Erratum

The Quantum Theory of Second Class Constraints: Kinematics

H. Grundling¹ and C. A. Hurst²

¹ Department of Mathematics, Australian National University, Canberra, ACT 2601, Australia ² Department of Mathematical Physics, University of Adelaide, GPO Box 498, Adelaide,

S. Australia 5001

Commun. Math. Phys. 119, 75 (1988)

In the proof of Lemma 3.2, [1], we proved that if for all $U \in \langle \mathscr{U} \rangle$ of the form $U = \sum_{\ell} \lambda_{\ell} U_{\ell}, U_{\ell} \in \langle \mathscr{U} \rangle$ we have $\sum \lambda_{\ell} = 1$, then $\mathbf{1} \notin C^*(\mathscr{U} - \mathbf{1})$. This proof is wrong because not all positive elements $A \in C^*(\mathscr{U})_+$ can be written as $A = B^*B$ with $B = \sum \lambda_{\ell} U_{\ell}$, though the set of such elements is of course dense in $C^*(\mathscr{U})_+$. Hence the proven inequality $\omega(B^*B) \ge 0$ is not sufficient to ensure that ω is positive, so it does not follow that ω extends from the *-algebra generated by \mathscr{U} to $C^*(\mathscr{U})$. In fact we know that in general this part of Lemma 3.2 is wrong:

Assertion. There is no general condition on the *-algebra generated by a set of constraints \mathcal{U} which is equivalent to $\mathbf{1} \in C^*(\mathcal{U} - \mathbf{1})$.

Proof. We exhibit a *-algebra \mathscr{K} containing a group of unitaries \mathscr{U} , and complete it in two different C^* -norms. In one of the resulting C^* -algebras we will have $\mathbf{1} \in C^*(\mathscr{U} - \mathbf{1})$, and in the other $\mathbf{1} \notin C^*(\mathscr{U} - \mathbf{1})$.

Let G be a discrete group acting on a unital C*-algebra \mathscr{F} with the action $\alpha: G \mapsto \operatorname{Aut} \mathscr{F}$. Construct $\widetilde{\mathscr{F}} := M(G_{\alpha} \times \mathscr{F})$ which contains \mathscr{F} and a faithful unitary representation $U: G \mapsto \widetilde{\mathscr{F}}_{u}$ of G which implements α , i.e. $\alpha_{g} = \operatorname{Ad} U_{g}$. So U_{G} is a group.

Lemma 1. $U_G \subset \widetilde{\mathscr{F}}$ is a linearly independent set.

Proof. $(U_g f)(r) := \alpha_g(f(g^{-1}r)) \ \forall g, r \in G, \ \forall f \in \ell^1(G, \mathscr{F}), \ \text{where} \ \ell^1(G, \mathscr{F}) :=$ $\left\{ f : G \mapsto \mathscr{F} \mid_{g \in G} \| f(g) \| < \infty \right\}.$ Assume U_G is linearly dependent, i.e. $\exists \beta_k \in \mathbb{C} \setminus 0, \ g_k \in G \ \text{all different and} \ N < \infty \ \text{such that} \ \sum_{k=1}^N \beta_k U_{g_k} = 0.$ Hence $\forall f \in \ell^1(G, \mathscr{F}) \ \text{we have} \ \sum_{k=1}^N \beta_k \alpha_{g_k}(f(g_k^{-1}r)) = 0.$ Choose $f(r) := \mathbf{1}\delta(r, e).$ Then $\sum_{k=1}^N \beta_k \mathbf{1}\delta(g_k^{-1}r, e) = 0 \ \forall r \in G, \ \text{so for} \ r = g_k \ \text{this implies} \ \beta_k = 0, \ \text{which contradicts our} \ \text{assumption.}$

Take $\mathscr{U} = U_G$ for the chosen constraint set, let the *-algebra \mathscr{K} be generated by U_G , hence it is the linear space generated by U_G . Let the C*-algebra \mathscr{A} be the C*-

closure of \mathscr{K} in $\widetilde{\mathscr{F}}$, then we give below a choice of \mathscr{F} , G, and α for which $\mathbf{1} \in C^*(U_G - \mathbf{1})$ in \mathscr{A} . First note that if $\mathbf{1} \notin C^*(U_G - \mathbf{1})$, then $\exists \omega \in \mathfrak{S}(\widetilde{\mathscr{F}}) \ (\equiv \text{the set of states on } \widetilde{\mathscr{F}})$, for which $\omega(U_G) = 1$, and since $\mathbf{1} \in \mathscr{F}, \omega \upharpoonright \mathscr{F}$ is a nontrivial *G*-invariant state on \mathscr{F} . Choose $\mathscr{F} = C(\mathbb{S}^1)$, and *G* the discrete group generated in Aut \mathscr{F} by an irrational rotation of \mathbb{S}^1 , and by a non-Lebesgue measure preserving homeomorphism of \mathbb{S}^1 , which always exists.

Lemma 2. There are no G-invariant states on \mathcal{F} , and hence $\mathbf{1} \in C^*(U_G - \mathbf{1})$.

Proof. By the Riesz representation theorem, to each $\omega \in \mathfrak{S}(\mathcal{F})$ corresponds a unique Borel measure on \mathfrak{S}^1 . By [2, Theorem 5, p. 82], for an irrational rotation the Lebesgue measure is the only invariant Borel measure. Since the other generating element of G does not preserve the Lebesgue measure, there are no invariant measures for G, and hence no G-invariant states on $C(\mathfrak{S}^1)$.

We now construct another C*-closure \mathscr{B} of \mathscr{K} such that $\mathbb{1} \notin C^*(U_G - \mathbb{1})$ in \mathscr{B} . Since by Lemma 1, U_G is linearly independent, each $A \in \mathscr{K}$ has a unique expression $A = \sum_{k=1}^{N} \lambda_k U_{g_k}, \lambda_k \in \mathbb{C} \setminus 0, g_k \neq g_j$ if $k \neq j, N < \infty$. So define a *-norm $||A||_1 := \sum_{k=1}^{N} |\lambda_k|$ on \mathscr{K} and complete it to a Banach *-algebra \mathscr{K}_1 . Then let \mathscr{K}_2 be the enveloping C*algebra of \mathscr{K}_1 , with C*-norm $|| \cdot ||_2$, and \mathscr{B} is the $|| \cdot ||_2$ -closure of \mathscr{K} in \mathscr{K}_2 . Since U_G is linearly independent and generates \mathscr{K} , a linear functional on \mathscr{K} is uniquely specified by its values on U_G . Specify ω by $\omega(U_G) = 1$. Consider the set $\mathscr{P} := \{B \in \mathscr{K} | B = A^*A, A \in \mathscr{K}\}$, then for $B \in \mathscr{P}, B = A^*A$ with $A = \sum_{k=1}^{N} \lambda_k U_{g_k}$, we find

$$\omega(B) = \omega\left(\sum_{k,j}^{N} \overline{\lambda}_{k} \lambda_{j} U_{g_{\bar{k}}^{-1}g_{j}}\right) = \sum_{k,j} \overline{\lambda}_{k} \lambda_{j} = \left|\sum_{k} \lambda_{k}\right|^{2} \ge 0,$$

so ω is positive on \mathcal{P} , and

$$\left|\omega\left(\sum_{k}^{N}\lambda_{k}U_{g_{k}}\right)\right| \leq \sum_{k}|\lambda_{k}|\cdot|\omega(U_{g_{k}})| = \sum_{k}|\lambda_{k}| = \left\|\sum_{k}^{N}\lambda_{k}U_{g_{k}}\right\|_{1},$$

hence ω is continuous with relation to $\|\cdot\|_1$, hence can be extended as a continuous linear functional to \mathscr{K}_1 . Now \mathscr{P} is dense in

$$(\mathscr{K}_1)_+ := \left\{ B \in \mathscr{K}_1 | B = A^*A, A \in \mathscr{K}_1 \right\},\$$

because if $A \in \mathscr{K}_1$ is the limit of $\{A_n\} \subset \mathscr{K}$, then A^*A is the limit of $\{A_n^*A_n\} \subset \mathscr{P}$ in the norm $\|\cdot\|_1$, by simple manipulations. Hence since ω is positive on \mathscr{P} , its extension is positive on $(\mathscr{K}_1)_+$, so ω is a state on the Banach *-algebra \mathscr{K}_1 , hence by Dixmier [3] 2.7.5 has an extension as a state to the enveloping algebra \mathscr{K}_2 . But $\omega(U_G) = 1$, hence $\mathbb{1} \notin C^*(U_G - \mathbb{1})$ in \mathscr{P} . \Box

Note. Hence the question of whether a constraint set is first or second class in general depends on the C^* -norm of the field algebra. Clearly there are some algebraic conditions which are sufficient for $\mathbf{1} \in C^*(\mathcal{U} - \mathbf{1})$, e.g. the first part of Lemma 3.2 [1].

The subsequent material in [1] is unaffected by the error in Lemma 3.2 pointed out in this erratum.

Erratum

Acknowledgement. We wish to thank Prof. Iain Raeburn for the example of Lemma 2.

References

- 1. Grundling, H, Hurst, C.A.: The quantum theory of second class constraints: Kinematics. Commun. Math. Phys. **119**, 75 (1988)
- 2. Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. Berlin, Heidelberg, New York: Springer 1982
- 3. Dixmier, J.: C*-algebras. Amsterdam: North-Holland 1977

Communicated by H. Araki

Received November 18, 1988