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Abstract. A natural model of a discrete random surface lying above a two-
dimensional substrate is presented and analyzed. An identification of the "level
curves" of the surface with the Peierls contours of Ising spin configurations
leads to an exactly solvable free energy, with logarithmically divergent specific
heat. The thermodynamic critical point is shown to be a wetting transition at
which the surface height diverges. This is so even though the surface has no
"downward fingers" and hence no "entropic repulsion" from the substrate.

I. Introduction

Simple geometrical models of surfaces can be useful for understanding various
aspects of interface structure and phase transitions. In this paper we analyze in
detail a particular three-dimensional random surface model, first introduced in
[AN] (see Sect. II for the definition). The main conclusions are:

(i) The model is directly related to the standard 2-d Ising ferromagnet and thus has
an exactly solvable free energy with a logarithmically divergent specific heat
singularity.
(ii) The singularity corresponds to a transition from partial to complete wetting;
i.e., from finite to infinite height of the surface above the substrate.

Elementary models of surfaces can be constructed on the simple cubic lattice by
assigning a single-valued variable h(x, y) e Z to each point (x, y) e Z2. This variable
is the height of the surface; we place a unit-sided square, or plaquette,
symmetrically through the point (x, y, h(x, y)) parallel to the (x, y) plane. We then
fill in between these plaquettes with others whose normals are parallel to the TL2

plane. Such a model, with configurational energy,

J Σ IΛW
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usually with p = l,2, is termed solid-on-solid (SOS). In a seminal work, Frόhlich
and Spencer [FS] proved that there is a phase transition of roughening type: this
means essentially that at low temperature, <|/z(r) — h(0)\} is uniformly bounded in r,
but for high temperature, <|Λ(r) —Λ(0)|> diverges as |r|—>oo. By introducing the
additional restriction h{τ) — h(s) = ± 1 whenever |r—s| = l, van Beijeren [B2]
introduced the F-SOS model - the surface ripples in the ground state, with
excitations which are height changes of ±2 in one or other of the diagonal
directions. The configurations thus constructed are isomorphic to those of the
6-vertex model with the F-weighting, which was solved by Lieb [L; LW] for
thermodynamics: thus the F-SOS model has an infinite order phase transition.
The low-temperature phase has been shown to have bounded fluctuations by
Forrester [F], Only for one finite temperature is the high-temperature phase
understood - there <(/ι(r) — h{0))2 > ~ log |r| as |r| -* oo.

For the surface of phase-separation in the 3-d Ising model, the first result is that
of Dobrushin [Do] showing that at low enough temperatures the interface
fluctuations are bounded. Burton et al. [BCF] had suggested earlier that there is a
roughening transition with thermodynamic behavior exactly like the 2-d Ising
model; this was based on a mean field idea, and it does not agree with the F-SOS
results. The 2-d Ising critical temperature has been proved [Bl] to be a lower-
bound to such a roughening transition, the existence of which is not proved since it
might occur at the 3-d critical temperature and thus be trivial.

In this paper, we consider surfaces restricted to lie above a substrate which
differentiates energetically between the two coexisting thermodynamic phases
which are separated by the surface in question. The most obvious way to achieve
this restriction is to take h(x,y)^0 in the above SOS model. Drawing on non-
rigorous notions within the renormalization group framework, Bricmont et al.
[BEF] have shown that the downward fluctuations in the surface are restricted by
the substrate plane sufficiently strongly to drive the interface away to infinity; this
is the mechanism of entropic repulsion [FF]. To produce a phase transition, one
imposes a suitable binding of the surface to the substrate. This binds the surface to
the substrate at low enough temperatures. At present it appears to be a mild heresy
to question that the only mechanism which produces unbinding is the entropic
repulsion one. Nevertheless, in the next section, we describe a random surface
model with an unbinding transition which relies on a different mechanism. Thus
entropic repulsion is a sufficient but not necessary condition. Our model reduces a
3-d system to an exactly solvable 2-d model, as the van Beijeren F-SOS
construction does. Thus we get an exact description of the critical phenomenon
associated with the transition. By calculating the step free energy in our model, we
obtain additional physical evidence that our model shows simultaneous roughen-
ing and unbinding of the surface, since in the high temperature phase the step free
energy vanishes. This allows deformations of the surface to proliferate. Van
Beijeren has performed the same type of analysis for the F-SOS model.

As a final remark, the reason this transition is called wetting is that, if the
surface separates phase A below itself from phase B above, at low-temperature
phase A is squeezed out. On going to the high temperature phase, a macroscopic
slab of phase A intercalates itself between B and the substrate; we say A wets the
substrate perfectly. For further information and references, the reader may consult
Dietrich [Di], van Beijeren and Nolden [BN], Weeks [W] or Abraham [A].
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II. The Model: Definition and Main Results

The definition of our model given in this section is in terms of the height function
h(r) of the phase separating surface. An alternate description which focuses on the
multilayers of molecules between the substrate and the surface is given in
Appendix B.

We begin with the configurational energy which has two parts. The first part,
consisting of a surface-tension contribution τ > 0 for each plaquette of the surface,
is

τ Σ \h(τ)-h(s)\ + τAt. (2.1)
|r- | = l

The first term comes from plaquettes perpendicular to the substrate plane and the
second from those parallel Au the number of parallel faces, also equals the area of
substrate in contact with molecules. The second term, describing a contact
interaction of the molecules with the substrate, is simply

- M i = - ^ i Σ 1> (2.2)
r: Λ(r) Φ 0

where εx is a binding energy per molecule. The total Hamiltonian is thus

eJiV (2.3)
|r-s| = l

To make J f and our model well defined, we begin with a finite region A c Z 2 of
the substrate and pin the surface outside of A:

(i) /ι(r) = 0 for every r outside of A.
Of course, the surface is constrained to lie above the substrate:
(ii) h(τ) is a non-negative integer for every r in A.

There are two additional constraints to the allowed configurations. The first of
these is a bound of 1 on the magnitude of the (discrete) gradient of the surface and is
weaker than the F-SOS restriction of [B2] mentioned in the introduction:
(iii) Λ(r) - Λ(s) = 0, ± 1 for |r - s| = 1.
The final restriction is to disallow all "downward fingers" of the surface:
(iv) For every r in A, there is some nearest-neighbor path from r to an r' outside of
A along which h is non-increasing.

Although the final restriction (iv) is a serious (and perhaps objectionable) one, we
wish to point out that the configurations of our surface are much more general
than those of the so-called wedding cake model (see, e.g., [BEF]) where there is
only a single local maximum. Our surface can have many local maxima, as well as
saddle points; only "hidden valleys" are ruled out. The reason for our special
restrictions (iii) and (iv) is seen in the next proposition. It is a consequence of the
simple fact that the contours (on the dual lattice) which separate regions with
|Jft| = l may be identified with the Peierls contours of an Ising model which
separate parallel spin clusters (see also Appendix B and Fig. 1 there).

Proposition II-l. For a finite A c Z 2 , the height configurations satisfying (i)—(iv) are
in one-to-one correspondence with Ising spin configurations {σΛ(r)= ± 1 : r e Z 2 } in
which σΛ(τ) = + 1 for every r outside A. The correspondence is obtained by
identifying h(r) with the minimum number of Peierls contours crossed, among all
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possible nearest neighbor paths from r to the complement of A. Under this
identification, and setting b = εί—τ,

(σΛ(r)σΛ(s)~l) + b Σ (μΛr)-l), (2.4)
L reΛ

where μΛ(t) = 1 (otherwise 0) only if some path reaches from r to the complement of
A with no spin changes - i.e., only if r is in the same parallel spin cluster as the
complement of A.

When εx = τ, we have the 2-d Ising ferromagnet in zero field with -f boundary
conditions and a coupling only between neighboring spins of strength τ/2. The free
energy was obtained by Onsager [O]: there is a phase transition at a temperature
T=TC{2), where

sinh(τ/Tc(2)) = l (2.5)

with an associated logarithmic divergence of the specific heat. The notation Tc(2) is
meant to remind one that the transition in the 3-d system occurs at the 2-d Ising
critical temperature, as originally suggested by Burton et al. [BCF] for the wetting
model.

For general εx and τ, we have from (2.4) that the free energy f(T, b), as a function
of temperature T and b = ε1 — τ, is given by

(2.6)

where f{T,0) is the Onsager free energy and

?(T,b) = b-T lim -1-log ( e x p ( - \ Σ μΛ(r))) (2.7)
Λ->Έ*\Λ\ \ \ T reΛ J/T

Here the limit is in the van Hove sense, \Λ\ denotes the number of sites in A, and
< >Γ denotes a thermal average with respect to the Gibbs distribution of the Ising
model {σ^r)} at temperature T (with b set to zero in J f). The next proposition
shows that the thermodynamic singularity at T= Tc(2) is unchanged for εx > τ; the
proof may be found in Sect. IV below. The simple formula obtained for the free
energy difference / is closely related to the fact (see also Theorem II-4 below) that
the surface configurations for b = 0 and b > 0 essentially differ only in the presence
of an extra monolayer of molecules sticking to the substrate when b > 0.

Theorem II-2. For 0< T< oo and b = ε1 — τ'^:0, the free energy satisfies

f(T,b) = f(T,Q) + b. (2.8)

The next theorem identifies the b ̂  0, T ^ Tc(2) phase of the random surface as a
wet phase in which the surface diverges as A^Έ2 (through any sequence of finite
regions which eventually cover all oϊΈ2). We denote by {hjj): r eZ 2} the random
heights given by our model with Gibbs distribution proportional to exp( — J^/T);
the T and b dependence is suppressed in this notation. The b = 0 results are derived
in Sect. Ill and extended to b > 0 in Sect. IV. The theorem also gives, from Sect. V, a
partial result on the height divergence rate, valid for large T.
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Theorem II-3. For T^ Tc(2) andb^O, the height of the surface at the origin hΛ(0)
diverges asΛ^Έ2, in the sense that there is some choice of constants KΛ (depending
on T, but not b) with KΛ-^co as Λ^Έ2, such that

Pτ(hΛ{ϋ)^KΛ)^\ as A^Z2. (2.9)

For T sufficiently large, KΛ may be taken as

KΛ = γ'R(A)/\og(R(A)), (2.10)

where R(Λ) is the distance from 0 to the boundary of A.

Remark. We believe that the actual height divergence is linear in R(A) and that this
is valid for all T> Tc(2). At T= Tc(2\ the divergence should be slower, perhaps like a
fractional power of R.

The next theorem shows that for b^O and T<TC(2\ the substrate is only
partially wet in the sense that the wet regions (droplets) remain finite in both height
and lateral extent as A ->Z2. This remains valid for b > 0 except for the presence of a
wet monolayer. For b ^ 0 the mean height diverges as T-> Tc(2) from below, but no
faster than (Tc- T)~1/8. The b = 0 results of the theorem are derived in Sect. Ill, the
b + 0 results in Sect. IV. We define the droplet of the origin 2A as the connected
cluster of sites with hΛ(r) ^ 1 which contains the origin [if hΛ(0) = 0, then 2ιΛ is the
empty set].

Theorem Π-4. For b^O and T< Tc(2% the droplet 2A remains finite as A-+TL2 in the
sense that

lim ΓsupPrfl^l^fc)] = 0 . (2.11)
Jc->oo \_ A J

For T< Tc(2) and any b, the height order parameter,

θ{T9b)= sup E{hjfi)) (2.12)
A

which equals lim E(hΛ(O)) for b^.0\ is finite and satisfies

J
θ(T,b)^θ(T,0), for b<0,

T,b) = ί+θ(T9O)9 for b>0, (2.13)

nst(T c (2)-T)- 1 / 8 , for fe = 0.

Finally, for b^O, θ{T,b)^> + oo as T^TC(2) from below.

Remark. A slightly stronger result than (2.11) can be obtained in which the droplet
Q)A (a connected cluster) is replaced by a larger *-connected cluster. This can be
based on the percolation results of [R; GKR].

We conclude from our analysis so far, that for ε ^ τ we have a wetting
transition at Ύ— Tc(2). The free energy per unit substrate area is that obtained by
Onsager [O]. The fact that this is singular as T-*TC(2)+ in the present context is
curious. We believe that as T increases through Tc{2) there is a simultaneous
roughening transition; this is supported, but certainly not proved by a calculation
of the step free energy given next for εί=τ.
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A moment's reflection shows that we can introduce a unit height step crossing
the lattice at an angle θ between points A and B say on the boundary of an N x M
strip by imposing Dobrushin H— boundary conditions at A and B [Do] giving a
modified partition function Z£M instead of the ZNM obtained with -f boundary
conditions. Let the Euclidean length from A to B be (approximately) N/cosθ.

Definition. The step free energy at angle θ is

^ ί lim logf™. (2.14)

Remark. This is exactly the 2-d Ising model surface tension at angle θ which is
already known [AM; AR]; this calculation is actually for T^ Tc(2). The result for
T> Tc(2) is most easily got by noting that the dual of Z# ~/ZN [the inner limit of
(2.14)] is a pair correlation function in a strip, from which the vanishing of σ(θ) in
that case follows readily.

Theorem II-5. For all T>TC{2), σ(0) = O.

Remark. This is an intuitive condition for roughness of the surface. A more
appealing result, which we have not established, would be to show

lim lim inf E(\hΛ(r) - hΛ(s)\) = 0 0 . (2.15)
|r-s|-oo Λ-Z2

III. Results when ε t = τ

In this section we set b = ε1 — τ = 0. As explained in Proposition II-l and in
Appendix B, the flat parts of the phase-separating surface are represented in the
planar Ising model equivalence by connected clusters of parallel spins and the
height hΛ(x) is the minimum number of Peierls contours crossed, over all nearest
neighbor paths from r to the boundary of A. We proceed to develop the
relationship of percolative ideas to this random surface model.

The key theorem on clusters in the planar Ising model is due to Coniglio et al.
[CNPR]:

Theorem III-l [CNPR]. Consider the standard 2-d Ising ferromagnet with zero
external field at temperature T. If T ^ Tc(2), then the (unique) infinite volume Gibbs
state has, with probability one, no infinite connected cluster of parallel spins. If
T<TC(2), then the plus boundary condition infinite volume Gibbs state has, with
probability one, exactly one infinite connected cluster of plus spins; further, the
connected components of the complement of that infinite cluster (consisting of both
minus spin sites and those plus spin sites not part of the infinite plus cluster) are all
finite, with probability one.

This result of Coniglio et al. yields as a corollary the next theorem, which
demonstrates that the thermodynamic singularity at Tc(2) corresponds to a wetting
transition in which the surface height remains finite (in the infinite volume limit) for
T<TC(2) but diverges for T^TC(2). This can readily be seen to follow from the
Coniglio et al. percolation analysis, if we disregard, for the time being, some
technical issues associated with the infinite volume limit: In the infinite system,
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define the surface height H(r) at a point r = (x,y)eZ2 as the minimum number of
Peierls contours that must be crossed for a nearest neighbor path from r to reach
infinity. When T^TC(2) all parallel spin clusters are finite and hence infinitely
many Peierls contours must be crossed; thus H(r) = + oo (with probability one) for
T ^ Tc(2). When T< Tc(2) only finitely many contours need be crossed to reach the
infinite plus cluster and then no more crossings are needed; thus H(r)< oo (with
probability one) for T< Tc(2). The next theorem takes care of the infinite volume
limit. The random variables {hjr): r e Z 2} appearing next are the heights obtained
from the Ising model {σ^(r)} defined with plus boundary conditions outside the
finite region ΛcZ2 (see Appendix A); hΛ(r) = 0 for r outside A.

Theorem IΠ-2. For T^ΓC(2), E(hΛ(r))-^ + oo for each r as Λ^Z2 because hΛ(r)
-• + oo in probability; i.e., for any finite k

Pr(hΛ(r)^k)^l as Λ->Z2. (3.1)

For T< Tc(2), the hΛ(τ)9s tendto the finite #(r)'s asA-^Έ2 in the sense that for any m
andτl9...,τm,

lim EtfihJrά ..., hjτj)) = £(/(#(Γ l),..., H(τJ)) (3.2)

for any function f which is either bounded or else is non-decreasing in each
coordinate.

Proof. It suffices to show (see Proposition A3 of Appendix A) that as Λ-+Z2,

Denote by HN(τ) the minimum number of Peierls contours that must be crossed in
the infinite volume system to walk from r to the boundary of r + ANN and by hΛN(τ)
the corresponding quantity in the finite region A system; let G j N and GΛN denote
the corresponding finite N approximations to G and GΛ. Since as iV-» oo, HN(t) and
hΛN(r) increase to H(r) and hΛ(x\ it follows that G iN and GΛ fN increase to G and GΛ.
On the other hand, GΛ N-+G >N asA->Z2 because they involve the probabilities of
events depending only on a fixed finite set of spin variables /those in (J (rf + ANN)\.

Thus

^ lim (Mim GΛ N\ = lim (G N) = G. (3.4)Him GΛΛ
\Λ-+ΊL2 J

This already proves the T ^ Tc(2) result, (3.1). It remains to show that GΛβ G for
T< Tc(2). To do this we need to extend the representation (A.5) and inequality (A.6)
of Appendix A to the case where A is replaced by Z 2 . Toward this end, let us define
μ(r) to be 1 (or 0) when H(τ) is 0 (or nonzero) and for the given r l 5..., rw, let us define
the random subset L of ΊLd as those sites r with μ(r) = 0 which are not the nearest
neighbor of some r' with μ(r') = 0 and which are connected to some r̂  by a walk
passing over only sites with μ = 0. A key consequence of the latter part of
Theorem II-l is that for T< Tc(2\ L is finite with probability one. We then have, as
an extension of (A. 5),

:i=l,...,m}^{(l-μ(r ι.))(l+/zL(r ί.)):z = l,...,m}, (3.5)
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where ^ denotes equidistribution. By an argument substantially the same as used
for Proposition Al and by Proposition Al itself we obtain the desired extension of
(A.6).

For T<TC(2\ Theorem II-2 states that the interface surface height remains
finite. Theorem II-1 further implies that the "dry" region, {reZ2:H(r) = 0},
percolates while the "wet" region, {reZ2:H(r)^l}, does not. Thus, to mix
metaphors, the wet region consists entirely of finite droplets within a dry desert;
this combined with Proposition Al of Appendix A yields (2.11) for b = 0. Some
explicit estimates of the height of these droplets are possible in terms of the Ising
model spontaneous magnetization [Y; BGJS; AM],

m*(T) = [1 - l/sinh4(τ/T)]1/8. (3.6)

Theorem III-3. For T< Tc(2) and any finite A and positive integer fe,

Pr (Mr) ^ k) ̂  Pr (#(r) ^ k) ̂  (1 - m*)k, (3.7)

E(hA(τ)) ύ E(H(τ)) S (1 - m*)/m*. (3.8)

Furthermore, for any k,

lim Pr(ff(r)^fc) = l , (3.9)
T->TC(2)-

and hence E(H(τ)) diverges as T tends to Tc(2) from below; i.e., the surface height
diverges continuously at Tc(2).

Proof. Let us define

LΛ = {r: hΛ(r) > 0} = the complement of the plus-cluster of Έd\A.

The spins in LΛ have minus boundary conditions on the "inside" boundary of LΛ.
Let us denote by A the interior of A Q ΊLd, i. e., those r in A which are not neighbors of
some r' outside of A. Then for fcΞ> 1 [compare Eq. (A.5) of the appendix]

Pr(hΛ(τ)Zk)= Σ Pr(LΛ = A)Pr(hΛmk-l). (3.10)
A-.reA

Now by the monotonicity in Λ' of hΛ, (Proposition A2),

Pr(/y(r)^- l)^Pr(Mr)^- l) , (3.11)

so that

r)^/c-l) Pr(reEΛ)

, (3.12)

where the last inequality used Proposition A2 and Theorem ΠI-2. Now Coniglio
et al. [CNPR, Theorem 1] proved that Pr(H(r)=0)^m*, so that (3.12) yields

which (again using Proposition A2 and Theorem ΠI-2) leads to (3.7) and thence
to (3.8).
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To obtain (3.9), we note from Proposition A2 and Theorem IΠ-2, that
)^fc) as a function of T is the increasing limit of the continuous functions
)^k) as A^Έ2 through some increasing sequence of finite regions Λn.

Hence Pr(/ί(r)^/c) is lower semicontinuous. Since it is bounded above by 1 and
equals 1 at T=TC(2), (3.9) follows by standard arguments.

Remark. Somewhat stronger results than (3.7H3.8) are given in Proposition A4 of
Appendix A.

IV. Results for General β l 5 τ

We now relax the condition εί=τ necessary to reduce the problem to the 2-d Ising
one with zero field. When b = ε1 — τ φ 0, we have [see (2.4)], in addition to the usual
Ising model Boltzmann weight, the additional factor,

(4.1)

up to a configuration-independent factor. For a given inverse temperature β = ί/T,
we denote by {hΛ b(r):reZ2} the corresponding height random variables; their
expectations are related to those of {hΛtO{t)} = {hA(τ)} by:

) _ { f e * )
-βΣμΛ(r

Λ ) { f e * )T

E{e Λ ) \e ) τ

where < >T is the usual Ising model thermal average at temperature T for {σ^r)}.
For later use, we will also define μΛfb(τ) to be the indicator variable for hΛtb(τ) = 0
[so thaXμAtO(τ) = μΛ(τ)].

This suggests using the FKG property of Appendix A where possible. In fact
this leads to the following two propositions, which, together with the results
previously derived for b = 0, yield most of Theorems Π-2 and Π-3 - in particular
(2.9), (2.11) and the b^O part of (2.13). The symbol > in the propositions denotes
stochastic domination (see (A. 13)).

Proposition IV-1. For b>0 (resp. b<0)

{hΛM>(resp. <) {hΛt0(τ)} = {Mr)}. (4.3)

Proof. Use (4.2), the fact that the {μΛ(r)} are decreasing functions of the {^(r)} and
that {hΛ(τ)} has the FKG property (Proposition A2). Note that exρ(-/?ί>Xμ(r)) is
increasing (resp. decreasing) in the {hΛ(r)} for b>0 (resp. b<0), from which the
result follows by a standard argument.

Proposition IV-2. For b<0

Proof. The generalization of (A.5) to bφO is

{KM = {(1 -VAMV +hLΛ,0(τ))} (4.4)
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because inside LΛ there is no b dependence since the surface is entirely lifted above
the substrate plane. By Proposition Al, we get

{ ^ » K { ( 1 -μ, i»)( l +hΛtO(τ))}<{ί +hΛ>0(τ)},

(where the μΛb and hΛ0 sets of variables in the middle expression are treated as
independent).

Remark, For b>0 and T< Tc{2) we shall prove below that {hAth{τ)}-+{ί +hΛ>0(r)}
as Λ-+Z2.

We now turn our attention to the free energy as defined by (2.6)-{2J). The next
proposition gives half of Theorem II-2. We continue to denote ί/T by β.

PropositionIV-3. For T^TC(2) and b^O, J(T,b) = b.

Proof. By Jensen's inequality,

1 ^ < e x p ( - β b Σ μ A ( Φ τ ^ e x p ί - β b Σ <μΛ(Φ

Thus it suffices to show that

Γ77 Σ <μΛ(Φτ^ as Λ^Z2

\Λ\ reΛ

(in the van Hove sense). But, for fixed r, (μΛ(φτ = J>r(hΛ(r) = 0) tends monotoni-
cally to zero as Λ-+Έ2 by Proposition A1 and Theorem IΠ-2, from which the
result follows by the definition of van Hove convergence and a standard argument.

The motivation behind the next theorem is the fact that if b > 0, then for a large
enough system the ground state has a monolayer. We then have

Theorem IV-4 For any

T>τ{hΛ,b(0) = 0}=E(μA,b(0))^0 as Λ->Z2. (4.5)

Also

7̂ 7 Σ E(μΛib(r))-^0 as Λ^Z2 (4.6)
\Λ\ reΛ

(in the van Hove sense).

The proof will be given after the two following corollaries which show why
Theorem IV-4 is useful in determining the phase diagram. These two corollaries
complete the proofs of Theorems II-2 and Π-4.

Corollary IV-5. For b>0 and T<TC(2),

{hΛ,b(r):reZ2}-^{l+H(r):reZ2} as Λ-+Z2 (4.7)

in the sense of convergence of the expectation of bounded functions of finitely many
variables.

Proof of Corollary IV-5. By conditioning on LΛtb in (4.4), it suffices to prove that
LΛb-*Z2 as Λ^Z2. From the definition of LΛtb, we have to prove that {r: hΛtb(r)
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φO}->Z2; this is equivalent to proving J*T{hAtb(r) = 0}-+0 as Λ->Z2 which is
precisely the content of the first part of Theorem IV-4.

Corollary IV-6. For b>0 and T<TC(2), J{T,b) = b.

Proof of Corollary IV-6. Choose 0<ε<b; then

/ -βbΣμΛ(r)\ / -βεΣμΛ(r)\ ( - βφ-ε)ΣμΛ,E(r)\ - β(b-ε)E(ΣμΛ,E(r))

l^\e Λ I τ=\e Λ lτΈ\e Λ )^e~βε^e u ;

by Jensen's inequality. We can now apply the second part of Theorem IV-4 to see
that Of^J(T,b) — b^ε from which the desired result follows by letting ε tend to
zero.

Proof of Theorem IV-4. For a given finite Λ,β = l/T, and b > 0, we denote by ρb the
Gibbs distribution (with plus boundary conditions outside A) on the spin
configurations {σ(r): r e A) with density e ~ β^b, 2tfb given by (2.4). We denote by μ(r)
the function of the spin configurations which assigns one (otherwise 0) if r is in the
plus spin cluster of the complement of A (μ(r) is a realization of the random
variable μ^r)) . To prove (4.6), we will give a precise version of the argument that
the event [\A\~1 £ μ(r)^ εl has small ρb measure since this event can be avoided by

1 Λ j
flipping a moderate number of spins.

We define a spin flip mapping φ~A for each Ac A, which only alters the spins in
dA = {r e A: r is a nearest neighbor of some r' φ A} as φ~A: {σ(r)} ι-» (σ'(r)}, where

- 1 , if redΆ and μ(r) = l

We remark that:

σ , ( r )

|σ(r), otherwise.

(i) φΛ is not 1-to-l, but is at most 2 |δ;i|-to-l.
(ii) {σ'(r)} has μ'(r) = 0 for every re A.

(iii) If μ'(r) = l, thenμ(r)=l.

It follows from (iiHi)

4τ\dA\ - b ^ μ(r). (4.8)
reΛ

Combining this with (i), we see that for any event A,

(4.9)
σ(r)}6il

where φΛ(A) denotes the set of transformed spin configurations from A. Using (4.9)
and ρh(φΛ{A))<z\, we take Ά = A and A the event that \A\~ι £μ(r)^ε to obtain

A

Γ 1 Σ μΛ b(r)^ε]^2^e~βbε^ e4βτ^. (4.10)
reΛ ' /

This bound tends to zero for any fixed ε, since |3Λ|/|yl|->0 as A-+ΊL2 in the van
Hove sense, which implies the second part of Theorem IV-4, i.e., (4.6).
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For the first part, a different mapping is needed. We define, for each K such that
CκCΛ9 where Cκ = {(x9y):\x\^κ9\y\^κ}9 the mapping ψκ: {σ(r)} ι->{σκ(r)}, where

r), otherwise,

where [3CJ° = {r: r e 3CK and there is a path of + spins within Cκ\dCκ between 0
and some neighbor of r}. We remark that:

(i) If every configuration in A has |[3CK]°| ^iV, then on λ9 ψκ is at most 2N-to-l.
(ii) {σκ(r)}hasμκ(0) = 0.

(iii) If/T(r)=l, thenμ(r)=l .

The analogue of (4.9) is as follows, where we let [Cκ]° = {r; e Cκ\dCκ: there is a path
of + spins within Cκ\dCκ connecting 0 to r}: if every configuration in A has
μ(0)=l, then

ρb(A)^ max ( 2 l ^ ] \ - ^ | [ C ^ o l ^ τ l [ ^ O | ) . ρ b ( φ κ μ ) )
{<r(r)}eA

^e-
βbκ max {{2e4βψdC«]°1} . (4.11)

{σ(r)}eA

Thus
ρb({μ{0) = 1 and | [3CJ° | ^ iV}) ̂  (2e4^)N e~^ κ

and

) = l and |[3CK]°|^iV for some /c^κ:0})

^K 0/(l - e " ^ ) . (4.12)

To show that ρb({μ(0) = 1 })-•(), we need another bound to combine with (4.12). Let
K be the largest K such that CκcΛ. Then, applying φCίί and (4.9) to the event

{μ(0)=l and | [ δ C J ° | > i V for all κo^κ^κ} (which implies

iV \ V

Σ ^ W ^ Ί Γ (^ - 'Co) w e h a v e

C 2 /

ρb({μ(0)=ί and | [3CJ° |>iV for all κo^κ^k})

<2\dC*\ e-βbN(k-κ0)/2 e4rβτ\dC%\

< (2e4βτ)8ke ~ βhN{k " K o ) / 2 . (4.13)

Given β, choose N so that

Then by choosing first κ0 large, then Λ large (so k is large) we see from (4.12)—(4.13)
that ρb({μ(0) = 1}) can be made as small as desired as Λ-+Έ2, completing the proof
of Theorem IV-4.

V. Height Divergence Rate at High Temperature

In this section we establish some additional results concerning the divergence rate
of E(hΛb(0)) as Λ-+Έ? for T> Tc(2). Our conclusion draws a clear distinction with
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the usual SOS model results where the divergence rate is logarithmic [FS; BEF],
as will be seen. In the next proposition we denote by R(A) the largest K such that the
square Cκ is contained in A.

Proposition V-l. For a given temperature T, if there exists y = γ(T)>0 such that

Pr(ΛCR(0) = 0)g£Γ '* (5.1)

for all R, then there exists γ'(γ) > 0 such that for any b ^ 0,

P r ( ^ s ,(0) £ γ'R(Λ)/\ogR(A))->ί (5.2)

as A->Z2.

Proof We set b = 0 in (5.2) since this case suffices by Proposition IV-1. Let ΉJr)
denote the parallel spin cluster containing r obtained from {σΛ(r'):r' eZ2}. Let

AJr, Rf) = {<gA(τ) extends beyond r + CR.}. (5.3)

Then we have

Pr μ Λ r , R')) = Pr ({Mr) = 1} u ^ ^ r , R*)) + Pr {{σΛ{τ) = -1} u ^ ( r , R'))

by the FKG property of {σ^(r)} and its monotonicity in A, where we have assumed
that τeCRiΛ)/2 and R'<LR(Λ)β. Thus

Vv{AΛ{r,R'))ύ2e-"R> (5.4)

from the hypothesis of Proposition V-l. Now define distance between points in Z 2

as

dist((x1? yά (x2, y2)) = \xx - x2\ + b i -y2\, (5.5)

and the diameter of subsets of Z2 as

diam(2?)= max dist(r l 9 r 2 ). (5.6)
ri,r2ejB

Then for all reCR{Λ)j2 and R'£R(A)/2, we have

R>. (5.7)

In order that hΛ(O)^k, there must be a path from 0 beyond A (and hence
beyond CR(Λ)/2) which passes through k or fewer distinct parallel spin clusters.
Hence one of these clusters must have a diameter Ξ> R(A)/2k. Now

P r ί max (diam^y l(r))^2(2R/ + l)l ^2(R(A) + 1)2e~yR\ (5.8)

l J

(5.9)

Thus
jRiΛl

, \4k
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and choosing k = y'R(A)flogR(A) gives

Vτ{hMύy'R{Λ)l\ogR{Λ)} = 0 [R(A)2 ( ^ ) J (5.10)

as Λ-»Z2. Proposition V-l follows by choosing y'<y/16.
We now investigate the validity of the condition (5.1) which we used to

establish Proposition V-l; it is presumably true for all T>TC{2\ but for the
moment all we can prove is that (5.1) is true if

where pc is the critical probability for independent nearest neighbor site
percolation on Έ2. Since it is known rigorously that pc > 1/2 [T], (5.11) is valid for
high temperature.

Proposition V-2. (5.1) is valid if β satisfies (5.11).

Proof The conditional probability that σ(r) = l given {σ(r'): r' =t= r} is
enβτ/(2 cosh(rcβτ)), where n is the total spin of the sites adjacent to r. This conditional
probability is maximal when n = 4 and is thus bounded by 1/(1 + e ~ 8/?τ). Hence by a
standard FKG argument

{σάτ):τeΛ}<{σΛ{r):*eΛ}9 (5.12)

where the σΛ(r) are independent random variables with values ±1 and
Pr(σvl(r) = l)=p, where p = 1/(1 +e~8βτ). This is so because the ratio of the joint
densities of the unbarred and barred variables is a decreasing function of the spin
configuration. The plus spin cluster at r for the barred variables, Φjτ), is just an
independent-site percolation cluster for percolation on A CZ2. It is known that for

'"<*>k (5.13)

with y"{p) > 0. (This follows from the results of [H] combined with those of [M] or
[AB].) Hence by (5.12),

Pr(/zCR(0) = 0)^Pr{fCR(0) reaches the boundary of CR)

= Pr{(?z2(0) reaches the boundary of CR}

<;Pr{diam V^O^R}
<e-y"(p)R

by (5.13), which is what was needed.

Appendix A: Inequalities

We present here a number of results concerning monotonicity and correlation
inequality properties of the height variables in our random surface model. For A a
finite (not necessarily connected) subset of Z 2, let {σΛ(τ):τeΈ2} denote the ± 1 -
valued spin variables of a standard 2-d Ising ferromagnet in zero magnetic field at
temperature T (fixed throughout this appendix) with plus boundary conditions
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outside of A [so that σΛ(r)= +1 for each τφΛ]. Then the height variable hΛ(r) is
defined as the minimum number of Peierls contours (or spin changes) crossed by
any nearest neighbor path from r to Ac, the complement of A; ίoτrφA, Λ (̂r) = 0.

The derivation of monotonicity and inequality properties of the hjrfs would
be rather simple if they were monotone functions of the σ^(r)'s. However, simple
examples show that the change of a spin from minus to plus can either raise or
lower a height. Our derivation will thus be more involved. We next define

l , if hΛ(τ) = 0

O, otherwise. ( A J )

The zero height region (where μΛ = 1) consists of those sites which are connected to
Ac by nearest neighbor paths passing only through plus spins; thus the μjffs are
monotone (non-decreasing) functions of the σΛ(τ)'s. Finally we define a random
subset LΛ of A as

LΛ = {r e A: μΛ(τ) = 0 and r is not a nearest neighbor of some

r 'eZ 2 withμil(r') = l}. (A.2)

LΛ is decreasing in the σjτjs; i.e., the occupation variables of LΛ are non-
increasing functions of the σjjή's.

A key fact in understanding the structure of the random field {hΛ(τ)} is that it
can be constructed by a sequential procedure involving the zero height regions for
a (random) sequence of nested subsets of the original A. In this construction, it is
convenient to work with Ising models {σ>(r)} and corresponding {hΛ,(r)}, {μΛ>(r)}
and LΛ, simultaneously for all A'QA which are statistically independent of each
other as A' varies. Starting from some particular configuration of the μΛ(τ)9s and
the corresponding LΛ, we first note that hΛ{τ) is determined for each r outside of
LΛ: hΛ(τ) = 0 if μΛ(τ) = 1 while hΛ(r) = 1 [and σΛ(r) = — 1] for each r in A\LA with
μΛ(r) = 0. A key observation is that the conditional distribution [given {^(r)} or
L^] of the σ^^'s for r e LΛ is simply that of the standard Ising model with minus
boundary conditions outside LΛ; i.e., conditional on LΛ,

{σΛ(r) :reLΛ}*{- σLJτ) :τeLΛ}, (A.3)

where ^ denotes equidistribution. This implies that conditional on LΛ,

{hΛ(r): r G LΛ} s {1 + hLji(r): r e LA). (A.4)

We thus have the key formula,

{hΛ(r):reZ2} = {(l -Λi(r))(l +/ιLJr)):reZ2} . (A.5)

Proposition Al. The random fields {hΛ(r):reZ2} are stochastically increasing in
A; i.e.,

E(f({hAr)}ME(f({hΛ(r)})) for Λ'QΛ (A.6)

for any real-valued function f depending on only finitely many height variables
which is non-decreasing in each variable.

Proof. First we recall the standard fact that by the FKG inequalities for Ising spin
variables [FKG], {σΛ(r)} (and hence also {μΛr)}) is stochastically decreasing in A.



196 D. B. Abraham and C. M. Newman

This is so because the application of an infinite positive magnetic field to every site
in Λ\Λ' converts the distribution of {σ^r)} to that of {σΛ{ι)}.

We prove (A.6) by using (A.5) and induction on the number of sites in A. The
case of a single site A is trivial. For a larger A, we use (A.5) to write

τ)})), (A.7)

where g is the conditional expectation,

g({0(r)}) = £(/({(l - 0(r)) (1 + hLJr))})\μΛ(t) = θ(r) for each r). (A.8)

Now, suppose 0'(r)^0(r) for each r and let L', L be the corresponding LΛ's (with
L'QL). Then

) = E(f({(i~θ(τ))(\+hL(r))}))^E(f({(ί-θ'(r))(ί + h

0'(r))(l + Mr))}))=g({βΌr)}), (A.9)

where the first inequality follows from the monotonicity of/ and the second from
the inductive hypothesis which is applicable since L=LΛ has strictly fewer sites
than A. Thus g is a nonincreasing function of its arguments, and hence E(g({μΛ(r)}))
is increasing in A since {μΛ(τ)} is stochastically decreasing in A. This completes the
proof.

Proposition A2. The random field {hΛ(τ) :reZ2} has the FKG property IF KG]
(or, equivalently, is called associated \EPW]); i.e., for any two real nondecreasing
functions, f and g, of finitely many variables,

E(f({hΛ(r)})g({hΛ(r)})) ^ E(f({hΛ(r)}))E(g({hM)) • (A.10)

Proof We again use the key formula (A.5). The spin random field {σΛ{r)} has the
FKG property [FKG] and hence so does { — σ^r)}. Since the (1— μΛ(r)fs are
nondecreasing functions of the ( — σjj))\ they too have the FKG property. By
induction on the number of sites in A, we may assume that conditional on
{1 — μ^r)}, {hLJr)} has the FKG property. Furthermore, by Proposition Al, the
conditional distribution of hLJτ) is stochastically increasing as a function of
{(1 — μΛ(r))} (in the language of [J], {hLJ is a "monotone mixture" with {1 — μΛ}).
It follows [J] that the double family of random variables {(1 — μΛ(τ)), hLJτ)} has the
FKG property. Finally, formula (A.5) shows that the hjrjs are (equidistributed
with) increasing functions of the double family and hence have the FKG property
themselves.

As a standard application of monotonicity in A, given by Proposition Al, one
has the existence of an infinite volume limit of the height variables, as follows.

Proposition A3. There exists a random field {h(r):reΈ2} taking values in the non-
negative integers or + oo, such that

lim E(f({hΛ(t)})) = E(f({h(r)})), (A.11)
Λ->Z2

where f is any real function depending on finitely many variables which is either
bounded or nondecreasing. The above limit may be taken through any increasing
sequence of finite A9s which eventually cover all of Έ2.
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Proof. This is a consequence of the fact that the joint cumulative distribution
function of finitely many hjrjs is monotonic in A.

Remark. In Sect. Ill of this paper, we show that, as one would expect, h(r) can be
identified with the minimum number of Peierls contours crossed to reach infinity
from r in the infinite volume Ising model, {σ(r)}= lim {σΛ(r)}.

Λ-*π2

If one continues the sequential procedure, whose first step led to the key
formula (A.5), in the obvious way, one obtains

where we have suppressed the r dependence. The sum on the right-hand side is
really a finite series (for A finite) because each LΛ. is strictly contained in A. The
next proposition weakens (A. 12) to an inequality; we omit the proof which is
similar to that of Propositions Al and A2. We write {Φi(ϊ)}<{φ2(*)} when

for every real nondecreasing function / of finitely many variables.

Proposition A4. For any finite A, let {μ (̂r)}> for i=l,2,..., be an independent
sequence of random fields, equίdistributed with {^(r)}. Then

In particular, for k = l,2,...,

λ Pr (Mr) ̂  fe) < (1 - Pr(μΛ(r) = l)) k, (A.14)
and v Λy '- } — y VP/1V ; ; ; ' v }

i_PrΛfγr^i) ( A i ^

Remark. The higher moments of hΛ(τ) can be bounded, according to (A. 14), by the
moments of a geometric random variable with parameter pr = Pr(μ^(r) = l). A
simpler explicit formula is obtained by bounding that geometric random variable
by an appropriate exponential random variable:

E((hΛ(r))j)^\log(l—pT)\~j 'j\^(pr)~j j \ . (A.16)

Remark. The same reasoning which yielded (A.5) was used by Coniglio et al.
[CNPR] to argue that

E(σΛ(r)) = Pτ(μΛ(r) = 1) - P r ( ^ ( r ) = 0 and r φ LΛ) - E(σLΛ(r)I(r e LΛ))

so that (A.14-A.15) remain valid with Pr(μyl(r) = 1) replaced by the finite volume
magnetization, E(σΛ(τ)).

Appendix B: The Multilayer Construction

We construct a multilayer of molecules adsorbed on a substrate as follows: After
Kossel [K] and Stransky [S], each molecule is represented by a unit cube whose



198 D. B. Abraham and C. M. Newman

corners are in Έ? = Z 3 + (1/2,1/2,0). The center of any such cube is restricted to be
in Z3*( + ) = {(x,j;,z + l/2):(x,);,z)eZ3, z^O} so that the plane {z = 0} is the
substrate surface.

Beginning with the bare substrate surface, we lay down unit cubes with centers
at height z = 1/2 to form a collection of rafts. Each raft is connected; by this we
mean that the centers of any pair of cubes in the raft can be joined by an edge path
in Z3*( + ) lying entirely within the self-same raft. Any configuration with a
collection of vacancies in any raft entirely surrounded by molecules is forbidden.
As an example of this, consider 4 molecules with centers at (1, 0,1/2), (0,1,1/2),
( — 1,0,1/2) and (0, — 1,1/2): these surround the cube center (0,0,1/2) which must
therefore be occupied by a molecule.

Each raft is bounded by a closed connected strip of plaquettes in Z 3 , each with
normal parallel to the {z = 0} plane. The projection of each such strip down the
(0 0 1) axis onto the {z = 0} plane is a self-avoiding simple closed walk in Z 2*, the
usual dual square lattice. The collection of such walks which describes a
monolayer configuration is restricted to be edge-disjoint; this avoids double-
counting certain configurations, as can easily be checked. Different closed walks
are however allowed to touch at vertices of Z 2*.

A second layer of adsorbed molecules is introduced by placing rafts of exactly
the type described above on top of those already in place; no vertical overhangs are
permitted. By following the projection procedure described above, this adds self-
avoiding closed loops to those already constructed. We now require that all the
closed loops obtained shall be edge-disjoint. This implies that we cannot place a
molecule in the second layer vertically above one which happens to be in the edge
of a raft in the first layer.

This process can be repeated, bearing in mind the restrictions introduced, to
form multilayer configurations: these are isomorphic to the elements of the set of
all edge-disjoint closed loops on Z 2*.

Let us now consider multilayer configurations constructed on a finite substrate
plane, say {(x,y,0): — N^x^N, — M^y^M} with the associated loop repre-
sentation on {(jcjjeZ2*: -(N+l)<x<(N+l\ -(M + l)<y<(M + l)} which is
actually the Peierls contour, or low-temperature, expansion on Z 2 * for the planar
spin-1/2 Ising model on the lattice

with all the boundary spins fixed to point up. An example is shown in Fig. 1.
Evidently flat portions of the phase-separating surface forming the upper

boundary of the multilayer configuration are represented by clusters of parallel
spins: two spins, σ(r) and σ(s), for r,seΛNfM belong to a + cluster (respectively -
cluster) means σ(r) = σ(s) = +1 (respectively — 1) and there is a path connecting r
and s of unit edges on ΛN M on which all spins have value +1 (respectively — 1).
The surface height associated with any point (x, y) in ANJΛis the minimum number
of Peierls contours on Z 2 * crossed, over all paths on ΛNtM from (x,y) to the
boundary dAN>M.

We now discuss the energetics of the configurations generated in our model.
The phase-separating surface S is composed of elementary exposed faces of unit
cubes which contribute surface-tension terms giving an energy

τ Σ Ki) + τAl9 (B.I)
γeΓ
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Fig. 1. A typical multilayer structure in the plane having four disjoint growths above the substrate
plane. The two growths on the left are towers, the central one is a dimer, and the rightmost one
corresponds to an antiferromagnetic patch. The numbers indicate the heights and the signs
indicate the spin values of the different regions; the background has plus spin and zero height

where Γ is the set of Peierls contours generated by S. The first term comes from
faces perpendicular to the substrate plane; l(γ) is the length of the simple closed
walk γ which is an element of the contour configuration Γ given by the phase-
separating surface. The second term comes from all upper faces parallel to the
substrate plane; A1 is the number of such faces, which is obviously the same as the
area of contact with the substrate. The interaction with the substrate is assumed to
be

— είA1

giving a total energy,

yεΓ

(B.2)

(B.3)

For energetic stability against detachment from the substrate we require
ε x > — τ since the zero-temperature detached solid has two free planar surfaces
with energy 2τ per unit area.

When τ = εl9 we recapture the zero-field Ising model with -f boundary
conditions. The extra term in (B.3) describes an external field b = τ — εί9 applied to
the plus cluster attached to the boundary.
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