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Abstract. We study the correlation functions of a system of free chiral fermions
on a compact Riemann surface using techniques of algebraic geometry. Fay's
trisecant identity arises as a consequence of the proof of the uniqueness of
correlation functions.

1. Introduction

The remarkable identity discovered by Fay [1] (see also [2]), and known as the
trisecant identity, has been found to play a fundamental role in the theory of
Jacobian varieties [3]. In this paper we shall prove Fay's identity by studying a
problem in conformal field theory. It has recently been observed by physicists that
the trisecant identity arises naturally in the study of conformal field theories on a
compact Riemann surface [4]. The trisecant identity was obtained in [4] as a result
of computing the four point correlation function of a system of free chiral fermions
on a compact Riemann surface by bosonization of the fermions, on the one hand,
and by " Wick's theorem" on the other. An alternative approach, using Witten's idea
of multiplicative Ward identities [5], was given in a recent paper by S. Sen and the
present author [6] (see also [7]).

In the present work we make a detailed analysis of the geometry of the
correlation functions of the free field theory of a conjugate pair ψ, ψ of chiral
fermions on a compact Riemann surface. The starting point of our analysis is the
work of Friedan, Martinec, and Shenker [8] who have provided a local analysis of
the correlation functions through operator product expansions. Their analysis
provides us with the singularity structure (poles and zeros) of the correlation
functions arising from the physics of the problem. Our basic postulate is that the
correlation functions have no poles other than those following from this analysis.

We then study the global form of the correlation functions using techniques of
algebraic geometry. We find that the line bundle of which a given correlation
function is a meromorphic section has a very natural and simple structure. It is
the tensor product of the line bundle which is defined by the singularity structure
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demanded by physics (i.e. the analysis of [8]) and a line bundle containing global
information. By studying this latter bundle we are able to show that the
correlation functions are uniquely determined by our basic postulate.

As an immediate consequence of the uniqueness of the correlation functions we
obtain a rigorous proof of Fay's trisecant identity. The physical interpretation of
the trisecant identity which emerges from our analysis is that it expresses "Wick's
theorem" in this problem. We stress, however, that this does not in any way
contradict the remarkable interpretation [4] of the trisecant identity as an
expression of the boson- fermion correspondence.

An interesting feature of our analysis is that it is independent of the theory of
theta functions. In fact most of our arguments are applicable to an algebraic curve
over an arbitrary algebraically closed field. Function theory is brought in only to
write down explicitly holomorphic and meromorphic sections of line bundles. We
shall not, however, insist upon this aspect in this paper.

Our notations are, for the most part, standard. We refer to [9] for standard
facts concerning compact complex manifolds and Riemann surfaces and to [10]
for the sheaf cohomology techniques used. All line bundles appearing are
holomorphic bundles. We use the same symbol to denote a holomorphic line
bundle and its associated sheaf of germs of holomorphic sections. If D is a divisor
(e.g. a sub variety of codimension one) in a compact connected complex manifold,
we denote the associated holomorphic line bundle as well as its sheaf of germs of
holomorphic sections by &(D). The word unique, when referring to a section, will
always mean unique up to multiplication by a nonzero complex number, unless the
section is qualified as normalised. Thus Θ(D) has a unique meromorphic section
with divisor D. The set of all holomorphic line bundles forms a group, called the
Picard group. The abelian multiplication law is the tensor product ®, the inverse of
an element ζ (a holomorphic line bundle) is the dual bundle, which we denote by
ζ"1, and the identity is the trivial line bundle. Isomorphism of line bundles is
denoted by the equality sign. Hl(S, J^) denotes the ith cohomology group of S with
coefficients in the sheaf J ,̂ where S is a compact complex manifold or, more
generally, a scheme. Its dimension is denoted by ft'(S, 3F\

We denote by M a given compact connected Riemann surface without
boundary of genus g ̂  2 and its Picard group by Pic(M). Picd(M) denotes the
subset of Pic (M) of holomorphic line bundles of degree deZ. The cases d = 0 and
d = g — \ are of particular interest. Pic°(M) is a g-dimensional complex torus
known as the Picard variety [9]. The multiplication law of Pic(M) gives an action
of Pic°(M) on Picd(M) which is transitive and free. Choosing a fixed element
£ePicd(M) we obtain a bijective correspondence between Pic°(M) and Picd(M).
Thus Picd(M) is a g-dimensional compact complex manifold. As customary, K
denotes the canonical (holomorphic cotangent) bundle of M.

2. The φ-φ System for Twisted Fermions

The system we consider is a two component chiral fermion theory on M, whose
action is given by [5]

S=- f ψDψ. (2.1)
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Taking local complex coordinates on M in which the metric is of the form
λ(z, z)dzdz, the operator D is essentially d = d/dz.

Since M is a manifold, a precise definition of φ requires the specification of a
spin structure on M. Spin structures on M correspond bijectively to the 4g

isomorphism classes of holomorphic line-bundles Le Pic^~ * (M) with L2 = K [1 1].
A spin 1/2 fermion field is thus an operator- valued section of one of the 4g theta
characteristics.

We shall, however, consider the more general case of what is often called a
twisted fermion. Thus we shall assume that ψ is an operator valued section of an
arbitrary element aePic9~i(M). Then the in variance of (2.1) requires that φ be
associated with the line bundle K(g)α~ 1 e Picd~ί(M). The only restriction that we
shall impose on α is that it should not give rise to zero modes. From (2.1) we see that
the mathematical expression of this condition is that α should have no
holomorphic sections:

#°(M,α) = 0. (2.2a)

By the Riemann-Roch theorem [9] this means that also

ί ) = Q. (2.2b)

Remark 2.1. The condition (2.2a, b) will be unnecessarily restrictive in many parts
of our analysis. In the following we shall denote an arbitrary element of Pic^ ~ 1 (M)
by ξ, while α will always denote one which satisfies (2.2a, b).

Let g, P denote two points on M which lie in the same coordinate patch with
β ~ P. From [8] we have the following operator product expansions (which are to
be understood inside some correlation function):

ιp(Q)ψ(P)~0(Q-P), (2.3a)

Ψ(Q)Ψ(P)~0(Q-P), (2.3b)

Ψ(Q)Ψ(P)~ Q^ (2.3c)

We use (2.3a-c) only in a weak form to determine the zeros and poles of the
2/ι-point function (ψ(Qι)ψ(Pι) ..ψ(Qn)ψ(Pn)y at coincident points and we postu-
late that it has no other poles. We make no hypothesis on the residues nor on the
existence of other zeros.

3. Two-Point Function: Local Analysis

Let jR, S be two compact connected complex manifolds and pR, ps the canonical
projections from RxStoR.S respectively. Let (, η be holomorphic line bundles
over R,S respectively. Then we denote by ζ^η the holomorphic line bundle
Pκ(ζ)®Ps(rl) over & x S (* denotes the pullback). We take two copies M l5 M2 of
M and denote by pl9 p2 the canonical projections from Mx x M2 defined by
Pι(Q>P) = Q> P2(Q>P) = P The operator product expansion (2.3) motivates the
following definition.
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Definition. Let α e Pic*~ ί (M) satisfy (2.2). The two-point function <t£(β)t/?(P)> is a
meromorphic section of (X(g)α~1)^α whose polar divisor is the diagonal ^ of
M! x M2.

We study the line bundle (Kφξ'^^ξ in Sect. 4, prove the uniqueness of the
two-point function in Sect. 5, and determine the latter in Sect. 6.

4. Two-Point Function: Global Analysis

Let $ denote the subset of Pie*"1 (M) consisting of holomorphic line bundles of
degree g — 1 which have a nonzero holomorphic section. Denoting by Md the
d-fold symmetric product of M, $ is the image of Mg, ± under the Abel-Jacobi map,
which is birational on its image. Hence $ is a divisor of Picg~ 1(M) and defines a
line bundle &($) on Pic*7" 1 (M). It follows from the Riemann-Roch theorem that $
is invariant under the involution

i:ζ-+K®ζ~i (4.1)
of Pic* ̂

For our analysis of the two-point function we require the following lemma
which is essentially contained in [12]:

Lemma 4.1. Let η be a line bundle on M of degree g — 2. Let Iη : M->Pic* ~ 1 (M) be
the map defined by

P-+η®Θ(P). (4.2)

Then the pullback to M by Iη of the line bundle Φ($] is ~v

Proof. We sketch the proof. Since ηePic9~2(M), Kφη'1 εPic9(M) so that by
Riemann-Roch K®^"1 has at least one holomorphic section. Assume that
K®η~l is nonspecial, i.e. /ι°(M,K®f/~1) = l. Then K®η~v is the image in
Pic*(M) of the unique element Pί + . . . + Pg of Mg under the birational Abel-Jacobi
map. Now

Hence
We can complete the proof by noting that nonspecial elements form a dense

open set in Pic* (M) by the birationality of the Abel-Jacobi map Mg -» Pic* (M). Π

Theorem 4.2. Let ξePic9~l(M). Consider the map φξ'.M^ xM2-+Pic9~l(M) given
by the composition

Let
(4.3)

Then
Lξ = (K®ξ-ί)^ξ®Θ(A) (4.4)

as line bundles on Mj x M2.
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Remark 4.3. For the proof we use the well-known seesaw theorem in the following
form: if X and Y are compact connected complex manifolds and L is a
holomorphic line bundle on X x Y such that for each x e X the restriction
L\ {x} x Y is trivial and for each y e Y the restriction L\X x {j;} is trivial, then L is
trivial. This form follows from the statement given in [13].

Proof of Theorem 4.2. We first compute the restriction of the two sides of (4.4) to
{Q} x M2. The restriction of 6(Λ) is &(Q\ that of p^(K®ξ~ l ) is trivial (restriction to
a fibre), while that of pf (ξ) is ξ. Hence the restriction of the right-hand side of (4.4) is
the line bundle ζ®&(Q) on M2.

The restriction of Lξ to {Q} x M2 is the pullback of &(<$) by the map
M2^Pic^~1(M) given by P^Θ(Q — P)®ξ. Since ^ is invariant under the
involution i of (4.1), we can take the pullback after involution by ί, i.e. by the map

This map is of the form P-^(9(P)®η with η = K®ξ~l®Φ(-Q)ePic?~2(M).
Applying Lemma 4.1 we conclude that the pullback of &($) is K®η~l = ζ®&(Q).
Hence (4.4) holds for the restriction to {Q} x M2. A similar argument (the
involution is not now necessary) shows that (4.4) holds when both sides are
restricted to Mί x {P}. The proof is now complete from Remark 4.3. Π

We shall later find it convenient to have Theorem 4.2 in the following form:

Corollary 4.4. Let R be a compact connected complex manifold and let π1? π2, π12

be canonical projections from RxMίxM2 defined by πί(r,Q,P) = Q,
π2(r,Q,P) = P, π12(r,β,P) = (β,P). Let ξ, Lξ, A be as in Theorem 4.2. Then,

(4.5)

as line bundles on R x M± x M2. Π

5. Two-Point Function: Uniqueness

If D is a divisor of a compact connected complex manifold, then the line bundle
Θ(D) has a unique meromorphic section whose divisor is D [9]. We then see from
Theorem 4.2 that the two point function is unique if h°(Mί x M2, Lξ) = 1 . We shall
now show that this holds when ξ = α, where α satisfies the condition (2.2) of no zero
modes.

The following lemma is one which we shall use repeatedly. It is elementary and
well known to geometers, but we give the proof as we have not been able to locate a
convenient reference.

Lemma 5.1. Let M l5 M2 be two copies of M. The diagonal A is isomorphic to M.
Then the restriction of &(A) to A, which we denote &(A)\A, is isomorphic toTΔ = KΔ

 1,
where TΔ and KΔ are respectively the tangent and cotangent bundles of A.

Proof. Let & denote the structure sheaf of M! x M2. Then the restriction &\Δ\s the
structure sheaf of A. If J^Δ denotes the ideal sheaf of A we have the obvious exact
sequence

(5.1)
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Tensoring (5.1) by JΔ we find

ΛA/j = ̂ (X)0M. (5.2)

The left-hand side of (5.2) (the co-normal sheaf of A in Ml x M2) is KΔ (see [14]).
Since JΔ = &(~ A) (see e.g. [10]), we find that

KΔ = Θ(-Δ)®Θ\Δ=&(-Δ)\Δ.

The lemma follows on taking duals. Π

The following simple variant of Lemma 5.1 will also be useful in calculations:

Corollary 5.2. Keeping the notation of Lemma 5.1, consider now R x Mt x M2,
where R is a compact connected complex manifold. Let proj denote the canonical
projection R x A -+Δ. Then

Θ(R x A)\R x A = proj*(*7 1). Π

Proposition 5.3. There is a canonical isomorphism between H°(M1 x M2, 0(A)) and
x M 2, 0). Hence h^M, x M2, Θ(Δ)} = \.

Proof. Tensoring the exact sequence (5.1) by ^Δ~
1 = Θ(Δ\ we obtain the exact

sequence

0->0->0(2l)->Td->0, (5.3)

where we have made use of Lemma 5.1. Now H°(Mί x M2, T^) = 0, since TA is of
negative degree (g^2). The result now follows from the cohomology exact
sequence associated to (5.3). Π

Remark 5.4. The unique holomorphic section of ®(Δ\ normalised to vanish like
(Q-P) for (β,P) near A, is called the prime form E(Q,P).

Proposition 5.5. H°(MlxM2,LΛ) is canonίcally isomorphic to HQ(A9La\A) if α
satisfies (2.2).

Proof. Tensoring the exact sequence (5.3) by (K®α~1)^α we obtain the exact
sequence

1)K|α->Lβ->LβM->0. (5.4)

By the Kϋnneth formula [15] we see that

Hί(M1 xM2,(K®α-1)|Elα) = 0 (i = 0,l), (5.5)

since α satisfies (2.2). The proposition now follows from the cohomology exact
sequence associated to (5.4). Π

The following simple lemma will be useful in our discussion of the four point
function by extending the applicability of Proposition 5.5.

Lemma 5.6. // R and S are compact connected complex manifolds and L is a
holomorphic line bundle on S, then

H°(R x S, proj|(L)) = H°(S, L) , (5.6)
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where projs is the canonical projection RxS-*S. Thus putting S = Mlx M2 and
denoting the canonical projection R x M± x M2-^M^ x M2 by π12,

H°(R x M! x M2, π?2(Lα)) = tf0^ x M2, Lα) . (5.7)

Proof. An immediate consequence of the Kύnneth formula since
projf (L) = @R$$L, where ΘR is the structure sheaf of .R. Π

Lemma 5.7. The restriction of Lα, defined over M{ x M2, to the diagonal A is the
trivial bundk on Δ. The associated sheaf is the structure sheaf Θ\Δ of Δ.

Proof. La=pl(K®QL-l}®p%(vί)®&(Δ). Hence LΛ\Δ=KΔ®0(Δ)\Δ and the result
follows from Lemma 5.1. Π

Proposition 5.5 and Lemma 5.7 show that H°(Mi xM2,Lα) is canonically
isomorphic to H°(A9&\ A) = <C. We summarize these results in

Theorem 5.8. // αePicfif~1(M) satisfies the condition (2.2) of no zero modes, then

ft°(M1xM2,Lβ) = l . D

Remark 5.9. This theorem implies that the two-point function is unique.

6. The Prime Form and Szego Kernel

We now discuss function theory on M and show how the well-known expression
for the two-point function can be retrieved from our analysis. The relevant
Riemann surface and theta function theory is discussed in exactly the form we
require in [16] to which we refer for details.

We choose on M a (symplectic) basis of g α-cycles and g ^-cycles of H^M.Έ)
and a canonical basis of g holomorphic one forms w1? . . ., wg spanning H °(M, K).
Then the Riemann period matrix is in canonical form [9, 16].

We define the Albanese variety [9, 16]:

Alb(M) = #°(M, K)*/Hι(M, Z) .

Choosing a base point P0 e M, the Albanese map μ is defined by

μ:M-+Alb(M), β-> ( f w1? ..., J vΛ (6.1)
\PO Po /

and is a well-defined holomorphic map. The Abel theorem essentially says that
Alb(M) and Pic°(M) can be identified [16]. If Q14-...+Qπ-P1-...-Pπ is an
arbitrary divisor of degree zero of M, then the correspondence is defined by

Pic°(M)3(P(β1 + ... + βπ-P1-...-Pn)^Q l +J+ Q nweAlb(M)5 (6.2)
Pι + ...+Pn

where w = (w1? . . ., wff) and the integral is a sum of n line integrals whose endpoints
can be chosen from Pi9 . . ., Pn and Qί9 . . ., Qn respectively in any order. Note that the
integral in (6.2) is independent of the choice of base point P0 and is evaluated
modulo the period lattice. We call the common Abelian variety, defined by the
equivalence (6.2), the Jacobian variety J(M). We shall continue for J(M) our
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practice of writing the group operation multiplicatively that we have followed for
Pic°(M).

The Riemann theta function θ(z) now defines its (symmetric) divisor of zeros Θ
in J(M). θ(z) is the unique holomorphic section of the corresponding line bundle
&(Θ) on J(M). A theta function with characteristics is a holomorphic section of the
line bundle associated with a translate of Θ by some element of J(M). The
symmetry of Θ can be expressed in the multiplicative notation of Pic°(M) as

β=θ~1. (6.3)
Riemann's vanishing theorem states that [16] there exists κePicβ~1(M) such

that - (6.4)

Because of (6.4) and the fact that Θ and K depend on the choice of canonical bases,
S is sometimes called the canonical theta divisor. The symmetry of $ under the
involution (4.1), combined with the symmetry (6.3) of Θ, implies that κ2 = K, i.e.
that K: is a theta characteristic.

The isomorphism between J(M) and Picflr~1(M) defined by K enables us to
express a holomorphic section of Lξ in terms of theta functions. Since ζ~^®$
= (ζ~ί®κ)®Θ, we see that Lξ is the pullback to Mί xM 2 of the line bundle
associated with the translated theta divisor (ξ~l

Definition. We denote by θ[ξ](z) the theta function with characteristics κ®ξ~^,
which is a holomorphic section of the line bundle &((κ®ζ~l}®Θ] on J(M). We
shall also adopt the notation 0[£] (Ql + . . . + Qn - Pί - . . . - Pn) for

era

We summarize our discussion:

Proposition 6.1. θ[_ξ\(Q — P) is a holomorphic section of Lξ. Π

Remark 6.2. It is important to note that the uniqueness of the theta function as a
holomorphic section of Φ(Θ) does not imply the uniqueness of the pullback as a
holomorphic section of Lξ on Aί\ x M2.

The Riemann singularities theorem [16] states that the multiplicity of a point ξ
of^isg ivenby

= h°(M,ξ). (6.5)

Thus in particular (or directly from the definition)

0K](0) = 0 if and only if £e<ί, (6.6)

and if β is a nonsingular point on <?, then

Λ°(M,/ί) = l, (6.7)

0[/Γ|(0) = 0, <*0[/Γ|(0)φO. (6.8)

We can even choose β to be a, necessarily odd, theta characteristic [2]. Choosing
an odd theta characteristic β satisfying (6.7), (6.8) we denote by hβ its unique
holomorphic section. By the Jacobi inversion theorem the (effective) divisor of
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zeros P! + ... +P0_ι of hβ is the inverse image in M g _ x of βeS. We shall now
determine the zeros of θ[β~\(Q — P) by adapting the argument given by Mumford
[2] to our notation.

Lemma 6.2. Let β be an odd theta characteristic with β = @(Pί + ...+P^_1) and
h°(M,β)=l. Then θ[β](Q-P) = Q if and only if (a) β = P, or (b) P = some P£

Proof. From the Riemann vanishing theorem θ\β](Q — P) = 0 if and only if
0(Q-P)®βe<$, i.e, denoting 0(β)®0 by δ, if

Λ°(M,£®Φ(-P))ΦO. (6.9)

By the Riemann-Roch theorem, h°(M,δ) = l+hQ(M,β®([)(-Q)). If
/ί°(M,/?(χ)0( — β)) = 0, then c) has a unique holomorphic section with zeros at
β,P1? ...,Pg-ι. Then, for (6.9) to hold, this section must vanish at P which gives
parts (a) and (b) of the lemma. If h°(M,β®(9( — β))φO, then hβ must vanish at β,
which gives part (c) of the lemma. Π

By the Kunneth formula, hβ(Q)hβ(P) is a holomorphic section of
Hence from Lemma 6.2 and Theorem 4.2, #[/?] (β — P)/hβ(Q)hβ(P) is a holomorphic
section of 0(zl). Thus, fixing the normalisation of hβ9 we have proved:

Proposition 6.3. Following the notation of Lemma 4.2, the prime form E(β,P)
(defined in Remark 5.4) is given by the expression

Remark 6.4. Equation (6.10) is the definition of the prime form given in [1,2].

From Propositions 6.1 and 6.3 we obtain an expression for the unique two-
point function <φ(β)φ(P)> which coincides with the form given in the literature
[17]:

Theorem 6.5. Let α e Pic9 ~ l(M) satisfy (2.2) so that θ[α] (0) Φ 0. Then the normalised
two-point function is given by the Szegό kernel

D

7. Four-Point Function: Local Analysis

Applying the operator product expansions (2.3) to the four-point function
<\ψ(Qι)ψ(Pι)ψ(Q2)ψ(P2)y> we find that it must have zeros for Pί=P2 or Ql = Q2

and a simple pole whenever Q^ = P1? βi = P2, β2 = ̂ u or Qi = P2- Following our
basic postulate, we require that globally the four-point function should not have
any further poles, though it may have extra zeros.

We require a precise description of the zeros and poles determined by the local
analysis above. We take four copies of M denoted M{ (i = 1, . . ., 4) and we denote the
product manifold M1 x M2 x M3 x M4 by M4. An element of M4 will be denoted
as either (β l9P l9β2,P2) or as (zl9z2,z3,z4).



634 A. K. Raina

We define the following canonical projections:

Pi:M
4-*M (i = l,...,4)

π /zi> z/) = Zj πf/zί5 Z;) = z; .

We denote the diagonal of M, x M7 (zφy) by Jί<7 , the diagonal of Mf x M, x Mfe

(i φj φ k) by J^k, and the diagonal of M4 by Aί234- It is important to note that each
such diagonal is isomorphic to M.

The diagonal Atj is a divisor in M f x My and has an associated line bundle
. Defining

we see that Dtj is a divisor in M4. Then

(P(Dy) = pr5(P(dy). (7.2)

We further define the zero divisor

Dz = Dί3 + D24 (7.3a)

and the polar divisor

Dp = Di2 + D14 + D23 + D34. (7.3b)

The total divisor is

D = Dp-Dz. (7.3c)

Definition. Let αePic^'^M) and also satisfy (2.2a, b). We define the four-point
function <tp(Q1)ι/;(P1)tp(β2)v;(^>2)) to be a meromorphic section of

whose polar divisor is Dp and whose zero divisor contains Dz.

8. Four-Point Function: Global Analysis

For a fixed ξePicβ~l(M) consider the map

defined by composing
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We denote by Mξ the pullback of the canonical theta divisor by this map, i.e.

(8.2)

Theorem 8.1. Mξ = Fξ®Θ(D) , (8.3)

where D and Fξ were defined in (7.3c) and (7.4) respectively.

Proof. We use the seesaw principle for line bundles on M4 with X = M^ x M2,
7=M3 x M4 (see Remark 4.3).

Fix <22, P2 and restrict all line bundles appearing in (8.3) to
M! xM2x{(β2,P2)}. Then it is clear that 0(£13), 0(D24)9 &(D12), (9(Dί4), and
0(D23) restrict respectively to π}J(0(Q2)), π?f(0(P2)), 0(J12), π^(&(P2)\
π? 2(^(62))- The restriction of (9(D34), being a restriction to a fibre, is trivial. Let J
denote the line bundle Φ(Q2-P2) on M. Then

^(Z))|M1xM2x{(β2,P2)} = π}*(J-1)®π?*(J)®^12). (8.4)

The restriction of F* is ?*/^ ,« ̂
fKQ. (8.5)

Hence the right-hand side of (8.3) reduces to

/τj.1^5/ t^"/O\ Jί ~ 1 /O\ 7~ l^^vNTT^JJ:/' £/O\ J\(\2\/0( A \ (Q £\
7t^2^Λ.Q9ζ VO't/ JW'tiivζ^*' /^^V2-* 12/ W'W

The restriction of Mξ is the pullback to M^ x M2 of G(δ ) by the map

(61^1)^^(61 -Λ)® ^®έ

By Theorem 4.2 (replacing ξ by £®J),

(ρ2,P2)} = πίf(K:®Γ1®J~1)

(8.7)
which coincides with (8.6).

A similar calculation in which we now restrict to {(Ql9 PI)} x M3 x M4 leads to
a similar equality. By the seesaw principle, Theorem 8.1 is established. Π

9. Four-Point Function: Uniqueness

We now study the uniqueness of the four-point function when ξ = α, where α
satisfies condition (2.2) of no zero modes. From Theorem 8.1 we see that the four-
point function is (if it exists) obtained by tensoring the unique meromorphic
section of Θ( — D) with divisor — D with a holomorphic section of Mα. Thus the
question of uniqueness is reduced to computing fί°(M4,Mα) = /ί0(M4,Fα®ίP(D)).
Unlike in the two-point case, D is not an effective divisor and so the cohomology
calculation is more difficult Nevertheless the remarkable structure of the four-
point function enables us to reduce the problem to the two-point function case on
submanifolds of M4.

Lemma 9.1. Hί(M4,F(X®&(-Dz)) = 0 for ί = 0,l.

Proof. By the Kύnneth formula

) = 0 for i = 0,l (9.1)
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as a consequence of (2.2). The ideal sheaf of Dz as a subscheme of M4 is @( — Dz)
[10]. Denoting by & and &\DZ the structure sheaves of M4 and Dz respectively, we
have the short exact sequence

Q. (9.2)

Tensoring (9.2) with FΛ we obtain a new short exact sequence

O^Fβ<g>0(-DJ^Fβ^FJDs->0. (9.3)

The cohomology exact sequence associated to (9.3) now gives us

#°(M4, Fβ® 0( - DJ) = 0 , (9.4)

because of (9.1), and the canonical isomorphism

,Fa\Dz}. (9.5)

Recall from (7.3a) that DZ = D13+D24. Computing Fα|D13, FΛ\D24 we find from
the Kϋnneth formula that H^(DF\D = Q = HQD,F\D). Hence

Proposition 9.2. There is a canonical isomorphism between H°(M4,Mα) and
HQ(Dp,MΛ\Dp).

Proof. Tensoring the exact sequence

Q (9.6)

by FΆ®Θ(D\ we obtain the result from the associated cohomology exact sequence
and Lemma 9.1. Π

We have thus reduced the problem to studying the restriction of Mα to the set
defined by the effective divisor Dp = D12 + D14 + D23 + D34. As we shall show, it is
sufficient to study the restriction of Mα to each of the divisors D12, D14, D23, D34

as well as to their mutual intersections.
We are obliged, at this point, to introduce notation for the numerous canonical

projections which appear in our calculations. We denote the canonical projections
from AijxMkxMl (zφyφ/cΦ/) to Aij9 MkxMt, Mfe, Ml by respectively proj^,
projfe/, projfe, projj; from Atj x Mk to Aip Mk by πA9 πk respectively; and from Atj x Akl

to Aij,Akl by ntj and πkl respectively.
We first compute the restriction of Mα to the various Dtj of which Dp is

comprised, and then to their various intersections Dί7 nDfe/.

Lemma 9.3. Let DijE{D12, D14, D23, D34}. There is exactly one Dkl in the same set
such that i φj φ k Φ /. Then,

where fyl is the line bundle LΛ of (4.4) constructed over Mk x M;.

Proof. To compute Ma\Dtj, note that

(9(D)\Dlj=&(Dί])\Dίj®(9(Δίj x Δ^\Di}

; J)® projfi(0( JJ) , (9.7)
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where KΔ is the canonical line bundle of Atj. We have used Corollary 5.2 in the
second line.

α). (9.8)

Combining (9.7) and (9.8) we obtain the result. Π

Lemma 9.4. Mα | D{jr\Dkl = &\Aijx Akl if i φj φ fc φ /, where the right-hand side is the
structure sheaf of A^ x Akl. The other cases are as follows:

In addition, MΛ\A1234 = Φ\A1234 = structure sheaf of Aί234. In the above,
EJ

Λ

k'1 (E'a
jkl) is the line bundle of (4.4) constructed over Aίjk x Ml (Mf x Ajkl).

Proof. A straightforward computation by the methods already illustrated. Π

Proposition 9.5. Let Dij9 Dkl be any two distinct elements of the set
{D12,D14,D23,D34}. Then the diagram of homomorphisms

commutes ana each arrow is an isomorphism.

Proof. We choose Dtj to be D12 and Dkl to be successively D34 and D23. Every other
case is similar to one of these cases. By Lemma 9.3,

HQ(D12,Ma\D12) = H*(A12 x M3 x M4,projf4(L3

α'
4))

= #°(M3xM4,L
3'4), (9.9)

by Lemma 5.6. Choosing Dkl to be D34, we note that by Theorem 4.2,

= H°(D12nD34,Mα|D12nD34) by Lemma 9.4.

Choosing now Dkl as D23, note that there is a natural isomorphism of J123 x M4

with M 3 x M4 so that continuing from (9.9),

#0(M3 x M4,L
3

α'
4H#°(zl123 x M4,4

23'4)

-H°(D12nD23,Mα|D12nD23) by Lemma 9.4.

In this way the proposition is proved for the arrow b. The isomorphism c
follows either directly (when the restriction of Mα to D^nDkZ is trivial) or from
Theorem 4.2. As for the arrow α, choose the unique Dkl for a given Dtj such that ί φ j
Φ k Φ /. Then we have the proper inclusions Aί234cAijx Akl = Dt 7 nDfc/ C D/7 . This
proves that a is an isomorphism from our earlier discussion. Π
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Proposition 9.6. hQ(Dp, Ma\Dp) = \.

Proof. Since ^ι234 is contained in each of D12, D14, D23, D34 whose sum is Dp,
this induces a natural map

To show that this map is injective, it suffices to show that a holomorphic section σ
of Ma\Dp vanishes if it vanishes over A 1234. Given such a σ, then by the horizontal
arrow a of Proposition 9.5, σ \ D^ vanishes for each of the irreducible divisors whose
sum is Dp. Hence σ = 0. Since Λ°(zl1234,Mα|zl1234) = /ϊ0(zl1234,^|zl]L234) = l? hence

To show that there is a nonzero section of Ma\Dp over Dp, take a nonzero
section s of Mα|zl1234 over ^1234. Let stj be the section of Mα|Z)ί7 over D0 which
goes into s under the isomorphism α of Proposition 9.5. From the commutative
diagram of Proposition 9.5, we see that stj and skl coincide on Dtjr\Dkl. Hence the
{Sij} can be patched together to give a (non-zero) section σ of MΛ\Dp over Dp. Thus
Λ0(Dp,Mβ|Dp) = l. D

Recalling Proposition 9.2, we now summarise the main result of this section in:

Theorem 9.7. // α satisfies the condition (2.2) o/ no zero modes, then

Λ°(M4,Mβ) = l . D

This theorem establishes the uniqueness of the four-point function.

10. Fay's Trisecant Identity

We follow the conventions of Sect. 6 for theta functions. Generalising Proposition
6.1 we see that a holomorphic section of Mξ over M4 is $[ξ] (Qί + Q2 — P1 — P2). By
Theorem 9.7 this holomorphic section is unique when ξ = α. The unique mero-
morphic section of &(— D) with divisor — D is

29 P2) '

We have thus proved:

Theorem 10.1. Let αePic^^M) satisfy (2.2) so that 0[α](0)φO. The unique
normalised four-point function is given by

0[α](0)

ΓT Π (10.1)

Since we are dealing with a theory of free fermions, we expect the four-point
function to be given by "Wick's theorem" as a determinant of two point functions:

W»r*' (1° 2)

It is clear that the right-hand side of (10.2) is a meromorphic section of FΛ with the
correct local singularity structure.
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Theorem 10.2 (Fay's trίsecant identity). Let α e Pic9 ~ '(M) with H°(M, α) = 0. Then

E(Ql,Q2)E(P2,Pl)

i, P2)E(Q2, P,}E(Q2, P2)

= det
22, Pt) sx(Q2,p2)

Proof. We can rewrite (10.3) as:

-P1-P2) E(Ql,Pl)E(Qί,P2)E(Q2,Pl)E(Q2,P2)

xdet

{ }

(10.4)

Expanding the right-hand side of (10.4), using (6.11) for Sα(β,P), we can easily
check that the apparent poles all cancel. More precisely, the right-hand side is
holomorphic in the complement of the union of DfjnDfeί for all the irreducible
divisors of D. Since the latter set is of codimension two, the right-hand side of (10.4)
is holomorphic everywhere [18]. By Theorem 9.7 the two sides of (10.3) are
proportional to each other. The proportionality constant is easily found to be
unity by putting e.g. β2 = P2. D

Remark 10.3. Geometers usually prefer to multiply out the denominators in (10.4).
The trisecant identity then takes the form:

(10.5)
1 + β2-P1-P2)β[α](0)£(β1,β2)£(P1,P2).

11. The 2/ι-Point Function and the General Fay Identity

The analysis of the 2n-point function <ψ(δι)tp(Pι)...^(6w)ψ(Pπ)> proceeds exactly
as for the four-point case. Since no new methods are required, we merely state the
main steps.

From the local operator product expansion (2.3), we find that the 2n-point
function vanishes when Qt = Qj or Pt = Pj for some i =j=/ e {1, . . ., n} and has a pole
when Qi = Pj for some ije{l, ...,rc}. Taking 2n copies M1, ...,M2« of M, these
zeros and poles define divisors D^n,Dpn in M2n = M1 x ... x M2π. We define the
total divisor as ^ = D2n _ ̂

Let ψξ denote the map M2w^Pic^-1(M) defined by

where ξ e Pic^ ~ *(M). Let L2

ξ

n denote the pullback onto M2n of ®(£) by this map. Let
F2" denote the line bundle
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where pi'.M2n^M is the canonical map

(z1,...,z ί,...,z2 l l)->z j (i = l,...,2n).

Theorem 11.1. I?ξ

n = F2

ξ

n®(9(D2n). (11.1)

Proo/. We use the seesaw principle (Remark 4.3) with X = M1 x ... xM 2 π_ 2,
7=M2 M_1 x M2π. We carry out the reduction of (11.1) to X x {(Qn9Pn)} since the
argument involves induction. (The other side can be done as before.)

®...®p2n_2(J),

where the pt are now projections from X = M2n'2, and J = &(Qn — Pn). Thus the
right-hand side restricts to ^-^^^-^

" ξ®J Qyt-'lA' )•

It is easily seen that lϊg restricts to ί?ξV/. Hence if Theorem 11.1 holds forn — 1 , it
holds for n on restriction to X x {(Qn,Pn)}. For the other side of the seesaw
induction is not required. Π

The proof of the uniqueness of the holomorphic section of L2*1 with ξ = α
proceeds exactly as in Sect. 9. Proposition 9.2 holds and the commutative diagram
of Proposition 9.5 holds with obvious changes. We thus get hQ(D2n ,I2?\D2n)=\,
which implies:

Theorem 11.2. // αePic^M) is such that H°(M,α) = 0, then

Writing down the unique holomorphic section of I2" and the unique
meromorphic of Θ( — D2n) with divisor — D2n we obtain:

Theorem 11.3. // αεPic^M) is such that #°(M,α) = 0 so that Θ[α](0)φ0, then
the unique normalised 2n-point correlation function <tp(Q1)tp(P1)...ιp(Qπ)φ(Pw)> is
given by , ,

- ΣΛ Π
i . / ' < ί

We can also write down the correlation function as a determinant of two-point
functions ("Wick's theorem") and verify that it is indeed a meromorphic section of
F2n with the correct local singularity structure. Then the same argument used to
prove Theorem 10.2 gives us:

Theorem 11.4 (Fay's general identity). Let α e Pic^~ ̂ M) be such that H°(M, α) = 0
so that 0[α](0)φO. Then,

(Σ a- Σ PJ) Π E(Qi,Qj)E(Pj,PL
\ * ! / i<j
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Remark 11.5. The main result of this section is that we are able to show by a direct
proof that the 2n-point function is unique. The general Fay identity of
Theorem 11.4 is itself, as remarked by Fay [1], a consequence of the trisecant
identity (Theorem 10.2).

Acknowledgement. I thank Prof. M. S. Narasimhan for many useful discussions.
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