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Abstract. We present an axiomatic formulation of a new class of infinite-
dimensional Lie algebras — the generalizations of Z-graded Lie algebras with,
generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous
set of roots. We call such algebras “continuum Lie algebras.” The simple Lie
algebras of constant growth are encapsulated in our formulation. We pay
particular attention to the case when the local algebra is parametrized by a
commutative algebra while the Cartan operator (the generalization of the
Cartan matrix) is a linear operator. Special examples of these algebras are the
Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on
a manifold, current algebras, and algebras with differential or integro-
differential Cartan operator. The nonlinear dynamical systems associated with
the continuum contragredient Lie algebras are also considered.

Introduction

In this paper we present an axiomatic formulation and give the principal examples
of continuum generalizations of Z-graded algebras with generally speaking, an
infinite-dimensional Cartan subalgebra. Our construction includes the simple Lie
algebras of constant growth. Very special cases of these algebras have been
discussed previously'. However, their (more or less) precise definition, albeit rather
imperfect, was given in [1]. There, the discovery of the continuum algebras (called
“continual Lie algebras” there) was stimulated by an investigation of nonlinear
dynamical systems. On the other hand, already in the 60’s and 70’s, associative
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! As an example note paper [5] in which dynamical systems are generated by the associative
algebras of integral operators. These algebras are defined in the space of measurable functions on
an arbitrary set M with a measure preserving invertible transformation M : M— M. They form, in
particular, some subclass of the algebras considered in Example 6 in Sect. 2
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algebras related with dynamical systems were considered, which actually coincide
with a special case of our continuum Lie algebras, namely that having a Cartan
operator (a continuous generalization of the Cartan matrix) of a particularly special
form. This coincidence is due to the definition of a Cartan subalgebra of the
associative algebras given in [2,3]. Further, it should be stressed that current
algebras are also particular cases of the continuum algebras under consideration.
Our approach, therefore, further develops the theory of Lie-algebra valued
distributions which has been investigated in [4] and other papers.

In Sect.1 we give an axiomatic formulation of the continuum Z-graded
contragredient Lie algebras under investigation and establish some of their
properties. Section 2 contains examples which, probably, exhaust the list of all these
algebras with constant growth. It is remarkable that the Poisson bracket algebras
generated by automorphisms of a “root” space as a compact are included here, as
well as several examples isomorphic to s/(2, E), such as current algebra and an
algebra with a Cartan operator identical to the Hilbert operator. A theorem on
some continuous limits of semisimple Lie algebras is formulated. The final (third)
section is devoted to dynamical systems associated via a zero curvature type
representation with the introduced Lie algebras. These include the continuous
analogues of Toda lattices. The Conclusion contains a preliminary programme of
our future investigations in this direction.

Although we begin this paper with a rather general axiomatic formulation, we
discuss more specific examples in the later nonconceptual part of the paper, where
the local algebra is parametrized not simply by a vector space but by a commutative
algebra and the Cartan operator is a linear operator in it. The consideration of the
most general situation is hitherto not motivated by applications in theoretical and
mathematical physics.

As usual, generalization stimulates deeper understanding of the original
(“classical™) structure. An excellent illustration of this fact is, for example, the
transition from finite-dimensional simple Lie algebras to Kac-Moody algebras. In
their turn, the algebras we consider, include those with Cartan matrices of the finite
type in a broader and rather unusual context. Actually we construct their
continuous limits in which the root space is continuous and is a manifold or a more
general space, for example with a measure. In the continuous case there exist
analogues, of several types, of Lie algebras of exponential growth. In fact, one can
have various types of “exponentialities.” Moreover, rather natural Cartan opera-
tors, for example those having a §’-function as a kernel, lead to quite “reasonable”
Lie algebras, which nevertheless have an exponential growth in a literal sense (see
Sect. 2). Evidently, these possibilities for continuum Lie algebras are very
interesting. In any case the nonlinear differential and integro-differential systems
generated by such algebras are worthy of attention. Note also that continuum
analogues of contragredient Kac-Moody algebras discussed here admit a direct
generalization to the case of Lie superalgebras.
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1. Axiomatic Foundation of Continuum Z-Graded
Contragredient Lie Algebras

Let E be a vector space over the field ¢ (R or C); K and S are two bilinear mappings
Ex E—E. Define a “local Lie algebra” §=¢g_, @g, ®g ., as follows. Each of g;,
i=0, £ 1, as a vector space is isomorphic to E, in other words the elements of g; are
parametrized by the vectors ¢ € E so that g,={X;(¢), p€E,i=0, +1}. Besides,
there are relations

[Xo (@), Xo(W)]=0, [Xo(@), X1y W)= £ X, (Ko, ¥) ,
[X+1(0), X_, (V)]=X,(S (0, )
for all ¢, YyeE.

M

Lemma. The Jacobi identity for § is equivalent to the condition

Ko, Ky, ) =KW, K(9, 7)) »  S(@, KW, 0)=SEKW, ), 1) - (2
In what follows this condition is assumed to be satisfied.

Definition 1. Let g'(E; K, S) be a Lie algebra freely generated by a local part § and J
be the largest homogeneous ideal having a trivial intersection with g,. Then
g(E; K,S)=g'(E; K, S)/J is called a continuum contragredient Lie algebra with the
local part § and the defining relations (1).

Remark. For the case of the contragredient Lie algebras with the generalized Cartan
matrix, which in what follows is called the discrete case for brevity, the quotient
algebra can be defined by adding the Serre conditions to the defining relations for
Chevalley generators of the local part (see for example [6]). In our continuum case
we have managed to write down only part of the generalized Serre conditions.
However, this does not hinder a constructive investigation of the algebras in
question, just as it did not hinder the analogous investigation in the discrete case.

Statement. Lie algebra g(E; K, S) is Z-graded, g= @ ¢,. It is easy to convince

neZ

oneself that g,=[g,_,9,] for n>0, and g,=[g,+1,9-,] for n<O0.

Definition 2. The Lie algebra g(E; K, S) is called the algebra of temperate growth if
for each » there exists a finite-dimensional subspace L, =g ., dim L, < o0, such that
In= [gn—l’ Ln]

Every graded Lie algebra in the discrete case obviously has a temperate growth
in the sense of Definition 2. However, in our situation with the Cartan subalgebra
being, in principle, infinite-dimensional this notion allows us to separate interesting
possibilities from all “almost” free algebras. More restrictive is the notion of
polynomial growth in terms of the Gel’fand-Kirillov dimension [7], however, in a
functional sense in the spirit of Kolmogorov’s e-entropy. Finally, we speak of
constant growth if g,~g, ~E.

Further, in this paper, we will not consider the most general algebrasg(E; K, S),
because all known applications hitherto occur within a more special and simple
scheme. Let us assume that E is an associative commutative algebra (possibly,
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without unity) over field ¢, while the mappings K and S have the linear form

K(p,y)=Ko¢ y, K:E—E; S(p,¥)=S(¢ ), S: E~E . 3)

Clearly, condition (2) is satisfied for them automatically: S(eKy - y) =S(Ky - ¢ - y).
Thus, the defining relations (1) take the form

[Xo (@), Xo ()] =0, [Xo (@), X1, (¥)]= TX.:(Ko-Y) ,
X11{@), X ()] =X, (S ¥)) -

We will consider only these relations or those reducing to them.

The case with S =I=1d is especially important. It will be called the standard one
and the operator K for this case will be called the Cartan operator. Suppose that the
operator S is invertible. Then the substitution X,(S¢)— X,(¢) reduces (4) to the
standard relations

[Xo (@), Xo (1)1 =0, [Xo(), X1, (V)] = £ X1, (Ko ¥)
[Xs1(0)), X_1(W]=Xo(o¥) ,

with the Cartan operator K=KS.

If operator S has a kernel? and Ker S = Ker K, then we have the central extension
of the standard case (see below).

Now, our main problem is to describe, as was done for the discrete case (see for
example [6]), the continuum contragredient Lie algebras of temperate or constant
growth. A list of these algebras is given in Sect. 2.

4

)

2. Main Examples
Here we assume that E is one of the following spaces:

i) the space of tame functions with pointwise multiplication on a smooth mani-
fold M;

ii) the algebra of polynomials;

iii) the space of jets of infinitely differentiable functions;

iv) the algebra of formal power series.

There is no essential difference between the algebras g (E; K, S) for different choices
of the space E from the above list.

2.1. Discrete Case (The Kac-Moody Algebras)

This case, in our approach, corresponds to the finite-dimensional algebra E=C"
with coordinate multiplication in some basis. Here the Cartan operator K coincides
with the generalized n x n Cartan matrix k, S=1. The local Lie algebra 4 is a linear
hull of 3n elements: generators h; of the Cartan subalgebra and Chevalley
generators X, ;, 1 Si<n, with the defining relations [6]
[, hj] =0, [h;, Xijlz ikﬁXij, X4 X~—j] =5ijhi >

2 Here, in distinction to the rest of the text, the term “kernel” should be understood not in the
sense of a kernel of an integral operator but as a subset E, < E annihilated by S, that is SE, >0
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to which (5) reduce. The consideration of the quotient algebra g(E;K,S)
=g'(E; K, S)/J in Definition 1 is equivalent to imposing the Serre conditions
(ad X, ) 7M1 X, ;=0, i%].

2.2. Current Algebra

Let M be a manifold or a topological space and E be a space of C®-functions on M,
K=21I, S=1I Then g(E; K, S) is identical to the current algebra s/(2, C*(M)).

If E is a space of vector-functions on M and one chooses I ®k as the Cartan
operator with & being the Cartan matrix of a simple Lie algebra g, then we obtain the
Lie algebra of currents taking values in g, g(F; K, S)=C* (M g). Of course, the
current algebra is not simple, it is a (continual) sum of algebras g.

2.3. Poisson Brackets Algebra
Let E be the algebra of trigonometrical polynomials on a circle, K=S= —id/dt.

Theorem 1. The continuum contragredient algebra g(E; —id/dt, —id/dt) is isomor-
phic to the Lie algebra of functions on a two-dimensional torus T* with Poisson

bracket {f,g}=df]0tdg|ds — dg/0tdf]0s.
Proof. In this case, relations (4) take the form
[Xo (@), Xo()]=0, [Xo (), X1 (W)= FiXs1(0¥) ,

[(Xi1(0), X1 ()] = —iXo((@¥)) ,
where ¢'=dg/dt. Then g,~E and

[X.(9), X, (W] =X, (M"Y —1f ') .

Comparing the functions ¢,(f)e™ on T? to the elements X, (¢) €g,, we see that
the Poisson bracket relations

{q)" (t)ei"s’ wm (t) eims} = i(mqo’,, '//m —ho, lprln) ei(m+ s
correspond to the algebra g(E; —id/dt, —id/dt)= ® g,. O
neZ

Note that the notion of roots for our algebras depends on the operators Kand S.
In particular, if K= S= —id/dt, then the roots of this algebra are né '(t — t), whereas
in the standard form, for the algebra with K=d?/dt?>, S=1I, one must consider
nd”(t—t'yas the roots. This algebra is unlike the current algebra, but is nevertheless
contained in our list. It arose in connection with integrable (in the sense of Liouville)
systems of a special type in [8], see Sect. 3. However, the fact that the Poisson
algebra on the torus is a graded algebra, as well as the fact that this algebra is a
natural limit of the series A4,, has probably not been noted before.

2.4. The Simplest Continuous Limit of the Series A, ,; (kernel: §")

It is easy to convince oneself using the shift operators e*%% that in the appropriate
continuous limit the Cartan matrix for the series A4, takes the form of the Cartan
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operator K=d?/dt* (with the symmetrical kernel 6”(f—t’)); here S=1. This case,
being the standard one in accordance with our terminology, gives the algebra
g(E;d?/dt?, I), which is isomorphic to those considered in Example 3 up to a
quotient over constants.

2.5. The Nonsymmetrizable Case ; (kernel: d')

Let K=d/dt, S=I. In this the kernel of the Cartan operatoris §’(t —t’) and, is clearly
not symmetrizable. This yields an algebra of temperate growth, in the sense of
Definition 2, but not of constant growth. Moreover, in this case dim L,=2. This
example is a continuum analogue of the contragredient Lie algebra g(k), however,
with a matrix k [in the defining relations (6)] which is not a generalized Cartan
matrix. Nevertheless, the Cartan operator here is a continuous limit of the Cartan
matrix of the superalgebra s/(n/n+ 1) for the choice of the simple (odd) root system
corresponding to the Dynkin scheme ® —... — ®.

Theorem 2. The dimensions of subspaces g,, of the graded algebra g(E; d|dt, I) are d,,
=dim,, g,,=2""2for |m| > 2 (dy, +, = 1 by definition); the element X, (1) is the centre
of the algebra.

Proof. The last statement is verified directly. The rest is based on an explicit
construction of a basis for this algebra using the Jacobi identities and is carried out
by induction.

Put X.,(¢,, (pl)‘-iéf[X +1(0,), X41(@,)] and consider the structure of the
subspace g,, with me Z , . Similarly for me Z_. Then it is easy to convince oneself
that g, =X,,(¢), where ¢ =g, ¢, —¢; ¢, and also

(X1 (0, X42(@)]=X 11 (920, [Xo(0)s Xs2(P)]=—2X,5(d1) -
Analogously it can be shown that g, 3 ={X W), X&(¥)}, where
XO3)=2"{[X 1 (D, X, (DI+ (=D [X 1 (), X1, (D]}, i=1,2 .

Here,

X100 X W)= (= DX @ @rpfdri™)
[Xo (0, XP5(0)1= =3X 5 (4x)

from which there follows a linear independence of the elements X} and X?).
Continuing the induction we see that if the elements X¢), (¥),..., X&) ()
generate a basis of g, ,,, m=3, then the subspace g, ,+;, has the basis

X s1y () = 41X 11 (D, XL, D] = [X 11 (), XL (D]},
XEorh D)= u{[X 4y (D, XPu DI+ X1, (), X9, (01, 15524, ,
where A; and p, are some nonzero constants. []

Note that a partial analogue of the Serre conditions, some of which are already
contained in the initial scheme, is provided by the relations [g_,,g,,]=0,
(952, X&m+1)]=0, m=2, 1 <5=d,,. In this connection recall that in the discrete
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case with the generalized Cartan matrix, the corresponding conditions can be
expressed as [g4,,(ad X4,)! "R X, ;1=0, i=j. The qualitative difference consists of
the fact that here the growth begins with the subspaces g, ;. More details on the
analogues of the Serre relations will be given in another paper.

2.6. Cases with 6-Type Kernels

Let M be a manifold of C-class and T be its C-diffeomorphism; E=C% (M),
Te(t)=q@(Tt). Define the operator K in the form Ko ()= () —@(Tt), that is
K=I-T, S=I-T""

Theorem 3. The algebrag(E;I—T,1—T Y)Y =g(E; T) is isomorphic to the algebra of
finite sequences {X, (@)}, ne Z, with the defining relations

[Xo (@), Xo (W] =0, [Xo(0), X+ (W] =+ X1, (Y (9 —T9)) ,
[X+1(0), X1 (N)]=Xo (0¥ =T (¥)) ,
or in standard form (5), where K=KS=2I-T—-T"'.
This algebra is written more simply as

[Xn((p)$ Xm(lp)] =Xn+m((anl// - l//Tm(P) .

Here, in terms of the general problem with relations (1), K(p,¥)=K,(¢,V¥)
Elp((p—Tm(p), m= ii, n=03 S((P’ W):'(pTw_lpT—l(p

Note that here the substitution X_, (@)—>X_, (T '¢) leads to the preceding
relations with K, ;=K _;.

Theorem 4. The algebra g is simple if the diffeomorphism T is minimal, that is all its
orbits are everywhere dense.

The proof is based on the Zeller-Meier theorem (see [2]) on the simplicity of
cross-products.

These algebras generate a wide class of examples which are studied (in the sense
of cross-products) as associative algebras [2,3]. Their completions lead to the
construction of C*-algebras and von Neumann factors. As already noted in the
Introduction, a special subclass of these algebras was used in [5] in connection with
the construction of some dynamical systems. Here, in particular Example 4 and its
generalizations to arbitrary dimensions are also contained.

2.7. Vector Field on a Manifold

Let V be a vector field on a manifold M, E be the algebra C® (M) and K=S=Vin
relations (4). Then the Z-graded contragredient algebra g (E; V, V) is defined by the
monomial brackets

(X, (9), X (W] = X,y (@ VY =) V) .

This algebra can be equivalently represented as an algebra of functions on the
direct product S* x M with the brackets {¢, y/} =0¢/0t Vi) — /0t V.
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2.8. The Hilbert-Cartan Operator

In all previous examples the Cartan operator was a differential or difference-
differential operator, while the space E was defined with the usual (pointwise)
multiplication. Now we consider the simplest case when the Cartan operator is of an
integral type in E with a pointwise product, or, equivalently, K=S=1 and the
multiplication in the space E is of another type.

Let E be a space of functions ¢ on C! which satisfy the Holder condition
and are expanded into a sum of holomorphic ¢, and antiholomorphic ¢_
parts with respect to some domains V. Define the multiplication in E as
Qoy=q@ Y, +o_y_. Itis useful to stress that

oy=1/2(Ho Yy+o -Hj) , (6
where H is the Hilbert transformation with the integral over L= 0V. Following our
general scheme consider the Lie algebra g(E; H) with defining relations (§) and
K=1, that is

[Xo(9), Xo()]=0, [Xo(0), Xo1 (W)= 1 X1 (Yo 9) ,

[Xi1(0), X1 (W)]=Xo(@oy) .

Theorem 5. The algebra g (E; H) is isomorphic to the algebra sl(2, E) with product (6)
in E.

This theorem is essential for an investigation of the nonlinear equations
associated with the Hilbert-Cartan operator (see Sect. 3).

Let us formulate now (without proof) a theorem which partially formulates the
continuum limits of the semi-simple Lie algebras as the graded algebras. The formal
details are left to our next publication. Note that a limit of a graded Lie algebra
gives a graded Lie algebra in any sense of the word “limit.” The notion of the limit
needs to be elucidated only for the Cartan subalgebra and the Cartan matrix
(operator) because the algebra is generated by its local part in accordance with the
adopted axioms. Once this has been done, it suffices to note that the finite-
dimensional Cartan subalgebra in the formulation of the theorem is a finite-
dimensional commutative semi-simple algebra as above, while its (“weak’) limit is
an infinite-dimensional algebra of functions on the limit space. So, the Cartan
operator is a weak limit of the Cartan matrix as an operator in these algebras. In
other words, the discrete objects play the role of a net-approximation of their
continuum limits. Note that precisely this interpretation follows also from the
theory of integrable systems, whereas it has not appeared earlier in the theory of Lie
algebras.

Theorem 6. (On some continuum limits of semi-simple Lie algebras). Let M be a
compact manifold and g a simple contragredient graded Lie algebra of constant growth
having go~E=C*® (M) as the Cartan subalgebra. Then, if the Cartan operator has
one of the following two forms:

1) Ko()=@(Tt)—=2¢(t)+@(T " 't), where T is a diffeomorphism of M,

i) Ko (t)=Vo(t), where T is avector field on M, the algebra g is a continuum limit of
a discrete case.

These algebras themselves are described in Examples 4, 6 and 7.
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Remark. 1. It is likely that each of the contragredient algebras of constant growth is
a limit (in an appropriate sense) of a discrete one. However, and this is crucial, not
every simple algebra is a limit of a simple one.

2. The case (ii) is, of course, a limiting case of (i), however we find it convenient to
consider it separately.

If it is possible to introduce on a manifold, a measure which is invariant with
respect to a diffeomorphism, or in case (ii), such a measure that the field determines
aself-adjoint operator, then on the corresponding algebra g there exists an invariant
Killing form. This fact allows us to construct a root system and to develop a
structural theory.

3. Nonlinear Systems Associated with Continuum Contragredient Lie Algebras

In [1] we suggested continuum analogue of the two-dimensional generalized Toda
lattice generated via the Maurer-Cartan equation for two-dimensional 1-form
A=A,dz, +A_dz_,dA+AANA=0, that is

[0/0z, +A4,,0/0z_+A_]=0 . @)

Here the functions 4, take values in subspaces g, ®g ., of the local part of the
algebra (with the Cartan operator rather than matrix). However, these algebras
have been defined in less generality in comparison with those given in Sect. 2. It is
more essential in view of the investigation of these equations that the realization of
the components 4 , of the 1-form used in [1] does not contain the necessary number
of arbitrary functions. For this reason representation (7) had a formal meaning
there. Now we give an explicit construction of the nonlinear equations, which are
differential or integro-differential depending on the properties of the Cartan
operator. The equations are associated with the algebras g(E; K, S) given by the
defining relations in form (4).

In accordance with the general algebraic approach for two-dimensional
nonlinear dynamical systems [9] the equations generated by representation (7) with
the functions A, taking values in the subspaces @ g, of an arbitrary

Z-graded Lie algebra g= & g¢,,, 0=m=m,
meZ
Aiz Z Eim s Eim= Z X(ia)m(f;m) > (8)
Osmzm, 1Ze<d,,

have the form
OE [0z, —0E [0z _+[E q, E_o]+ Z [Esm E_]=0,
1<m<min(my)

Z (aEim/aZT-+[E¢O>Eim])+ z [E$m’Ein]=O .

1Smsm, 1Sm<ns=m,

(€)

Here X'{), are the basis elements of g . ,,,, f5,,(z . , z_) are differentiable functions of
variables z, and z_, m . are some integers. These equations coincide only formally
with the corresponding system associated in [9] with the Lie algebras of the discrete
case. However, they are actually much more general, because, preserving the same
differential properties over z, , our equations for the case of the algebra g(E; K, S)
have a continuous (differential or integral) but not only matrix structure as the
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equations for the functions f. It is caused by that fact the the structural “constants”
for the algebra g(E; K, S) really are the kernels of the operators generated by K
and S.

Note that Eq. (9) admit a gauge arbitrariness which can be eliminated, for
example, by equating E_, to zero with an appropriate transformation
A, —g 200z, +A,)g with a function g=exp Xy (p(z4,2_)).

In the simplest case when the functions 4 , take values in the local part of g, that

iS m:t ’:..1,

As=Xo(us)+ X, (fs) (10)
uy=f1o,f+=f%, and system (9) reduces with account of commutation relations
(4) to the unknown equations

Ou_[0z, —0u,[0z_+S(f+f-)=0, Ku,=+40/0z,Inf; . (11

They lead to the following nonlinear equation of the second order for the gauge
invariant function g=Inf, f_

Ao=0%g/0z,0z_=Kexpo , (12)
where K= KS. This equation was given in [1] as a continuous generalization of the
Toda lattices together with a formal solution of the Goursat problem to it for the
case of invertible operator K. Evidently, the algebras g and g’ with KS=K'S’ give

the same Eq. (12).
In gauge E_,=0 the functions A4, from (10) are rewritten in the form

Ay =Xow)+X (1), A4-=X_((expo) .
Equation (11) reduce to
Ou/dz_=Sexpg , Ku=0g/oz, , (13)

whereas Eq. (12) remains unchanged.
For the case of invertible operators K and/or S Egs. (12) a1~1d (13) admit various
equivalent forms. For example, for the invertible operator K we have

ouloz_=SexpKx , u=80x/0z, , Ax=expKx , (141)
where x=K"!p; for invertible K:
0u/0z_=SexpKy , u=0yloz, ; Ay=SexpKy , (141i)
where y=K "1g;
ouloz_=SexpK*w , u=Kow/z, , Aw=K *SexpK’w , (14iii)

where w=K ~?p.
Note that for the invertible and symmetrizable operator K Eq.(12) is a
variational Lagrange-Euler equation with the Lagrangian density

L={dw(t)[1/20x(t)/oz, [ dt'K(t,t")0x(t)/0z_ +exp Kx(1)] .

Here we omit for brevity the dependence of the function x on the variables z, ;
v()K(t,t)=v(t)K(', ).

Let us discuss some particular cases of these equations. Firstly, consider
K=KS=0, for example, when K=1+iH=H,, S=1—iH, with H being the
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Hilbert operator with the Cauchy kernel (H?>= —1), that is, the kernels H, are

8 ,-functions. Then Eq. (12) reduces to the Laplace equation, 49=0. If K=1 (the

kernel is §-function) the equation coincides with the Liouville equation, 4p=e€%. A

nontrivial example of Eq. (12) of integro-differential type, considered in [1], is given

by the operator K=H, or K=H_, Ao(t) = [ dt'exp o(¢')/(t' —t+i0). Example 8 in
L

Sect. 2 gives an explanation why this equation is exactly integrable and why its
general solution is related with those of the Liouville equation (see [1]).

The purely differential (with respect to variables z,, z_ and ¢) subclass of
Eq. (12)is obtained, for example, using the operators K= 9%/0t*> and S= I (Example
4 from Sect. 2, the kernelis § ,,), or, equivalently, K= §=0/0t (the kernels of Kand S
are 0 ;). Equations (12) and (14) then have the forms

AQ=(€Xp Q),tt P Ax=exp (x,tt) 5 Ay:y,ttexpy,t > Aa)=exp @4 (15)

respectively. This example for functions depending only on z, +z_ and ¢, was
considered in paper [8] in the context of integrable Hamiltonian systems associated
with the Poisson algebra (see Example 3 in Sect. 2). Equations (15) are a direct
continuous analogue of the two-dimensional Toda lattice related with the series A4,,.
This was discussed in [5].

A different (and also purely differential) example is given by the operator K
=0/0t (with the kernel J ,, see example 5 in Sect. 2) and S=1.

Note that the involutive integrals of motion 7, for the system described by
Eq. (12) with an invertible operator K in which the function ¢ depends on two
variablesz, +z_=tand¢, thatis,g ., = Kexp g, have the form I, = SpL¥, 01, /0t =0.
Here L=X,(K™"0,)+X (1) +X_,(exp ¢) —is the Lax-operator, L .= [L, 4], and
24=X,(R 10,0+ X, (1)~ X_, (expo).

For this case, the continuous analogue of the (proper) Backlund transformation
(i.e. difference KdV equation) is the equation

0,.=d/di(e®) . (16)
This equation has the following Lax-pair
L=X.(e)+X_1(p) , A=X,,(¢) .

It immediately follows from the Lax representation (up to trivial transformations)
that ¢ =exp2¢ yields Eq. (16). The differentiation of (16) with respect to t gives
20 .. =d/d* ().

Conclusion

To conclude, we would like to stress that this paper represents a prelude rather than
the complete story on a (in our opinion) very promising new class of infinite-
dimensional continuum contragredient Lie algebras. These algebras, generated by
their local part whose elements satisfy the defining commutation relations, can be
considered as a continuous limit of the ordinary contragredient Lie algebras. In
particular, the analogues of Kac-Moody algebras of finite growth arise when the
generalized Cartan matrix is replaced by some distribution. In some special cases
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our algebras coincide with known algebras, which are considered here from a new
standpoint.

It remains to develop a structural theory for the continuum contragredient Lie
algebras with an appropriate bilinear form, system of roots, their “reflections,” and
the theory of their representations, in particular, with the highest weight modules,
formulas for the characters, etc. Then, it will be possible to develop effective
methods for the solution of the integrability problem for nonlinear systems
(differential or integro-differential) associated with these algebras, which are the
continuous analogues (in the sense of the Volterra method) of the discrete case.

We believe that the construction of the theory of the algebras in question will be
useful for many branches of mathematics and physics and will lead to unexpected
possibilities for them.
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Note added in proof. The axiomatic formulation of continuum Lie algebras g (E; K, S) given in this
paper can be generalized for the case when E is an arbitrary associative noncommutative algebra
and/or the local algebra does not, in general, generate g (E; K, S) as a whole. These generalizations
will be published in our new paper as well as several new examples of continuum Lie algebras, in
particular, an algebra of polynomial differential operators, different versions of g/(c0), and a wide
class of cross-product Lie algebras. Moreover, there we will also describe Kac-Moody algebras,
the algebra S, Diff 72 of infinitesimal area-preserving diffeomorphisms of the torus T2, Fairlie-
Fletcher-Zachos sine-algebras and their generalizations, etc., as special cases of cross-product Lie
algebras. Note that already at the end of April (when the present paper appeared as a preprint),
D. B. Fairlie illuminated a connection between Example 2.3 and sine-algebra and made us
acquainted with this result. We are grateful to him for this information.





