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Abstract. We display an infinite dimensional family of complete Ricci-flat
Kéhler manifolds of complex dimension 2, for which the second homology is
infinitely generated. These are obtained from the Gibbons-Hawking Ansatz (2]
by using infinitely many, sparsely distributed centers.

Introduction

In [2], Gibbons and Hawking construct families of complete Ricci-flat Kahler
metrics on a class of non-compact 4-manifolds N, . The metrics are asymptotically
locally Euclidean in the sense that N, ~ S*/Z,, and the metrics approach, at
infinity, the locally Euclidean metric on the cone C (S3/Z,). Another description
of these metrics was given by Hitchin [3]. Further examples, with boundary a
spherical space form S*/I', I'< SU(2), and a characterization of these metrics
(Torelli theorem) among asymptotically locally Euclidean metrics were obtained
by Kronheimer [5, 6].

In this paper, we show that one may also obtain complete Ricci-flat Kahler
metrics corresponding to the case “k = oo™ of the Gibbons-Hawking metrics.
These metrics are no longer asymptotically locally Euclidean, or of finite action,
and are carried by a 4-manifold whose 2°¢ homology is infinitely generated. It is
only recently (7) that examples of complete metrics of non-negative Ricci
curvature have been exhibited on manifolds of infinite topological type.

The example shows that a complex 2-manifold supporting a complete Ricci-
flat Kahler metric need not be the complement of a divisor in a compact complex
surface since the homology of such a complement is certainly finitely generated.
This indicates that a conjecture of Yau [8,9] concerning the existence of such
compactifications is not true without some strengthening of the hypothesis.

These metrics also provide the first example for which the moduli space of
complete Ricci-flat metrics on a given manifold is infinite dimensional.
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1. Construction of the Manifold

We begin by considering any divergent sequence of distinct points p;e R?, je N.
We will construct a 4-manifold M and a smooth map n: M —»IR? such that 7~ " (p;)
is a point for all j, but 77" (p)~ S' for peR>*—{p;}. To begin, we let 7,
M,-R>—{p;} be the principal S' bundle whose Chern class is —1 when
restricted to a small sphere around any p;; here “small” means of radius less than
ri= T}g&? I px — p;l - Since

H,(R*—{p;}, Z) ~ (—BZ

is the free abelian group generated by the homology classes of these small spheres,
this uniquely determines the Chern class in

HZ(]RS—{PJ}»Z)ZHZ,

and thus determines a unique principal S ! bundle. Thus =,* (B, (py) is
diffeomorphic to a punctured 4-ball B;— {0} <R* in a manner such that the S*
action becomes the action of S = C on (E2 IR* by scalar multiplication. We then
define

s

M=M,u

i=1

ji=1

where the equivalence relation ~ identifies B {0} with =g * (B,,(p;)). The map
7o: M, — R clearly extends to a smooth map 7: M —R3. Note that there is an S*
action on M and 7 is just the projection to the orbit space, with { p J} corresponding
to the fixed points of the action.

To understand better the topology of M, consider the case in which the points
p; in the description above are glven by p;=(x;,0,0), with x; <x;,, and let
D;=n""([p;, pj+,]) be the inverse image of the line segment [pj, pi+1 ]R3
Each D;is a smoothly embedded 2-sphere with self-intersection —2, meeting D, ,
transversely at the point 7~ ' (p; ;). Clearly, the manifold M is diffeomorphic to
the open subset N < M consisting of the tubular neighborhood of these spheres. It
follows that M is simply connected and

y/A q=0
H,(M,Z) = @Z qg=2

j=1

0 otherwise.

This description can be summarized by saying that M is the result of plumbing
an infinite family of 2-spheres according to the “Cartan matrix”

-2 1
1 -2 1
A, = 1 -2 1
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Note that the Gibbons-Hawking metrics with & centers correspond to
plumbing a collection of (k — 1) 2-spheres according to the Cartan matrix of 4,,
cf. [1, 3].

2. The Gibbons-Hawking Metric

We now restrict somewhat the above choice of the sequence {p;}7 inR*. Namely,
we impose the extra condition that, for some point p, € R*® we have

=1 P —pjll

for example, we might take p; = (j2,0,0) and let p, = (0, 0, 0). It then follows that
V:R*—{p;} >R defined by
1 & 1
Vip)== Y ——
D=3 5 =]

isa smooth function onR* — {p;} . Clearly, Vis a solution of the Laplace equation
AV=d*=dV=0,

where * is the Hodge * operator on R3. Further, it is easily verified that the
cohomology class of the closed 2-form % *dV represents the Chern class of the
principal S' bundle n,: My—>R?>—{p;} in deRham cohomology. There is
therefore a connection on m,: My—R>—{p;} with curvature *dV. Let
we Q' (M,) be the connection 1-form for such a connection, so that

nk (xdV) = do .

The form w is then unique up to gauge transformations, since R*> — {p;} is simply
connected. The Gibbon-Hawking metric on M, is given by

g=Il/coOa)+ Vrkds?,

where ds? is the Euclidean metric on R3. It has anti-self dual curvature tensor, as
follows from dw = n§ (*d V'), see for example [4]. In particular g is Ricci-flat. Since
M, is simply connected, it follows that M, is hyperkdhler, (cf.[4]), i.e. there is an
entire 2-sphere’s worth of complex structures for which g is a Kahler metric.

To display these parallel complex structures explicitly, let e,, e,, e; be any
oriented orthonormal basis for R 3. Consider these as constant vector fields on R?
and let é, ,é,, é; be their horizontal lifts to M, via the connection w. Further, let X
denote the generator of the S* action on M,. Then

VI/ZX, V—1/2 é17 V- 1/2 é27 V_1/2é3,
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is an orthonormal frame for M, . Relative to this frame, the matrix

0 -1 0 0
1 0 0 0
0 0 0 -1
0 0 1 0

defines an almost complex structure, depending only on the choice of e, , which
one may verify to be parallel, and hence integrable.
The Gibbons-Hawking metric now continues smoothly across the isolated

points 7~ '(p;). Indeed, near p;, we have V=%+f£ Vo+/f, where

r(p)=Ilp—p;l, and where f is smooth. If w, is the connection form on
75 ' (B(p;) — {p;}) with dw, = n§ (*dV}), then it is easily seen that the metric

1
&= A wo QW + Vou§ (ds?)

extends smoothly over 75 ' {p;} = M. In fact, g, is just the flat metric defined near

7o (p;), as one sees by performing the coordinate change r — V2r. Clearly, the
metrics g and g, differ by a smooth bilinear form, depending on f only, so that g
extends smoothly to M.

It follows that the curvature tensor in again anti-self dual, and, since M is
simply connected, this makes M hyperkdhler. As a consequence, any of the
parallel complex structures on M, extends as a parallel complex structure to
M. Choosing one makes (M, g) a Ricci-flat Kéhler surface.

As a particular case, suppose again that p; = (x;,0,0), with x;<x;,, and
2 1/|x;] < co. If e, points along the x-axis, then the 2-sphere D; described in Sect. 1
is 2 holomorphic curve with respect to the complex structure defined above. If, on
the other hand, we consider the complex structure corresponding to any other
direction in R?, then M contains no holomorphic curves: for example, if ¢, points
along the z-axis, then M becomes biholomorphically equivalent to the hypersur-
face in €3 defined by the equation

i (0-9)

j=1 Xj
Briefly, to see this, note that the projection, 7, of M onto the (e,,e;) plane,
thought of as €, is holomorphic. This defines the coordinate {5 above. The fibre
7~ 1({;) is generically one orbit of the C* action, the complexification of the S*
action on M defined in Sect. 1. Note that C*~{{, - {, =1} = €*. The only
exception is where (5 is the image of one of the p;, in which case 7~ ' ({3) is the
curve {; - {, =0.

This description is precisely analogous to the description [3] of the complex
manifolds arising from the Gibbons-Hawking ansatz in the case of finitely many
centers. In view of the classification scheme of [6], one might expect a similar limit
for the family of gravitational instantons corresponding to the Cartan matrices D,
as k— oo.
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3. Completeness

Let z,e M be a Cauchy sequence with respect to g, let y,=n(z,) denote the
projection of the sequence to R3. We claim that {z,} converges. If not, we have
¥, =% p, for all but finitely many n, so without loss of generality, y, = p, for all a.
Let J denote distance in R3 — {p,} with respect to the metric (ds*)/2r, where
r(p) = | p— p, |; let d denote distance in M with respect to g. Then forany a,be M
we have X
o(a,b)> 6 (n(a), n(b)).

Indeed, it suffices to observe that for any curve y in M, the length of zy with
respect to V' ds? is less than that of y with respect to g, since g was constructed so as
to make (M, 0:8) > (R?*—{p;},Vds*) a Riemannian submersion. But since
V> 1/2r, ny is even shorter with respect to (ds?)/2r. Since & (a,b) is just the
infimum of the lengths of curves joining a and b in M, the inequality follows.

Thus y, is a Cauchy sequence with respect to ds?/2r. We claim that | p, — y, | is
therefore bounded. Indeed, we know that for some C,

0,y <C

for all n, since the sequence is Cauchy; but for any curve a:[a, 5] >R* — {p, } we
2

have that the length of o with respect to 9’257 satisfies

r(b)

L(w) = I

|a’r> r r(a)
lf N7 V2Ir® -Yr@l,

so that 6 (y, y,) Z /2 1)/r(va) — /(I

2
Hence r(y,) < (% +1/r (y1)> = R for all n, and y, is a bounded sequence.

It follows that for some R the sequence {z, } is containedinz ~* (B (p,)). Since
this is compact, it follows that {z,} converges.
To summarize, we have proved

Theorrem. (M, g) is a complete, hyperkdihler 4-manifold with infinitely generated
homology group H, .

We note finally that we have produced an infinite-dimensional family of such
metrics on M. Indeed, as in the finite case [3], the configuration of points {p;} can
be uniquely recovered from the metric g, to within an isometry of R3. One way to
prove this is to observe first that the natural isometric circle action on M is
uniquely determined as being the only circle action to preserve all the complex
structures. (Hyperkdhler 4-manifolds with more than one such circle action can be
classified, and ours is not on the list.) The projection n: M —IR? is then the
momentum mapping for this action, in the sense of [4], and the configuration {p;}
is the image of the fixed point set.
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