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Abstract A one dimensional N Fermion problem with attractive or repulsive δ
function interaction is solved by Bethe's hypothesis. The S matrix factorizes
and is explicitly given.

1. Introduction

We report a one dimensional N Fermion problem for which the S matrix is
completely solved. The solution depends on extensive uses of the Yang-Baxter
equation [1]. The corresponding problem for Boltzmann statistics was solved [2]
in 1968, but specialization to Fermi statistics is algebraically involved and was
never done. Here we approach the problem directly without going through the
Boltzmann case.

The Hamiltonian for the problem is

H=-Σ-!h+2cΣδ(Xi-x,), (i,j = U2,...,N), (1)

where c = real. Each particle has m "spin" states designated by sus2... sN where

ί^Si^m. (2)

The Schrδdinger equation is Hψ = Eψ, where

ψ = mN x 1, (column). (3)

For the Fermion problem we are only interested in wave functions ψ that are
antisymmetrical with respect to the interchange:

β ^ f e S i M x , , ^ ) . (4)
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The Hamiltonian commutes with the full mN x mN unitary matrices SU(mN) that
operate on ψ. But these matrices in general do not commute with QιK A subgroup
of SU(mN) consisting of identical Sl/(m)'s [operating on each subspace designated
by s j does commute with Qίj. Thus the Fermion problem for the Hamiltonian (1)
has SU(m) symmetry.

If we choose m = 4 and identify the four states as

pUUnUi (5)

we have a one dimensional SU(4) model of nucleons interacting through a
^-function interaction.

2. Bethe's Hypothesis

Consider the scattering of two particles with initial momenta kx and k2 into states
with final momenta k\ and k'2. Momentum and energy conservation give

fci+fc/2='/c1+/c25

(6)
k\2 + k!2

2 = k2 + k2,

which has two and only two solutions

(fe/

1fe
/

2) = (fe1,fc2) or {k2,kγ).

The two solutions are reflections of each other in the (ku k2) plane with respect to
the mirror k1 =k2.

For the scattering of three particles, momentum and energy conservation still

give two equations kf1+k!2 + k?3 = k1+k2 + k3,
(7)

kf + k'i + k'^kϊ + kj + kl,

which has obviously the following six special solutions:

(k\,k2,k3) = (kl9k2,k3) or 5 other permutations. (8)

The six solutions exhibited in (8) represent reflections of each other in (ku k2, k3)
space. But there are many other solutions of (7) which represent diffractions in
(fcl5 fc2, fc3) space. The quantum mechanical three body scattering problem would in
general yield outgoing states including both diffracted and reflected waves, and is
therefore difficult to solve.

However, in some special cases, the outgoing waves consist of only reflected
waves, a hypothesis first proposed by Bethe [3,4]. If the hypothesis works, the
solution of the Schrodinger equation becomes an algebraic problem, as we shall
illustrate in the present work.

3. N=2

For two particles the Schrodinger equation describes two free particles except on
the line Xι=x2 in Fig. 1. Bethe's hypothesis states that

in region l(xλ<x2):

ψ = a12e
i{klXί + k2X2] + oί21e

ίik2Xl + kίX2\ (9)
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where α 1 2 and α 2 1 are m2 x 1 column matrices. The antisymmetrization require-
ment for ψ says that

in region II (x2<x1):

ψ=, -(P12oci2)ei{kίX2 + k2Xί)-{P12oc2ί)eί{k2X2 + kίXi\ (10)

where
P 1 2 = operator on the m2 x 1 column that interchanges sx<-+s2. (11)

Now we transform to the center of mass coordinate X, and the relative
coordinate y:

The Schrδdinger equation becomes

d2 d2

d d
H commutes with ί—-. Hence we can put -— =0, obtaining

dX oX

+2cδ(y)\Ψ Eψ. (13)

Thus ψ is continuous at y = 0:

αi2 + α 2 i = - P l 2 ( α i 2 + α 2 i ) 5 (14)

and ^-jψ has a ^-function singularity at >' = 0. Integrating (13) from y = 0— to
oy

we obtain

cψ cψ
V = 0

Substituting (9) and (10) into this equation results in

l

2(l-~P12)(ki-k2)(~al2 + a21) = c((xi2 + ^ 2 1 ) . (15)

Eliminating the term P 1 2 α 2 1 from (14) and (15) leads to

Thus

α 2 1 = Yα 1 2 5 (17)

where

if the denominator is nonvanishing. It is easy to check that if (17) is satisfied, then
(14) and (15) are satisfied.
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Thus if k 1+fc 2 and are real, (9) and (10) give indeed a solution of the
Schrόdinger equation satisfying Bethe's hypothesis.

4. 7V^3

For iV^3, Bethe's hypothesis states that in one of the regions, where
x1 <x2< ••• <xN

 w e n a v e a generalization of (9):

+ (JV!-2) other terms. (19)

The columns α have the dimension mN x 1. In other regions the wave function ψ is
determined from (19) by the requirement of antisymmetrization. The energy is
given by

E = kl + k2

2 + ...+k2

N. (20)

Now we examine the Schrόdinger equation along the plane x3 = x4. The N\
terms in (19) form pairs, with the terms containing α 1 2 3 4 _ N

 a n d α 1 2 4 3 i > # i V forming
one pair, α 3 7 1 5 4 2

 a n d 0C37514...2 forming another pair, etc. In each pair only the
third and fourth subscripts are different. Exactly the same procedures apply to the
two terms in each pair as to the two terms in (9) of the last section. Thus we obtain
in the same way that we obtained (17) and (18):

«..υ... = l}?V.iI..., (21)

where

provided the denominator does not vanish.

5. Yang-Baxter Equation

The subscripts in Eq. (21) can be chosen in JV! different ways. The superscript 34
can be replaced by 12,23, ...,(JV —1)JV. Thus Eq. (21) actually is representative of
(N— 1)(ΛΠ) different linear equations between the Nl columns α. . . . Are these
equations mutually consistent? For example, for iV = 3,

„ _ y l 2 ^ _ y l 2 y 2 3 ^ _ y l 2 y 2 3 y l 2 . yα 1 2 3 — J 2 1 α 2 1 3 — J 2 1 1 3 1 0 C 2 3 1 — 2 2 1 J 3 1 2 3 2 a 3 2 1 ?

but also

α l23 ~ ^32 α l32 ~ ^32 ^31 α312 ~ ^3 2 ^31 ^21 ^321

Thus for Bethe's hypothesis to be consistent, we require

y l 2 v 2 3 v l 2 _ v 2 3

223 231 J32 — 232

More generally

a,a + 1 v α + 1,α + 2 v f l ' « + 1 V α + 1, o + 2 v f l>Λ + 1 \ra + l,a + 2
j 1kj lki — χki 1kj Iίj
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Now if a, b, c are unequal,

pac yab pac ycb _ ybc

ΛrάbγbcΛT-ab _ ybc yab ybc n ^
ί I h j I h j — Ihj Ih J Ij ΐ , V ^ *̂  /

ij ji — '

and
Y.fYξ* = γtfγ.f, if flj fc9 c, d are all unequal.

These equations are now called the Yang-Baxter equations. In the present
problem, they represent consistency conditions for Bethe's hypothesis.

Using definition (22) of the operators Y, we find that indeed Eqs. (23) are
satisfied. Thus for real values of fel5...,fejV5 all different from each other, the
(N — 1) (N!) Eqs. (21) are consistent and define uniquely all the α's once one of them
is given. From these α's we can then construct a wave function ψ.

Equation (23) can be cast [1] into a different form by defining

Xη = — Yij r —sίij (24)

One finds γab Yba _ 1
ij ij ~ '

X ab \rcb vca vca vcb \rab /OO

, .A j. A Kj — A Ϊ,, A j, A , / , I ZJ I
IJ KJ /Cl Kl KJ IJ ' V /

XflXβ - Xc

kiX
aij if a, b, c, d are all unequal.

6β S-Matrix

Consider N real fe's ordered in the following way:

kx<k2<...<kN. (26)

In each coordinate region, such as in

xί<x2<...<xN (27)

we have one term in the wave function ψ in (19), namely,

a 1 2 ^ N e i { k l X l + k2X2 + --- + kNXN) (28)

which designates an outgoing wave. This is an outgoing wave because we can make
a wave packet by superposing wave functions slightly different from (28). Such a
wave packet centered at x 1 ; x2,..., for the N particles at f = 0 would move with
velocities 2fel5 2fc2,..., 2kN. Thus xί moves slowest and xN moves fastest, because of
(26). Therefore in all future times the particles would be separated by larger and
larger distances and would not collide with each other. Hence (28) is an outgoing
wave.

Similarly in region (27) the incoming wave in (19) is

AN(N- 1 ) . . . l f c (29)

because if one constructs a wave packet out of terms (29) with centers for the
particles at xΐ,x2,...,xN at ί = 0, the particles would move respectively with
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velocities 2kN>2kN_1 >... >2fe1. Hence as we go back into negative time, they
would never collide with each other.

To recapitulate, in region (27), (28) is the outgoing wave and (29) the incoming
wave. Similarly in every other region, there is one outgoing and one incoming
wave.

The incoming wave that has the same exponential as (28) is in the region

xN<xN.ι...<xί, (30)

and is given by

[ ( - P l w ) ( - P 2 ( Λ r " 1 ) ) . . . ] α 2 v ( N - 1 ) . . . 1 ^ ( k ^ + - + k l J : i ) (31)

which we shall write as

otince
i{ΣkjXj). (32)

We shall also write

^out~αi2...iV s

so that (28) becomes

a O u t e
i ( I M j ) . (33)

The S matrix is defined by

αOut = S α f n

and can be calculated from the relationship between ocί2...N
 a n c ^ %ov- I>... I which is5

according to (21),

a\2...N~LI2l 2 3 1 • <i/Vl Ja2...Nl

— Γ Ί Γ y l 2 y 2 3 γ(N - 2)(N- l)η
— L J L J 3 2 J 4 2 " XN2 J α 3 . . . N 2 1

Write

C " _ Γ y l 2 y 2 3 y ( Λ Γ - l ) J V - i r y l 2 y 2 3 γ(N - 2)(N - 1)~\ Γ y l 2 Ί
^ ~ L / 2 1 2 3 1 ••• 2JV1 J L 2 3 2 2 4 2 •• • IN2 J L 2 ^ ^ - 1)J

Then

where

R = parity of permutation N(N — 1)... 1.

Hence

S = S'R[PNίP{N~l)2...']

Inserting the explicit form of S7 into the right-hand side of this last equation we
obtain a product of many Y's followed by an equal number of P's. The first factor
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in this product is Y2\
2 and the last P 1 2 . We now permute this last P 1 2 forward

through all the P's and Y's until it reaches just behind Y^2, forming with it,
according to (24), [ — X\\~\. The new product now has as a last factor P 1 3 which we
now permute forward through all the P's and Y's until it reaches just behind the
new first Y, forming with it, according to (24), [ — ̂ 3}]. Continuing this way we
obtain

^— [ ^ 2 1 ^ 3 1 ••• ^ N l ] [ ^ 3 2 ^ 4 2 ••• ^Ή2~\ ••• L ^ N ( N - 1 ) ] ' ( 3 4 )

where

which is a special case of the Xf defined in (24). The matrix elements of (34) have
the following meaning:

(s\s'2 ... sJv|ιS|s1s2 ... sNy — S-matrix matrix element for the process

[state: (fc^iMMi) ••• ( M * ) ] - * [state: (fciS'iMMΊ)... (kNs'NJ] . (36)

For example, for N = 2,

S = X2i=*ki~~kl}~C—. (37)

ι(k2 — k1) — c

For m = 2, this gives the following matrix elements:

AA-+AA, BB-+BB, <|S|> = 1, (38)

AB->AB, BA-+BA, (\S\} = i\kB-kA\[i\kB-kA\-c]~1, (39)

AB-+BA, BA-+AB, <|S|>= -c[i\kB-kA\-c2~ι. (40)

Equation (38) is in agreement with the simple argument that for the reaction
AA^AA, the "spin" part of the wave function is symmetrical, so the space part
must be antisymmetrical. Thus ψ = 0 at xx =x2 rendering the potential energy
δ(xι — x2) inoperative. Thus for AA-+AA, there is no interaction and S must be
= 1.

7o Wave Packet Interpretation of Yang-Baxter Equation

For 3 particles, the S matrix is, by (34),

S = X32X3ίX21. (41)

It is also equal to, because of the Yang-Baxter equation,

S = X21X3lX32. (42)

One could try to interpret (41) and (42) by the particle density diagram in
Fig. l(a) and Fig. 2(b). in the wave packet construction in Fig. 2(a), the three body
collision occurs in three steps of two body collisions, suggesting

S = X32(k3-k2)X3ί(k3-k1)X21{k2-k1),

which is (41). Similarly for (42).
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Fig. 1. Coordinate space for two particles. The interaction δ(xx — x2) is
nonvanishing only along the line xί =x2X 1

(bl

A r\ A Δ

k 2 k 1

i n i t i a l

x o x

k2

final

initial final

Fig. 2a and b. Particle density in coordinate space in collision of three particles, with momenta
kl<k2 = 0<k3. a Particles 2 and 1 collide first, then particles 3 and 1, then particles 3 and 2. b
Particles 3 and 2 collide first, then particles 3 and 1, then particles 2 and 1

The above argument must be understood with great care: We had seen in
Sect. 2 above that for two particles in one dimension, there is never diffraction
because of energy and momentum conservation. An improper understanding of
Fig. 2(a) may lead to the conclusion that for three particles there is also no
diffraction, which is in general erroneous.

8β Bound States for

For two particles, ignoring the "spin" index and Fermi statistics, the Schrόdinger
Eq. (13) in the relative coordinate y = x2 — xi has a bound state for the case c < 0 :

for which

E= —\c2.

By inspection one obtains similarly for N particles a bound state:

with energy

(43)

(44)
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This bound state was first discovered by McGuire [3] who also noted that it is the
only bound state for the N body problem with Boltzmann statistics.

The wave function (43) is symmetrical with respect to the exchange of any two
coordinates xt<-+Xj. Since the Hamiltonian (1) is "spin" independent it follows that
for N Fermions, one has a bound state by multiplying (43) with a spin wave
function which is antisymmetrical:

where

X; — X ,

PlJQt0=-a0, (any i+j).

(45)

(46)

Furthermore this is the only bound state for the N body Fermion problem.
It is obvious that if m < n there exists no "spin" function that satisfies (46), while

if m ̂  AT, there exist C™ linearly independent solutions of (46).
Does the wave function (45) satisfy Bethe's hypothesis? The answer is yes,

because in each region, e.g. x 1 x 2 < . . . <xiV, (45) is of the form (19) with imaginary
valves of kuk2 ...kN. It is obvious that

i=~c(N-: k2 = k1 —ic, (47)

which is plotted in Fig. 3.
If we take as a model m = 4 and consider the bound states for N = 1,2,3,4,5, we

obtain the states listed in column 2 of Table 1. The model has SU(4) symmetry. In

Im k

-> Re k

k j + 1 - k j = - i c Fig. 3. The "momenta" for the N particle bound state

Table 1. Bound states in model with SU(4) symmetry compared with ground states of light nuclei.
In the model we take c= — 2. The binding energies of the model are listed in column 4. Columns 5
and 6 list ground states (in italics) of light nuclei, /^isotopic spin, J = total spin

N

1
2

3

4
5

States

A,B,C,D
AB,AC,AD
BC,BD,CD
ABC,ABD,
AC D, BCD
A BCD
(no bound states)

SU(4)
Represen-
tation

1+0+0+0
1+1+0+0

1+1+1+0

1+1+1+1

Binding
Energy

0
2

8

20
(no bound

Nuclear
States

p, p, n, n

d: (/ = 0,J = l)
(pp); (7 = 1, J = (

He3

/73

He4

states)

Nuclear
Binding
Energy (McV)

0
2

)) 0
8

28
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columns 5 and 6 are listed the ground states for real light nuclei. The number of
bound states for each N and their binding energies are quite similar to those of the
model. That light nuclei observe approximate SU(4) symmetry was first discussed
by Wigner [5].

Why are the binding energies of the model so similar to that of real three
dimensional nuclei? The model is very different from real nuclei in many respects.
Two of these are especially important: (1) The model is in one dimension while real
nuclei are in three dimensions. The lower dimensionality enhances the "Fermi-
Dirac" repulsion for the model. (2) The model does not have a hard core repulsion
which is present between nucleons. These two differences have opposite signs and
apparently cancel each other rather effectively.

9. Scattering of Bound States (c < 0)

The wave function (45) does satisfy Bethe's hypothesis and is of the form (19).
Section 4 and 5 above apply to this wave function. But the α's are all zero except for
oζj2...7V- Equation (21) is still valid if we multiply both sides by the denominator
iCkj — k^ — c (which is sometimes zero.). We have

αi2 7v = αo + 0, all other α = 0,
(48)

pl2 _ p 2 3 _ __p(N-l)N _ V '

Γ z o — r α 0 — ...— r α 0 — — α 0 .
This bound state has total momentum zero. To give it a positive (negative)

momentum, one simply displaces to the right (left) the Iis of Fig. 3 by equal
amounts, so that they remain on a vertical line. Condition (48) remains, and the
wave function remains of the form (19).

Similarly we can write down the wave function that corresponds to the k
distribution of Fig. 4(a), which represents a scattering of a bound state of two
particles on a state of three particles, the former having a momentum of k{ +/c2?

and the latter having a momentum of fe3 + fc4 + fc5. The wave function still satisfies
Bethe's ansatz, but many of the columns are zero. In fact

oίP = O, unless P is of type A , (49)

where type A means in P = [PI F2 P3 PA P5] 1 is to the left of 2, 3 to the left of 4,
and 4 to the left of 5. Equation (21) remains valid if both sets of subscripts in the

1 x

X 3 X 2

( α ) ( b )

Fig. 4a and h.kιk2...kN positions for scattering states, a A two particle bound state with momentum
kι + k2 scattering on a three particle bound state with momentum /ί3 + /c4 + /c5. b A particle of
momentum kγ and a three particle bound state of momentum k2 + ̂ 3 + k4 scattering on a three
particle bound state with momentum k5 + k6. The difference between two successive /c's in any
vertical column is always —ic



One-Dimensional N Fermion Problem 115

equation are of type A, in which case definition (22) is meaningful. There is in
addition the condition

= = ^ D α
l 2 3 4 5

To analyse the incoming and outgoing parts of the wave function we follow the
same procedure as Sect. 6 above, except that the incoming wave is not given by
α5432i which is zero because of (49). Instead it is α 3 4 5 1 2 , (i.e. the block 345 to the left
of the block 12, but within each block type A must obtain.) The S matrix is now

This S matrix is understood to operate between states φ that satisfy the condition

- φ = P12φ = P3*φ = P*5φ. (52)

φ of course is a mN x 1 column matrix. It can be proved that if φ satisfies (52), then
Sφ also satisfies (52).

The above considerations can be generalized to the collision of many bound or
unbound particles. For example for Fig. 4(b), we have a collision of an unbound
particle with momentum kγ and a bound particle of momentum k2 + k3 + fc4 with a
bound particle of momentum ks + k6. We have in place of (51) and (52),

$ = (X21X3lX,iX51X61)(X5AX64)(X53X()3)(X52X62), (510

- φ = P23φ = P34φ = P5bφ. (52')

From (51) we can read off such matrix elements as

{AB) + (A CD)^(AB) + (ACD)

(AB) + (CDE)->{AB) + (CDE)

etc.

10, Properties of the S Matrix

The S matrix should be unitary between allowed states. Furthermore since the
Hamiltonian is time reversal invariant, S should be symmetrical between allowed
states. Both statements can be proved by repeated use of the Yang-Baxter equation

The procedure is exactly as in [2] and will not be repeated here.
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