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Abstract. We display an infinite dimensional family of complete Ricci-flat
Kahler manifolds of complex dimension 2, for which the second homology is
infinitely generated. These are obtained from the Gibbons-Hawking Ansatz [2]
by using infinitely many, sparsely distributed centers.

Introduction

In [2], Gibbons and Hawking construct families of complete Ricci-flat Kahler
metrics on a class of non-compact 4-manifolds Nk. The metrics are asymptotically
locally Euclidean in the sense that dNk& S3/Zk, and the metrics approach, at
infinity, the locally Euclidean metric on the cone C(S3/Έk). Another description
of these metrics was given by Hitchin [3]. Further examples, with boundary a
spherical space form S3/Γ, Γa SE/(2), and a characterization of these metrics
(Torelli theorem) among asymptotically locally Euclidean metrics were obtained
by Kronheimer [5,6].

In this paper, we show that one may also obtain complete Ricci-flat Kahler
metrics corresponding to the case "k= GO" of the Gibbons-Hawking metrics.
These metrics are no longer asymptotically locally Euclidean, or of finite action,
and are carried by a 4-manifold whose 2nd homology is infinitely generated. It is
only recently (7) that examples of complete metrics of non-negative Ricci
curvature have been exhibited on manifolds of infinite topological type.

The example shows that a complex 2-manifold supporting a complete Ricci-
flat Kahler metric need not be the complement of a divisor in a compact complex
surface since the homology of such a complement is certainly finitely generated.
This indicates that a conjecture of Yau [8,9] concerning the existence of such
compactifications is not true without some strengthening of the hypothesis.

These metrics also provide the first example for which the moduli space of
complete Ricci-flat metrics on a given manifold is infinite dimensional.
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** Partially supported by N.S.F. grant DMS 86-10730
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1. Construction of the Manifold

We begin by considering any divergent sequence of distinct points p} e R 3 ,yeN.
We will construct a 4-manifold M and a smooth map π: M -* R 3 such that π ~1 (p^
is a point for ally, but π " 1 ^ ) ^ ^ 1 for pelR3 — {Pj}. To begin, we let π 0

M 0 -^R 3 — {pj} be the principal S1 bundle whose Chern class is —1 when
restricted to a small sphere around anyp,-; here "small" means of radius less than

Pir — PiW. S i n c e

7 = 1

is the free abelian group generated by the homology classes of these small spheres,
this uniquely determines the Chern class in

. 7 = 1

and thus determines a unique principal Sι bundle. Thus TIQ1 (Br (pj)) is
diffeomorphic to a punctured 4-ball B} — {0} cz R 4 in a manner such that the S1

action becomes the action of S1 a C on C 2 = R 4 by scalar multiplication. We then

M=Mou (J Sj := M0U U $j/~,
J = l . 7 = 1

where the equivalence relation ~ identifies Bj — {0} with π0

 x (^r (?_/))• The map
π0: Mo -^R3 clearly extends to a smooth map π: M->R3. Note that there is an S1

action on Mand π is just the projection to the orbit space, with {pj} corresponding
to the fixed points of the action.

To understand better the topology of M, consider the case in which the points
Pj in the description above are given by Pj = (x7 ,0,0), with Xj<xj+1 and let
Dj = π~1([pj9pj+1]) be the inverse image of the line segment [Pj,Pj+ι]^ΉL3.
Each Dj is a smoothly embedded 2-sphere with self-intersection — 2, meeting Dj+ ί

transversely at the point n"1 (pj+1). Clearly, the manifold M is diffeomorphic to
the open subset N a M consisting of the tubular neighborhood of these spheres. It
follows that M is simply connected and

HJM,Z) =

ΊL

0 otherwise.

This description can be summarized by saying that M is the result of plumbing

an infinite family of 2-spheres according to the " C a r t a n matr ix "
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Note that the Gibbons-Hawking metrics with k centers correspond to
plumbing a collection of (k — 1) 2-spheres according to the Cartan matrix of Ak,
cf. [1, 3].

2. The Gibbons-Hawking Metric

We now restrict somewhat the above choice of the sequence {Pj}? in IRA Namely,
we impose the extra condition that, for some point /?oeR3 we have

for example, we might take/?7 = (/2,0,0) and let/?0 = (0,0,0). It then follows that
V: R 3 - {pj} ->R defined by

is a smooth function on IR3 — {pj}. Clearly, Fis a solution of the Laplace equation

where * is the Hodge * operator on R 3 . Further, it is easily verified that the

cohomology class of the closed 2-form -=— *dV represents the Chern class of the
In

principal S1 bundle π 0 : M 0 -»R 3 — {pj} in deRham cohomology. There is
therefore a connection on π0: M 0 -»R 3 — {pj} with curvature *dV. Let
ωeΩ1 (Mo) be the connection 1-form for such a connection, so that

The form ω is then unique up to gauge transformations, since R 3 — {/?_,.} is simply
connected. The Gibbon-Hawking metric on Mo is given by

g = 77 co Θ co + Vπ% ds2 ,

where ds2 is the Euclidean metric on R 3 . It has anti-self dual curvature tensor, as
follows from dω = π$ (*dV), see for example [4]. In particular g is Ricci-flat. Since
Mo is simply connected, it follows that Mo is hyperkahler, (cf. [4]), i.e. there is an
entire 2-sphere's worth of complex structures for which g is a Kahler metric.

To display these parallel complex structures explicitly, let e1,e2, e3 be any
oriented orthonormal basis for R 3 . Consider these as constant vector fields on R 3

and let e1 ,e2, e3 be their horizontal lifts to Mo via the connection ω. Further, let X
denote the generator of the Sι action on Mo. Then

V1/2X, V-1/2e^ V~1/2

2,



640 M.T. Anderson, P.B. Kronheimer, and C. LeBrun

is an orthonormal frame for Mo. Relative to this frame, the matrix

0

1

0

0

- 1

0

0

0

0

0

0

1

0

0
j

0

defines an almost complex structure, depending only on the choice of ex, which
one may verify to be parallel, and hence integrable.

The Gibbons-Hawking metric now continues smoothly across the isolated

points Indeed, near pj9 we have V= y- + / = Vo +/, where
r(p)= \\p—Pj\\> a n d where / is smooth. If ω0 is the connection form on

1 i i { } ) i h § d) i i i h h1

j

j) ~ {Pj}) with dω0 = π§ (*dV0)9 then it is easily seen that the metric

V0πξ(ds2)

extends smoothly over π$ M. In fact, g0 is just the flat metric defined near
πo ί (Pj\ a s o n e s e e s by performing the coordinate change r-> ]/2r. Clearly, the
metrics g and g0 differ by a smooth bilinear form, depending on / only, so that g
extends smoothly to M.

It follows that the curvature tensor in again anti-self dual, and, since M is
simply connected, this makes M hyperkahler. As a consequence, any of the
parallel complex structures on Mo extends as a parallel complex structure to
M. Choosing one makes (M,g) a Ricci-flat Kahler surface.

As a particular case, suppose again that Pj = (Λ^.,0,0), with Xj<xj+ί and
Σί/\Xj\ < oo. If eγ points along the x-axis, then the 2-sphere Dj described in Sect. 1
is a holomorphic curve with respect to the complex structure defined above. If, on
the other hand, we consider the complex structure corresponding to any other
direction in R 3, then M contains no holomorphic curves: for example, Ίϊeι points
along the z-axis, then M becomes biholomorphically equivalent to the hypersur-
face in (C3 defined by the equation

Briefly, to see this, note that the projection, π, of M onto the (e2,e3) plane,
thought of as (C, is holomorphic. This defines the coordinate ζ3 above. The fibre
π~1 (C3) is generically one orbit of the <C* action, the complexification of the S 1

action on M defined in Sect. 1. Note that (C* - {ζx C? = 1} <= &1- The only
exception is where ζ3 is the image of one of the p^ in which case π~ι (ζ3) is the
curve (i ζ2 = 0.

This description is precisely analogous to the description [3] of the complex
manifolds arising from the Gibbons-Hawking ansatz in the case of finitely many
centers. In view of the classification scheme of [6], one might expect a similar limit
for the family of gravitational instantons corresponding to the Cartan matrices Dk

as k -> oo.
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3. Completeness

Let z n e M b e a Cauchy sequence with respect to g; let yn = π(zn) denote the
projection of the sequence to R 3 . We claim that {zn} converges. If not, we have
yn Φ/?! for all but finitely many n, so without loss of generality, yn Φp1 for all n.

Let δ denote distance in R 3 — {px} with respect to the metric (ds2)/2r, where
r(p) = || p — /?! || let δ denote distance in M with respect to g. Then for any a,beM
we have

δ(a,b)>δ(π(ά),π(b)).

Indeed, it suffices to observe that for any curve γ in Mo, the length of πγ with
respect to Vds2 is less than that of γ with respect to g, since g was constructed so as
to make (M0,g)-»(R3 - {pj}, Vds2) a Riemannian submersion. But since
V> l/2r, πγ is even shorter with respect to (ds2)/2r. Since S(a,b) is just the
infimum of the lengths of curves joining a and b in M o , the inequality follows.

Thus yn is a Cauchy sequence with respect to ds2/2r. We claim that \\pί — yn || is
therefore bounded. Indeed, we know that for some C,

δ(y,yn)<C

for all ft, since the sequence is Cauchy; but for any curve α: [α, b]->R3 — {Pi} we
ds2

have that the length of α with respect to ^— satisfies

^ J ^ έ ]/2 \]/rφ) -
() ]/2r

so that δ(y, yn) ^ j/2 ||/r(jμπ) — j/r (jv±) |.

/ c , \2

Hence r (yn) < —= + }/r{yι)\ =R for all n, and yn is a bounded sequence.

It follows that for some R the sequence {zn} is contained in π " 1 (BR{pγ)). Since
this is compact, it follows that {zn} converges.

To summarize, we have proved

Theorrem. (M, g) is a complete, hyperkahler 4-manifold with infinitely generated
homology group H2.

We note finally that we have produced an infinite-dimensional family of such
metrics on M. Indeed, as in the finite case [3], the configuration of points {pj} can
be uniquely recovered from the metric g, to within an isometry of R 3 . One way to
prove this is to observe first that the natural isometric circle action on M is
uniquely determined as being the only circle action to preserve all the complex
structures. (Hyperkahler 4-manifolds with more than one such circle action can be
classified, and ours is not on the list.) The projection π: M-»R3 is then the
momentum mapping for this action, in the sense of [4], and the configuration {pj}
is the image of the fixed point set.
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