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Abstract. We consider the equations which describe a stationary motion of a
viscous compressible barotropic fluid in a bounded domain in R? with a free
boundary determined by the surface tension. By means of some a priori
estimates we prove the existence of rotationally symmetric solutions (in reality
with some additional symmetry) for a sufficiently small external force and in the
case of rotationally symmetric force and domain (where also we need more
symmetry, respectively).

1. Introduction

In this paper a free boundary problem for a viscous compressible barotropic fluid is
considered. The stationary motion of the fluid in a bounded domain Q = IR3 with a
free boundary S is described by the following equations [24]:

eVv+Vp+Av=gf inQ,
div(vp)=0 inQ ,
(vo) 1.1)
v.n=0 onS,

Tn—@Tn)n=0 onS ,

where Av= — udv — vV div v, v=v(x) is the velocity of the fluid, ¢ = ¢(x) the density
v, p=p (o) the pressure (which is a given function of g), f = f(x) the external force
field per unit mass. The viscosity coefficients x4 and v satisfy the thermodynamic

restrictions
p>0, v2hp. 1.2)

We also use the deformation tensor T with elements

T;'j: —P5”+T,}(U) ) i;j=1,2>3 s (13)
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where

Ov; + 0v;
ox; 0x;

J

2
Tij’.(v)=u( —géijdivv>+§5,-jdivv and (1.4

v=E+l L 20,

By 7i we denote the unit outward normal vector to S, and by 7 any unit tangent
vector.
The unknown free boundary surface S is determined by the equation

oH=iThlg+p, , (1.5)

where ¢ is the coefficient of surface tension and H is the mean curvature of S.
By virtue of (1.1), ; the total mass of the fluid <M = Q) can be assumed a
M Q
2]l
we prescribe the additional condition

[ odx=M . (1.6)
)

constant and we denote by g=—(|Q|=vol (22)) the mean density of the fluid. So,

Moreover, in the case of closed surface the following condition must be satisfied
(see [11,13] and [19] Chap. 15): ’

{ Hndo =0 , .n
5

which by Egs. (1.1) implies
[eofdx=0 . (1.8)
2

In this paper we prove the existence of solutions to a stationary free boundary
problem for the motion of a drop of a viscous compressible barotropic fluid. We
follow the method of Pukhnachov [34]. Hence the proof is divided into two steps.
First, after having found an a priori estimate we prove the existence of solutions to
the Navier-Stokes system in a prescribed domain. Next we show the existence of a
free surface for given velocity and pressure. Having a priori estimates in Sobolev
spaces for solutions of nonlinear Navier-Stokes equations (ve H?, pe H?) a
solution of the free boundary equation has to be found in Sobolev-Slobodetskii
spaces (H'?).

Let us describe the first step in more detail. To show the solvability in Sobolev
spaces for the compressible stationary Navier-Stokes Egs. (1.1) in a prescribed
domain we use the method of Valli [62]. Therefore we need a priori estimates which
are obtained by the method of Valli-Zajaczkowski [63] which however needs some
extra consideration because in our case Se H''>. Moreover we must have the
solvability of the linear Stokes problem (3.1), (3.2) and of the hyperbolic Eq. (2.13).
The sketch of the proof of the regularity of solutions to the Stokes problem (3.1),
(3.2) was shown to the authors by Solonnikov. The proof is based on the method of
Solonnikov-Shchadilov [47]. Since in [47] the boundary is assumed to be of class C3,
and we need this result for Se H"/?, we repeat the relevant considerations to show
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that feH', ge H?, Se H"”? imply ve H3, pe H*> (Theorem 3.2). Moreover, we
prove that Se H*?, feL,,ge H' implyve H?, pe H* (it is interesting to underline
that in the case of the Laplace equation S e H*2 does not imply ve H?, but Se H>"?
imply ve H?; see the book by Maz’ya-Shaposhnikova [25]). For the reader’s
convenience we show the existence of solutions to (3.1), (3.2) in the Appendix.

We prove the existence of solutions of our problem by the method of successive
approximations where at each step we need the solvability of the Stokes problem
(3.1), (3.2). From Solonnikov-Shchadilov [47] we know that in the case when the
domain € is obtained by rotation about some vector B, the right-hand side of the
Stokes system must be orthogonal to B x x. Because at each step of successive
approximations we find a solution and a domain it may happen that the domain has
rotational symmetry about B. Hence to satisfy the condition of solvability to the
Stokes problem we assume the symmetry of the domain and of the right-hand side at
each step: so in other words the method of successive approximations is constructed
in such a way that the necessary symmetry conditions for solving the Stokes
problem (3.1), (3.2) are satisfied. That symmetry implies that the solutions also have
the same symmetry and the necessary solvability condition is automatically
satisfied.

Note that there is another method of solving the stationary Navier-Stokes
compressible equations (see H. Beirao da Veiga [7]) but we do not know how to
apply that method to our boundary conditions and for Se H/2,

The hyperbolic Eq. (2.13) was considered in the papers of Beirao da Veiga [7],
Friedrichs [17], and Valli [62], but our proof of the existence of solutions of (2.13)
needs only that Se H"? (see Lemma 2.6). Therefore for the reader’s convenience,
using the uniqueness from [7], we give a simple proof of solvability for this equation
in H2. M
Among the three parameters M (total mass), ¢ =@ (mean density) and
|Q|=vol (), only oneis arbitrary. Assuming that M is arbitrary we get Q from (1.6),
because g is a solution of the considered problem, and then the mean density is
determined.

Finally, we have to underline that the technical condition & >% u [see (4.6)] must
be assumed to prove Lemmas 4.1, 4.2.

Now, we make some comments on the literature concerning free boundary
problems for the Navier-Stokes system. In the last fifteen years free boundary
problems for Navier-Stokes systems have been intensively studied, starting from
papers of Pukhnachov [34-37] who considered the stationary incompressible fluid
motion. His method (which was later used by other authors [10-16, 26, 29-32,
38-41, 45, 49-54]) consists of the following. First, the incompressible fluid motion
is considered in a prescribed domain and then a free boundary is found from a
surface equation for the given velocity and pressure (these two problems are usually
called auxiliary problems). Using the above procedure the solution of the problem is
constructed for small data by the method of successive approximations.

A significant part in Pukhnachov’s scheme is the investigation of the Stokes
system in a prescribed domain. This investigation is based on the theory of general
elliptic boundary value problems (see Agmon et al. [1] and Solonnikov [48]) and on
the existence and regularity properties for weak solutions of the boundary value
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problem (3.1), (3.2) for the Stokes system, which were proved by Solonnikov and
Shchadilov [47].

Stationary flows with a free boundary having no contact with a rigid wall (most
convenient for mathematical treatment) were considered by Pukhnachov [34-37],
Osmolovskii [28], Ladyzhenskaya and Osmolovskii [22], Bemelmans [10-13],
Antonovskii [3, 4], Fujita-Yashima [18]. In [10-13, 22, 28, 34—-37] the solvability of
these problems was established in Holder spaces.

In the case when a free boundary contacts a rigid wall the pressure and the
derivatives of velocity may have singularities at the contact points. The singulari-
ties depend on the contact angle @ (in the case @ = I1/2 they vanish). The problem
for @ =11/2 was solved by Sattinger [41]. For arbitrary @ € (0, IT) such problems
were considered by Solonnikov [49—-53]. In these papers the solvability of stationary
incompressible motions in open containers were investigated. The solvability of the
considered problems was proved in weighted Holder spaces.

Some stationary plane noncompact free boundary problems for an incom-
pressible fluid were considered by Pileckas [29-31], Pileckas and Specovius-Neu-
gebauer [32], Solonnikov [54], and Socolescu [43,44]. The auxiliary problem
(solvability of the Stokes and Navier-Stokes systems in a prescribed domain) for a
three-dimensional noncompact free boundary problem was considered by Pileckas
and Solonnikov [33]. In these papers motions under gravity in open basis where
noncompact free boundary surfaces appears were treated. In the above problems
weighted Holder spaces with weights connected with the unboundedness of the
domain were used.

Two-fluid stationary free boundary problems were considered by Rivkind
[38-40], Bemelmans [10, 14], Erunova [15, 16], and Sokolowskii [45]. In [38-40,
11-13] motions of an incompressible drop with a smooth surface in the second fluid
or in the air were investigated. The problem of two incompressible fluids in a
container was analysed in [15-16]. In this case the surfaces of fluid have contact
with walls of the container and at the contact points the solutions may have
singularities. In [15, 40] the solvability of this problem was established in weighted
Sobolev spaces. In [45] a problem on the common motion of two incompressible
fluids down an inclined plane was considered. Note that in this case free boundaries
of fluids are noncompact.

Several nonstationary free boundary problems for incompressible fluid were
considered by Solonnikov [55-60], Beale [5, 6], Allain [2], and Bemelmans [14]. All
these papers dealt with evolution of a finite mass of fluid with smooth free
boundaries. Teramoto [61] considered a nonstationary flow with noncompact free
boundary down an inclined plane.

Nonstationary flows for compressible fluids were considered by Nishida [27].

The authors do not know of any paper dealing with a free boundary problem for
the stationary compressible Navier-Stokes equations.

2. Notation and Auxiliary Results

Let Q be an arbitrary domain in R” with boundary dQ=S. We denote by H'(Q2),
[=0, the Sobolev-Slobodetskii function space, endowed with the usual norm
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| |.e>andby] |, o,1<p=oco,theusualnormin L,(R). Hence, | |o,o=| |,.. The
scalar product in L, (Q) is denoted by (-, +)o. H'"*/2(S), /=1 an integer, is the space
of traces of elements ue H'(Q). The usual norm in H'"'2(S) is denoted by
| li-12,s- For I=1, I an integer, define H(Q)={ueH"'(Q):0"4/on*=0 on
S,k=0,...,/—1}. The same notation will be used for spaces of vector fields defined
in Q and on S. We shall usually omit the subscript Q in the above norms if no
confusion can arise. Also, the summation convention will be used.

Writing 0Q=Se H' ' will mean that § is locally determined by a function
peH'"12 je. for each be S there exists a neighbourhood U, =S which in some
local coordinates {y} is given by the equation y,=@ ('), ' =(¥1s...s Vn-1) €@y
={y":|yil<d, i=1,...,n—1}, where y, and x, are connected by the relation

3

= Z (g —=by) , oy =n(d) ,

1=1
and pe H' 2 (w,).
For vectors u,ve H* () let us introduce

E(u,0)=] <%+a”f> <%+%) dx . 2.1)
o

0x; ox; Ox;  0x;

We recall that the vectors for which E(u,u)=0 form a finite dimensional affine
space of vectors such that (see [47])

u=A+Bxx , 2.2)
where A4, B are constant vectors.
We define H(Q)={u: E(u,u)< o0, u-i1=0on S}. If Q is a region 0btaine~d by
rotation about a vector B we denote by H(Q) the space of functions in H(Q)
satisfying the condition

(u,15)o=0 , (2.3)
where u,=B x x; otherwise we set H(Q)=H(Q) (see [47]).
Lemma 2.1 [47]. Let Se H"?. Then for each ue H(Q),

|| Vu|d<cEu,u) , 2.9
o
ox; Ox;

J J

where |Vul?* =

Note that the proof in [47] is for Se C?, so it suffices to use the embedding
H2(S)<= C*(S).
Lemma 2.2. For each ue H(Q),
Julf<cE@w,u) - 2.5)
Proof. Using the inequalities

[ull3. o= c(Vulf,o+ uld.s) »

(2.4) and (2.7) from [47] gives estimate (2.5).
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Note that Lemmas 2.1, 2.2 imply the equivalence of the norms [u], and
E(u,u)*? for ue H(Q).
In a bounded domain Q (or in IR3), consider the following problem:
divu=g inQ,

2.6
u-n=0 onS (2.6)

(in the case of R?, S is the plane {x;=0}).
Lemma 2.3. Problem (2.6) has a solution u e H(Q) if one of the following conditions is
satisfied:

a) Q=R%, geL,(Q).
b) Q is a bounded domain with boundary SeLip, ge L,(Q) and

(9, D=0 . 2.7

Jul: =cllglo - 238)

In both cases

Proof. Let ¢ be the solution of the Neumann problem
Ap=g inQ,
0p/on=0 on S .

Then u="Vg¢ satisfies (2.6) and one gets (2.8) from the well-known results for
problem (2.9).

(2.9)

Remark 2.1. The more complicated case when (2.6), is replaced by u|g=0 was
considered in [21], where the solvability and estimate (2.8) were proved for bounded
domains Q with Lipschitz boundary.

Lemma 2.4. Let Se H*?, ae H3(S), be H*?(S). Then these exists a vector field
ve H*(Q) such that

v-n=a, IT'(wynA=b onS (2.10)
and

lolls,e=c(allsz,s+ 6], - (2.11)

Proof. Note that the boundary conditions (2.10) are invariant with respect to
rotation of variables and vectors, i.e. if we use new coordinates {y} connected with
{x} by the relations y,= i oy X;, 03;=n,;, and a new vector w with components
W= i o0, we obtain f(l): 1w the same conditions (2.10). Hence it is sufficient to
provle=tlhe lemma locally. The general case follows by a partition of unity. Assume

that the boundary S in the coordinates {y} is given by the equation

3=001,1)=00") , @0)=0,

Where (S HS/Z' Let fl = ( —hs, 0’ nl)/(n% +n§)1/2 > f2 = (0, —Hhs, ”z)/(ng +n§)1/2 il’l
(2.10), where i=(n,, n,,n;) and || =1. Then by (2.10) the vector w defined in the
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domain {y:y;<¢@(y')} satisfies

wi=0, w,=0, wy=alny, %=0 onsS,

3
6_wl_=b1(n§—n§)(nf:—ng)llz;bzrztlnz(n§+n§)m _ 0 (a onS , (2.12)
0y3 n3(n3 —ni—n3) oy \ns

ow, _bz(”f—”g)(”%“‘”g)m—b1”1”2(”%+”§)1/2 0 <a> on S
9y3 n3(n3 —ni —n3) 0y, \1n; '

Since n= (— a—(p, —a—(p-, 1)/(1 +|V’@[*)'2, the expressions in (2.12) are
% 9y,
defined for a sufficiently small neighbourhood of the point y'=0. Now the existence
of w satisfying (2.12) and the inequality |w|s<c(|a]sp.s+[A]sz2.s)
gc(”allm, s+ “b|]3 12,s) follows from the results of [25] (see Chap. 7) and from em-
bedding theorems.
Let By={x:]x|<R} be a ball in R*. Consider the following problem:

{+divul)=G in By ,
ClaBR:’O ’ aC/anlaBR___O .

(2.13)

Lemma 2.5. Let Ge H3(Bg), ue H*(Bg), u*fllyp, =0 and ||u3 5, <y, where y is a
sufficiently small constant. Then problem (2.13) has a unique solution { € H§(Bg) such

that
l¢).=clG], - (2.14)

Proof. Let {,e H*(Bg)nHZ(Bg) be a solution of
ed*{ 4+, +div(ul,)=G in By ,
Clope =0, (0,/0n)|sp, =0 »

where ¢ is a positive constant. Multiplying both sides of (2.15), by {,, intergrating
over By and using |ul|; <y with y small enough, one easily gets

(2.15)

elac i+ ClE=clc]3 - (2.16)
Analogously, multiplying (2.15) by 4%(, gives
e [ |42 Pax+ [ |40 Pax< |G, | AL o+ div@l,)Al2dx| . (2.17)
Br Br Br
Consider the last integral on the right-hand side of (2.17):
J= | div(ul,) A dx= | A(divul +uV{) Al dx=J+J, .
Br Br
Embedding theorems give
WIS e a5 (o +17Cla+ [ A2 o) 4L ]o - 21

Mol <clluls(VLla+ 770+ [ 42.0) [ 4L]o -
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Moreover, by interpolation inequalities,

e, =oAL ]o+cO)|Clo »  0€0,1), p=4,00 . (2.19)
Hence, for small y, (2.16)—(2.19) imply
ol + Az 3+ lz el Gl .20

The last estimate yields the existence of a subsequence {, such that g||4%(,[|,—0,

{,—{ weaklyin H3(Bg) and strongly in H! (Bg) as e—~0. Passing to the limitin (2.15)

shows that { is a solution of (2.13). Estimate (2.14) follows from (2.20).
Consider now the problem

A+div(vd)=g (2.21)
in a bounded domain Q with Se C?. Assume that
veH3*(Q),v7lg=0, geH*(Q) . 2.22)

Lemma 2.6. Let conditions (2.22) be satisfied and let ||z;||3 <7, where y is sufficiently
small. Then Eq. (2.21) has a unique solution e H*(Q) satisfying

1A].<cllgl, - 2.23)

Proof. Let R be large enough to satisfy Q = B. We can find extensions  and G of v
and g such that

GeHX(Bgr), ueH3Bg) , u-fly =0,
o(Bgr) (Bgr) loBx (2.29)

|Gl2pescllgloe s ulsmaselolsn -

Let { be the solution of (2.13) with these u and G. By (2.14) and (2.24), { € HZ (Bg)
and
Ill2 5 =cllgl2,0 - (2.25)

Using the trace operator to Eq. (2.13); one can see that 1=(|, satisfies (2.21).
Moreover, '

IAlz,0=e)llz e =920 -

It was proved in [7] that problem (2.21), (2.22) has a unique solution A€ L, (Q) for
every g€ L,(Q). Hence the lemma is proved.

Remark 2.2. The condition | gdx=0 implies that | Adx=0.
2 Q

3. On the Stokes Problem in a Prescribed Domain
Let Q<IR?® be a bounded domain with boundary S. Consider the following
boundary value problem for the Stokes equations:
—pdv—vwdivo+Vp=f, divv=g inQ , 3.1
v-Alg=0, (T'Wwa—-E@-T'(v)-A)A)s=0 onsS , 3.2)
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where g satisfies the condition
[ gdx=0 . (3.3)
(2]

For a bounded domain Q obtained by rotation about vector B, the function f must

satisfy the condition
§ fuodx=0, (3.4)
Q

where u, = B x x. Note that (3.3), (3.4) are necessary conditions for the existence of a
classical solution to (3.1), (3.2) (see [47]).

By a generalized solution to problem (3.1), (3.2) we mean a vectorve H(Q) and a
function pe L,(Q)={pe L,(Q): (p,1)o=0} which satisfy the integral identity

£ E.n) —(p.divng=(/: e~ (= 0)(g. divn)g (3.5)

for all ne H(Q), and such that divo=g. Here E(v,7) is defined by (2.1). The
problem

divi=g , ©o-nalg=0 (3.6)
has a solution such that e H'(Q) and
[6l:.0=clglo.0 - (3.7)

If  in (3.5) is divergence-free, then u=v—7 satisfies
I _ B
5 E,m=(me—7 E@.n) . (3-8)

By the Riesz theorem, for f, g € L, (2) satisfying (3.3), (3.4) there exists a solution to
(3.8) such that ue {ve H(Q) :divo=0} and

Hulh,n:% [/ llo.0+¢lglo.e - (39

Having found v=u+4, identity (3.5) implies that there exists peL,(Q) (see
[21,47]). Let 5 be a solution to (3.6) for g=p. Then from (3.5) we get the estimate

”P”0,9§.C“f“o,n"’c(f"‘ll)”g”o,n . (3.10)

Therefore we have shown (see [21,47], in reality we repeat the considerations from
[47)).
Theorem 3.1. Let SeLip. Then for any g, f € L,(Q) satisfying (3.3), (3.4), problem
(3.1), (3.2) has a unique generalized solution (v, p)e H(Q) x L,(R) such that
lolv.ot 20,0 fllo.a+glo.0) - G.11)
Let us now establish the differential properties of the generalized solution.

Theorem 3.2. Let f € H(Q), ge H* *5(Q), Se H>”?** and let (3.3), (3.4) be satisfied.
Then the generalized solution (v, p) of problem (3.1), (3.2) belongs to H**5(Q)
x H**3(Q) and

lo)2ssotlplissesc(flantgliae) » s=0,1. (3.12)
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Remark 3.1. In the case S e C? the same result was proved in [47]. Theorem 3.2 was
shown by Solonnikov (private communication). For the reader’s convenience we
present the proof in the Appendix.

Let us now consider the nonhomogeneous Stokes problem corresponding to
(3.1), (3.2). Hence instead of (3.2) we have

v-ag=a, (T'wa—@T (v))n)|s=b . (3.13)
Using Lemma 2.4 and Theorem 3.2 one has

Theorem 3.3. Let fe H'(Q), ge H*(Q), SeH""?, ac H?, be H*?, let (3.4) be
statisfied, and let
[ ado=| gdx . (3.14)
5 o
Then there exists a solution (v, p) of problem (3.1), (3.14) such that ve H*(Q),
peH*(Q) and

lels+lpls e/l + gl +alses+[2lsz.5) - (3.15)

Remark 3.2. Suppose the right-hand side functions of problem (3.1), (3.13) do not
depend on ¢ (in the cylindrical coordinates), symmetry conditions (5.4), (3.14), (3.4)
are satisfied and Q is cylindrically symmetric which satisfies symmetry condition
(5.1). Then there exists a cylindrically symmetric solution to the problem (3.1),
(3.13), which satisfies symmetry conditions (5.6).

4. Existence and Uniqueness for Compressible Navier-Stokes Equations

In this section we prove the existence and uniqueness of solutions to the
compressible Navier-Stokes system in a bounded domain with prescribed
boundary. First we consider the following linear problem which follows from
problem (1.1):

Av+p,Vp=K inQ 4.1
v-ni=0 onS§,
4.2)
7. 7' w)ya=0 on S,k=1,2,
_ 0 0 . .
where A=—E_ A——‘: Vdiv, n=0-29, p1=£‘?(ng>O, pq=—£, ¢ is defined in
0 0 0 de
Sect. 1 and

[ ndx=0 . 4.3)

Q

We also consider the following equation

div(wn)+odivo=G , 4.9
where
w-a=0 onS . 4.5)

First we obtain an a priori estimate for solutions of the above problem. To do
this we follow the methods of [62] and [63] restricted to the stationary case.



Stationary Compressible Navier-Stokes Equations 179

To obtain the a priori estimate we assume

= T (4.6)

Lemma 4.1. Let (v, n) € H3(Q) x H*(Q) be a solution of (4.1) = (4.5), we H*(Q) and
let (4.6) be satisfied. Then

lol3+Inli e o3 +cwlinl5+ 1 4.7
where
v =c(|K[3+[G[3) 438

and ¢, can be made arbitrarily small.

Proof. Multiplying (4.1) by v, (4.4) by L, integrating over Q and adding these
expressions one gets ¢

§<Au v+ py div (o) + 21 d1v(w11):7>dx j(Kv+’—;_‘— Gn>dx . 49)

Q

Using (4.2) the first term on the left-hand side is

- 1 Ov;  Ov; .
!{Av vdx——g; g‘;—[u<6xj axi> (é—— >5ijdlvv:|’xjvidx
1 Ov; | 0v; 2 .
=5 g —[u(axj+axi>+<§—gﬂ)éijdlvv:lnjvids
u dv; Ov; ov;
M ,£<6x o, +6x o i)dx

+_1é <5-- u) | (dlvv)zdx— E(U v)

1_ (f—— p) [ (divo)?dx .

The second term on the left-hand side of (4.9) vanishes because of the Stokes
formula and (4.2), . Finally the third term on the left-hand side of (4.9) is estimated
by

2
{ divwnndx=| L divwax<e, |n|2+— |w|2|u[? -
Q 2 2 &

where the embedding H3(Q)c W2 (Q), Q<IR3, has been used.
Summarizing

c
E(v,0) ScX; + (g5 +¢3) 1Inl13+g Iwl3inlls (4.10)
where

1
X, =[&[2+— s - @.11)
3
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Using Theorem 3.2 to the Stokes problem
Av+pVp=K inQ,

divo=divy inQ ,

v'ni=0 onS, (412
7-T'(v)A=0 on S,
and (4.3) gives
[ol3+ {12 < cdldivolf+[ K[ - (4.13)
By the interpolation inequality
Jaivolises ol-+- ol: @149

estimates (4.10), (4.13) and the Korn inequality one obtains (4.7) for sufficiently
small ¢,, &5 and ¢ =¢,.
Now we prove the main estimate for problem (4.1), (4.2), (4.4).

Lemma 4.2. A solution (v,n)e H*(Q)x H*(Q) to problem (4.1), (4.2), (4.4) with
conditions (4.3) and (4.6) satisfies the estimate

lol3+[nl5=cy, , 4.15)
where
L=|K[3+[G[3+CS) wl3[nl3 (4.16)

we H?*(Q) and satisfies (4.5).

Proof. We consider problem (4.1)+(4.4) locally. We restrict our attention to a
neighbourhood of the boundary, because the considerations in interior subdomains
are simpler.

We need some notation. Let us introduce a partition of unity ({3}, {{;}). Let Q
be one of the Q;’s and {(x)={;(x) the corresponding function. Let & be such that
&< and {(x)=1 for xed. Considering a neighbourhood of a boundary we
assume that @nS=+0, GNS+0. Let fedNS=5=03nS. Introduce local coordi-
nates {y} connected with {x} by the relation

3

M= Z a (e —B) »  oag=m(B) , k=123, (4.17)

where a,, is a constant orthogonal matrix such that § is determined by the
equation y; =F(,,,), FeH? and 3= {y:|y)| <d,i=1,2, F(y')<y; <F(y')+d,
¥'=(,, ,)}. Simultaneously we introduce a new vector u’ (where u replaces v, n and
so on) by the formula

3
u;(y)= z 034 (0) s = x )
j=1

and scalar p’ defined as p'(y) =p(X)|, = x(;)» where x=x(y) is the inverse transfor-
mation to (4.17). Further, we introduce new variables by

Zi=Yi » i=1,2, Z3=y3_F(ylsy2’y3) s yeﬁ 5 (418)
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which will be denoted by z= &(), where F is an extension of F, so Fe H*(Q). Let
0= <I>(Q) {z:lz))<d, i=1,2,0<z;<d} and 4(z)=u'(})l,=¢-1(,. Finally, set
S=a&(S). 3
We also asume that ¥, = el V.,
a Vi y=0-1(z)"

Moreover, we introduce the operator dja(z)=h"'[a(z;,...,z,+h,
Zys1seees Z) —a(2)], 12, n=3, which satisfies the formulas 8}(a-b)=al5}b+5}ab,
(6pa,b)g= —(a, 6 ,b)g, where a(2)=al(zy,...,z,_1, 2+ h, 214 q,..., Z,).

Using this notation we write Egs. (4.1), (4.4) in the form

As+p,Vi=K+k, inQ, (4.19)
V-0bi)+odive=G+k, inQ, (4.20)
where 5="0F, =0, R=RC, G=GC, A= _g ﬁz_g pdiv, dv="-,

PPN

ky=pAVE— QR V0V L+6A0) — w( @V oV E+ V3, L+ 8,700 |
ky,=iwPE+ave .

Moreover, we set z,=1,, a=1,2, zy=n.

4.21)

By taking the operator ¥ of (4.20) multipled by L and adding the result to
(4.19) one has e

s A +v
p:Vii= (45— ﬁ)—~Q—~ Py (wﬁ)+K+“ !

PG4k, , (4.22)

where hs% Vk,+k, . Differentiating (4.19), (4 20) once with respect to 1,

applying the operator 6}, /< 3, multiplying by 6}, v,, L 5}7,, respectively, integrat-
ing over Q and summing one gets ¢

5[5;@5),5;&, +EL 5P - (i), 0L, + Py S (Vi) 518, + 1 6. (d?vﬁ),a,iﬁ,]dz
(2]
=j [(5,’,I~(,+5 k, ,,)5,’,17 + (5'G +6,’,k2,,)5,,n,]dz . (4.23)
(9]

Now we consider each term on the left-hand side of (4.23) separately. For the
second term we have

[ 04V - (P)),. O dz = | (WE,), V. 84,047 dz
Q Q
+ [ {04002,V 11+ 84 (2,7, - o), 104} dz . (4.24)
Q
The first term on the right-hand side of (4.24) gives

i‘ ajg (WiZAky,) ﬁk(éh’?r)z “ f (5;."]:)2 (wifkyi)i,zkdzés "ﬁ”%g

C A A A
+= P35, 0 1¥]3.0 il (4.25)
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where P is a polynomial and the boundary term vanishes because
O (w,zi, hlg=w 7ils=0 .

In obtaining estimate (4.25) we have used the facts that

|oaullo oSclufo,o for we H'(Q), <3, h-arbitrary (4.26)
and z=z(y)e H*(Q), so

0921y Dhzideo, 0 SCP (2,15, 0) ]300 -
where theorems of embedding were used. Below using theorems of embedding
similar considerations will be done also however this will not be mentioned
explicitly.
The other terms in (4.24) are estimated by
A A A ~ ~ A c A A A
P(2,5.0 125,019,020 lclo.o = e ll3.0 +< PUZ, 5.0 %15, il -
4.27)

By (4.26) the third and fourth terms on the left of (4.23) are estimated by
P55 18,50l o+ il 0) 18]z, (4.28)

if we integrate by parts and use the fact that the boundary term j (A Ciy D ORD;)  O4 1T,

vanishes.
The first term on the left-hand side of (4.23) is

2
where E(u,v)= j (Viu;+V, V.u, )(ij+ Vjv,.) and { } can be estimated by

K B6i5,,815) +~ (5—— u) [ (divols)dz+{} , (4.29)

B P(|2,]5.0 2 12.018]3,018]2.0 - (4.30)
Summarizing,
2 N ofn N N
a E(éhvt,6h5,)+<§—§ #) [ (@ o5 dz<c(Xy+X5) +e(|i3.0+ 16]2.0)
Q
(4.31)
where
X,=P()|Z o2 o+ 17112 o)
2 EHiy”s,Q)EHUZHz,Q ”'”JLQ) o (4.32)
Xs=| K[ o+[G13,0+ P4 5,0l [#]3.0 -
and the following inequalities have been used:
[ Onks, Onidz <e |8]3 o +c((|5]3, o+ 1], 0)
e 33)

g5l£k2,t6lltﬁrd2§£Hﬁrng,Q+CP(”ZAy||3,Q)(HﬁH§,Q“"{}Hg,Q"'”13”5,0) -

Letting 4 to 0 in (4.31), using (4.6) and the Korn inequality one obtains
[622cl13, 0 = e (Xz + X3) +e (|13, + 413, (4.34)
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Applying the operator 84, 1< 3, to the third component of (4.22), multiplying by
V,6}47 and integrating over Q yields

1V, 04113, 0 S € [0.cc13. 0 + |83, 0+ )3, 0+ 18]13. 0 + e (Xa + X3) , (435)

where d=diam Q [see explanation after (4.18)]. Using that 0z,/0y;=6;;+V, F; and
V,F|,—o=0 the first two terms in the right-hand side follow from

64857 &V ) o, < (A5~ ¥ div )]0,
<||4,8,—V,div,]o,¢

+P(”Zyl|3,Q)[lﬁﬁlw,Quﬁzu”O,Q_'_”5”2&] 2
where

q “Azﬁt_Vzdivzﬁt”O,Qéc”ﬁzrrHO,Q > |'7F|oo,a§c||ﬁﬁ”3,ed
an
1uricl3. 0= 1inell3. 0 — cdlliel3.0 -

To get this estimate we have used the following inequalities:

[ OaV. (7 - o)V, 05iidz <& ||V, 6475, o+ [W]s,0 | Vudaiil3.
2
+P(|2,]5.0 1%]5,0 11715,

<e|ilz.o+cP 25,0 1¥I5.0ll3.0 »

where the boundary term which appears in estimating the left-hand side vanishes in
the same way as in (4.25), and

[ 0nks,8,iidz <e ||V, 0475 o
Q
+P (4,593, 3.0+ 8130+ [4]2.0) -
Letting A to 0 in (4.35) we have
I3, 0= [02cell3, 0+ (cd+2)((B]3 o+ 5.0+ e Ko+ X3) . (4.36)
Equation (4.19) can be written in the form
A+ dvi= —a(PPi—v div o) +p, Vi—R—k, . (4.37)
Differentiating the third component of (4.37) with respect to t yields
17,8513 o< e 6.3, o+ cd (5], o+ .00
+ |3 o e (X +X3) - (4.38)
From (4.34), (4.36), and (4.38) one obtains

[cll3 0+ 1@ 8), ]2 g < @+ ed) (|30 + B3, +e (X +Xy) . (439)
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Differentiating with respect to t the Stokes problem
Ai+pV,i=,-AD)i+V,-V)i+K+k, , inQ,
div,0=div,¥ in Q ,
o, =oh,—on on S ,
T, T, (),=7,T,®)a,—<T'@)al on S,
5-7,=0 on dQ\S ,
LIT@A=0 ondQ\S,
where 71,=(0,0,1) and 7% =(1,0,0), t2=(0, 1, 0), and using Theorem 3.3 gives
2 el @iv, 0.3, g +ed(lil2 o
+]6)2. 0 +c X+ Xy) . (4.41)

Applying the operator 83, h>0, to the third component of (4.22), multiplying by
V,071 and integrating over Q one obtains

V.82 illo,0 =) Funs3. 0 +d 6130
+e(|]3,0+[2]3,0) +c (X2 4+ X3) (4.42)

where analogous considerations are carried out as in the case of inequality (4.35).
Hence letting 4 to 0 we have

[ml3 0 S l1Bmel. 0+ e+ ed) (3.0 + [85.0) +e(Xa+X5) . (4.43)
Differentiating the third component of (4.37) with respect to n shows that
”(él\v ﬁ)nn”%,Qéc'Iﬁznt“%,Q“l'“i”ﬁ”%,Q

+e|Viinl5,0+e(Xa+Xs) (4.44)

(4.40)

”5z2r||(2),Q+ “ﬁzt

Now (4.43) and (4.44) imply
[7unl3, 0+ GNP, 0 S [Furl3, 0+ + e (iR o+ 1413, 0)
+e(X,+X;) . (4.45)
Finally, from (4.39), (4.41), and (4.45) we have
18.cel3. 0+ [V 9),. 3.+ 1703,
Scd+e)(|)2.o+ ]300+ c(Xa+X5) . (4.46)

Going back to the old coordinates, summing over all neighbourhoods of the
partition of unity and using Lemma 4.1 implies

[ol3+ 3+ o3+ [ @ivo)al§ c@+a (o5 + nlD+<, . (447)

where 7 signifies that near the boundary only the tangent derivatives appear. Using
Theorem 3.2 to the Stokes problem (4.12) gives

lol3+ 1l < c(|divol}+ | K[ - (4.48)
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Hence from (4.47) and (4.48) for sufficiently small d and ¢ we get (4.15). From
Lemma 4.2 we have

Theorem 4.3. Let v, n be a solution to problem (4.1), (4.2), (4.4). Let (4.3) and (4.6) be
satisfied. Let A= |\w||5 be sufficiently small. Then

lol3+nl3 e (K[ +]G[5) - (4.49)

Now we prove the existence of solutions to the linear problem (4.1), (4.2), (4.4)
with conditions (4.3) and (4.6), where we H*(Q) is treated as a given function
satisfying (4.5). We follow the method of [62].

First, we consider the case of &/u large enough. Defining

n=0p;n/u—(&/u+1/3)divo (4.50)

we transform the problem into two problems

—Av+Vr=0K/u inQ,
divo=(&/u+1/3)""(@pn/u—m) inQ, (4.51)
v-ilsg=0 onS,

T, T'(v)alg=0, k=1,2, onS§,
and
o(&/u+1/3)" apyn/p+divwn)=o(¢/u+1/3)"'n+G in Q

fn=0.
2

4.52)

We solve (4.51), (4.52) by means of a fixed point theorem. Having determined
(n*, #*) on the right-hand side of (4.51),, we first get (v, n) from the Stokes problem
(4.51), and then 5 from (4.52). A fixed point of the map

D :(n*, n*)—>(n, ) (4.53)
is a solution of (4.51), (4.52). Set

K, E—{(T]*,TC*)GHZ(Q) xHZ(Q):Zgn*

_[n*=0, [r*2<B, ;|n*||;§3}. 4.54)
2
Using Theorem 3.2 to the Stokes problem (4.51) (this problem is equivalent to the

problem considered in Sect. 3 so the same results hold) we have (for the reader’s
convenience we repeat the considerations in [62])

72 n2
o+l e -2l + @ 179 (222 b+ 1ol )

<o 72| K[F+@u+1/3)"2@pin 2+ 1)B] . (4.55)

In the case of a domain Q obtained by rotation about the vector B, K must satisfy
condition (3.4). We have to underline that we used Theorem 3.2 in the case Se H”2.
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By Lemma 2.6, if
Iwls<ecs@®p E+pi3)7t (4.56)

where ¢; =c;(Q) is determined by embedding theorems, for solutions to problem
(4.52) one obtains the estimate

In) <clie*pr 2 (E/u+1/37| G5+ 12e 23| 3]
Sc o™ *pr2(E+u/3)|G|2
+67 2T (| K[} +(E/u+1/3)"2(@P3 +1)B)] . 4.57)

Assuming that the right-hand sides of (4.55) and (4.57) are less than B, which may be
satisfied if

max {eou? K|}, e *pr 2 E+u3P|GI3+a 2| KE <B . (459)

and if &/ is large enough, we obtain |n|}<B, |n|3<B. This means that
@(K,)<=K,. The set K, is a convex compact subset of Z=H'(Q)x H*(Q).
Moreover, @:K; —K, is continuous in the Z topology. Hence by Schauder’s
theorem, @ has a fixed point.

In this way we have proved the existence of solutions to (4.51), (4.52) for
sufficiently large &/ and small |w|;.

To prove the existence of solutions of problem (4.51), (4.52) in the general case
(&/p arbitrary, £ >2/3u) we use the same continuity method as in [62], applied to the
following operators:

p=(1=Duo+u, &=>0-1)¢+15,1€[0,1] ,
L,(v,m)=(—pdv—(&+1/31)V divo+gp, 'y, ¢ divo+div (wn) = (K, G) ,

XE{(U, neH*(Q)x H*(Q),v7l;=0,7T’ (v)A,=0, | 17=0} ,
)

Y= {(K, G)e H'(Q)x H2(Q), | de=0} ,
Q

where &/, is large enough and such that (4.56) is satisfied (see the previous part of
the proof). It can be easily proved that the set T={r€ [0, 1] : for each (K, G) € Y there
exists a unique solution

(v,meX of Lt(U’ n=(k, G)}

is nonempty and T=[0, 1] (see [62]).
Hence we have proved

Theorem4.4. Let Ke H' (Q), Ge H*(Q), £ > (2/3)u, Se H'?, we H*(Q) and suppose
A= | w|is sufficiently small (see (4.56) and assumptions of Theorem 4.3). Then there
exists a solution (v,n) e H*(Q) x H*(Q) of problem (4.51), (4.52) such that

lols+[nl.<es (K], + G ]l) <4 . (4.59)
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Now we are in a position to prove the existence of solutions to the nonlinear
problem (1.1). Set

Kz={(v, meH?(Q)x H*(Q), v Als=0,7-T'©)als=0, | n=0, v”3+||f1”2§D} ,
Q

where D will be chosen later. To use Theorem 4.4 we must require that D < 4.
Setting

o+o
in (4.51) and (4.52), Theorem 4.4 implies the map
¥:(w,0)>(,n) . 4.61)
From (4.59) and (4.60) we have
lolls+ o <es|Kly <esCalz + ol3+ w3+ ol wls+ el wls+ /]
<¢[D*(1+D)+| f],]1 - (4.62)

Choosing D and | f |, so small that the right-hand side of (4.62) is less than D we get
¥Y(K,)<K,. On the other hand, K, is convex and compact in Z; = H*(Q) x H*(Q)
and ¥ is continuous in the topology of Z; . Hence by Schauder’s theorem, ¥ has a
fixed point which is a solution to (1.1). Therefore we have proved

Theorem 4.5. Let f € H*(Q) with | f||, sufficiently small, Se H'”. Assume (4.6).
Then there exists a solution (v,1)e H>(Q) x H*(Q) to problem (1.1) and

[olls+ [l =ellf1s - (4.63)

Remark 4.6. Suppose a bounded domain Q is obtained by rotation about the vector
B and satisfies symmetry conditions (5.1). Suppose f satisfies symmetry conditions
(5.4) and | f|; is sufficiently small. Then there exists a symmetric solution to
problem (1.1) determined by Theorem 4.5 and satisfying (5.6).

K=<p1 —M> Va—w-Vw+in Aw+f, G=0  (4.60)

5. Variation of a Free Boundary

Let Q® and Q@ be two domains given by
QO={x:r<{9®O)}, i=12,
where {?(0) =R, + R¥(0), R, =const and R?(0) satisfies the symmetry conditions
dl @) 1 p @)
20 (n/2+6)=(—1)} 20T

Assume that R® e H"/2 (0, ). Using the implicit function theorem one can show (we
omit the simple but cumbersome calculations) that the surfaces I'? =0Q® are then
of class H"”?. Suppose additionally that

IRV =RP|100m<e0 s [R]72,0,0=Ro/2 (5.2)

(=2—-6), 1[=0,1,2,3. (5.1)

with sufficiently small ¢,.
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Consider in Q% and Q@ the boundary value problem (1.1) with the additional
condition
[ ePx)dx=M . (5.3)
folt}
Assume that the right-hand side of (1.1), f, has norm | /| 2o, sufficiently small
and satisfies the symmetry conditions: (f,, f,, f5) =(f,,0, f;), the functions f,, f;
depend only on (r, 8) and

af, (r, n/2+0)=(—1) f, (r,m/2—0) ,

,fo - (r,m/2+0)=(— )’Jrl lfe r,m/2—-0), [=0,1. 5.9

Then the necessary and sufficient condition for the solvability of problem (1.1) is
satisfied and by virtue of Theorem 4.5 and Remark 4.6 there exists a solution
©9,09) of (1.1) in Q@ such that ¢ admits the representation

09(x)=¢"+1%) ,
. . . L 2n T .
where g9 = M/Q®|, |Q@| =vol§2(‘)=?n [ (Ry+RO(6))? sin 6,
0

| n9(x)dx=0, (5.5)
0w
and (v®, ) satisfies the following symmetry conditions: v®, @ depend only on
r, 9 (v“) v(l) v(l)) (U(l) 0, U(l))

1”(,1) (r, 12 +0)=(—1) ”(,l) (r, n/2—0),

(i) (i)
a”“ (r, )2+ 0)=(— 1)’*1 6” - (r,m2—0) , 1=0,1,2,3, (5.6)

al @) al @)
—gr T2 +0)=(=1)

r,n/2—-0), [=0,1,2 .

Moreover, (v®,7®) obeys the estimates
”U(i)ua,m)"'“'I(")Hz,mn§c”f||1,9<i> , =12 5.7

Note that for sufficiently small ¢, in (5.2) the constant in (5.7) can be chosen the
same for all R® satisfying (5.2).

We now compare (v®, o) with (v, ¢@). For this purpose we construct a
transformation which maps Q® onto Q@. Let x=(x,,x,,x;) and (r, ¢,6) be
Cartesian and spherical coordinates in Q) and let y = (y,, ,, ¥3) and (#, @, 6) be the
same coordinates in Q@) Introduce the transformation

F=r+A <m> o(r,0) , (5-8)
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where A(t) is a smooth cut-off function with A(¢) =01in a neighbourhood of =0 and
A(®)=1 for t=1/4, and we H*(QW) satisfies the boundary condition

o(r, 0)|r=Ro+R(l)(0)=R(2)(9)_R(l)(e) s (5.9
and the inequality
lolls. 00 =c[RD~RP|1,0.0 - (5.10)

One can easily show that the transformation (5.8) maps I'V onto I'® and for
sufficiently small g, its jacobian is bounded away from zero. Hence (5.8) defines a
one-to-one mapping y=®x of Q1 onto Q@. From (5.8)—(5.10) one gets the
estimate

[x =@ y]4.00+ [y — @x[ls, 00 S| R =R/, 0, - (.11)
Let us rewrite problem (1.1) for v®), ¢ in the new coordinates y:
— P ‘“—vl7d1vv‘”+(g‘1)+11(”)(1?“’l7)z?(1)+Vp(g‘“+ﬁ‘”)
=@V +AN LV 1@V +AD)8V]=0 , 8D Alpe,=0 , (5.12)
T' @YY —@ - T' D) A) Al =0
where §M(y)=vD(@7'y), AV =n"@ 1Y), F)=f(@ '), V=4V,

. An I . .
n=ﬁ=Bﬁ, A and T’ are matrices with elements
Ox. v o\
.y :'—] ! ‘, '=1,2,3 .
aU(y) axi o-ix ) Z ( Aim a a]m axm ) 129)

Subtracting equations (1.1) for (v, ¢®) from system (5.12) we get the follow-
ing boundary value problem for the differences u(y)=5"(y)—0v® (),

2»=1"—n?():
—uVlu—wdivu+p' (@V)WQ=F +F,+F, ,
oYV u=G,+G, , (5.13)
u-ilpn=b, T'wWn—n@ T Wh)lra=d
with
= u(P2 =720 4y (P div —V div)d® — (7 = P)p@D +7D) — @V +4D)
.((;7_ |7)'ﬁ(l))ﬁ(l)—(é(”—ém)(V'U(Z))v(z)-i-g'“’(f—f)
+AD(F-+@V-a®)f ;
F2=Qf-—(§‘1)+ﬁ“))(l7-u)ﬁ(l)—(é‘”+ﬁ“’)(l7'v“"’)u—Q(V'va))v(Z’ ;
F=~[(p'@V+1")—p' @D +n®N/?+(p' @V +74")—p' @VNV Q] ;
=(V—V)'((é(l)+ (1)) (l))+(Q(2)_Q(1))|7 @ ;
Gy ==V (V1) =V (@) ;
b=b6® (A= Alpr =0 (B~Dilpe ;5 d={[T'GV)~T'0?)]i+T'GV)
(A=) +ali - (T' @)= T' GONAl+ ARG - T' G —a@E - T' @)D o -
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Using inequalities (5.7), i=1, 2, (5.11) and the formulas

09=3M/Q2n | (Ry+R?(6))? sin 6d6)
0
one gets the estimates

11100+ 1G1 2,00 ScU/DIRD = RP| 10,00 »
1B, |1, 000+ [Ga 2,00 S (D Q2, 000+ [u]l5.0)
11,00+ [B]l72.00 + |52, reo
§C(|f|)(“QH2,ﬂ<2>+ H””s,w) + ”R(l) —Rm“m,(o,n)) . (5.14)

Here |f|=||f]|.2@wy, and the constant ¢(|f]) is small for small |f]. Note that in
deriving (5.14) we also use imbedding theorems, the properties of the function p and
the estimate

Ilf(¢_l ) —f(y)”cn(gm) <c “fllcz(g(z))ly - ¢_1yl4,{2(2)
=clfI|RD=RP|75, 0,1 -

One easily verifies that the right-hand sides of system (5.13) satisfy condition (3.14).
Hence we can get an estimate for », Q using Theorem 3.3 (u, Q is a solution of the
Stokes system). Since (see (5.5))

| Q(y)dy’=’§ n“’(‘P“(y))dy'
Q@ Q2

_[ A (y)[det A7 —1]dy §C(|f|)"Rm—R(z)”m,(o,n)

02

inequalities (3.15) and (5.14) yield

lulls,00+ Q2,00 ScUN(|u]3, 00+ [Qll2.00) +c (/D RD = RP|; 5. 0. -

Hence for sufficiently small | f],

lulls, 00+ |€]2.0m U DIRD = RP|5,0, (5.15)

Consider the functions ¥ @ (x)=(—p(@®)+7 - T'©P))|rw . Since the solutions
@9, 0?) satisfy the symmetry conditions (5.6), ¥®(x) is a function of 6 only and
satisfies conditions (5.1). Therefore, we have proved the following

Theorem 5.1. The functions ¥ (0)=(7i- T(0®)i—p(@®))l,=r+rp @ Satisfy the
symmetry conditions (5.6) and obey the estimate

|99~ 7950, S UDIRD R0 516)
(5.16) follows from (5.15).
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6. Existence of Solutions

To prove the existence for the original problem (1.1), (1.5), (1.6) we shall use a
method of successive approximations. Before describing this method we transform
Eq. (1.5). Assume that the free boundary I'is specified by I'= {x : ¥ = Ry + R(¢, 6)}.
We can write the mean curvature operator in spherical coordinates (r, ¢, 0) for the
function {(¢, 0)=R,+ R(¢, 0) as follows [22]:

1 0 ., 0 0 (, 4 . ,,0 . -
= = — | — - R . 2 1
H(x)=L{ sine[a(p (h 50 C>+69 <h sin GBGC +2sin6h ™1 |
6.1)

where A= ({?sin® 0+ (0(/0¢p)* +(0(/06)* sin® §)'/2. Linearizing the right-hand side
of (6.1) one gets
L{=2/Ry—1/R;(4*+2)(R—D*(R) ,

where 4*=1/sin 6 [8/d¢((sin 0) = d/d¢p)+ 0/00(sin 63/80)] is the Laplace-Beltrami
operator on the sphere S! and

&*(R)=R/({R, sin 0)[0/d¢ (h ~18R/0¢)+8/00(h ! sin BOR/3)]

1
+2sin6R?* | (1—1)L ¥ (x,,2) odr
0

x=Rop+1tR
y=1t0R/00
z=1t0R/0¢p

y=1t0R/00
z=10R/0¢

—1/(Ry sin 0){8/0¢ [R (0R/39) } L ¥ (x,y,2)
0

x=Ro+thT]

dr | (6.2)

x=Ro+1tR
y=1t0R/00
z=1t0R/0¢

1
+0/00]sin? OR(OR/26) [ L, ¥ (x,y,2)
0

L, =0/0x+0/0y+0/0z , P(x,p,2)=((*+y?)sin? 0+22)" 12 .

Now we consider in detail the properties of the operator (4* +-2), i.e. of the equation

(A*+2)Z=F . (6.3)
Theorem 6.1. For any Fe H™(S!) satisfying
Sj‘ F(¢,0)cos0dS*=0 , 6.4
Eq. (6.3) has a unique solution Ze H™*2(S') such that
| Z(9.0)cos 6" =0 (6.5)
and we have the estimate ;
|Zms 2,50 S| Fllmse - (6.6)

Proof. It is well known that the Laplace-Beltrami operator A* is an elliptic self
adjoint operator and hence (see e.g. [42, Chap. I, Sect. 8.2]) 4* has the Fredholm
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property in the scale of Sobolev spaces. Moreover, 4 =2 is an eigenvalue of A*with
eigenfunction U=cosf (see e.g. [42, Chap. II], Sect. 22.2]). This implies the
theorem.

Theorem 6.2. Let F be a function of 0 only, Fe H*? (0, ©t), which satisfies the symmetry
conditions

(d'FldO0")(n/2+60)=(—1)"(d'F|d6")(r/2—0) , [=0,1 . 6.7

Then there exists a unique solution Z € H"" (0, ) of Eq. (6.3) also depending on 0 only
and such that

(d'Z)d0")(m/2+0)=(— D' ZJd0")m/2—0) , 1=0,123 ,  (68)
and
1Z]7/2,0.0 = |1 F]l3/2,0.m - 6.9

Proof. For a function Z independent of ¢ the operator (4*+2)Z takes the form
(4*+2)Z=1/sin 6(0/00(sin H(3Z/00()))+2Z(0) .

Hence it is sufficient to solve the ordinary differential equation

1/sin 0d/d6(sin 0(dZ[d0)(0))+2Z(@)=F() , 6(,n) . (6.10)
Introducing the variable n=cos 8 gives
dldn[(1 =" )dZ[dn) ] +2Z(m)=F@m) , ne(=1.1), (6.11)

where Z ()= Z(arccos#), F(n)=F(arccosn). The homogeneous equation corre-
sponding to (6.11) has two linearly independent solutions Z,(n)=#x and
Z,(n)=1—1/2y In((14n)/(1 —n)). The solution of the nonhomogeneous problem
(6.11) satisfying (6.8) can be written in the form

n R 1 R R
Z,(n) fl Z,(OF©)dE+Z,(n) [ ZL(OF(©)dé+1,Z, (),  0=p=<1,
Z(”)= - n ! 1
~2Z,(n) _Il Z(OF(&)at—Z,(n) | Z,(OF(&)dE—KZ (), —1=120,
) ! (6.12)
where ko= — | Z,(&)F(¢)d¢. Using (6.7) one can easily calculate that
-1

Z(=n=Z@) , @Z/dn)(=m)=—@Zdn)(n) , (dZ/dn)©0)=0 . (6.13)

Let us estimate the norm
R o 1 R 1/2
Z >1=( | Zmydn+ | (1—112)I(dZ/d71)(11)|2d11> ,
-1 -1

which is equivalent to || Z|, . Since In((1+n)/(1 —n)) € L,(—1,1) one easily gets
the estimate

1 1 1
_51 IZA('1)|2¢1"1§C<_I1 F(n)zdn+'€%>§c _51 F(nydn . (6.14)
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From (6.12) we calculate

1
[ 2,OF@)de+didnZ,(n) [ EE@)de+rg,  0<n<i |
4 2= o
n _dZJin(n) | EE@)dE—] 2, EE)dE—ry, —15nS0 .

Since |(d/dn) Z, ()| <c(1—n*)"", ne(—1,1), we have

1

[ A=\ d/dm)Z )P dy

-1
1 n 2 1 1 2
§c<x3+j a —n2)< ) Zz(é)F(f)dé) dn+[ —nZ)'l(j éﬁ(é)dé> dn)
0 - n
1 1 1 1
§c< [ Fepae+fa —nz)“<§ éd€>dn I F(é)zdé)

éc(_jl F(n)zdn> :

Therefore Z(0)=Z(cos 0) e H'(S*).

Now we prove that Z(x) is a unique solution of problem (6.11) belonging to
H'(S") and satisfying (6.13). Indeed, the general solution of the homogeneous
problem corresponding to (6.11) is

Zymy=c,Z,(m)+c,Z,(n) .

Since Z, (n) =7 does not satisfy (6.13) and Z,(#)=1+(1/2)In((1 +#)/(1 —n)) has
infinite norm {-)»; we get ¢; =0, f2=0 and hence Z,(1)=0. It follows from the
symmetry conditions (6.13) that Z defined by (6.12) satisfies

1

I; nZ(n)dn=0 ,
which is equivalent to (6.5). Hence Z(0)=Z(cos @) coincides with the unique
solution of problem (6.3). By Theorem 6.1, Ze H"?(0, n) and estimate (6.9) holds.
Using Eq. (6.10) one can verify that Z(0) satisfies the symmetry conditions (6.8).
The theorem is proved.

Now we can describe our method of successive approximations. First we assume
that theliquidis atrest, i.e. vy (x) =0, 9o (x) =@, and that the domain Q, occupied by
the liquid is the ball of radius Ry, i.e. Qy={x:r<R,}. To satisfy conditions (1.5),
(1.6) we have to take g, and R, such that

26/Ry=p(@0)—Po » 4nR3G/3=M , (6.15)
i.e. R, is the solution of the algebraic equation
Ry(p(3M/|(4nR3))—py)=20 . (6.16)

All the subsequent approximations (v,, @,, 2,) will be found in symmetric form,
i.e. we suppose that the functions v,, g, depend on r, 6 only and satisfy the sym-
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metry conditions (5.6). The domain Q, is specified by Q,={x:r<R,+R,(6)},
where R, satisfies (5.1). If (v,, ¢,,, Q,) are already found we take v,,, 9,+,; to be
a solution of the auxiliary problem (1.1) in the fixed domain Q,. In addition,
the function g,,, is assumed to have the form g,,,(X)=0,+1 +7,+1(x), with

Ou+1=3M|(2n | sinB(R,+R,(0))*d0). Then at every step the condition
0

On+ 1/ =M (6.17)
is valid. To define the domain Q,,, ={x:r<Ry+R,,,(0)} we solve the equation
(4*+2)R, 11 =2Ry— R§P*(R,) + R0 (—p(eu+1) +Po

AT Ot D= rosrey » M1 > (6.18)

where @*(R) is given by (6.2).
If || /|| c2(@, is sufficiently small (compared with |©2,]) then problem (1.1) in 2, has
a unique solution (v, 4, 0,+1 +",+1) (s Theorem 4.5) and

|ons1 3,00+ [Mns1]2,0. 2] 1.0 (6.19)

Moreover, since the initial domain Q, and f satisfy the symmetry condition (5.1)
and (5.4) the solution (v,+1,0,+;) also satisfies (5.6).

Consider now problem (6.18). Assume that R, (0) is a symmetric function such
that R, e H""*(0, ) and the conditions (6.8) are valid. Using (6.2), the representation
of the normal vector 7 of the tensor 7" in spherical coordinates and the symmetry
properties of v, ., 0,+, one finds that the right-hand side of (6.18) satisfies (6.7).
Moreover since @*(R) is quadratic in R (see (6.2)),

12* (R 312,00 S (| Rull 12,000 - (6.20)
Further, by (6.19),
|2Ry+R26 ™ (=p(@n+1) +Po+7* T’ @Was DDy = R+ Ratw) 312,000
e/ s.eat 9 Rl 2,0, (6.21)

where g(¢) is small for small z. In deriving (6.21) we have also used (6.15) and the
estimate

”P(éo) —P(@n+1 +’7n+1)“3/2,(o,n)§6’(|9_0 —Qn+1lt+ ”’7n+1 ”2,9,.)
—S-c(”fHI,Q,.+g(”Rn”7/2,(O,1r))) s

which is a consequence of the formulas
0o=3M/4nR3, 0,1 = 3M/<2nj sin 6(R, +R,,(9))3d0> . (6.22)
0

Hence by Theorem 6.2 there exists a unique solution R, ,,; € H"/2(0, ) of problem
(6.18) satisfying (6.8) and the inequality

” R, ”7/2,(0,1;) =c “f”] Q2 +g1(|| R, ”7/2,(0,7:)) . (6.23)
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Since R,(0)=0, (6.23) shows that for sufficiently small || /|| the numbers g, .,
(mean densities) do not differ much from g, and the constant in (6.19) can be chosen
the same for all n. Hence the sequences {||v,,+ 5.2} {[|11,,+1 2.0, } are also bounded.

Consider the differences 6, — v, 41, f,—fus1> Ry— Ry+; (here 6,(3)=v,(D; 1),
1.(3) =1,(®, ' y), @, is the transformation which maps Q,_, onto Q,). It follows
from (6.23) and (6.19) that for sufficiently small H f ”cz conditions (5.8) are satisfied,
and estimates (5.15), (5.16) yield

“ﬁn—vn+1l|3,9n+ llﬁn—nn+ll[Z,Qnéc(lfl)lan_Rn—l“7/2,(0,1:) s (624)
H("P(Qn)'*‘ﬁ' T’ 0) ) =ro+ Ry — (—P(Qu+1) +7° T,(Un+1)ﬁ)|r=Ro+R,.(())”3/2,(0,1!)

§C(lf|)“Rn_Rn—1“7/2,(0,1:) . (6.25)
The functions R,— R, ., satisfy the equation
(4*+2)(R,~ R, +1)= —RJ(P*(R,_,) —P*(R,)+ R} o' [(—p(0,)
+n- Tl(vn)ﬁ)|r=Ro+R,._1(6)_(_p(Qn+1)

+7 T )W), =ro+R,_10)) -
Since (see (6.2))

|2* (R,-) ~ @* (R,) 312,00,
Zc(|Rul72.0.0F [ Ra-1]l72,0,0) " |R,— R, -4 2,03 »
using (6.23) and Theorem 6.2 we get the estimate
1Ry = Ros 1 l2,0,0 S U Ruy = Rol712,00.m - (6.26)

Inequalities (6.24), (6.26) show that for |f] small enough the sequences {v,},
{n,} and {R,} have limits in the corresponding spaces. Denote these limits by v, 7 and
R respectively.

It is evident that v, g=g+n and Q={x:r<R,+R(0)}, where

0= lim é,,=3M/<2n {sin 0(R0+R(9))3d0>, solve problem (1.1), (1.5), (1.6).
0

n—o

Moreover, we have the estimate

"U“3,9+”’7”2,9§C'”f”1,9 . (6.27)
Thus, we have proved the main result of the paper.

Theorem 6.3. If the norm || f ||.» is small enough, if f satisfies the symmetry conditions
(5.4) and (1.8), if (4.6) holds and p satisfies such conditions that Eq. (6.16) is solvable.
Then there exists a unique solution (v, 9, 2) of problem (1.1), (1.5), (1.6). This solution
satisfies the symmetry conditions (5.1), (5.6) and estimate (6.27).

Remark 6.1. To show that condition (1.8) is satisfied we show that it is satisfied
on each step of the above constructed method of successive approximation. Know-
ing that f.=f,(r,0), fo=/14(,0), f,=0 we have f;=(f,sin0+ f,cos0)coso,
fo=f.sin0+ fycos 0)sin @, fy=f,cosd— fysinf, where f;,i=1,2,3, are the car-
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tesian coordinates of f. Knowing that £, is rotationally symmetric and %, =#,(r, 6)
condition (1.8) implies

[ fix)dx=0, an,,f,-dx=0 . i=1,23 . (6.28)
Q" n

Consider
/2

n /2
[ ®(6)sin 6d6= | 45(;—9>cos.9d9+ ) ¢<§+9>cos.9d9 . (6.29)
0 0 0

Equations (5.4), (5.6); imply that functions f,cos6, fsin8, #,f,cos 8, n,f,sin 6
satisfy the following relation

{30)=-o(z+).

which gives that (6.28) holds.

A. Appendix

In this section we prove Theorem 3.2. We use the partition of unity and notation
introduced at the beginning of the proof of Lemma 4.2.

For subdomains Q such that @n0Q = @ the results of [23] and local estimates for
elliptic systems (see [1,48]) imply ve H*(Q), pe H*(2) and

”U”s,5+”P”s—1,5§0(”f”s-2,9+||g“s—1,9) , §=2,3. (A.1)

Hence to show (3.12) it is sufficient to estimate the solution near the boundary S.
First we consider the case s=2. Then S locally is expressed by function Fe H>?
which has an extension Fe H3(Q) [see (4.18)]. Let @nS=+0, GNnS=+0. Let us
introduce new vectors #”,%” and so on by the formulas

w @=ui(NJI " Wy=o-19 » =12,
13(2) =30 = F,,(Du; DV 7 Oly=0-10 »

where J(y)=1—F, 1, 1 the Jacobian of the transformation z=®(y) (vector u’ and
the function @ are defined in the proof of Lemma 4.2). Let us recall that sum-
mation convention over repeated indices be assumed. From [20] it follows that
div,u"(2)=J"1(y) div,u'(y)ly=¢-1(,)- For simplicity we write w=0", {=n".

Using the new variables {} [see (4.17)] and assuming that #’ vanishes outside 2
instead of (3.5) we obtain

(A.2)

g E@,n") =@, divy)g=(/"n")s+u—v)(g',divn)s . (A3)

From (A.2) we have v;(»)=(1 —Fys(y))vg’(z(y)), i=1,2,

2
03(»)=(1-F,,(») v} (Z(y))+l§:1 E, (o () -
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The same formulas hold for . Moreover, div,v”=(J "' (»)g'(»))l,=0-1 - Hence,
after passing to variables z and integrating by parts from (A.3) one gets

£ EW,&)+5 6w, O (3, divEo=(f, Do+ (u—(divw,div)g . (A4)

where
P@=p' Wly=0-1» >

Shi@)= [f WM +E,WMAEMI )

s i=1a2a
=®-1(z)

+(M-V) ( )}

_ 0 = ,_1.,
fo@=E IO+ - (B,
} (A.5)
8(W, é)=§ [p;.cl;wizkéjzx+p;.¢jwizkéj+p;cjwi6jzk+pijwiéj]']—1dz )
Q
phi=pPWVF) ,  pl,pi=pP(VF)D*F+pP (VF) ,
p=pP(VF)D*FD*F ,

p™ are polynomials of degree [ with no constant terms.

Put in (A4) (& in place of & where { is a smooth function such that
(=1 if |z|<d/4, i=1,2, z3=d/4, and (=0 if |z|=d/2, z3=d/2. Let
w={w, p=p(, F=f (. Then instead of (A.4) one gets

gE(u?,é)+§ e, &) —(P,divE)o=P(&)+(u—v)(divw,dive)e ,  (A.6)
where
<P(€)———E( w,{, é)-——ﬁ W, 8,6+ B,V E)o+(F, E)o
=) (F{divw, o+ (u—n)(V(w-¥{),&)g (A7)

E' W, &)= [T;w)(£,, &+ 8) —(Cwi+ L, w) Ty(8)]dz
0 (A.8)

W, &)= j[p I Wigo Ca 5= Wila Ein) — DX+ DYWL, 61Tz

To prove Theorem 3.2 for s=0 we regularize the boundary, i.e. we assume that
F,,eC= and |F,,—F|;—0, m—oo. Consider the integral identity

B0y &) 45 500y )= (g div g = O(O) + (1= AV ¥, div E)g L (A9)
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where g,,=p,, and
em(w,é)=;§2 (PR YW, Lo+ (D (M)W, &+ DY (M)W, & +PY (M)W, )T ™z
pi=pO(WF,) andsoon .
From the definition of ¢ we have
2= Blo+ Wl +Zl el <cflo+ gl Il - (A10)
To obtain (A.10) we have used (3.11) and estimates
IE"w, ¢, O =c|w]; €] »

le' v, &, N e (| Fll) wll, el »

which follow from (A.8), defintion of the coefficients pij, pi/, pi/, p' and imbedding
theorems. Moreover,

(A.11)

lem Wn> OIS (@) w1 ] (A.12)

where ¢(d)—0 with d—0. To prove (A.12) we use | F,,— F||;—0 and the fact that V F
is small in a neighbourhood of the point z=0. Since the term ¢, (w,,, £) defines a
small operator we can use standard arguments (see [47,53,54]) to prove the
existence of a unique solution (w,, g,,) satisfying (A.9) and such that
w,eH! ., i =g, =divw
m (Q) ’ qmeLZ(Q) H leWm 91 de s (A13)
Wiloo\(z:2:=00=0 5 Wm3lz,=0=0,

[wals +lanloz e lo+lglo+ ol e lo+ gl - (A-14)

Let ¢ have a compact support in Q. Integrating by parts we can reduce
the right-hand side of @(¢) from (A9) to the form &({)= (P, o>
where $eL,(Q). Moreover, since the coefficients of &, are smooth and
g, =diviw={g+V{-weH'(Q) we can prove (in the same way as in [23], the
additional term ¢, doesn’t imply any difference) that w,, e H*(0), q,,€ H' (D) for
every 0 such that é < Q. Integrating by parts in (A.9) w1th ¢ such that supp (<= Q
we get that (w,,q,) satisfies almost everywhere in Q the following system of
equations

3
—pA W=V, div,w,+ Y Y BODIW+ V4= ,
=2 k=t (A.15)
din Wm=91 »

where the sum in (A.15) corresponds to the term ¢,, and the coefficients 5, || =
are small as d—0. To estimate w,,, ¢g,, near the boundary z; =0 one can use the
arguments from [47]. First, from the integral identity (A.9) one gets w,,,.€ L,(Q"),
4w € L,(Q"), where Q' =supp { and the index t means the derivatives with respect to
z;,i=1,2. Then expressing w,,, ..., q., from the “Stokes” equations (A.15) one gets

Winzza> Gmz, € L2(Q). Hence w,e H(Q'), g,,€ H'(Q'). Note once more, that in
these considerations the smoothness of function F,, has been used.
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Now we estimate ” Wal|2,0 |gmll1.q> using only that F,,e H*. To do this we put
E=L(0tWn)es [=1,2, Weu={Wp, Gmu="C(q. into (A.9). Then we get

gE(Wm,(@me)tH &m B (O Wpn)e) — (i, iV (0 1W,) )

=D (L p ) +(@nV C, (G5 W))o

+(u—v)(gy, div (£ (65, )Q (A.16)

——E Wms 0 (65 Wm)e) — 8 "Wans €, (O Wn))
=A((03 %)) »
g E(y, (51,),) = -g E(Wper 81,,) .
Estimating the right-hand side of (A.16) we get

AN Z (Wl + 910+ [gmllo+ [/ o+ 19110 |67 Wm0
Sc(|flo+ 1910 |57 Blo - (A.17)

To prove (A.17) we integrate by parts with respect to 7 in terms E’, ¢’ and use
estimates (A.10), (A.11), (A.14), and (3.11).
Now we estimate ¢, (W,,, £). Using the form of ¢, we have

len (s Gn W) = || (DR (1) Wiz, ™) Op s, A2
)

+ jp;;j(m)wmizkj_léizwmjtdz
Q

+ j (p-;cj(m) Wmi‘, B 1)1’5}11 ijdeZ
Q

+ I pij(m)wmi‘l—.lélllwmj:dz

<c{|(p 1))ela 1 ™o el 1D )] 1T ™) a1l A1s)
HPE D)oo U o el
F 1P ™ oo Wl + BE )l 1 o Wil
PO ™ o WP pecle + 1BF )L [T 1) Ja o
1 o [P Pl o} [Fomzell o S @) | Wonl|2 [Fnzcllo

where ¢(d)—0 with d—0. Above, we have used that w,eH? and imbedding
theorems. To prove estimates |pi|...|(p%),l, <c(d) and so on the fact that, V'F is
small in neighbourhood of z=0 and the estimate |ul, o <c(d)luls o =c(d)|u || ||1
which follows from the imbedding H* = L¢ have been used.
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Consider the term (g, div 8,W,,.)q. Since divw,,=V{-w,+{g, we get
|(Gm> A1V 04 Wme)ol = | = (Gime> 05 (VC - Win))g — (Gimes 95 (£91))l
Ze||Gmello+c@UWnlls +]912]l0) - (A.19)
Passing to a limit as A—0 from (A.16)—(A.19) one derives the estimate
e fllo+ gl +2lGmello+e@ [Fmfo - (A.20)

In the same way as in [47] we can get the estimate for |G|, i.e. we put é={5}®,
into (A.9), where @ is a solution of the problem

divé=g, , ®|,,=0

mzt| 0

[w

in the half-space z; =0. Repeating the above estimates one gets
|Gmcllo = cCgmllo+ 1l + [/ lo+llg ) +¢ [Fmsello + (@ [
e[| fllo+ g0+l Wmsello +¢@ [0 - (A.21)

Now we can estimate the derivatives W, ..., n., calculating them from Egs. (A.15)
(see the end of Sect. 4 in [47]). Hence one gets

[meszsllot [ Gmeslo= e f o+ gl + [Fmaclo + [Gmello) - (A-22)
From (A.20)-(A.22) we obtain (if ¢ and 4 are small)
[¥mll2 + Gl = (| fo+ ) - (A.23)

Therefore from (A.14) there exists a subsequence {w,,,q,,} (for simplicity we
denote it in the same way) weakly converging in H*(Q) x L,(Q). From (A.23) it
converges weakly in H?(Q')x H*(Q’) and strongly in H*(Q')x L,(Q’). Let
(U, P)e(H' (Q) x L,(Q))n(H?*(Q") x H*(Q")) be a limit of this subsequence. We
will prove that (U, P) satisfies the identity (A.6). Let m— oo in (A.9). It is sufficient
to consider the term ¢, (w,,, £) only:

|8 (wm’ C) S(U é)l— f {(p (m) pkl)wmIZkéjﬂ

+ PR Wiz, — :zk) Ein+ (P M) =P Wi &
+P;¢j(”~’mizk zzk)f
+ (M) =P Wi &+ B i — U)o,
+ (P () = p YW &P (B — 0) ;1T ™1 2]
Z PR =Pl eo Wl [ ]lo + 1P 1) =Pl [ Wi 1€
+c [p;"(m) _P;cj|4 Wpnla ” ¢, ”o +c |P”(m) _Pijlz [Wonla|Ela
+ 15\ W — Ul + P13 1w, — UL, 1El6)

+ j {(p;;];(wmizk lzk)élzk +p (W"Iizk lzk)é )J l}dz ‘
Q

(A.24)
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The terms in the brackets tend to zero because || %, — F|;—»0 and the imbedding
H'cL, q<6, is compact. The last integral in the rlght of (A.24) is a linear
functional on H'(Q), so it tends to zero. Finally after passing to the limit in (A.9) we
obtain

gE(U,éH-g 8(U, &) — (P, div &) g = B(&)+(u—)(div b, divE), . (A.25)

Subtracting (A.25) from (A.6) and taking in the resulting identity £ =w — U one
gets (since div(w— U)=0)

g E(W-U,W—U)Jrg e(W—U,w—U)=0 .

Estimating the term ¢(W— U, w — U) by (A.12) we obtain
EW-Uw-U)Sc@d)|w- U||1 )

Hence for sufficiently small d we have w—U=0, i.e. w=Ue H?(Q'). From the
Stokes system we get e H!(Q'). The estimate (3. 12) s=2, follows from (A.23).
Therefore Theorem 3.2 for s=2 is proved.

Now we shall obtain an estimate for ve H*(Q) and pe H*(Q). In this case
SeH'". Applying transformations (4.17) and (4.18) problem (3.1), (3.2) can be
written in the form

A, 5+V,p=(A,— Ao+ V,—V)j+Ai—A inQ ,
+Pp—Vpl+F, div,5=div,5—divél+§ inQ ,
6-a,=0n,—tn onS ,
., T, ()i, =%, T, ®)a,— '@l on§,
o1,=0 on dQ\S ,
T;(®)7,=0 on dQ\S ,

where the same notations as in the proof of Lemma 4.2 [see also problem (4.40)]
are used. Applying the operator 8¥(k=1,2) to (A.21), using the fact that
z=z(y)e H*(Q), ve H?, p € H' and the estimates for the Stokes problem in the half
space (see [1,48]; it was shown in [48] that the Stokes system is an elliptic Douglis-
Nirenberg system and the boundary conditions (3.2) satisfy the compatibility
condition) one has

I6k3]12, 0+ [6%51l:, 0 S cd((|0k5] 2,0+ 08P 1.0)
+[P(|z,]3,0)+cO1(v]+ [ 2]

(A.26)

+e(|| £ +gl2) - (A27)
Therefore for sufficiently small 4 one obtains in the limit as A—0
Iz + Bl 0= eClolo+ 20+ 712+ lgll2) - (A.28)

The derivatives 4,,,.,,,p,,,, are estimated in the same way as in the proof of
Theorem 2 in [47]. This concludes the proof of Theorem 3.2.
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