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Abstract. We consider the Ising model on a lattice which is the orbit of a discrete
cocompact group acting on the hyperbolic plane. For large values of the inverse
temperature we construct an uncountable number of mutually singular Gibbs
states.

1. Introduction

The goal of this paper is to study some Ising models on the Lobachevsky plane.
Before discussing the motivation and the formulation of the results we shall give
some necessary definitions.

Let H be the Lobachevsky plane and let G be a finitely generated co-compact
group of isometries of H. We shall build our model on the Cayley graph ^ of G.
The graph ^ is embedded in H in the following way. Choose a convex finite-sided
geodesic polygon A which is a fundamental domain for G acting on H. According
to Poincare"s theorem on fundamental polygons, the set of isometries G0 which
identify the sides of A is a set of generators of G. Fix a point OelntA. The vertices
of & are the points #0, #eG. Join #0 to g'O by an edge whenever g~lgΈG0.

We consider spin configurations φ = {φ(g)}geG on ̂ , where φ(g) takes the values
+ 1 at the vertex #0e^. Sites #0, g'Q have a common bond, written <#,#'>, exactly
when #0, g'O are joined by an edge. The Ising ferromagnetic Hamiltonian at the
inverse temperature β has the form

(1)

For such models it is impossible to define the notion of free energy because
for natural domains like balls the number of points belonging to the boundary is
proportional to the number of points in the whole domain. However, the notion
of a Gibbs state can be introduced in an unambiguous way through the DLR
conditions. Namely, let Φ be the space of all configurations φ = {φ(g)}geG> let ̂
be the σ-algebra of Borel subsets of Φ and let P be some probability measure
defined on 2F .
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Definition LI. P is a Gibbs state corresponding to Hβ (see (1)) if for any finite set
Fez G the conditional probability P{φ(g\gεV\φ(g\gεG\V] is given by

— — exp/?/2 £ φ(0X02) (2)

Here φ = {cp(g),0eG\F} is a fixed configuration outside V and Ξ(F, φ) is the
corresponding partition function which is a normalising factor. It is clear that these
conditional probabilities P{φ(g),geV\φ(g\g€G\V} depend only on those φ(g) for
which #0 is joined by at least one edge to V.

Such Ising models are similar in many respects to Ising models on graphs like
Cayley trees (see [9, 11]). These trees may also be embedded in the Lobachevsky
plane as graphs of groups of hyperbolic isometries. In the case of the modular
group, similar models were constructed in [6]. (We shall explain below why we
restrict our attention here to cocompact groups, for which the graph is never a tree.)

From the point of view of traditional statistical mechanics the Lobachevsky
plane should be considered as an infinite dimensional space. Indeed, in the usual
situations one can often write the partition function in the form

Ξ(V9φ) = πp{a(β)\V\ + σ(β)\dV\ + r(β,V)}9 (3)

where a(β] is proportional to the Gibbs free energy, σ(β) is associated with the
surface tension and r(β, V) is a remainder term of smaller order. For lattices in Rd

the size of the surface \dV\ is of the order of | K)1"1^. We use (3) as a natural
definition of the thermodynamic dimension in more general situations. For example,
if we consider models on Zd with sufficiently slowly decaying interactions then this
dimension can depend on the interaction and be greater than a. As already
mentioned, for our models \dV\ « | V\9 which means that it is natural to take d = oo.

The main result of this paper shows that there is another reason to believe that
the Lobachevsky plane is thermodynamically infinite dimensional. Namely we
prove the following result:

Theorem 1. There exists β0>Q such that for all β > β0 there exist uncountably
many mutually singular Gibbs states.

The Gibbs states we construct are similar to the non-translationally invariant
extremal Gibbs states for the usual Ising models on /d, d ̂  3, constructed by
Dobrushin in [3]. His construction gives a countable number of Gibbs states and
it is likely that for d = 3 there are no others. For other d it seems that there might
be other Gibbs states, but apparently the total number of extremal Gibbs states is
countable. Presumably the Gibbs states which we construct are extremal. Thus in
our opinion, Theorem 1 also indicates the infinite dimensionality of H from the
point of view of statistical mechanics.

Now we shall explain briefly the idea the proof of Theorem 1. Imagine the
Lobachevsky plane as the unit disk with geodesies which are circular arcs
orthogonal to its boundary. Fix one of these geodesies y and consider the sequence
of domains Vn = (J {gA\geG,\g\ ^ n}9 where \g\ denotes the length of g in the word
metric on G relative to the generators G0, or equivalently the smallest number of
edges in a path from 0 to #0 in .̂ For all sufficiently large n, the domain Vn will
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Fig. la
Fig. Ib

contain inside itself a geodesic segment yn = yr\Vn. Consider now the boundary
condition φn = {φ(g}} outside Vn9 where φ(g)= +1 if gA lies on one side of y and
φ(g) = — 1 otherwise. (We shall make this more precise in Sect. 4 below.) Using
this boundary condition we can introduce the conditional Gibbs probability
measure P("} (see (2)) on configurations [φ(g)\\g\ rgn}.

The family {P(

y

π)}neN is compact, and has therefore at least one weak limit point
which we shall denote Py. The usual arguments show that Py is a Gibbs state. We
claim that such limit points are mutually singular for different y.

The reason for this is connected with the instability and exponential divergence
of distinct geodesies in at least one direction. Take two such geodesies y l 5 y 2 with
a pair of distinct endpoints ξί9ξ2 at infinity. Denote the corresponding probability
measures by Pι,P2. We shall show that for any ε>0 one can find two disjoint
subsets Ψί9Ψ2<=.Φ such that Pι(Ψ^ > 1 - ε, i = 1,2. This certainly implies that
P! and P2 are mutually singular. The construction of the sets Ψi is as follows.

Firstly, for each m we define neighbourhoods C^m) of γi9 ί = 1,2. With respect
to some fixed base point vfEyt let C£(m)= \J{x€H:d(x9γ^max(d(πyt(x)9υf)9m)}9

where πy.(x) denotes the foot of the perpendicular from x to γi9 and d is hyperbolic
distance. (As we shall explain and carry out in detail in Sect. 4, this construction
should really be done on ̂  relative to the word metric on 0.) The regions Q(w)
are illustrated in Fig. la.

An easy calculation shows that in a neighbourhood of ξi9 Cf(m) is contained
in the horocycle based at ξt through the point at distance m from vf. Thus if
£ι ^ ζ2, there is an infinite quadrant Q lying outside C1(m)uC2(m) and meeting
δH along the entire arc from ξ^ to ξ29 as illustrated in Fig. Ib.

Now return to the conditional Gibbs distributions P$. In view of our boundary
conditions each configuration φyi(Vn) will have a separating contour Γl

sep(φ(Vn))
which coincides with yt outside Vn and which connects the parts of the boundary
where we have change of sign from +1 to — 1 (see Fig. 2 and see Sect. 4 for details).
We shall show that for all sufficiently large n and β, the probability P|n){/"iep lies
inside Ci(πί)}>l— e~

consi βm

9 where the constant depends only on G. This means
that typical configurations φ on one side of Q(w) are in the ( + )-phase and on the
other side are in the ( —)-phase. Thus by suitable choice of boundary conditions
we can arrange that in the region Q described above we have, with large probability,
different phases with respect to Px and P2, say ( + ) with respect to P1 and ( —)
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with respect to P2. Now define Qn = Qn Vn and let

where \Qn\ is the number of geG for which gQeQn. The necessary estimates of
Pi(Ψi) are easy to derive provided that we have already shown that /^ep lies inside
Ci(m). In fact the technique of papers [7,8] still works in our situation. This is
explained in Sect. 4. Thus the hardest part is to prove the above estimate for the
probability that Γl

sep lies inside Cf(m), which is done in Proposition 4.2.
We can now explain why groups whose Cayley graphs are trees embedded in

the Lobachevsky plane are uninteresting from our point of view. The absence of
closed loops in such a graph means that the separating contour described above
is completely rigid and necessarily coincides with the ^-geodesic joining its two
ends. By contrast, in the models we describe, the number of non-self intersecting
paths between two points increases exponentially with the distance between the
points as it does for standard lattices. _

Here is the plan of the paper. In Sect. 2 we sketch the derivation of the main
estimate we need from statistical mechanics which compares the contribution to
the partition function from all configurations corresponding to one or the other
of two separating contours, when the separating contours in question differ only
by two fixed arcs whose union is a simple closed loop. The techniques here are
similar to those used in [7, 8]. In Sect. 3 we give the distance estimates we need
on the graph ^ and its dual .̂ The most delicate of these estimates (Estimate 1
in Sect. 3) was derived using ideas based on Bowditch's presentation of Gromov's
work on hyperbolic spaces [1]. We should like to thank Bowditch for making
available to us an early version of his manuscript. Finally in Sect. 4 we prove
Theorem 1.

Throughout the text we introduce many universal constants depending only
on G. These constants will usually all be denoted by the same symbols c or /c,
unless we especially need to distinguish them.

2. Correlation Equations for Contours and Expansions of Partition Functions

As in the introduction, let ̂  denote the Cayley graph of some cocompact finitely
generated group of isometrics G of H, embedded in the Lobachevsky plane H.
The dual graph ^ of ̂  is the graph whose vertices V(^) and edges Σ(&) are the
vertices and edges of the regions gA9 gεG. Given a configuration φ on ,̂ by a
contour of φ we essentially mean a path in the dual graph ^ whose edges are edges
dual to bonds in ^ which join points #0, g'O for which φ has opposite signs. In
order to ensure that contours are not self-interesting curves, and that they are
uniquely defined, we in fact proceed as follows. Remove from the fundamental
region A small neighbourhoods of each vertex, chosen sufficiently small so as to
be mutually disjoint and so as to intersect only those sides of ̂  which meet at the
given vertex. Denote the resulting region by Ά. Transfer these neighbourhoods by
the G action to each vertex in V(&). For a given configuration φ, specified outside
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the region Vn9 consider the connected components of the regions

OΪ = \J{gΆ:gAeVn,φ(g)=±l}.

A contour of φ is a closed non-self intersecting loop forming a connected component
of the boundary of (9* or & ~ . Clearly any contour can be identified with a path
in .̂ The number of edges of ̂  in a contour C, written | C|, is called the length of C.

Let C+ be a contour such that immediately outside C+ we have the boundary
conditions +1 and immediately inside, — 1. Introduce the partition function

S(C^) = £expG8£{<pfo^^

where (9(C+) is the set of points of G lying inside C+ and the sum is over all
configurations in (9(C+) with the given boundary conditions. As in the case of the
usual Ising models (see [10]) we can rewrite this expression in terms of contours:

Ξ(C\£) = expGβ|ZHC+)|-£|CΊ)^ (2.1)

where Δ(C+) is the number of nearest neighbours gl9g2 for which (9(C+)r\
(0ιOu020) / 0, and B(φ(0(C+)\ the boundary of the configuration φ in the region
(9(C+\ is the collection of closed contours of φ contained in (9(C+\

The most essential term is the last sum

Ξ0(C+,β)= Σ

Differentiating log (Ξ0) with respect to β gives

^log~0(C+,/?)= -Σ\C\πι(C\φ(Θ(C+)),β),

where πί(C\ φ((9(C+)\ β) is the first correlation function in the ensemble of contours
contained inside (9(C+). A general method for studying these correlation functions
and correlation functions of higher order was proposed in [7 and 8]. The basis of
this method lies in the so-called system of correlation equations for contours, with
the help of which the correlation functions can be represented in the form of sums
of rapidly decreasing terms.

The method of correlation equations carries over without any change to the
Ising model considered here on the Lobachevsky plane. In fact the basic condition
for its use is the exponential upper bound on the number of contours of length n
passing through a given point or a given edge, which in our case is clearly satisfied.
In this manner we are able to compare the partition function for different regions.

In the proof of the main theorem (cf. Proposition 4.1) we shall need the following
result. Let Vn be the region introduced in Sect. 1 and let φy(G — Vn) be the
corresponding boundary conditions relative to a geodesic y g H. For any configura-
tion in our ensemble, denote by J"sep = Γ(£p(y) the uniquely determined separating
contour, that is the contour which coincides with y outside Vn and which forms
the boundary between the region ( + ) and the region (-) (see Fig. 2). We denote
by Ξ(βι Fn,y,Γsep) the statistical sum over configurations for which the separating
contour 7"sep is fixed. Suppose now that we are given two separating contours
^sep> ^seP> for which Γsep = Γ0 + Γ1 and Γ;ep = Γ0 + Γ2. In other words, Γsep and
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Fig. 2

Fig. 3

Γ'sep have a common part 7"0 and differ over the (bounded) arcs Γί9Γ2. (See Fig. 3.)
Then

InΞ0(jS; VH,y,Γsep) - InS0(j8; V n 9 γ 9 Γsep) = r(jS; V H 9 γ , Γ, Γ'), (2.2)

where r is a remainder term which satisfies the estimate

|r(/ϊ;K l l,y,Γ,Γ')|^constexp{-constj8}(|Γ1 | + |Γ2|). (2.3)

This estimate follows immediately from the form of the series representing the first
correlation functions for contours.

3. Estimates from Hyperbolic Geometry

As explained in the introduction, the main point in the proof of Theorem 1 is to
show that, relative to a probability distribution Py determined from a boundary
condition associated to a geodesic y in H, the separating contour lies within the
region Cm(γ) with probability at least 1 - e~cβm for β sufficiently large and for some
universal constant c>0. In order to make this estimate we need to measure
distances in the natural graph metric on ̂  and its dual graph ̂  (described in Sect. 2).
Thus for v9v'eV(&)9 d(v,v') is the minimum number of edges in a path from v to
v'. A metric d is defined on ̂  in a similar way.

It is a standard fact (see for example [2]), that both d and d are pseudo-isometric
to the metric dn induced on ^,^ by the hyperbolic metric (denoted dn] on H. In
other words, there exists k > 0, depending only on G, such that

dH(v9v') ^ kd(υ,v') (3.1)
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with a similar inequality for d. (The proof of this result is usually given for the
Cayley graph ^ and not for ,̂ however the same proof applies since there is still
an upper and lower bound to the hyperbolic lengths of edges of ,̂ and an upper
bound to the number of edges of ̂  meeting at a vertex.)

We need two distance estimates, both of which are standard in the hyperbolic
metric dn. If y c H is a geodesic and if Xφy, let πy(X) denote the foot of the
perpendicular from X to y.

Estimate 1 H. Let γ <= H be an H-geodesic, and let Xφγ. Let Y = ny(X) and let Zey,
Z Φ Y. Then there exists a universal constant c such that

Estimate 2H. There exists a universal constant J such that if y <= H is a geodesic
and if X, YφNj(γ), the ./-neighbourhood of y, then

where pj(X, Y) denotes the minimum distance from X to Y measured along paths
which lie entirely outside Nj(γ).

Estimate 1H follows easily from the hyperbolic Pythagorean theorem in triangle
XYZ, which states that

cosh dH(XZ) = cosh dM(XY) cosh dM(YZ ).

Estimate 2H follows since perpendicular projection by a distance u onto a
geodesic contracts lengths by a factor sech u.

We shall need to use versions of Estimates 1 and 2 in which dn is replaced by
d (and the term geodesic refers to a d-geodesic.) We need the notation of a
/c-quasi-geodesic, relative to a metric p.

Definition 3.2. A path y in a metric space M, p is a /c-quasi-geodesic if for any two
points v,v'eγ9 we have

where py denotes distance measured along y.
In our case either y is a curve in H and p = dH9 or y is a path in ^ or ^ and

p = d or d.

Proposition 3.3. In any of the three situations above, there exists a universal constant
K = K(k) such that if λ is any k-quasi-geodesic joining points v, v' then λ c Nκ(γ),
where y is a geodesic from v to v'. This result applies even in the case when v,v'edH.

For a proof, see for example [2]. (The proof in [2] refers to the hyperbolic
metric dw, but it is clear that the introduction of multiplicative constants using the
inequality 3.1 will not affect the result.)

Notice that it follows from 3.1 that any d or d geodesic is a dM /c-quasi-geodesic,
and thus lies at a universally bounded distance from the corresponding H geodesic.

The replacement of dH by d in Estimate 2 is straightforward using 3.1 and 3.3,
provided we have an analogue of the notion of the foot of the perpendicular from
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a point to a line. Given a graph geodesic y, and a vertex vφy, we can clearly
construct points on y whose distance to v is minimal. However there may be several
such points, and thus to make sense of Estimate 2 we need to see that all such
points are at a universally bounded distance apart. This is provided in Lemma 3.6
below. Any such point we refer to as a projection of v of y.

The situation with regard to Estimate 1 is less straightforward. The use of 3.1
introduces a multiplicative constant so that the best we can do appears to be

d(X9Z) ^ μ(d(X, Y) + d(7,Z))-const.,

where it is possible that μ< 1. This is unfortunately not good enough for our
purposes (see the proof of Proposition 4.2). However, it is in fact true that estimate
1 remains valid relative to the metrics d or d, provided of course that we adjust
the values of the constants suitably. This fact appears in Bowditch's presentation
[1] of Gromov's work on hyperbolic spaces. For completeness we give a proof
here, based on Bowditch's methods but adapted for our purposes. It will be
convenient to prove the result on projections or a point to a line at the same time.
We shall refer to the estimates we need relative to the graph metrices on ^ and
^ simply as Estimates 1 and 2.

Lemma 3.4. There exists a universal constant c, such that if X YZ is any geodesic
triangle in H, then there is a point CeH such that d(C,y) ^ c, where y is any one of
the three sides of XYZ.

Proof. Let C be the foot of the perpendicular from Y to XZ. It is enough to show
that there is a universal bound on d(C, [X7]) and d(C, [7Z]). (Here [XY] denotes
the geodesic from X to Y, etc.) This follows from the fact that there is a universal
bound on the distance from the hypoteneuse of a right angled hyperbolic triangle
to the opposite vertex. (This can easily be seen in the disk model by putting the
right angle at the centre of the disk.)

Proposition 3.5. There exists a universal constant c, such that ίfX YZ is any geodesic
triangle in & (or &) relative to the metric d (respectively d\ then there is a point CE&
(respectively $) such that d(C,y) ^ c, where y is any one of the three sides of XYZ.

Proof. The sides of XYZ are all dw fc-quasi-geodesics, for some universal /c>0,
and hence by Proposition 3.3 lie at a universally bounded dH-distance from the
hyperbolic geodesies joining X, Y,Z. By Lemma 3.4, there is a point CeH at
universally bounded distance from these three sides. There is a vertex C of ̂
(respectively )̂ at bounded dH-distance from C, and hence at a universally bounded
ί/H-distance from the original three sides of XYZ. A further application of 3.1 gives
the result.

Proof of Estimate 1. Throughout the proof, we refer only to the metric d. Suppose
that γ is a d-geodesic, Xφy, and that Y = nγ(X) is some projection of X on y.
Suppose also Zey, ZΦΎ. Use Proposition 3.5 to find a point C within bounded
distance of all three sides of triangle XYZ. Clearly without loss of generality we
may take Ce[JfZ], the geodesic from X to Z. We obtain Fig. 4, and we label the
distances as shown. Using the triangle inequality in triangles XDC and ZEC we
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see that \al — d1\and \bί—d2\ are universally bounded. Since [_XY] is a shortest
path from X to y, aί+a2^a1-\-k-\-k' and hence a2 is universally bounded. It is
also clear that [XY~\ is a shortest path from Z to [̂ ΓΓ], and hence by similar
reasoning b2 is universally bounded.

Thus \aΐ +a2 + b± +b2 — (dv+d2)\ is universally bounded, which gives the
required result.

Lemma 3.6. Suppose that y is a geodesic in & (or $\ ana that Xφγ. Let Y9 YΈy be
vertices such that d(X, y) = d(X, Y) = d(X, Y'). Then there is a universal bound
on d(Y, Y'), in dependent of X or y.

Proof. Let d(X, Y) = d(X, Y') = a and let d(Y9 Y'} = b. By Estimate I9a>b + a-c,
for some universal constant c. This immediately gives the required bound on b.

4. Proof of the Main Theorem

Let us begin by giving a precise formulation of our boundary conditions and the
main results.

We claim that given any two distinct points ξ,ηedH9 there are both ^ and 0
geodesies joining them, and that any two such ̂  (or ̂ ) geodesies are at a universally
bounded distance apart. (Notice that such geodesies are not necessarily unique.)

Consider the hyperbolic geodesic y joining ξ to η. This geodesic passes through
a sequence of regions..., g{A,gi + ±A,... ίeZ. (If y passes through a vertex of ̂  or is
coincident with an edge of ,̂ it can obviously be replaced by a nearby curve
without this property.)

Now replace y by the path γ in the graph ^ which joins vertices ... gfl9 gt + x 0,...
of .̂ Using 3.1 one sees that γ is a d fc-quasi-geodesic for some universal k > 0.
By Proposition 3.3, there is a d-geodesic y within a universally bounded distance
of γ and hence of y, and any two such d-geodesics are at a universally bounded
distance apart.

We can construct a ^-geodesic from ξ to η in a similar way, by considering a
path in ̂  which follows one or other side of the boundary of the chain of regions
. . . g t A , g i + 1A,... cut by λ. It is clear that such a path is again a ̂  quasi-geodesic,
and the same arguments as above apply. „

Now let ξ,ηedH and let y be a ̂  geodesic from ξ to η. Let Vn = (J 0^ be the
^ i=l

union of regions gtA such that <%,-(), 0) ̂  n. It is known that Vn is a ball [4]; clearly

F M c=F π + 1 c: . . .and Q Vn = H. Define dVn= \J{gιA 1^0,0) = ̂ . Then y divides
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T

r~t
•A _ udc = h

Fig. 5

H and dVn into two connected components which we shall for convenience refer
to as "above" and "below" y. The corresponding components of dVn are denoted
by dVΪ and3F~.

The boundary condition that we use to define the probability P(

y

} is that
Φ (#)=+! if 0A<^dVn and φ(g)=— 1 if gA<^dV~. Alternatively, one may
consider that φ(g)= + 1 if gA a H\Vn and is above y and — 1 otherwise.

Let now φ(Vn) be any configuration on Vn, subject to the above boundary
condition. Among the contours of φ, there will be one which coincides with γ
outside Vn. The part of this contour which lies inside Vn is denoted by Γsep(φ(Vn)),
see Fig. 2. Inside the upper of the two regions separated by Γsep, the configuration
is mainly in the ( + )-phase with islands of (-)-phase, while below the Γsep the
situation is reversed.

We can now formulate our main results. For any d geodesic y as above, fix a
base point v0εy. As usual, for υeV(@)9 πy(v) denotes a projection of υ on y.

For ί >0, Cm(y,ί) = U {veV(<$)\d(v,y)^max(td(ny(v),v0\m)}. (By Lemma 3.6,
the position of πy(v) on y is defined up to a bounded universal constant, hence this
definition is essentially independent of the choice of πy(υ).)

We claim that t > 0 can be chosen so that there are neighbourhoods of the
endpoints ξ,η of y in which Cm(y,ί) is contained in horocycles based at ξ and η.
This follows from the calculation illustrated in Fig. 5 which shows the upper half
plane model with y as the vertical geodesic through ί and ξ at infinity. Here P is
a point at hyperbolic distance b above i, and Q is the intersection of the geodesic
τ perpendicular to y through P with the horocycle at Euclidean height h above
the real axis. Then dH(P9 Q)^2b- log/z. We now use Proposition 3.3 and (3.1) to
replace this inequality by one relative to the metric d, in which a multiplicative
constant may have been introduced on the right-hand side. We then pick the value
of t so as to cancel this unwanted constant. From now on, we assume t to have
been chosen in this way, and write Cm(y) for cm(y, ί).

Proposition 4.1. There are universal constants c,β0,m0 such that

m(γ)}^e-cβm for β>β0,m>m0

and for all sufficiently large n.
The main step in proving Proposition 4.1 is the following result.

Proposition 4.2. Let y be a ^-geodesic, and let vφy be such that d(v,y) = h. Let μ be
a ̂  '-geodesic from v to πy(v). Then there exist βθ9c>Q and n0 (here β0,c are universal
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and n0 depends on y) such that

whenever β ̂  β0 and n^.n0.

Proof. Pick J as in Estimate 2, and let v denote the boundary, on the same side
of y as v9 of Uj = \

Clearly v is a simple path in ^joining the endpoints ξ, η of y. Suppose n0 chosen
so large that the two hedges En,Fn forming dVnr\y are at large distance from VQ

on either side of v0 for n^n0. Let B1 and B2 be the nearest points on v along
Γn

y(φ) from v in either direction from υθ9 as shown in Fig. 6. (This means that
Γ"(φ) does not intersect v between £x and B2.) Let 7\, Γ2 denote the arcs of Γ"(φ)
joining Bί to υ and v to B2 respectively, and let |/\U/"2 | denote the lengths of
Γl9Γ2 in the metric d measured along Γy(φ). We need to estimate \Γi\, i= 1,2.
Let B'i = πγ(Bi)9 i = 1,2 denote the projections of Bt on y, and let w0 = μ n v. Clearly
d(Bi9w0) differs from d(ffi9n7(v)) only by an additive universal constant.

By Estimate 1 we have

\Γt\ ^ d(Bt, v) ̂  d(ffi9 υ) — c^ d(B'i,π(v)) + d(v9π(v)) - c2

univei
Thus

for some universal constant c2.

0) + ft-c3 (4.2.1)

for some universal constant c3.
Now by construction, each Γt lies entirely outside Nj(γ). Thus by Estimate 2

we also obtain the estimate

I Γ, I ̂  f d(*ί, π(ι;) ̂  !̂ , Pyo) - c4 (4.2.2)

for a universal constant c4.
(Notice that the estimate |7^| - d(Bh W0) ^h — const, of 4.2.1 is crucial in the

estimates 4.2.4, 4.2.5 below. It would not be strong enough simply to have a
multiplicative constant multiplying the terms on the right of 4.2.1.)

We estimate the probability that Γ(

y

Π) = Γ("\φ) passes through Bl9B2 and v by
comparing the partition functions corresponding to the separating contours Γ("}

and Γ("\ where Γ("} coincides with Γ^ outside B1 and B2 and ΓίuΓ2 is replaced
by the path Γ0 = [^i5/

1]u[F1F2]u[F2B2], where [BΊF2] denotes the geodesic
arc along y from B\ to B2 and [Bj B'J is a path from BtBi lying inside Nj(y) and
of minimal length among such paths. (It is clear from 3.1 that there is a universal
upper bound to this length.)

According to (2.1), (2.2) and (2.3) in Sect. 2 we have, for contours Γ1^jΓ2 and
Γ0 related as above,

+ |Γ2|-|Γ0|) + r(jg)(|Γ1| + |Γ2| + |Γ0|)), (4.2.3)

where r(β) < const. e~
const β as β-» oo.

Here Ξ(Γ1^jΓ2) is the partition function for all configurations φ whose
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Fig. 6

separating contour contains Γ1vΓ2, and Ξ(Γ0) is similarly defined relative to .Γ0.
In the formula 4.2.3, any additive universal constant in the length estimate can

be absorbed by adjusting the values of c and β0. Therefore we shall from now on
ignore such constants in our estimates.

Choose an orientation along y, and measure signed distance along γ with the
metric d taking v0 as the origin. We denote the co-ordinates of B'h i= 1,2, by bt.
Thus \Γ0\ = \b1 — b2\ within a bounded universal constant.

We may then rewrite (4.2.3) in the form

|6I|)). (4.2.4)
^ Q i = l

We claim that there exists c0 > 0 such that for i = 1, 2 and β > β0:

-cβ(\Γt\ - |6f I) + rOSXIΓ,! + 16,1) < - cQβ\Γ{\. (4.2.5)

Suppose first that \Γt\< 2ft. We then use (4.2.1) to find

£-cβh + 27*03)1/^1 ̂  - cfβ\Γi\ for suitable c' > 0, j? > β0.

Now say |Γ,| > 2ft. Then we use (4.2.2) to get

cβ\bt\ + 2r(β)\Γt\

where we can ensure 3c1 > 2c by choosing β0 sufficiently large.
Let Ξ(Bl9B2,v) be the total contribution to the partition function from all

configurations with separating contours which pass through v and whose last and
first intersections with v on either side of v are at Bί9B2. Using the fact that there
is an upper bound, say q, to the number of edges of ^ meeting at a vertex, the
total number of such contours of length r is bounded by qr. Thus we obtain, for

β>βo,

Ξ(Bl9B2,υ) « r— — — - — ̂  X qrexp(-c'βr),
^(1 O) r = \ b ι \ + \b2\ + 2h
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where we have again used the estimate (4.2.1) for \rt\. Replacing β0 if necessary by
a larger value, the sum on the right is bounded above by e~c"βh, for β> β0 and
some constant c" independent of \ b t \ .

Now the probability that we want is £ C^C^i > ̂ 2 > V)/Ξ\ By the above
— o o < f c ι < b 2 < o o

estimate, each term in this sum, and hence the whole sum, is bounded above by
e~c"βh, β > j30, as required.

Proof of Proposition 4.1. Denote the vertices of ^ along γ by vj9jeZ. For each
eZ, reN, let TJ = {ve<g\πy(v) = vj and d(v, ΌJ) = r}. It is clear that | T]\ ^ 2qr. (Recall

that q is the maximum number of edges of ̂  meeting at a vertex.) Now let φ be
a configuration on Fn with separating contour Γ%\ Let 4J be the event that Γ^

r-l

intersects TJ but does not intersect (J Tj. (Here we assume that n»\j\.)
s = 0

By Proposition 4.2 and the observation above, we have

^) ^ 2qre~Φ ̂  e~cφ for another suitable choice of cv ^ 0, β0.

Now suppose that Γ("\φ) φ Cm(y) (where we assume that n » m). Then, referring
to the definition of Cm(λ\ the event Arj must occur for some j, r with r ̂  max (m, |j|).
Thus

| j | = m r = | j |

which gives the estimate we require.

Proof of Theorem 1 . Now the end of the proof is simple. Take any ε > 0. We
already described in the introduction how to construct an infinite domain Q = Q(m)
such that

PI (ΓLP

 lies to the left Q} ̂  i - β>
jP2{Λ2eP lies below Q}^l-ε.

(Here left, right, above, below refer to Fig. 2.) But then the usual Peierls's argument
shows that Q lies in the ( + )-phase with P1 -probability greater than 1 — ε, i.e.

PI\ Σ ΦM = -I6I > ^ l - ε > and Q lies in the (-)-phase with P2-probability
Uββ 4 J

r 3 )
greater than 1 — ε, i.e. P2^ Σ ^W = ~ τ l 6 l r = l~ ε This certainly implies the

(xeQ 4 J

mutual singularity of P1 and P2.

5. Concluding Remarks

In the recent work of Frohlich and Marchetti [5] some models of quantum field
theory were studied in which the realisations of the field are treated as sections of
a vector bundle on a Riemmanian manifold. It is a very interesting question as to
how the geometry of the manifold influences the phase diagram of the model.
Theorem 1 shows what kind of new possibilities may appear in this situation.
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