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Solitons in the Chiral Equation
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Abstract. The purpose of this paper is to give a geometric description of the
solitons in the principal chiral equation in 1H-1 dimensions in terms of
Grassmannians, and a qualitative description of their behaviour in terms of
Morse functions. Additionally it shows how a soliton can be "added" to an
arbitrary solution of the chiral equation.
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Introduction

This paper has two objectives:
1. To give a simple geometric description of the solitons in the principal chiral
equation in 1 +1 dimensions, and a qualitative description of their behaviour.
2. To show how a soliton can be "added" to an arbitrary solution of the chiral
equation, and to give a geometric meaning to this in the case of addition of two
solitons.

Our method is to start from the linear system of the inverse scattering
procedure, which is well known [4,6], and to find meromorphic solutions to this
linear system. In the case where these meromorphic functions have one simple
pole, the time space evolution can be described in terms of a Morse flow on a finite
dimensional Grassmannian. In physical terms, the Morse function can be thought
of as generating the envelope of the soliton. From this comes an intuitive argument
showing how this solution gives rise to a non-dispersive travelling wave.
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The general meromorphic case can be studied by a flow on an infinite
dimensional Grassmannian, and in this form the group action given by
superimposing solitons can be easily seen. A similar Grassmannian approach has
been used previously on the KdV equation [8]. It should be noted that a treatment
of the group representation associated to the Euclidean version of the ciral
equation (i.e. harmonic maps) has recently appeared [9].

Section 1. The Linear System

The chiral equation is most easily given in light cone coordinates, i.e. η = t + x and
ξ = t — x in more usual time-space coordinates. It is a wave equation for a function
σ taking values in a unitary group instead of a linear space, i.e. σ : R1* i -> Um. The
equation is

σ-^σnξ^σ-lσnσ~^σξ + σ-lσξσ-^ση). (1.1)

If we define the antihermitian functions

A = σ~1σξ and B = σ~ίση, (1.2)

then (1.1) can be rewritten as

4,=iD4,B] and B{=-i[4,B], (1.3)

and it is in this form that we shall most often refer to the chiral equation. By
integrating along light lines and using the contraction mapping theorem, it can be
shown that a unique solution exists for all space-time if the values of A and B are
initially specified on a spacelike line.

Now consider the following linear equations for a function f r lR^xC*

Ψ(ξ, η, λ)ξ = ΨA(ζ, η) , Ψ(ξ, η, λ\ = ΨB(ζ, η) . (1 .4)

This linear system is overdetermined, and the compatibility condition derived
from Ψηξ = Ψξη is precisely (1.3). Thus if a Ψ satisfying (1.4) exists, it gives a solution
to the chiral equation.

Conversely, if A and B are solutions to (1.3), we can define Ψ to be the solution
to (1.4). This must exist by invariant integration since the compatibility condition
is satisfied. Note that Ψ is not uniquely defined, since we can specify it to be an
arbitrary analytic function of λ at t = x = 0.

The most obvious non-trivial solution of (1.4) is

(1.5)

where J and K are commuting antihermitian matrices. Note that if λ = 1, this is just
the most general group homomorphism from (R2, + ) to Um. If we want to study
solutions to (1.4) which tend to Ψ0 near infinity, then we remove Ψ0 by defining

φ=ψ~ίψ (1.6)
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and observe that φ obeys the equations

and φη=*L±(φB-Kφ). (1.7)

Section 2. The Evolution of Single Simple Pole Solitons

We are going to describe the solitons in terms of a real form of the group oϊmxm
invertible matrices with enteries in the field of rational functions of λ e (C^ (the
Riemann sphere). We are interested in those solutions φ of (1.7) which lie in the real
subgroup consisting of functions which are unitary on R^ (call these the
meromorphic unitary loops).

It is known that any element of the real group is a product of a unitary matrix
and single simple pole factors of the form

'- <2 <>
where P is an Hermitian projection on Cm and αeC— IR. This will be proved as
part of a factorization result in Sect. 5. We now seek a solution of the form (2.1) to
(1.7), where α is fixed and P is a function of ξ and η, with A and B being, so far,
unknown.

If φξ is to be finite at λ = oo, and φη finite at 1 = 0, we must have

,«>) and B = φ(ξ9η9OΓlKφ(ξ9η90). (2.2)

Substituting these relations back into (1.7) gives

2Pξ = (1 + ά)PJ - (1 + α) JP + (α - ά)P JP , (2.3a)

2Pη = (l+δί-ί)PK-(l+(χ-i)KP + (u-i-oί-ί)PKP. (2.3b)

To get a geometric idea of what (2.3) means, we use the following lemma:

Lemma 2.4. Let θbeaC1 function: R->GLW((C), V0 be a subspace 0/<Cm, and define
V(x) = θ(x)V0. Then if P(x) is the orthogonal projection to V(x) in (Cm, P obeys the
following equation:

Proof. By definition of P,

) = 0 onF 0 .

Differentiate this and use the formula

p = pp + pp' = p'p + (PT)* . π

We can now see that the solution to (2.3) is that P(ξ,η) is the orthogonal
projection to the subspace V(ξ, η) of (Cm defined by

0 (2.5)
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for some subspace F0 of Cm. It is more informative to expand the exponential in
this formula in two parts: Here let α have real and imaginary parts α = <

e x p - J£ + V0. (2.6)

Thus if we define Q(ξ, η) to be the orthogonal projection to

we see that

a

-Kηl.(2.1)

1 +i«i*

Now β obeys the equations

2Qξ=-ib(JQ + QJ-2QJQ), 2Qη = (KQ + QK-2QKQ). (2.8)

In effect, we have split the soliton into an envelope Q for the wave, and an
oscillatory part. The point of doing this is that the space-time evolution of Q can be
described by Morse functions.

Section 3. The Morse Functions

Let the Grassmannian Gr(n, m) be the space of n-dimensional subspaces of Cm. Gr
is essentially a space of orthogonal projections, so its tangent space consists of
Hermitian operators, and a Riemannian metric can be defined by

<#15 H2y = trace(# ̂ H2) (Hi9 H2 e TGr) . (3.1)

If Q(t) is the time evolution of a point on the Grassmannian under a Morse
function /, then by definition

where the gradient Vf is defined by

. (3.3)

In our case we wish to find a Morse function for the ξ evolution of β, and this
would be required to satisfy

* 2 tmCe + G Q (3.4)

If we substitute f(Q)= — —-trace(JQ) into this equation, and remember that

= H for H in the tangent space at β, the equation is satisfied. A similar
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result can be given for the η evolution, but we will find it most convenient to present
the result in the usual time and space coordinates,

The time Morse function T(Q) =-1— trace ( ( J - —^ K } Q }, (3.5a)
2 \\ lαl / /

The space Morse function X(Q) =-*— trace ( ( J + —^ K } Q }. (3.5b)2 \\ M / /

For convenience we shall write X(Q) as trace (FXQ\ and T(Q) as trace (FTQ). If there
is a stationary observer at the origin £ = x = 0, he will see <2(£,x = 0) evolve
according to the Morse function T(Q), and since the Grassmannian is compact,
<2(£, 0) will tend to a limit Q(t = oo, 0) as £-> oo which is a critical point of T(Q). The
critical points are precisely those Q for which FTQ + QFT—2QFTQ = Q, that is
those Q which commute with Fτ. Now if all the eigenvalues of Fτ are distinct, the
critical points of T(Q) are isolated. But Fx commutes with FΓ, so in this case a
critical point of Fτ is also critical for Fx. Then for large t the space evolution near
β(ί, 0) will become very slow. In fact our observer will see Q tend to a constant limit
as £-> oo uniformly on any bounded spatial neighbourhood {ί} x [ — x0, x0]. As the
exponentials in (2.7) commute with β(oo, 0), we see that P9 A, and B also tend to
constant limits. That is, the amplitude of the oscillatory part of P becomes smaller
as Q tends to Q(oo, 0). By (2.2) the limit of A is J, and the limit of B is K. We describe
this situation by saying that there is no velocity zero soliton.

However if Fτ has repeated eigenvalues, there is a possibility that β(oo, 0) is not
a critical point for Fx. In this case our stationary observer will see Q tend to the
Morse flow x H* Q(oo, x) uniformly on bounded spatial sets as t-> oo. This limiting
<2(oo, x) will in turn tend to a constant as x tends to ± oo, giving the characteristic
soliton envelope.

We deal with a moving soliton by a Lorentz transformation, which is given in
light cone coordinates by ξ' = uξ, η' = η/u, where u is a positive real number. (The
positivity condition is to preserve the direction of time.) The velocity of an observer

\-u2

stationary in the new frame, with respect to the old frame, is now ^ anc* *he
new space-time Morse functions are:

T(Q, u}=-1^- trace ((- J - -̂  K ] Q ] = trace(FΓ(w)β), (3.6a)
Δ \\w |α| / /

X(Q, u) = - l— tracef (-J+ τ^κ) Q j = trace (Fx(u)Q). (3.6b)
2 \\u |α| / /

1-M2

Then there can only be a soliton moving at velocity ^ ̂  ̂ e matrix Fτ(u) has

repeated eigenvalues. If J and K have no repeated eigenvalues, there are no
solitons moving at the speed of light. It is also possible to produce tachyons, that is
solitons moving faster than light. In this case we have to reverse the roles of time

1+w2

and space, and observe that to have a tachyon moving at velocity j we must

have repeated eigenvalues for the matrix Fx(ύ). If we wanted to set up a system
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which did not allow tachyons, all we would have to do is to insist that J and K
could be simultaneously diagonalized so that they both had i x eigenvalues in
strictly increasing order.

Section 4. Superposition of Solitons

We shall now describe a process which associates to each solution of the chiral
equation another solution, in a manner which can be thought of as "addition of a
soliton." Suppose that C, D is such a solution, i.e.

C,=±[C,D] and D€=-i[C,D]. (4.1)

Now look for a single simple pole unitary meromorphic solution ρ to the equation

λ-\- 1 /I"1 4- 1
Qξ=~^(QA-CQ) and ρη=—^(ρB-Dρ). (4.2)

By continuing in exactly the same manner as in the second section, we find that a
solution to this problem with a pole at α can be written as

where P is an orthogonal projection to the subspace θ(ξ, η)V0, and θ(ξ, η) obeys the
equations

and fl^'^ -^l+oΓ1)/). (4.4)

The existence of such a θ can be demonstrated by solving the following invariant
integration problem. Let θ(ξ,η) = r(ξ,η, 1), where r(ξ,η,s) is the solution to

η) (4.5)

for se[0, 1] and boundary condition r(ξ,η,0)=l.
It should be noted that if μ(ξ, η, λ) is an extended solution for C and D, that is if

μξ=^(μC-Jμ) and μη =
 λ-^ (μD - Kμ) , (4.6)

then we can define φ = μρ, which will be a solution of (1 .7). We say that A, B is the
solution obtained from C,D by adding a soliton, and that φ is the extended
solution associated to A, B.

Section 5. Multiple Pole Solitons

Here we introduce a Grassmannian (δr, which we will show is in 1-1 corre-
spondence with the set of all unitary meromorphic loops. Then the evolution of
multiple pole solitons will be given by a flow on this Grassmannian.

Define 91 to be the analytic functions from (C* to (C, and $ to be the
meromorphic functions from (C* to C which have only finitely many poles. Then 5
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and gm are modules over the ring 91. Also define a conjugation on functions by the
formula f(λ) =f(λ). There is a sesquilinear pairing: 5mχSm->S given by the
formula

) = Σ RXteM = </0), gW>c. (5.1)
i = l

If W is an 91 module in gm, define WL to be

(5.2)

At last, the Grassmannian can be defined as

(5r = < 9Ϊ modules W£ gm: W1 = W and 3 polynomials p, q

so that p9Iw ς Wg - 9IW i (5.3)
4 J

and the unitary meromorphic loops normalized at —1, as

G = {yeGLΛ(Mero(C00,CJ):yτ = y-1 and y(-l) = l}. (5.4)

The following proposition follows immediately from the definitions:

Proposition 5.5. There is a group action of G on Or, given by the formula

j

Proposition 5.6. The map: G->(Sr given by y ι-> y9ϊm is α 1-1 correspondence.

Proof of 1-1. Since we are dealing with a group action all we have to do is show
that y9Im = 9Im implies that γ = 1. If y e G, then 7 is unitary on R*, so any poles must
be on (C*— R*. But if y had a pole in <C*, then there would be a constant vector
0 e Cm so that yα had a pole in C*, and this would mean that y9I | 9Im. Therefore 7
has no poles, and is thus constant, and that constant is y( —1) = 1.

W
Proof of onto: If We (Sr, then is finite dimensional, and the proof is by

induction on this dimension. The map given by multiplying by λ,

W W
A x : — —> —

has at least one eigenvalue α if PFί9Im. Then take a basis [/i], ...,[/r] of
ker(A — α) x , where fteW, and note that gf = (A — α)/f is in P^n9ϊm. Now the vectors
gι(α), ...,gr(α) are linearly independent in Cm, and we call V the subspace of <Cm

which they span. Now let P be the orthogonal projection to V, and define a simple
meromorphic loop θ as

Then there is an onto map

ΘWnW"
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which reduces dimension since [/i], . . ., [/r] are in the kernel. Then the process is
repeated using ΘW instead of W, until we obtain θk... flίWgSΓ". On taking
perpendiculars in this formula, we see that W=θj^1 ... fl^ST", thus proving the
1-1 correspondence between the Grassmannian and the unitary meromorphic
loops. Π

In the course of the proof of the last proposition we also proved the following
result:

Proposition 5.7. Any meromorphic unitary loop is a product of a unitary matrix and a
number of single simple pole factors of the form

where P is a self-adjoint projection on <Cm. (Note the factorization is not unique in
general.)

Now we are in a position to prove the main result:

Theorem 5.8. If 0(0, 0) is a unitary meromorphic loop, there is a unique unitary
meromorphic solution φ(ξ, η) to the equations

and φ=*L-ξ

and this φ is given by a flow on the Grassmannian defined by

Proof. The existence result is proved by factorizing 0(0, 0) into simple pole parts,

and using the method of superimposing solitons discussed in the last section. The
uniqueness will follow if we can show that φ(ξ, ή) obeys the formula for the
Grassmannian planes in the statement of the theorem. This will be proved for the ξ
evolution, and the proof for η is of the same type. It is sufficient to show that

ξ, o) - «ι» .

Start with an arbitrary /(0)e2Im, and solve the following equation for f(ξ);

This will be true if fξ= -- — Af, which can be solved by invariant integration

with /(£)e9Im. But this proves that

0(0, 0)/(0) e exp ̂ ±1 Jξ\ φ(ξ, 0) - SΓ"

for arbitrary /(O) e 9ϊm, as required. Π
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Section 6. The Group Action

Here we summarize the operation of soliton addition, as given in Sect. 4,
specializing to the case of soliton solutions. It will be helpful to use a form of
"Heisenberg" representation, that is the state space remains constant, and the
interpretation varies as a function of space-time. It is also necessary to choose a
preferred point in space-time, which we take to be the origin t = x = 0.

The state space is taken to be infinite dimensional Grassmannian ©r, with the
meromorphic unitary loop </>(0, 0) corresponding to the state 0(0, 0)9Ime ©r. Then
the unitary meromorphic loop valued interpretation function

ΦrR^xβr-ίG
is defined by

Φ(ξ,η, W)Wm = exp^-^Jξ-^^Kη\ W. (6.1)

In other words, if φ(ξ, η) is our usual soliton evolution beginning with 0(0, 0), then

= φ(ξ9η). (6.2)

The advantage of writing the result of (5.8) this way is that we can describe the
operation of adding the unitary meromorphic loop τ(0, 0) to the existing soliton φ
by the right action

((φ)τ) (ξ, η) = Φ(ξ, η, 0(0, 0)τ(0, 0)«Γ") . (6.3)

Thus the operation of soliton addition described in Sect. 4 is just right multiplica-
tion of loops at the preferred point.
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