can write the mean curvature operator in spherical coordinates (r, φ, θ) for the
function ζ(φ,θ) = R0 + R(φ,θ) as follows [22]:

H(x) = Lζ= - - - 1 + h~l si

sin θ \_dφ \ dφ ) dθ \
(6.1)

where h = (ζ2sin2 θ + (dζ/dφ}2 + (dζ/dθ)2sm2 θ)1'2. Linearizing the right-hand side
of (6.1) one gets

Lζ = 2/R0-l/R2(A*+2)(R-Φ*(R) ,

where A* = I/sin θ[d/dφ((smθΓ1S/dφ) + d/dθ(sm θd/dθ)] is the Laplace-Beltrami
operator on the sphere S1 and

1

+ 2 sin OR2 J (l-τ)LϊΨ(x,y,z)χsίRo+τRda
0 y = τdR/dθ

z = τdR/dφ

-ll(R0smθ){d/dφ \R(dR/dφ) } L, Ψ(x,y,z)

1

,dτ\
y = τdR/dθ
z = τdR/dφ

+ d/dθ[sin2 ΘR(dR/δθ) f Lv Ψ(x,y,z)
0

x = l
3; = τdR/dθ
z = τdR/dφ

Lι = dldx + dldy + d/dz , Ψ(x,y,z) = ((x2+y2)sm2θ+z2Γ1/2 .

Now we consider in detail the properties of the operator (A * + 2), i. e. of the equation

(Λ* + 2)Z = F . (6.3)

Theorem 6.1. For any FEHm(S1) satisfying

J F(φ,θ)cosθdS1=Q , (6.4)
51

Eq. (6.3) has a unique solution ZeHm+2(Sί) such that

j Z(φ,θ)cosθdS1=Q (6.5)

and we have the estimate

Proof. It is well known that the Laplace-Beltrami operator A* is an elliptic self
adjoint operator and hence (see e.g. [42, Chap. I, Sect. 8.2]) A* has the Fredholm
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property in the scale of Sobolev spaces. Moreover, λ = 2 is an eigenvalue of A* with
eigenfunction U=cosθ (see e.g. [42, Chap. Ill, Sect. 22.2]). This implies the
theorem.

Theorem 6.2. Let Fbe a function ofθ only, FE H3/2 (0, π), which satisfies the symmetry
conditions

(dlF/dθl)(π/2 + θ) = (-l)l(dlF/dθlKπ/2-θ) , 7=0,1 . (6.7)

Then there exists a unique solution Z e HΊβ (0, π) 0/Eq. (6.3) also depending on θ only
and such that

θ) , 7 = 0,1,2,3 , (6.8)
and

Proof. For a function Z independent of φ the operator (J* + 2)Z takes the form

(J*+2)Z= I/sin θ(d/dθ(smθ(dZ/dθ(θ))) + 2Z(θ) .

Hence it is sufficient to solve the ordinary differential equation

I/sin θdldθ(&mθ(dZldθ)(θ)) + 2Z(θ) = F(θ) , θe(0,π) . (6.10)

Introducing the variable 77 = cos θ gives

l.l) , (6.11)

where Z(η) = Z(arccosη), F(η) = F(arccosη). The homogeneous equation corre-
sponding to (6.11) has two linearly independent solutions Zί(η) = η and
Z2(η) = \ —1/2*7 ln((l +*/)/(! —*/)). The solution of the nonhomogeneous problem
(6.11) satisfying (6.8) can be written in the form

?lfa) ί
-1 η

1

where KO= - J Z2(ξ)F(ξ)dξ. Using (6.7) one can easily calculate that
-i

(6.12)

= 0 . (6.13)

Let us estimate the norm

1 \ l/2

J (l-η2)\(dZ/dη)(η)\2dη) ,
-i /

which is equivalent to ||Z||lfSι. Since ln((l -f η)l(l -η))eL2(- 1, 1) one easily gets
the estimate

c F(η)2dη . (6.14)
-i \-ι / -i
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From (6.12) we calculate

Z2(ξ)F(ξ)dζ + d/dηZ2(η)]ξF(ξ)dξ + κ0,

ώ,

d +.. , -1 η

-dZ2/dη(η) f ξF(ξ)dξ-$ Z2(ξ)F(ξ)dξ-κ0,
(. -I η

Since \(d/dη)Z2(η)\^c(l -η2)'1, ηe(-ί, 1), we have

f (l-η2)\(d/dη)Z(η)\2dηf
-i

o

£< J AO^ + l - ^ Γ ί ί ^ ? f F(ξ)2dξ
-1

ίc( } F(η)2dη] .
\-ι /

Therefore Z(θ) = Z(cos 0) e /ί1 (51 ).
Now we prove that Z(η) is a unique solution of problem (6.11) belonging to

Hv(Sl) and satisfying (6.13). Indeed, the general solution of the homogeneous
problem corresponding to (6.11) is

Since Zi(η) = η does not satisfy (6.13) and Z2 (η) = l+( 1/2) In ((1 +>/)/( 1 -*/)) has
infinite norm <•>! we get q=0, c2 = Q and hence Zh(f/) = 0. It follows from the
symmetry conditions (6.13) that Z defined by (6.12) satisfies

J
-i

which is equivalent to (6.5). Hence Z(0) = Z(cosθ) coincides with the unique
solution of problem (6.3). By Theorem 6.1, Ze/f7/2(0, π) and estimate (6.9) holds.
Using Eq. (6.10) one can verify that Z(θ) satisfies the symmetry conditions (6.8).
The theorem is proved.

Now we can describe our method of successive approximations. First we assume
that the liquid is at rest, i. e. v0 (x) = 0, ρ0 (x) = ρ0 , and that the domain Ω0 occupied by
the liquid is the ball of radius ̂ 0, i.e. Ω0 = {x:r<R0}. To satisfy conditions (1.5),
(1.6) we have to take ρ0 and ̂ 0 such that

2σ/R0=p(ρ0)-Po , 4π^0

3ρ0/3 = M , (6.15)

i.e. R0 is the solution of the algebraic equation

)-^0) = 2σ . (6.16)

All the subsequent approximations (vn,ρn,Ωn) will be found in symmetric form,
i.e. we suppose that the functions vn, ρn depend on r, θ only and satisfy the sym-
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metry conditions (5.6). The domain Ωn is specified by Ωn = {x:τ<RQ + Rn(
where Rn satisfies (5.1). If (vn,ρn,Ωn) are already found we take vn+1, ρn+1 to be
a solution of the auxiliary problem (1.1) in the fixed domain Ωn. In addition,
the function ρn+1 is assumed to have the form Qn+ι(x) = Qn+ι+ηn+ι (x), with

π

ρn+1 = 3M/(2π j sin θ(Ro+Rn(θ))*dθ). Then at every step the condition
o

ρn+1\Ωn\ = M (6.17)

is valid. To define the domain ΩΠ + 1 = {x :r<RQ + Rn+l(θ)} we solve the equation

+ n'T'(vn+ί)ή)\r=RQ+Rn(θ) , n>\ , (6.18)

where Φ*(R) is given by (6.2).
If ||/||C2(0n) is sufficiently small (compared with |ΩJ) then problem (1.1) in Ωn has

a unique solution (vn + i,ρn+ί+ηn + 1) (see Theorem 4. 5) and

Moreover, since the initial domain Ω0 and / satisfy the symmetry condition (5.1)
and (5.4) the solution (vn+ί,ρn+ί) also satisfies (5.6).

Consider now problem (6.18). Assume that Rn(θ) is a symmetric function such
that Rn e HΊ/2 (0, π) and the conditions (6.8) are valid. Using (6.2), the representation
of the normal vector n of the tensor T' in spherical coordinates and the symmetry
properties of vn+ί,ρn+1 one finds that the right-hand side of (6.18) satisfies (6.7).
Moreover since Φ*(jR) is quadratic in R (see (6.2)),

||3/2,(0,π)^^(||^i|7/2,(0,π))
2 (6.20)

Further, by (6.19),

7/2,(o,π))) , (6.21)

where g ( t ) is small for small ί. In deriving (6.21) we have also used (6.15) and the
estimate

which is a consequence of the formulas

ρ0 = 3M/4τLR0

3 , β»+ι = 3M/f 2π] sin Θ(R0 + Rn(θ}? dθ . (6.22)

Hence by Theorem 6.2 there exists a unique solution Rn+ieH7/2(Q, π) of problem
(6.18) satisfying (6.8) and the inequality

7/2,(0,π)) (6.23)
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Since R0(Θ) = Q, (6.23) shows that for sufficiently small ||/||C2 the numbers ρn+l

(mean densities) do not differ much from ρ0 and the constant in (6. 1 9) can be chosen
the same for all n. Hence the sequences { \\vn+ί ||3,«n}, { ||*?π+ι \\2,Ωn}

 are also bounded.
Considerjhe differences vn-vn+1,ήn-ηn+1,

nRn-Rn+1 (here vn(y) = vn(Φ~1yl
nn(y) = rln(Φn ly\ &n *

s trιe transformation which maps Ωn_^ onto ΩM). It follows
from (6.23) and (6.19) that for sufficiently small ||/||C2 conditions (5.8) are satisfied,
and estimates (5.15), (5.16) yield

R-*»+ι||3A,+ R-fl»+^ (6 24)

>Olr=Ro+JWβ^

-J?,,.!!̂ ^ . (6.25)

The functions Rn — Rn + 1 satisfy the equation

+ri'T'(vn)n)\r=Ro+Rn_M-(-p(ρn+1)

+ ή'T(vn + ί)n)\
Since (see (6.2))

using (6.23) and Theorem 6.2 we get the estimate

«-i-^||7/2,(o^) (6.26)

Inequalities (6.24), (6.26) show that for |/| small enough the sequences {vn},
{ηn} and {Rn} have limits in the corresponding spaces. Denote these limits by v, η and
R respectively.

It is evident that v, ρ = ρ + η and Ω = {x:r<R0+R(θ)}, where
// \

ρ=limρ n = 3M/ 2π $ sinθ(R0 + R(θ)}3dθ , solve problem (1.1), (1.5), (1.6).
n-»oo / \ 0 /

Moreover, we have the estimate

Thus, we have proved the main result of the paper.

Theorem 6.3. If the norm ||/||C2 is small enough, iff satisfies the symmetry conditions
(5.4) and (1.8), z/(4.6) holds andp satisfies such conditions that Eq. (6.16) is solvable.
Then there exists a unique solution (v, ρ, Ω) of problem (1.1), (1.5), (1 .6). This solution
satisfies the symmetry conditions (5.1), (5.6) and estimate (6.27).

Remark 6.1. To show that condition (1.8) is satisfied we show that it is satisfied
on each step of the above constructed method of successive approximation. Know-
ing that /r = /Γ(r,0), fθ = fθ(r,θ)9 /φ = 0 we have A=(fr sin θ+fe cos 0) cos φ,
/2=/ rsin0-{-/0Cθsθ)sinφ, f3=frcosθ — fθsinθ, where / ί ? z = l,2, 3, are the car-
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tesian coordinates of/. Knowing that Ωn is rotationally symmetric and ηn = ηn(r, θ)
condition (1.8) implies

J ft(x)dx = 0 , J ηnfίdx = Q , /=1,2,3 . (6.28)

Consider

π π/2 /„. \ π/2 /^ \

(6.29)

Equations (5.4), (5.6)3 imply that functions frcosθ, fθsinθ, ηnfrcosθ, ηnfθsinθ
satisfy the following relation

which gives that (6.28) holds.

A. Appendix

In this section we prove Theorem 3.2. We use the partition of unity and notation
introduced at the beginning of the proof of Lemma 4.2.

For subdomains Ω such that Ωn3Ω = 0 the results of [23] and local estimates for
elliptic systems (see [1,48]) imply v<=H3(Ω), peH2(Ω) and

lrl |s,Ω+ \\P\ s-l,Ω = C(\\f \\s-2,Ω + \\9\\s-l,Ω) ' S = 2,3 . (A.I)

Hence to show (3.12) it is sufficient to estimate the solution near the boundary S.
First we consider the case s = 2. Then S locally is expressed by function FeH5/2

which has an extension FeH3(Q) [see (4.18)]. Let βnSφO, ωn£φ0. Let us
introduce new vectors u"', η" and so on by the formulas

(A.2)

where J(y) = l—Fy^ is the Jacobian of the transformation z = Φ(y) (vector u' and
the function Φ are defined in the proof of Lemma 4.2). Let us recall that sum-
mation convention over repeated indices be assumed. From [20] it follows that
divzu"(z)=J~1(y)divyu'(y)\y=φ-ι(z). For simplicity we write w = v", ξ = η".

Using the new variables {y} [see (4.17)] and assuming that ηf vanishes outside Ω
instead of (3.5) we obtain

5 . (A.3)

From (A.2) we have v((y} = (\ -Fy2(y))υ'!(z(y)\ / = 1,2,
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The same formulas hold for η'. Moreover, divzv" = (J~1(y)g'(y})\y=φ-ι(zy Hence,
after passing to variables z and integrating by parts from (A. 3) one gets

-, (A.4)

where

(A.5)

/?jm) are polynomials of degree / with no constant terms.
Put in (A.4) ζξ in place of ξ, where ζ is a smooth function such that

C = l if |Zi|^έ//4, / = 1,2, z3^J/4, and C = 0 if N^rf/2, z^d/2. Let
v^ = ζvv, p=pζ, Jϊ=fιζ> Then instead of (A.4) one gets

, (A.6)

where

(A. 7)

(A.8)

To prove Theorem 3.2 for ^ = 0 we regularize the boundary, i.e. we assume that
^meC°° and ||^w-^||3-»0, m-^oo. Consider the integral identity

βJw,^ '(A 9)
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where qm=pm and

^ + ί̂ ^^ 'Q

/#ι=/#W«) and so on .

From the definition of Φ we have

\Φ(ξ)\ϊc(\\p\\0+\\w\\1+ IZim^Ul+MM . (A.10)

To obtain (A.10) we have used (3.11) and estimates

l\\ξl ,
(A. 11)

HIJfll, .

which follow from (A.8), defmtion of the coefficients p%9p% 9pk9p
ίj and imbedding

theorems. Moreover,

where c(J)-»0 with d-+Q. To prove (A. 12) we use ||Fm-F||3-^0 and the fact that VF
is small in a neighbourhood of the point z = 0. Since the term εm(wm, ξ) defines a
small operator we can use standard arguments (see [47,53,54]) to prove the
existence of a unique solution (wπ,#m) satisfying (A.9) and such that

\vmeHl(Q} , qmeL2(Q) , div wm = q, = div w

Let ξ have a compact support in Q. Integrating by parts we can reduce
the right-hand side of Φ(ξ) from (A.9) to the form Φ(ξ) = (Φ,ζ)Q,
where ΦeL2(Q). Moreover, since the coefficients of εm are smooth and
g1=divw = ζg+Vζ weHί(Q) we can prove (in the same way as in [23], the
additional term εm doesn't imply any difference) that wmEH2(Q), qmeH1(Q) for
every Q such that Q a Q. Integrating by parts in (A.9) with ξ such that supp ξ ci Q
we get that (wm,#m) satisfies almost everywhere in Q the following system of
equations

where the sum in (A. 15) corresponds to the term εm and the coefficients ^α), |α| =2,
are small as d-*Q. To estimate wm, qm near the boundary z3 = 0 one can use the
arguments from [47]. First, from the integral identity (A.9) one gets wmzτeL2(Q'),
qmτ e L2 (Q '), where Q ' = supp ζ and the index τ means the derivatives with respect to
zi9 ί = 1, 2. Then expressing wmZ3Z3, #WZ3 from the "Stokes" equations (A. 15) one gets
^mZ3Z3^mz^L2(Q). Hence wmeΛΓ2(β /), qmεHl(Q'). Note once more, that in
these considerations the smoothness of function Fm has been used.
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Now we estimate ||ww||2 Q> ||<7m||ι ς>> using only that FmeH3. To do this we put
ξ = ζ(δίwm)f, 7=1,2, wm = ζwm, qm = ζqm into (A.9). Then we get

+ (μ-v)(gι,div(ζ(<5<wm)τ)Q

- £'(wm, ζ, (δ'hwjτ) - e'(wm, ζ,

(A.16)

I E(wm, (<5XX) = - £(H

Estimating the right-hand side of (A. 16) we get

To prove (A. 17) we integrate by parts with respect to τ in terms E',ε' and use
estimates (A.10), (A.ll), (A. 14), and (3.11).

Now we estimate εm(wm, ξ). Using the form of εm we have

+
ί (^

(A.18)

where c(J)->0 with J^O. Above, we have used that wmeH2 and imbedding
theorems. To prove estimates \Pki\<v>\(piii)T\4.^c(d) and so on the fact that, FT is
small in neighbourhood of z = 0 and the estimate \u\4 Q^c(d)\u\6Q^c(d)\\u
which follows from the imbedding HΐaL6 have been used.
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Consider the term (#m,div<5j[wmτ)Q. Since div wm = Vζ - wm + ζgί we get

\(qm, div δl

hwmτ)Q\ = I - (qmτ, δ
l

h(Vζ wm))Q - (qmτ, δl

h(ζβl))Q\

Passing to a limit as Λ->0 from (A.16)-(A.19) one derives the estimate

JIo . (A.20)

In the same way as in [47] we can get the estimate for ||<7mτ||0> i e we Put ί — C^Φτ

into (A.9), where Φ is a solution of the problem

in the half-space z3 = 0. Repeating the above estimates one gets

|ί,Jo^(||£Λ^

Now we can estimate the derivatives vPmZ3Z3, qmZ3 calculating them from Eqs. (A. 15)
(see the end of Sect. 4 in [47]). Hence one gets

Vmz3z3 |θ~Π| t/mz3 | |θ =

From (A.20)-(A.22) we obtain (if ε and d are small)

f ||0 ||ι) - (A.23)

Therefore from (A. 14) there exists a subsequence {wm,qm} (for simplicity we
denote it in the same way) weakly converging in Hl(Q) x L2(Q). From (A.23) it
converges weakly in H2(Q')xHl(Q') and strongly in Hl(Q')xL2(Q'}. Let
(U, P) 6 (H1 (Q)xL2 (β))n(#2 (Q') x H1 (Q')) be a limit of this subsequence. We
will prove that (C/, P) satisfies the identity (A.6). Let ra-»oo in (A.9). It is sufficient
to consider the term εm(wm, ξ) only:

\εm(wm,ξ)-ε(U,ξ)\ =

ίzk - t/ί2k) ξj - w

ί c \p& (nί) -p%\a \wmz\2 \\ξ\\ ) -pH\4 \\ wmz ||0 \ξ \4

U \\ξz\\0+c \pij(m) -p\ \wm\4 \ξ |4

+ \pίj\3 \wm - U\2\ξ\6)

(A.24)
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The terms in the brackets tend to zero because ||Fm-F||3->0 and the imbedding
H1czLq,q<6, is compact. The last integral in the right of (A.24) is a linear
functional on H1 (g), so it tends to zero. Finally after passing to the limit in (A.9) we
obtain

^E(U,ξ)+^ε(U,ξ)-(P,divξ)Q = Φ(ξ) + (μ-v)(divw,divξ)Q . (A.25)

Subtracting (A.25) from (A.6) and taking in the resulting identity ξ = w — U one
gets (since div (vv — U) = 0)

Estimating the term ε(w — [7, w — [/) by (A. 12) we obtain

Hence for sufficiently small d we have w — £7=0, i.e. w=Ue Ή2(Q'). From the
Stokes system we get qeH^Q'). The estimate (3.12), s = 2, follows from (A.23).
Therefore Theorem 3.2 for s = 2 is proved.

Now we shall obtain an estimate for veH3(Ω) and pεH2(Ω). In this case
SeH1/2. Applying transformations (4.17) and (4.18) problem (3.1), (3.2) can be
written in the form

Azΰ+Vzp = (Az-Ά)ϋ+(Vz-V)p+Άv-Άvζ in Q ,

+ Vp-Vpζ+J , divzv = divzv-divvC+g i n g ,

v-nz = vnz — vn on § ,
^ * (A.26)

τzTz(ΰ)nz = τzTz(ΰ)nz-τT'(v)ήζ on S ,

τzTz(v)nz = Q on dQ\S ,

where the same notations as in the proof of Lemma 4.2 [see also problem (4.40)]
are used. Applying the operator δf(k = ί 9 2 ) to (A.21), using the fact that
z=z(y)εH4(Ω), veH2,peHl and the estimates for the Stokes problem in the half
space (see [1, 48] it was shown in [48] that the Stokes system is an elliptic Douglis-
Nirenberg system and the boundary conditions (3.2) satisfy the compatibility
condition) one has

IMl2) (A.27)

Therefore for sufficiently small d one obtains in the limit as λ-»0

IKIkβ+ 1A||1,Q^(IHI2+ blli + \\fl + N|2) . (A.2β)
The derivatives vZ3Z3Z3,pZ3Z3 are estimated in the same way as in the proof of
Theorem 2 in [47]. This concludes the proof of Theorem 3.2.
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