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Abstract. In systems like Yang-Mills or gravity theory, which have a symmetry
of gauge type, neither phase space nor configuration space is a manifold but
rather an orbifold with singular points corresponding to classical states of
non-generically higher symmetry. The consequences of these symmetries for
quantum theory are investigated. First, a certain orbifold configuration space
is identified. Then, the Schrodinger equation on this orbifold is considered. As
a typical case, the Schrodinger equation on (double) cones over Riemannian
manifolds is discussed in detail as a problem of selfadjoint extensions. A marked
tendency towards concentration of the wave function around the singular points
in configuration space is observed, which generically even reflects itself in the
existence of additional bound states and can be interpreted as a quantum
mechanism of symmetry enhancement.

1. Introduction

Let a Lie group G act on a manifold M. Then it is natural to perform a "symmetry
reduction" by identifying points which can be transformed into one another and,
hence, going over to the space M/G, the set of orbits in M under the action of G.
Now, M/G will, in general, not be a manifold, but rather an orbifold. Singular
points in M/G will arise whenever a jump occurs in the conjugacy class (H) of the
isotropy groups H c= G of points in different orbits.

In this note, we shall investigate the impact of such orbifold singularities in
configuration and phase space of mechanical systems to the associated quantum
systems, thus expanding and elaborating on a programme announced in [1].

This introduction contains a description of the main ideas and results, all
technical details will be deferred to following sections. Our framework will be
Lagrangian mechanics (and field theory) with a (possibly infinite dimensional)
manifold Q as configuration space and its cotangent bundle P = T*Q as phase
space. Let now G act on Q. For every ξe&, the Lie algebra of G, there is a
fundamental vector field ξQ on Q, defined by
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~u(e^m)\t=0

for W6^°°(g), an induced action on P = T*Q with fundamental vector field ξp

and a map

with

ξPf = {/ξJ} for

and

In other words: there is an equi variant momentum maρ,/:P->^*, defined by

In local coordinates /ξ =

For an ordinary symmetry group like rotations in space, which transforms
physical configurations into one another, the transition to the quotient P/G is not
indispensible and may be avoided, if singularities in P/G turn out to be troublesome.

Gauge transformations in Yang- Mills theory and coordinate transformations
in General Relativity theory are examples of different types of symmetries, which
one could denote as redundancy symmetries: rather than transforming physical
configurations they transform different redundant descriptions of the same physical
state by changing redundant variables used to describe this state. In this case, it
is only Q/G which should be identified with the set of physical states, and the
transition to the quotient becomes a conceptual necessity.

Typically, for instance in the two principal examples mentioned above, there
is freedom to fix redundant variables for each time t separately. As a result, the
Lagrangian will be invariant under time dependent transformations g(t)eG. For
an infinitesimal transformation eξ'ε(t) of this kind, Noether's theorem will give

and, hence

for all

The system is constrained to the zero set of the momentum map. The singular
points of the zero set /~1(ty are points in P with non-generically large isotropy
group H c G. Under quite general conditions [2] the nature of these singularities
is quite simple and explicitly known: In the neighbourhood of a singularity, /~l(ty
is locally equivalent to a quadratic cone.

For Yang-Mills and gravity theory the constraint / = 0 is identical with GauB's
law and the ADM constraints respectively. The singular points are gauge potentials
which are left fixed by some group H φ {e} of gauge transformations or metrics
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which admit some isometry. The quadratic conical nature of these singularities
has been established also in this infinite dimensional situation.

The symplectic form ω is degenerate on the level set /~l(ΰ\ which is, hence,
not a good candidate for a symmetry reduced phase space. Rather one has to
consider the quotient

More generally, for μe^* one defines

where Gμ is the isotropy group of μe^* with respect to the coadjoint representation.
Unfortunately, Pμ fails to be a manifold whenever jumps occur in the orbit type.

As far as classical mechanics is concerned, according to a theorem of M. Otto
[3], this difficulty can be circumvented under very general circumstances in the
following way:

Let P(H) c P be the set of points in P with orbit type (H), i.e. isotropy groups
conjugate to H c G. P(H) is a (not necessarily symplectic) submanifold of P. Then
take for arbitrary μe&*:P(H)μ = /~l(tyπP(H). P(H)μ is invariant under Gμ and

is a (nonsingular) symplectic manifold in a natural way. For a G-invariant
Hamiltonian, the classical trajectories will never leave /~l(ty(^P(Hy Hence, for
classical mechanics, it will always suffice to take P^H}μ as a reduced phase space.

The situation is more involved for quantum mechanics for at least two reasons:
First, quantum mechanics uses configuration space rather than phase space, or at
least a polarization of phase space. Secondly, and more importantly, there is no
justification for restricting oneself to a given orbit type (H) because quantum
transitions between classical configurations of different orbit types are always
possible, as there is no reason to assume that the wave function(al) has support
in only one orbit type.

Restriction to the zero set /~l(0) and going over from /~ 1(0) to the reduced
phase space P0 = /~(0)/G by a procedure of "gauge fixing" both amount to
imposing constraints. Hence, we are facing a problem of quantization of a
constrained system with the additional complication that the solution set of the
constraints does not form a manifold.

Two different approaches are conceivable:

1. Extrinsic Quantization: One first quantizes an unconstrained system, which still
contains redundant degrees of freedom. Then, one translates the constraint
functions into operators and constructs a Hubert space of physical states by
imposing vanishing conditions, when (annihilation parts of) the constraint
operators are applied. The Gupta-Bleuler and the BRST formalisms are two
examples of extrinsic quantization.

2. Intrinsic Quantization: One first solves for the classical constraints by introducing
appropriate coordinates and then only quantizes in terms of these coordinates.
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The equivalence of these two alternative quantization schemes is not guaranteed.
In particular, extrinsic quantization, at least on intermediate stages, allows for
fluctuations into configurations which violate the constraint equations. The
equivalence problem is even more serious [1], if the constraint set fails to be a
manifold. An example of non-equivalence in quantum gravity, which is of particular
relevance in the context of this work, is given in [4].

In any case, for a system with a redundancy symmetry the intrinsic approach
seems to be conceptionally preferable. Unfortunately, it is in general hard if not
impossible to solve for the constraints even locally.

One very promising and attractive method of intrinsic quantization has been
announced by Sniatycki and Weinstein [5], who show, that, even in the singular
case, one can define a classical Poisson algebra of functions on P0 = /~l(G)/G by
identifying functions on P0 with G-invariant elements in <^°°(P)/<</>, where <</>
is the ideal generated by the momentum map /. However, the difficult and crucial
step of quantizing this Poisson algebra has, so far, only been performed in simple
special cases.

The strategy of intrinsic quantization we are going to follow in this work is
the formulation and solution of a Schrόdinger equation on an orbifold.

For this approach, it is a crucial observation, that, at least for the cases of
interest for us, it is possible to identify a substitute for a reduced configuration
space. Indeed, if P = T*Q is a cotangent bundle and if G acts on Q with only one
orbit type, then under suitable technical conditions (always met in physically
interesting cases) there is a natural identification of the reduced phase space with a
cotangent bundle:

In general, of course, there are several orbit types in β, but there is a generic orbit
type of lowest symmetry, which is dense and open in Q.

Orbifold singularities in Q/G correspond to points of higher symmetry. In this
situation, the above identification is true for a dense open subset P0, which leaves
out singular points of Q/G. Then it is possible to define a Hamiltonian operator H
and a Schrόdinger equation first on the regular points in Q/G. (For the quantization
of classical operators there may still be ordering problems.) The Hamilton operator
and the Schrόdinger equation on the orbifold Q/G are then constructed by
selfadjoint extensions of H. The behaviour of the wave function at the orbifold
points of Q/G is of particular physical interest. It is the principal concern of this
work.

Singular points in Q/G are linearization unstable. In [6] it was shown that for
these points the linearized constraints have to be supplemented by additional
quadratic constraint conditions, which suppress spurious solutions of the linear-
ized constraint equations. The effect of these additional constraints is a suppression
of transitions to configurations of lower symmetry. This leads to the conjecture,
formulated in [1], that in the Schrόdinger picture, the wave function(al) shows a
particular concentration at the orbifold points. A very peculiar quantum mechanism
for the enhancement of symmetric configurations would emerge this way. We test
this conjecture by a detailed treatment of some finite dimensional models.
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In the vicinity of an orbifold singularity one expects Q/G to have an iterated
cone structure ("cones over cones"), the prototype being the set #/G of adjoint
orbits of a semisimple group G, which is just given by a Weyl chamber.

This provides a motivation to consider Schrodinger equations on a cone or
double cone ^ over a (compact Riemannian) manifold M of dimension n [1], see
also [8]. The Schrodinger equation on <g has the form

2 nd 1

where n = dim M and ΔM is the Laplace operator on M with respect to its metric
gM. Rescaling gM corresponds to changing the opening angle of the cone #.

We consider two different potentials:

i) V = 0: free motion
ii) V = ̂ ω2r2: oscillator potential.

After separation of the radial coordinate r we have

Here I2 ^ 0 is an eigenvalue of — ΔM.
The radial Hamiltonians are first defined on the domain ^ = ̂ (R\{0}) of

smooth functions with compact support in IR\{0}. Clearly, HI is symmetric on 2.
The Schrodinger equation on the cone and its solutions are obtained by selfadjoint
extensions of h{.

The main results are the following:

• For n ̂  3, ht is essentially selfadjoint. The unique selfadjoint extension is obtained
by closure.

• More complicated and also more interesting is the case n ̂  2. It is relevant for
our considerations, since we expect low dimensions to enter because of the orbifold

structure ("cones over cones") of Q/G. In this case, for v(/) = -^/((n— l)2/4) + /2 < 1,
the selfadjoint extension is non-unique and depends on several real parameters.
Generically, a bound state occurs even for V = 0.

• For both potentials and n ̂  2, one can always achieve by a suitable choice of
the selfadjoint extension arbitrarily low energy E < 0 and arbitrary I2 with v(/) < 1
for the ground state.

• There is a clear tendency towards a concentration of the wave function around
the symmetric configuration r = 0 for decreasing opening angle of ί? (decreasing
I2). This tendency is particularly conspicuous if an additional bound state occurs.
This confirms our expectations formulated above.

Details are described in Sect. 3, which also contains a discussion of scattering
solutions for V = 0.
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2. The Reduced Phase and Configuration Space

In the following we are going to study the structure of the reduced phase and
configuration space in detail, restricting ourselves for technical reasons to the finite
dimensional case. However, in the physically most important examples with infinite
dimensional phase and configuration space — Yang-Mills theories and General
Relativity — analogous results are known to hold [2,7].

Let Q be a Riemannian manifold with metric g and Φ be a proper and isometric
action of a Lie group G on Q. Here, proper means that if (xn) is a convergent
sequence in Q and (gn) an arbitrary sequence in G for which Φ(gn, xn) converges
in Q, then (gn) has a convergent subsequence. This is a technical assumption which
guarantees the existence of G-slices, needed for the proofs of the following theorems
about the structure of the reduced phase and configuration space (see definitions
and remarks below). Especially, any action of a compact group is obviously proper.

Before studying the structure of the reduced configuration space β/G, the
reduced phase space /~ Hθ)/G and the question in which sense /~l(ϋ)/G may be
considered a cotangent bundle over the reduced configuration space β/G, we first
give some standard definitions in order to fix our notation, which essentially
coincides with that of [9]:

On the cotangent bundle π: T*g-><2 there is a natural 1-form 0, defined by

inducing a canonical symplectic form ω:= —dθ. Any group action Φ on Q induces
a group action Φ* on T*g, the lift of Φ, defined by:

This action leaves the canonical 1-form invariant and hence is a symplectic
action. For this action, there is an Ad*-equivariant momentum mapping /, i.e.,
a mapping

with

d/ξ = iξpω (1)

defined by:

/ξ(*q) = θ(*q)(ξτ*Q(xq)) = *q(ξQ(q)\ (2)

where /ξ(uq):= /(uq)(ξ) for arbitrary
This momentum mapping is Ad*-equi variant, i.e., for arbitrary geG and

aq£T*Q the following equation holds:

/fo α,) = Ad*-ι/(αg. (3)

(The concept of a momentum mapping is a generalization of the concept of ordinary
momentum and angular momentum to arbitrary symmetry groups instead of
translations or rotations. Here, (1) means that the momentum mapping generates —
via the Poisson bracket — infinitesimal transformations, whereas (3) fixes the trans-
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formation behaviour of the momentum mapping, generalizing the statements that
ordinary momentum is a polar vector, angular momentum an axial vector.)

The isotropy group G^ of a point qeQ is defined as the set of all geG leaving
q fixed. For an arbitrary subgroup H c: G we denote by (H) the conjugacy class
of H, i.e., (H):= {gHg"1 |#eG}, by QH the submanifold of Q of symmetry type H,
the set of points with isotropy group H, and by Q(H) the submanifold of orbit type
(H), the set of points with isotropy group in (H).

With these definitions we may formulate the following theorem:

Theorem 1. Let Q be a Riemannian manifold with metric g, Φ be a proper and
isometric action of a Lie group G on Q and J be the Ad*-equivariant momentum
mapping (2) for the symplectic action Φ* on T*Q. If the isotropy groups Gq are
conjugate for all qeQ, the following statements hold:

i) Q/G is a Riemannian manifold with a metric g canonically induced by g.
ii) All isotropy groups in /~γ(ty are conjugate and coincide for any cίqe/~l(Q) with

the isotropy group Gq of the corresponding base point q = π(α^) in Q.
iii) /~l(ty is a subbundle ofT*Q invariant under the action ofG with

iγ) /~l(ty/G is a symplectic manifold symplectomorphic to T*(Q/G).

The statements of this theorem are well known for free group actions [9, Theorem
4.3.3]. The generalization to conjugate isotropy groups is nontrivial, as we only
require the isotropy groups in Q to be conjugate, not those in T*Q. (If we
required the isotropy groups in Γ*Q to be conjugate, it could be easily shown
that they even had to be equal and hence normal in G. Hence, the statements of
the theorem could be reduced to the free action of the group G/Gρ, yielding only
a trivial generalization.) Especially, as the rank of d/ generally is not constant in
any neighbourhood of /~l(ϋ) (as may be easily seen by the example Q = (Rn\{0},
G = SO(tt) acting on [R"\{0} in the natural way), the fact that / ~ *(()) is a subbundle
of T*<2 is nontrivial.

For the proof of the theorem we use the well known existence theorems for
G-slices:

We call a submanifold Sq of Q with qeSq G-slice in q iff the following conditions
are satisfied:

2. From g SqnSq Φ 0 follows g<=Gq.
3. There is a local section K: V c G/Gq^>G defined on a neighbourhood V of e-Gq

such that the mapping:
τ:Sq x K->ρ, (x,tι)-»φ) x

defines a local diffeomorphism.

It is well known [2] that for a proper group action by isometrics there is a G-slice
in any point qeQ, which can be chosen as

Sq:= {exp(Xq)\Xqe(T,(G q))\\Xq\<ε} (4)
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for a sufficient small ε > 0. A G-slice of the form (4) is called an affine G-slice.
Now, with this technical device, the proof of the theorem is quite simple: From

the definition of a G-slice in a point qεQ obviously follows that the isotropy group
of any point qeSq is a subgroup of Gq. Hence, by the assumed existence of only
one orbit type in β, the isotropy groups in Sq are identical. Therefore, by the
defining properties of a G-slice, the intersection of any orbit in Q with Sq contains
at most one point and for any qeQ, we may identify Q/G in a suitable
neighbourhood of [#] = G-q with the slice Sq. By choosing the slices sufficiently
small, we may thus define a chart for any slice, inducing by the above identification
a chart in Q/G. As the mapping

mapping any qeG Sqto the intersection of the orbit [q] with Sq is smooth by the
defining property 3. of G-slices, the transition functions of the charts defined in
this way are easily seen to be smooth.

Introducing the orthogonal projections

and locally identifying Q/G with the affine slice Sq and hence T[q](Q/G) with
TqSq = (Tq(G-q))L, the metric g may be defined by:

g(M)(*ω, XM) = &(q)(σq(Xq)9 σq(Xq)) (5)

for any qeQ9X[q}eT[q}(Q/G) and XqeTqQ with σ(Xq)^X[q}. As we required the
group to operate isometrically, g is well defined and we have shown i).

In order to prove statement ii) we obviously only have to show that the isotropy
group GΛq for any cnq€/~l(G) coincides with Gq. As necessarily GΛq a Gq, we have
to show, that g'&q = &q for any geGq, or equivalently, that

*q(TqΦg-iXq) = *q(Xq) (6)

for any geGq and XqeTqQ. As any point in Sq is left invariant by g, any tangent
vector to Sq in q is left invariant as well. Furthermore, any tangent vector to the
orbit G-q in q is obviously mapped by TqΦg-ι to another tangent vector to the
orbit. Now, by the definition (2) of the momentum mapping, any tangent vector
to the orbit is annihilated by ocq. As we may decompose any XqεTqQ into the sum
of a vector tangential to the orbit and a vector tangential to Sq9 (6) follows.

The invariance of </~1(0) under G is obvious by the Ad*-equivariance of /
and the statement π(e/~1(0)) — Q is trivial, as Oq, mapping any XqeTqQ to zero, is
contained in /~ x(0) for any qeQ. Furthermore, as /~ 1(Q)n TqQ is by the definition
of the momentum mapping (2) just the annihilator of the tangent space to the orbit
G g, it is a subspace of T*Q for any q, and, as the dimension of the orbits is
constant by the assumed conjugacy of all isotropy groups, its dimension is
independent of the point q.

Now, the rest of statement iii) and statement iv) may be easily proved by the
use of affine G-slices:

For iii), only the smoothness of "̂ -1(0) remains to be shown. For any G-slice
Sq in g, the local diffeomorphism τ induces a local diffeomorphism
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φ: T*U ci T*Q^T*Sq x T*(G/Gq)9

By this local diffeomorphism /~l(tyr\T*U is mapped onto the set T*Sq x
G/G,)}. Hence, /~l(0) obviously is a subbundle of Γ*β, and by i) and

ii), l/~1(0)/G is a manifold with smooth projection

locally diffeomorphic to T*Sq. On /" ̂ OJ/G there is a symplectic form ώ, uniquely
defined by χ*ώ = i*ω with the canonical imbedding i\/~lφ)-*T*Q.

Now, denoting by P the canonical projection P:β->β/G, we may define a
mapping

It may be easily checked that the mapping φ is a well defined bijection. Now,
using a G-slice Sq in Q, the local diffeomorphism from Q/G to Sq induces a local
symplectomorphism from T*(Q/G) to Γ*S€. On the other hand, the local
diffeomorphism φ from T*Q to T*Sq x Γ*(G/Gg) induces a symplectomorphism
from /~\ϋ)/G to T*^. Now, under these local identifications of Γ*(Q/G) and
/~1(Q)/G with T*Sq9 the mapping ^ corresponds to the identity on T*Sq. Hence,
the smoothness of ψ is obvious and ψ is a symplectomorphism.

So far, we assumed that there is only one orbit type in β, ensuring the
smoothness of the reduced configuration and phase space. If we drop this
assumption, Q/G is no longer a manifold and the concept of a cotangent bundle
over Q/G is meaningless. However, we can make several general statements about
the structure of the orbits in Q which ensure that we only have to cut out a subset
of measure zero in order to get a manifold with conjugate isotropy groups.

First, the requirement of a proper action guarantees that the topology of Q/G
is not too bad:

Theorem 2. Let Q be a manifold and G a Lie group acting properly on Q. Then Q/G
is Hausdorff.

By [9, Proposition 4.1.19], it is sufficient to show, that the set

is a closed subset of Q x Q. Now, if (qn9 gnqn) is a convergent sequence in Q x Q,
then (qn) and (gnqn) are convergent sequences in Q. Defining q:= lim qn, there is — by

Λ-» CO

the definition of a proper action — a convergent subsequence (gik) of (gn). With
0:= lim gilr follows: lim gnqn = lim gίtrqitr = gq and, hence:

k->oo n->oo fc-*oo k k

Thus, R is closed.
Using the fact, that G acts by proper isometrics, which ensures the existence

of G-slices, we may make some general statements about the orbit structure of Q:
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Theorem 3. Let Qbea connected Riemannian manifold and Gbea Lie group properly
acting on Q by isometries. Let m(x) be the number of components of the isotropy
group Gx of the point xeQ. For u,veN define:

Quv'= {xeρ|dim(G x) = w,m(x) = i?},

Qu' = U Quv,
veN

r:= max {dim (G x)|xeβ},

s:=min{m(x)|xe<2,dim(G x) = r}.

Then the following statements hold:

i) For any point in Q there is a neighbourhood with only a finite number of orbit
types. Especially, if Q is compact, there is only a finite number of orbit types
inQ.

ii) For any t <r the union of all orbits with dimension at most t has topological
dimension at most dim Q — r -f t — 1.

iii) For any u,v$N there is only one orbit type in any component ofQuv.
iv) Qr is connected.
v) Qrs is an open dense subset of Q.

vi) Qrs/G is connected. If G is connected, then Qrs is connected.

The statements of this theorem are well known for the action of compact groups
[10-13]. In the more general context of proper actions by isometries, the proofs
may be done completely analogous to those for the compact case, using the existence
of G-slices. Alternatively, most statements may be reduced to those for compact
groups by the observation that for a proper action the isotropy group of any point
is compact. Indeed, the definition for a proper action given above is equivalent to
the requirement that for any compact subset K c Q x Q the set Φ ~ l(K) is compact,
where Φ denotes the mapping Φ: G x Q -> Q x β, (g, q) -> (q, gq). As Φ ~ *( {(q, q)}) =
Gq x q, Gq obviously is compact.

Now, by the definition of a G-slice, Q is locally diffeomorphic to Sq x G/Gq,
and most of the statements immediately follow from those for the action of the
compact group Gq on Sq.

The only statements whose proofs are nontrivial are those concerning the
connectedness of βr,βrs/G and Qrs.

However, iv) is a consequence of ii) as the complement of Qr may at most have
topological dimension dim Q — 2, and it is well known that a subset of a metric
space with topological dimension D cannot separate the metric space unless it has
topological dimension at least D — 1 (see [14]).

v) and vi) are most easily shown in complete analogy to the proofs for compact
groups in [12], using the existence of G-slices.

Now, iii), v) and vi) together imply the existence of one generic orbit type.
Hence, by Theorem 1, Qrs/G is a Riemannian manifold in a natural way, and
there is an open dense subset C^/~1(0)/G, such that T*(βrs/G) is symplecto-
morphic to C. Hence, we may consider a Schrόdinger equation on the "reduced
configuration space" Q/G by considering it as a differential equation on βrs/G and
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taking the singular points into account by requiring suitable boundary conditions
which may be determined by considering selfadjoint extensions of a Hamiltonian
defined on the smooth functions with compact support in Qrs/G.

3. Schrδdinger Equation on Cones

Let M be an n-dimensional Riemannian manifold with metric #M. We define the
double cone ^ over Jt as R x M with the identification of all points of the form
(0, w) for arbitrary mεJί, where the identified points form the tip of the cone. By
cutting out the tip the punctured double cone ^* can be considered a Riemannian
manifold with metric g given in coordinates (r,x l 5...,xj by:

ds2 = dr2 + r2(0M(x))ίfcί/x'' ® dxk. (7)

Thus we may define a Schrόdinger equation on the cone

for an arbitrary real valued, smooth potential V(r). Using (7) in the standard
formula for the Laplacian yields:

d2_ ^L LA 2( - )U-0
2 rdr r2 M j

where ΔM is the Laplacian on Jί.
By the assumed compactness of M the spectrum of — ΔM is purely discrete

and nonnegative. For an arbitrary eigenvalue I2 of — ΔM with corresponding
eigenfunction pt(\) the ansatz

leads to the ordinary differential equation

In the following we restrict to the cases of a harmonic potential V(r) = l/2ω2r2

and of an identically vanishing potential. In both cases the Schrόdinger equation
may be explicitly solved. With the definition

two independent solution for V(r) = 0 on the upper half of the double cone (r > 0)
are:

0r(r) = £1/V1-">/2Jv(l)(v/2£r), (12)

~~ if

v(/)elM' l '

where Jv and Yv are the Bessel functions of the first and the second kind.
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For the harmonic potential two independent solutions on the upper half cone
are:

- l + v ( 0 - - l +v(t),ωr2

2 ω
(14)

2\ ω
v(0,ωr2

if

(15)

if

with the confluent hypergeometric functions M (α, 6, z) and (/(α, b, z).
Similarly we may define in both cases two independent solutions on the lower

half cone by replacing r by \r\. Because of the singularity at 0 there is no a priori
restriction on the solutions of the differential equation on both half cones. Thus,
for fixed pL(r\ the general solution of (9) depends on four arbitrary constants.

For both potentials the asymptotic behaviour of the solutions with v(/) ̂  0 is

φs(r)oc r((1 ~»>/ 2>- vc>( j + 0(r2}} 4- R(r)r((1 -">/2 + v«>

with an at most logarithmically divergent function R(r). For v(/) = 0, i.e., for n = 1
and / = 0, the regular solution φr is analytical and φs is logarithmically divergent.

Already at this point we notice a clear tendency towards concentration of the
wave function around r = 0 as compared with the non-singular case, which becomes
more marked for a smaller opening angle of the cone. This is clear if admixture
of the singular solution occurs. But even for the regular solution one observes
increasing dominance of / = 0 over / > 0 for decreasing opening angle.

The singular solution is locally square integrable at 0 iff 1 — 2v(/)> — 1, i.e. iff

(16)

Thus, the singular solution is excluded for n ̂  3. For ne{l,2} however, the singular
solution cannot be excluded for those values of /, for which (16) holds. As we can
multiply the metric gM with an arbitrary positive constant—corresponding to
different opening angles of the cone—there may be an arbitrary number of such
eigenvalues.

It is easy to see that in this case the admissible solutions of the Schrodίnger
equation form an overcomplete set. Especially, by combining the regular and the
singular solution for V(r) = 0, it is possible to form solutions which describe pure
incoming waves which are completely absorbed in the tip and thus violate unitarity.



Orbifolds as Configuration Spaces of Systems with Gauge Symmetries 81

Furthermore, for the values of / fulfilling (16), the singular solution (15) of the
Schrδdinger equation with harmonic potential is square integrable for all positive
values of the energy E. Consequently a further restriction of the set of admissible
solutions is necessary.

An analogous problem arises for the usual Schrδdinger equation in [R2 or IR3,
written in polar coordinates. In this case the problem has its origin in the coordinate
singularity which does not correspond to a real singularity of the configuration
space. By using Cartesian coordinates one may see that the admissible solutions
must be smooth even at the origin. So the singular solutions have to be abandoned.
Contrary to this, in our problem there is a real singularity which cannot be removed
by a change of the coordinate system: The double cone is not even a topological
manifold. Therefore we cannot argue that the singular solution must be omitted.

In the functional analytical terminology of the following section the essential
difference between ίR2 or IR3 and the cone is that, in the first case, we may choose
a larger domain for the Hamiltonian: In U2 or R3 differentiability at the origin is
well defined. Hence, the domain of the Hamiltonian should at least contain the
smooth functions with compact support on (R2 or (R3. But the Hamiltonian is
already essentially selfadjoint on ^(IR2), respectively ^(IR3). Thus the problem
with the polar coordinates arises only by the restriction to smooth functions with
support outside the origin, necessary because of the coordinate singularity at the
origin. On the cone however, a restriction of the domain is enforced by the
singularity and there is no longer a natural choice of a domain on which the
Hamiltonian is essentially selfadjoint.

In this situation one might try to find other physical arguments which restrict
the set of solutions of the Schrδdinger equation. One might for example look for
another physical observable and require the eigenfunctions of the Hamiltonian to
be elements of its domain. The only operators which — at first sight — could seem
to be suitable to this end are the "radial momentum operator"

and its powers. However, there are a lot of problems with this operator which
render the above idea impossible: First, for the single cone, the radial momentum
operator has deficiency indices (1,0) on the domain of the smooth functions with
compact support on the punctured single cone. Therefore, there are no selfadjoint
extensions, and the radial momentum operator does not correspond to any physical
observable. Next, even for the double cone, where the deficiency indices of pr are
(1,1) and selfadjoint extensions exist, neither the regular nor the singular nor any
linear combination of the regular and the singular solution of the Schrδdinger
equation for n = 1 and / Φ 0 is contained in the domain of any selfadjoint extension
of pr. Last, in the case of n = 2 and / = 0, the regular solution is an element of the
domain of any, and the singular solution is in the domain of some selfadjoint
extensions of pr. Therefore, even in that case, an unambiguous discrimination of
the solutions is not possible in this way.

The next simple operator, the square of the radial momentum operator, is even
less suitable for our purposes: For any / / 0 which fulfills (16) none of the solutions
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of (10) is an element of the domain of any selfadjoint extension of p2, whereas on
the eigenspace of — ΔM to the eigenvalue / = 0 the Hamiltonian and p2 are—apart
from a constant factor and the potential term—the same operators and thus
endowed with the same problems.

Thus, it is not possible to find any simple physical argument which allows a
sufficient restriction of the set of the admissible solutions of the Schrόdinger
equation. By the requirement of probability conservation, which is equivalent to
the selfadjointness of the Hamiltonian, we are thus led to the study of all physically
reasonable selfadjoint extensions of the symmetric Hamiltonian

(17)

defined on a suitable domain.

3.1 Selfadjoint Extensions and Boundary Conditions. Apparently, any reasonable
choice of the domain of the Hamiltonian (17) should at least contain the smooth
functions with compact support on the punctured cone. On the other hand, it is
not possible to choose as the domain of H the set of all smooth functions on #*,
because H is no longer symmetric on this domain. Thus — apart from the more
technical aspect of forming the closure of this operator — the natural choice for
the domain H, on which it is symmetric, but not necessarily selfadjoint, is:

& = <#$(<$*). (18)

By the well known regularity theorems for the Laplacian any weak solution
of the equation Hψ = λψ(λeC) is a strong solution and even a smooth function.
Hence, all elements of the deficiency subspaces 3? + =ker(Hf + i) are smooth
functions on #* which satisfy the differential equation (9) with E replaced by ± L
From the asymptotic behaviour of these functions at the tip and at infinity follows
that the deficiency subspaces #f ± for the double cone with K(r) = 0 are spanned
by the functions:

r))|^ (19)

with arbitrary α,/?eC and v(/)<l, where f/(

v° denotes the Hankel function.
Similarly, for V(r) = ̂ ω2r2, the deficiency subspaces are spanned by:

u(~(l + v(/) + -\l + v(/),ωrΛP((x). (20)
\2\ co i J\ \ / /

The deficiency subspaces for the single cone may be obtained by simply restricting
those functions to the upper half cone. Hence, with g{ being the eigenspace of ΔM

to the eigenvalue —/ 2, the deficiency indices of the Hamiltonian on the double
cone are:

η + (H) = n.(H)= £ (2dim^), (21)

whereas they take only half that value on the single cone. By the standard theorems
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on selfadjoint extensions the equality of the deficiency indices guarantees the
existence of selfadjoint extensions of //, which are parametrized by the unitary
mappings from jf + onto Jf _ and thus depend on (n+(H))2 real parameters.

With the identification

we may write the Hamiltonian on the double cone as:

with

2 nd I2

V(r). (23)

Furthermore, the domain of the Hamiltonian may be restricted to

2 = ®(Vo(R\{Q})<8&ι) (24)

where only finite linear combinations are allowed, because the closures of the
operators with the domains (18) and (24) are obviously the same.

In order to simplify concrete calculations, we restrict in the following to the
special class of those selfadjoint extensions, which may be obtained by forming self-
adjoint extensions of the operators ft,. Apart from computational convenience, this
restriction may be motivated by the fact that we want to maintain the commutativity
of the Hamiltonian and the observable — ΔM, which at least restricts the set of all
admissible extensions to those which may be obtained by extending the operators
fy(χ)id in L2(R,\r\ndr)®gΊ. Furthermore, if the "^-part" pt(\) is not allowed to
change the tunneling through the tip, the stronger restriction follows. Especially,
in the case of Jί being a sphere Sn on which the rotation group SO(rc) operates
in the natural way, we may identify — ΛM with the square of the angular momentum
operator. In this case, the restriction of the set of all selfadjoint extensions to the
set of those which are obtained by extending the operators ht is just equivalent to
the requirement of commutativity of the Hamiltonian and the angular momentum
operator, i.e., to rotational invariance. Hence, more general selfadjoint extensions
would correspond to a symmetry breaking due to a rotational noninvariance
strictly localized in the tip. However, even if we dropped this restriction on the
selfadjoint extensions the essential results of the following computations would
stay the same. The only real difference would be, that the eigenfunctions of the
extensions of the Hamiltonian would no longer be eigenfunctions of — ΔM and
that, in the case of free motion on the cone, there were solutions corresponding
to a tunneling through the tip, where the "angular momentum" changes in
tunneling.

Thus, we are finally led to the study of all selfadjoint extensions of the operators
ht with domain ^(/ϊ/) = ̂ ?5)(IR\{0}). Obviously, the deficiency subspaces for those
operators are spanned by the "radial part" of the functions (19), respectively (20).
Hence, the operators /ι/ with v(/) ̂  1 are essentially selfadjoint, whereas the
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deficiency indices of the operators fy with v(/) < 1 are (2, 2). By choosing

for V(r) = 0, or

+ v(/),ωr2

ω

\ 2 \ ωJ

for F(r) = ̂ ω2r2, respectively, as an orthogonal base of the deficiency subspaces,
the selfadjoint extensions of any operator /t, with v(ί) < 1 are in one-to-one
correspondence to the unitary 2 x 2-matrices and are given by:

2

+ + U2lφl + U22φ
2.),

for any UeU(2). Here, the domain S>(ht) of the closure of ft, is explicitly given by:

if 0 ^ v ( / < l

if v(/)^l. (26)

with

= \fe<#1(U\{Q})\f' is absolutely continuous on R\{0},

However, there are certain restrictions on the physically reasonable extensions:
First, in the case of the double cone, the physically acceptable extensions should
respect the strict symmetry between both half cones. Furthermore, in variance under
time reversal should hold. Either requirement reduces the allowed unitary matrices
to those, which are of the form

Here, by the unitary of U:

a = — cos \l/eίβ, b= —i sin ψeiθ

for some θ,ψeU. It is possible to characterize the selfadjoint extensions by
generalized boundary conditions. To this end, we define for
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S±(f):= lim |ιf"-

Λ ± (/):=lim + | r |<"-

i f O < v ( / ) < l,and

S±(/):=lim+(log|r |Γ\/ (r),

«±(/):=lim+(/(r)-S±(/)log|r|),

if v(/) = 0, respectively.
By (25), (26) and the asymptotic behaviour of the deficiency functions at the

tip, R±(f) and S±(/) are well defined for any fe@(hγ). Using (25) it is easy to
check that any solution φ(r) of the differential Eq. (9) is contained in the
domain of h\ if and only if there are constants λ,μeC with:

Using the obvious identities

R + (φl

+) = R-(Φ2

+) = R + (Φl

+ )* = R-(Φ2-)*,
S+(Φl

+) = S-(Φ2

+) = S+(φl)* = S_(φ2-)*,

R+(Φ2

+) = R-(Φl

+) = R + (Φ-) = RΛΦ-) = 0, (27)

S+(φ2

+ ) = S.(φl

+) = S+(Φ-) = S.(φ1-) = 0

and the definitions:

the constants /,μ may be eliminated, yielding for b2 ^(\ 4- α)2, i.e., θ φ ± ψ, the
boundary conditions:

1 Vίίϊ (29)

with

„ εsin0
cos θ — cos ψ' cos Θ — cos ψ

For b2 = (1 + a)2 the boundary conditions are:

( '
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if b = σ(l + a) Φ 0 with σe{ ± 1}, i.e., if θ = σψ, and

S+(φ) = S.(φ) = 09 (31)

if b = 0, a = — 1, respectively.
Completely analogous considerations may be made for the single cone. Here,

any of the operators Jιz with v(/) < 1 has deficiency indices (1, 1). The selfadjoint
extensions are parametrized by (7(1), i.e., by one angle θ. The boundary conditions
may simply be obtained from those for the double cone by setting ^ = 0 and
restricting to r ̂  0:

R + (φ) = C1S+(φl (32)

with

and
S+(φ) = S.(φ) = Q, (34)

i f β = 0.

3.2 Spectra and Eigenfunctionsfor V(r) = ̂ ω2r2. By our restriction of the admissible
selfadjoint extensions, the spectrum of the Hamiltonian is just the union of the
spectra of the operators ht. For v(/) ̂  1 the singular solution (15) never is square
integrable, whereas the regular solution (14) is square integrable iff:

£ = (27+l+v(/))ω (35)

with jeN, which is essentially the same relation as for the usual harmonic oscillator
in IR". The eigenfunctions of the Hamiltonian to these eigenvalues are

(*θ(r) + βθ(-r))φr(\r\)Pl(x)

with arbitrary α,/Je!R. Obviously, for these values of/, the half cones decouple and
eigenfunctions exist which are completely localized on one half cone. Hence, for
n^3 the spectrum of the Hamiltonian is just the union of the equidistant
eigenvalues (35) with /espec( — AM\ and both half cones completely decouple.

For v(/) < 1 the spectrum of ht is generally more complicated and depends on
the selfadjoint extension chosen. As we required the selfadjoint extensions to respect
to strict symmetry between both half cones any eigenfunction of the Hamiltonian
(17) is either symmetric, antisymmetric or may be decomposed into a symmetric
and an antisymmetric eigenfunction. Hence, without loss of generality, we may
assume

R + (φ)=±R.(φ) S+(φ)=±S_(φ),

and the boundary conditions (29) for θ Φ ± ψ may be simplified to:

R + (φ) = C±S + (φ), (36)

where C+ = C1 ± C2, and the plus sign has to be chosen for the symmetric, the
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minus sign for the antisymmetric eigenfunctions. In the other cases the boundary
conditions for the symmetric solutions are:

R + (φ) = (δ-εcotθ)S+(φ) if 0 = <MO,

S + (φ) = Q if 0=-^,

and similarly for the antisymmetric eigenfunctions:

S + (</>) = 0 if θ = ψ,

R + (φ) = (δ-εcotθ)S + (φ) if 0=-^0. ( }

If we allow the value oo for C + , where (36) with C+ = oo has to be interpreted as
S + (φ) = 0, (37) and (38) may be considered as special cases of (36), and the selfadjoint
extensions of any ht with v(l) < 1 are via the boundary conditions (36) is one-to-one
correspondence with the pairs (C + ,C_)e((Ru{oo})2.

By the asymptotic behaviour of the confluent hypergeometric functions at oo
the radial part for r > 0 of any eigenfunction with — i(l + v(l) — E/ω)φN must be
of the form (15), whereas, in the case - i(l + v(ί) - E/ω)eN it must be of the form
(14). These functions are easily seen to fulfill the boundary conditions (36) for
v(/) 7* 0 iff

whereas the condition for v(/) = 0, i.e., for n = 1 and / = 0, reads:

C±. (40)

Hence, the spectrum of ht consists of all E fulfilling (39) or (40) for C+ or C_,
depending on the symmetry type of the eigenfunction and on v(/).

In Fig. 1, the eigenvalues for a fixed symmetry type and v(/) = 0.5 are sketched
as a function of

c — r ™~v
\_s _ι_ .— — \_/ i (Jj

Obviously, for C± ^ oo, the eigenvalues for fixed / and fixed symmetry type are
no longer equidistant but are of the form:

-v(/))ω + ε,l (41)

with

2(v(/) - l)ω < εβ < 2v(l)ω and lim εβ = 0.
j-*oo

Thus, even asymptotically, the eigenvalues for the generic extensions are different
from those for C+ = oo, which are of the form (35).

Completely analogous results hold for the single cone: The two parameters C±
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-3 -2 -1

Fig 1. The eigenvalues of the symmetric or antisymmetric eigenfunctions of the operator h{ with
oscillator potential for v(/) = 0.5 and ω = 1 as a function of C±

just have to be replaced by the one parameter C1 which, according to (33), is a
function of one angle θ. The resulting eigenvalues as a function of this angle θ are
depicted in Fig. 2 for two values of v(/). Here, the points θ = ± π must be identified,
as the selfadjoint extensions are parametrized by C/(l) and not by R.

The most striking features of these spectra are:
• the existence of an eigenvalue with an arbitrary low negative energy, depending
on the selfadjoint extension
• the shift of the eigenvalues when θ changes from 0 to — π ~ π and back from π to 0
• the vanishing of the lowest eigenvalue, which tends to — oo as #->0 + .

Especially, as the constants Cίt2 may be chosen independently for any ht with
v(ί) < 1, the ground state of the Hamiltonian H may be an eigenfunction of — ΔM

to any eigenvalue / with v(/) < 1 and arbitrarily low energy, depending on the
selfadjoint extension. Especially, the ground state may be highly degenerate.

It may be shown by simple estimates that the eigenfunction corresponding to
the lowest eigenvalue of any operator ft/ becomes more and more concentrated at
the tip as θ decreases to zero and the energy decreases to — oo. If one tries to give
a physical interpretation of the different selfadjoint extensions in terms of a kind
of highly singular potential strictly localized in the tip, this behaviour might be
interpreted as a tighter and tighter binding of the lowest eigenstate by a more and
more attractive singular potential. In the limit θ = 0 the formerly lowest eigenstate
becomes completely concentrated in the tip with E = — oo, but completely
decouples from the other states. Hence, the next eigenstate becomes the real lowest
eigenstate.
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= 0.5

) = 0.9

Fig. 2. The eigenvalues of /i, with oscillator potential on the single cone for different values of v(/) and
ω = 1 as a function of the angle θ

3.3 Spectrum and Tunneling Probabilities for V(r) = Q

3.3.1 Spectra and Eigenvalues. Before considering the scattering at the tip in detail,
we first discuss the spectra of the operators ht and hence of the Hamiltonian for
the free motion on the double cone. As will be explicitly seen in the next section,
there are generalized eigenfunctions of ht for any E ̂  0. Hence, the spectrum of
any Λ/ contains RJ. On the other hand, it is easy to see that any λespec(ft,)\Ro
necessarily is an eigenvalue of ht and we have to examine the question, whether
there are any negative eigenvalues of ht for v(/) < 1.
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By the asymptotic behaviour of the Bessel functions at infinity, the restriction
to R+ of any eigenfunction of ht with E < 0 must be of the form:

(r)-φs(r), if

s(rl if v(0 = 0 (42)

with φr, φs given by (12), (13). From the asymptotic behaviour of the Bessel function
at 0 follows for the function (42):

R + (φ)^ί-ξ\E\^ if 0<v(/)<l

S+(φ) j±logE-ilog2 + y, if v(/) = 0

with ξ:= 2-v(/)Γ(l - v(/))/Γ(l + v(/))
As (42) is the restriction of a symmetric or antisymmetric eigenfunction of ht

to R+ iff it satisfies the boundary condition (36), there is at most one symmetric
and one antisymmetric eigenfunction for any ht with v(/)< 1. For the different
extensions, the eigenfunctions and eigenvalues are explicitly given by:

1. v(/)*0:
(a) 62^(l+0)2:
• one symmetric eigenfunction with energy

E= -ξ-1\C+\i/v(l) exists iffC+ <0

• one antisymmetric eigenfunction with energy

E = - ξ'1 |C_ |1/v(/) exists iff C_ < 0

(b) fe = (l+
• one symmetric eigenfunction with energy

E = - ξ~l\δ - εcot 0|1/v(0 exists iff δ - scot θ < 0

(c) ί>= -(1 + 0)^0:
• one antisymmetric eigenfunction with energy

E = - ξ~l\δ - εcot Θ|1/V(Z) exists iff δ - εcot θ < 0

(d) b = l + α = 0:
• no eigenfunctions exist

2. v(/) = 0:
(a) *>V(l + α)2:
• one symmetric eigenfunction with energy

E= -2έΓ2(C++y)

• one antisymmetric eigenfunction with energy

E= -2e~2(C-+y}

(b) fe = (l+α)^0:

• one symmetric eigenfunction with energy

5 -ε cot 0-y)
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(c) b=-(l+
• one antisymmetric eigenfunction with energy

£ _ _ 2^2(5 -ε cot 0-y)

(d) b = 1 + a = 0:
• no eigenfunction

Especially, for n = 1, h0 and hence the Hamiltonian H has for any generic extension
at least one negative eigenvalue, which may be arbitrarily low. Again by simple
estimates, it may be shown that — as in the case of a harmonic potential — the
eigenfunctions of any h{ and hence of the Hamiltonian become more and more
concentrated near the tip as the energy tends to - oo by a continuous change of
the selfadjoint extension.

3.3.2 Scattering at the Tip. In the case of a vanishing potential on the double cone
we are not primarily interested in the symmetric and antisymmetric eigenfunctions
but rather in scattering solutions of the form:

ιA(r, x) = [θ(r){(Φ,(r) - el*«»φr(r)) + μ(e'i^φr(r) - φs(r))}

+ θ(-r){e-ί*«»φrW-φ,W}lpl(x). (43)

Obviously, a function of this form has the asymptotic behaviour

r, x) = Γθ(r){e(ίπ/2)(v(ί)~ 1 / 2 )~ / V^ r _ u~(iπl2)(λ>(l}~ 1/2)

as |r|->oo, thus describing a wave incoming on the upper half cone, which is
partially reflected at the tip and partially tunnels through the tip. The reflecting
and tunneling probabilities are just |μ|2 and |p|2, respectively.

For v(/) ̂  1, the solution must be regular at the tip. Hence, p = 0, μ = 1 and
no tunneling through the tip is possible.

For v(/) < 1 however, it may be shown, either by a limit process or by the use
of generalized eigenfunctions in a Gelfand triple, that ψ is an admissible scattering
solution iff it satisfies the boundary conditions at the tip. This condition uniquely
determines the values of the coefficients μ and p, yielding, with the abbreviation
ξ:= 2'v(ί)Γ(l - v(/))/Γ(l 4- v(/)), for the different cases:

(a)i

μ = : -

-2iC2 ££"«> sin (πv(Q)
Γ /'/Hf , —

(b) b = σ(ί + a):
_ ξ cos (πv(f))£v(0 + δ - ε cot θ
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iσξEv(l)sm(πv(l))
P~e-

iπ

(c) b = 1 + a = 0:

2. v(/) = 0:
(a)

_ ir .4- r2

, _.χ_/ ί^l ) ~Γ ^2

— iπC2

C2

with M(£) = y + i log E - $ log 2.
(b) fc = σ(l + α):

. u(E)-δ
= ι-

σπ

(c) fe =

The resulting tunneling probabilities p(E) = \p\2 as a function of the energy E
are depicted in Fig. 3 for some values of v(/) and C1>2 Depending on the selfadjoint
extensions, i.e., the two angle 0, ψ, the following qualitative features of the tunneling
probabilities are possible:

(a)

• p(0) = 0, lim p(E) = 0, one maximum with value 1
£->oo

• p(0) = 0, lim p(E) = 0, two maxima with value 1 and one minimum
£-»oo

• p(0) = 0, lim p(E) = 0, one maximum with value g 1
£-»oo

• p(0) > 0, lim p(E) = 0, p monotonously decreasing
E-»oo

• p(0) > 0, lim p(E) = 0, one maximum with value 1
£->oo
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Fig. 3. Tunneling probabilities for the free motion on the double cone for different values of

(b) b = σ(l+a)^Q:

• p(0) = 0, lim p(E) > 0, p monotonously increasing
£->• oo

φ p(0) = 0, lim p(E) > 0, one maximum with value 1
£^oo

• p = const. < 1.

(c) b = 1 + a = 0:

2. v(/) = 0:
Here, p(0) = 0, lim p(E) = 0 holds for any extension

£^oo

(a) b 2 ^(l+α) 2 :

• one maximum with value < 1
• two maxima with value 1

(b) b = σ(l+a)^Q:

• one maximum with value 1
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(c) fc = l + α = 0:
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