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Abstract. In the framework of the GN manifold approach, the algebraic
structures of two representations of the ILW hierarchy are investigated. It is
shown that this hierarchy can be obtained by different realizations of two
abstract structures, strictly related with the Yang-Baxter equations. A new
reduction theorem for the second representation of ILW is also formulated.

Introduction

It is well-known that the differential non-linear evolution equations (DNEE) in
(1 + 1) dimensions integrable by the Inverse Spectral Transform are bihamiltonian,
with an infinite hierarchy of constants of the motions in involution [1]. More
recently, this peculiar property has been pointed out also for many DNEE's in
(2 + 1) dimensions ([1,2,3] and references therein).

On the other hand, there are some integro-differentίal evolution equations
(INEE) in (1 + 1) dimensions, such as the Benjamin-Ono (BO) [4] and the
Intermediate Long Wave equation (ILW) [5,6,7], which algebraic and analytical
features quite similar to those of DNEE's in (2 + 1) dimensions. In fact, they have
been shown to be bihamiltonian [8,9] only in the framework of the so-called
extended formalism, which was introduced just for DNEE's in (2 + 1) dimensions.

In this paper we investigate the algebraic structure of the ILW hierarchy and its
deep relation with the Yang-Baxter equations [10,11]. We make use of the GN
manifold approach [3]: in this framework, by introducing a recursion (Nijenhuis)
operator N and a symmetry group G of N one can construct the most part of the
integrable bihamiltonian DNEE's in (2+ 1) dimensions [12,13]. The evolution
equations are explicitly obtained by a suitable reduction of the Lenard bίcomplex,
i.e. a two-indices family of vector fields in involution making a Kac-Moody type
algebra. Our first result is to show that the so-called two representations [9] of
the ILW hierarchy correspond, roughly speaking, to particular solutions of two
remarkable equations, the modified Yang-Baxter (mYB) equation and the Yang-
Baxter (YB) equation. Indeed, we are able to construct two classes of GN manifolds
and Lenard bicomplexes for any solution of these equations. Then, by choosing
two particular solutions, we specialize the two structures and prove two reduction
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theorems for the corresponding Lenard bicomplexes. While the first one is only a
slight extension of the theorem given in [3] (which was successfully used for the
ZS-AKNS and Veselov-Novikov hierarchies), the second one is altogether different
and provides a new reduction technique.

Finally, the two Lenard bicomplexes are realized on a suitable algebra, giving
rise to two representations of the ILW hierarchies both in (1 + 1) and (2+1)
dimensions. We remark that in this framework the extension to (2 + 1) dimensions
is quite natural, corresponding to different choices of some constant parameter in
the abstract algebra underlying the GN manifold.

The paper is organized as follows. A short review of the GN manifold and of
the Lenard bicomplex is given in Sect. 1, only to recall the main definitions and
notations to be used throughout the paper. In Sects. 2,3 we perform the construction
and the reduction of a GN manifold on an associative algebra, based on the
solution of the mYB equation. As a particular realization of such a reduction, the
ILW hierarchy is obtained in Sect. 4. Another GN manifold, corresponding to the
solutions of the YB equation, is constructed and reduced (by a new technique) in
Sects. 5, 6. As a particular realization, it gives rise to a hierarchy of INEE's which
turns out to be equivalent to the previous one.

1. GN Manifolds and Lenard Bicomplexes

In this section we introduce the GN manifold and the Lenard bicomplex: they are
the geometric structures on which the construction of the hierarchies of evolution
equations is based.

On a differentiable manifold M, a linear mapping N: 3C(M) -> iΓ(M) defines a
Nijenhuis tensor field if it fulfills the realization

[Nφ, Nil/] - N[Nφ, φ~\ - N[φ, Nφ] + JV2[φ, φ]=0 (1.1)

for any pair of vector fields φ,φe^'(M\ [,] being the commutator of vector fields.
A Lie group G, acting on M by Φ : G x M - > M , is said to be a symmetry group
for N if the infinitesimal generator of Φ, X: (S -» 9ί\M\ is such that the vector fields

φa(u):=Xua {ueM,ae<#) (1.2)

are symmetries of N, i.e. the Lie derivative of N with respect to φa vanishes:

M W ) = 0. (1.3)

Then it can be proved that the vector fields φ]

a:= NjXa (ae^) fulfill the commutation
relation

i.e. they form a Kac-Moody type algebra [14]. As a particular case, if a and b
belong to an Abelian subalgebra of cβ, the corresponding vector fields are
commuting symmetries of N,

Oi,<p£] = 0, Lφ,(N) = 0. (1.5)

The algebra of these vector fields is said to be a Lenard bicomplex. An Abelian
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subalgebra can be easily constructed by means of a mapping Am/8 -+*& which is
itself a Nijenhuis tensor on ^

[4α, Ab~\ - Δ\_Δa, ft] - Δfa Δϊ] + Δ2[a, b\ = 0, (1.6)

and by an element α o e ^ , which is a symmetry of A

Δ[ao,b'] = laθ9Δb] (VfceG), (1.7)

where [a, b~] is the commutator in (S. Then the Abelian subalgebra is given by

ai = ΔiaQ. (1.8)

The structure (M, TV, X, A, a0) is called a GN manifold (for more details, see [3] and
references therein).

Remark 1. The involutive structure just introduced is independent of the existence
of a Poisson structure in M, i.e. of a mapping P\%(M)-+;Ϊ*{M) which is
skew-symmetric and with vanishing Schouten bracket,

<α, Pβ> + <jg, Pa) = 0 (α, βe^*(M)\ (1.9)

(a,LPβ(P)y) + ... + ... = 0 (a,ftye<T*(M)). (1-10)

Indeed, in most of the applications the manifold M turns out to have an even
richer structure, being bihamiltonian. This means that there is a Poisson tensor P
well-coupled (or compatible) with TV, i.e. such that the mapping Q = TVP is itself a
Poisson tensor.

Moreover, if the action of ^ is Poissonian, the vector fields of the Lenard
bicomplex are themselves bihamiltonian, i.e. they are Hamiltonian with respect to
both P and Q.

Remark 2. An important example of GN manifold (suggested by the applications)
is given by an affine hyperplane modelled on an associative algebra A with unit
and by a symmetry algebra CS which is a subalgebra oϊ A /S a A [3]. The starting
symmetry a0 and the Nijenhuis tensor A can be taken as the unit in Cf, a0 = 1, and
as the right-multiplication by a suitable element aeG:Ab = Rab = ba (the condition
(1.6) is fulfilled since A is an associative algebra, and the condition (1.7) is clearly
trivial).

In the following Sects. 2 and 5 we will consider two GN structures defined on
affine manifolds modelled on the same associative algebra.

2, A First GN Manifold

Let A be an associative algebra with unit, W c A a Lie subalgebra of A and V a W
an associative subalgebra such that

(i) [WcK

and CEA — WΆ fixed element fulfilling the condition

(ii) [c, W] c K {c, V} cz V.

Moreover, let T: V-* W be a linear mapping fulfilling the modified Yang-Baxter
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(mYB) equation

(iii) [7>, Tψ-] - Tlφ9 Tψ] - T[7>, ψ] = -Λ2 |>, ^] (φ9 ψeV)

for some AeC. AS a base manifold, we consider the affine hyperplane

M = V+{c} (2.1)

modelled on V, and we introduce in M the tensor field N defined by the linear
mapping

Nuφ = λ{u,φ} + [u,Tφ~] (ueM, φeV). (2.2)

This mapping is well-defined on account of (i)-(ii) and fulfills the Nijenhuis
condition (1.1) on account of (iii); so M is a Nijenhuis manifold. Moreover, let us
introduce the subalgebra K a A of the "constants" defined as

(iv) K = {aeΛ - W: a(W) a W, (W)a c W, a(V) c V, {V)a a V,

T(aφ) = aT(φ\ T{φa) = T{φ)a,

whose elements are consequently symmetries of T:Lfl(T) = 0, since, for any
φeV,La(T)φ = [α, Tφ] — T\_a, φ] = 0. As a symmetry algebra of N, we take the
subalgebra ^ c i ( o f the constants commuting with c,

(v) $ { }

Indeed, the vector fields

φa{u) = [M, a] (ae&, ueM) (2.3)

are well-defined and are symmetries of N on account of (iv), (v); so ^ is a symmetry
algebra of N. At least, the starting symmetry a0 and the Nijenhuis tensor AmcS
will be taken as it has been already indicated in Remark 2 of Sect. 1.

Summarizing, we can state that

Proposition 2.1. The affine hyperplane M is a GN manifold and the vector fields

φik - NJXRk

a

ι (2.4)

define the Lenard bicomplex of M.
The construction of the GN manifold depends critically on the mYB condition

(iii), which is indeed quite restrictive. An interesting example of a mapping T
fulfilling this condition can be obtained by considering a homomorphism S of A
leaving both FFand V invariant and such that (1 — 5), restricted to W, be surjective
onto V and invertible

Then the mapping T.V^W defined as

S)-1φ {φeV.λeQ (2.5)

fulfills the mYB condition (iii). Indeed, for φ, φeV it is [φ = (1 - S)α, ψ = (1 - S)β,
oc,βeW)
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[(1 - S)α,(l

= 2λ\\ + S)[α,/?j|, (2.6)

- λ 2T([(l + S)α,(l - S)JS] + [(1 - S)α,(l + S)j8])

- 2λ2T{ί - S)[α, j8] - 2;.2(1 + S)[α, jB]. (2.7)

Also the symmetry algebra of N can be completely characterized in terms of S.
Indeed, the assumptions (vi) entail that

[(l + S ) , ( l - S ) - 1 ] φ = 0 (φeV), (2.8)

so that for any aeA — W such that

{W)a c W a(W) a W V(a) c F α(F) cz F, (2.9)

the condition Sa = α is necessary and sufficient in order that

= α( Tφ). (2.10)

This property can be easily checked by observing that for any φ = (1 — 5)α5 aeW,
Eq. (2.8) entails the identity

(1 - S)(T(aφ) - aT(φ)) = - 2/(1 - S)a-Sa. (2.11)

Summarizing, the constants of this example are the fixed points of S, and the
symmetry algebra is given by the fixed points of S commuting with c. A realization
of the corresponding GN manifold giving rise to the ILW hierarchy will be
considered in the next Section.

Remark 1. If A admits a Trace from Tr: A -> R, we identify F* with F by the pairing

(αeF*,φeF). (2.12)

Then if Γis skew-symmetric with respect to (2.12), M is a bihamiltonian manifold.
Indeed, the tensor P defined by

PMα = [M,α] (2.13)

is clearly a Poisson tensor and it is well-coupled with N, on account of the
skew-symmetry of T and of (iii). Moreover, the vector fields (2.3) are Hamiltonian
with respect to P, on account of Jacobi's identity.

Remark 2. If it turns out that T:V -^V and that T2φ = λ2φ, T is itself a Nijenhuis
tensor on account of (iii); in the following, we will consider an application where
this condition is actually verified, furnishing the hierarchy of the Benjamin-Ono
equation.

3β The Reduction of the Lenard Bicomplex

The vector fields (2.4) of the Lenard bicomplex do not directly correspond to
integrable systems known from the literature. This is due to the conditions on the
manifold M, the tensor N and the symmetry algebra &, which are rather restrictive.
In particular, the conditions (ii) of Sect. 2 entail that V be stable with respect to
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both left and right-multiplications by c, so that

Σvkc
kczV {vκc:V). (3.1)

k

Thus if the order of c is infinite, the dimension of V cannot be finite and the
evolution equations defined by the vector fields of the Lenard bicomplex give rise
to a system in an infinite number of field functions. On the other hand, the search
for invariant submanifolds of the Njenhuis tensor JV fails since, at the point u = υ + c,
N takes the form

Nuφ = i({ι>, φ} + [c, φ] + 2\υ + c, Tφ]) + Rcφ (3.2)

(with the normalization choice / = 1/2). Due to the presence of the right-
multiplication Rc, the vector fields of the bicomplex cannot be tangent to any
finite-dimensional submanifold (neither of order zero). Then, since the Nijenhuis
tensor cannot be restricted, one looks for a reduction of the bicomplex, i.e. for
suitable finite-dimensional submanifolds and for some special combinations of the
fields of the bicomplex that are tangent to the submanifolds.

We now give a reduction theorem for the bicomplex constructed on a class of
GN manifolds including that of Sect. 2. To this end, let us remark that the Nijenhuis
tensor JV and the generator X of the symmetry action of c§ are polynomial functions
of the operators Lv, Rv, adc, Lc, Rc and T, so that we consider the following general
form for N and X:

Nv + c = p(Lv,Rυ,adc,LvT,RvT,adcT) + Rc, (3.3)

Xυ + c = q(Lv9Rv,2idc). (3.4)

Under these assumptions, one can show that

Proposition 3.1. Let M be an GN manifold modelled on an associative algebra with
unit, defined by a Nijenhuis tensor (3.3), a symmetry generator (3.4), a symmetry
algebra (S given by (iv, v) of Sect. 2 and by ce{§. IfQ c V is a subalgebra of V fulfilling
the conditions

ρ, Γ(ρ) ρc=ρ, ρ τ ( ρ ) c ρ , (3.5)

then the vector fields

are tangent to the affine submanifold M' = Q + {c} modelled on Q.
Although the assumptions of this theorem are different from those of the

reduction theorem which is proved in [3] for the KP case, on account of the
peculiar properties of T, we omit its proof, since it can be performed in a quite
similar way.

Explicitly, the first three vector fields of the form (3.6) are the following ones:

φ { 2 ) = φ20 - Iφ11 + φ02 = [c, g2] + 2{_q, T[_c, g]] + 2T[c, [c, <?]]. (3.7)
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4. A Realization of the GN Structure

In this section we present a realization of the abstract scheme, with T defined as
in (2.5), giving rise to the hierarchy of the ILW equation. We make the following
choices:

i) A is the algebra of differential operators in d = d/dx, whose coefficients are C00

functions on the real axis

/ ( * ) = Σ fk(x)dk, fksC°°(U9C). (4.1)

ii) W is Lie subalgebra of differential operators with coefficients taking asymptotic-
ally opposite constant values for |x| -> oo,

\v(x)= Σwk(x)δk wk(±ao) = ak (akeC). (4.2)

iii) V is the subalgebra of differential operators with rapidly vanishing coefficients
for |x| -> oc,

φ(x)= £ φk(x)dk, φkeSf(U,C). (4.3)
k^O

iv) The constant c fixing the affine hyperplane M is equal to d so that for any feA9

Lc,Ω = Σ f^" (ΛΛ = ΰfjdx). (4.4)

v) The algebra homomorphism S is the adjoint action by g:= Qxp(ηd)

Sα~ Adexviηdf (ηεC). (4.5)

With these choices, the conditions (i), (ii) of Sect. 2 are clearly fulfilled. Moreover,
the equivariance property of the adjoint action entails that

S = exp (η ad5). (4.6)

So, the effect of S on feA is merely a shift

$( Σ fk(x)ΰk)= Σ fk(x + Ί)δ\ (4.7)
\k^0 J k^O

and the fixed points of S are the differential operators with constant coefficients.
The symmetry algebra ^ is formed by αeA

α= Σ V (^, = 0). (4.8)
k^O

Then, on account of Proposition 1 of [7], for η = 2iδ(δeU) and for any φe F, there
is a unique weW related with φ by

w(x) = i(l - Sy ιφ(x) = l-φ{x) + i(Tφ)(x), (4.9)

where (by (iv) of Sect. 2) T acts on φ as

Tφ= Σ (^ΦJ3Λ, (4.10)
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and (Tφk)(x) is the well-known integral transform

) P -^φ^dc, (4.11)

P denoting the Cauchy's principal value.
Now we are able to easily construct the Lenard bicomplex (2.4) for this

realization. However, we are more interested in the reduction on a submanifold
M' fulfilling the conditions of the Proposition 3.1. In this regard, it can be easily
checked that the subalgebra of zero-order differential operators fulfills these
conditions. So, at any point

ueM':u = q + d, (qe^(U,C)) (4.12)

the vector fields (3,7) are realized by

-f 2Tqxx,

( ) = ϊqxxx + Wϊx + 3T(qqx)x + 3(qTqx)x + $T2qxxx. (4.13)

They are the first fields of the ILW hierarchy in 1 + 1 dimensions [9].

Remark 1. The abstract scheme suggests in a rather natural way a formal extension
of this realization to the case of two spatial dimensions. Indeed, if one considers
the algebra V of differential operators in dx and dy, whose coefficients are Schwartz
functions in U2, one could repeat the previous realization by taking g = Qxp(ηdy),
replacing the integral transform (4.11) by the integral transform f acting on the
y variable

(Tφk)(x,y) = Ξίp (cot\l~(y-ξ)φk(x,ξ)dξ. (4.14)
Qθ J Id

Then the structure of the vector fields (4.13) remains formally the same, giving rise
to the so-called ILW hierarchy in 2 + 1 dimensions [15].

Remark 2. As it is known, by performing the limit δ -> oo the integral transform
(4.11) tends to the Hubert transform H. In this case, one can choose V = W, so
that H2φ = λ2φ; so, H becomes a Nijenhuis tensor and Eqs. (4.13) give the
Benjamin-Ono hierarchy. On the other hand, the limit δ-+0 gives the hierarchy
of KP in the so-called second representation [9].

Remark 3. Another realization of the previous abstract bicomplex can be performed
by taking the algebra of distributional kernels of the form

/(*i,x2)= Σ fk(xi,X2)δk(xi-x2), (4.15)

where δk(x1 — x2) = dkδ(x1 — x2)/dx\ and δ{xx — x2) is Dirac's distribution. By so

doing, the ILW hierarchy is obtained in the framework of the extended formalism

[9].
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5. Another GN Manifold

Let us now consider another GN structure. It is defined on the same affine manifold
previously introduced in Sect. 2, only with the difference that the conditions (ii)
are replaced by the weaker condition

(ii') [c, W] c V.

This new structure is based on the existence of a linear mapping T:V -+W fulfilling
the Yang-Baxter (YB) equation

(πϊ) lfφ,Tψ] = nTφM + Tlφ9Tψ] (φ,φeV)

instead of the mYB condition (iii) of Sect. 2. So, the GN structure in M is given
by the same algebra K of the constants defined by (iv) of Sect. 2 (with T replaced
by T) and by the same symmetry generators (2.3). Instead, the Nijenhuis tensor is
now given by the "chiral" tensor

NuΨ = [u,fψl (5.1)

Remark 1. As it is well-known, if T is invertible the inverse map D=T~~1 is
derivation on the Lie subalgebra W a A. On the other hand, if D is an invertible
derivation, then T' = D~x fulfills (iii'). In this case, the constants previously defined
in Sect. 2 are actually the elements of the kernel of D, and the GN manifold takes
the same structure as for the chiral representation of KP systems [3]. An interesting
example of a GN manifold corresponding to a solution of (iii') is obtained by
considering a suitable element geA. It is assumed to be invertible, fulfilling the
stability conditions with respect to V and W and such that adg, restricted to W,
be surjective onto V and invertible. Then it follows that its adjoint action S = LgRg

 1

fulfills all the conditions for the homomorphism of the algebra as in Sect. 2, and
that the mapping

f .V^W, Tφ^R ^l-Sy'φ (5.2)

is a solution of the YB equation (iii7). Indeed, its inverse map D is an invertible
derivation

Doί = f~ίoί= -ad^α. (5.3)

As for the symmetry algebra, it can be shown that also in this case the subalgebra
K defined by ((iv), Sect. 2) is given by the fixed points of S and that g itself is a
constant.

Remark 2. Although the construction of this section may seen to be formally a
particular case of the one of Sect. 2, corresponding to a solution of (iii) with λ = 0,
it is interesting on its own, since the particular solution (5.2) has altogether different
properties with respect to T. Consequently, the reduction of the Lenard bicomplex
must be performed by a completely different technique, as will be shown in the
next section.

Remark 3. If a Trace-form is given making T skew-symmetric, T is itself a
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presymplectic tensor compatible with TV, since N = PT, with the Poisson tensor P
given by (2.13). The affine manifold M is also in this case a bihamiltonian manifold.

6. A New Reduction Theorem for the Lenard Bicomplex

In this section we shall discuss the reduction of the bicomplex corresponding to
the particular solution (5.2) of the Yang-Baxter equation. We recall that in order
to reduce the Lenard bicomplex one has to determine a subalgebra β c F and a
family of vector fields of the bicomplex which are tangent to the affine manifold
M' = Q + {c}.

Since at any point ueM the Nijenhuis tensor (5.1) takes the form

NΌ + c = (LΌ-RΌ + 2Ldc)T, (6.1)

it does not belong to the class (3.3) and the reduction theorem (3.1) cannot be
applied. To overcome this difficulty, we take advantage of the freedom provided
by the bicomplex scheme, i.e. the choice of the Nijenhuis tensor A on the symmetry
algebra. So, in this case we will consider the bicomplex corresponding to the choice

Δ = Rg (6.2)

(where ge^ is the invertible element appearing in the definition of T) instead of
A = Rc is in the previous reduction theorem. Then one can prove that

Proposition 6.1. Let M be a GN manifold modelled on an associative algebra with
unit, defined by the Nijenhuis tensor N,

Nv+c = (Lv-Rΰ + &dc)T T = R2

g-
1(ί~Sy1 (M = H c e M ) , (6.3)

the symmetry generator

Xυ + c = Lΰ-Rυ + Άdc, (6.4)

and by the symmetry algebra 'S given by (iv, v) Sect. 2, with ceΉ. If QcV is any
subalgebra of V fulfilling the conditions

l-SΓ'β βcβ, (6.5)

[cfl-SΓ^cβ, (6.6)

then the vector fields

(6.7)

are tangent to the affine manifold M' = Q + {c} modelled on Q.
The reduction theorem follows from the following lemmas:

Lemma I. The vector fields φon = XΔna can be written as

φon = lφ,ά}n, (6.8)

where [υ,a~]n\— va — aSnv.

From the definition of X, it follows that

φ™ = [v + c, Δnά] = |>, agn~\ = (va - agnυg~n)gn = RnJv, ά]n. (6.9)
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Lemma II. The mapping Gt defined as

G ^ : = [ u , ( l - S r > ] f (i = 0, l , . . . ;φeβ) (6.10)

fulfill the relations

R-'GtR^G^, (6.11)

/ k \ k+1

V [UiGi)R

β=ΠiGi (6-12)
V o / l

The first relation follows directly from the definition, since for any integer k it is

= uil-Syιφ-(l-Syιφ-Sk+ίu = Gk+1φ. (6.13)

The second property coincides with the first one for k = 0; then it can be proved
by induction, since it is

(6 1 4 )
fc+l

~ 1 li ^Ji'^Jfc + :
1

At last, one can prove that

n- 1

Lemma III. NnRn

g = Y[t Gt.
0

Since the property holds for n = 1,

NRgφ = [u,(l -Sy1

it can be proved by induction

N n + l R n + 1 ( N n R n ) R

g - 1 g) g -

fc + 2

1

n- 1

0

(6.15)

= GoΠ i G i = Π ; G i . (6.16)
1 0

On account of the previous lemmas, the vector fields φ{n) defined by (6.7) take the
form

φin) =

(i)

(III) / ':<

( Π G J ( l S > (6.17)

So, the reduction of the bicomplex is straightforward, since Q is stable with respect
to S and to Gt on account of the assumptions (6.5) and (6.6).
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The vector fields of the reduced bicomplex are then obtained by the following
scheme:

At any point u = q + c of the reduction submanifold M' one obtains

Ψ(θ) = 0,

I + [c, ~

i,g2T.
+ [c, T\_q, T[q9 ^ 2 ] J ] + [c, Γ[c, T[g,gf2]]]. (6.18)

A realization of this abstract scheme can be performed as well as in Sect. 4. In
particular, if one considers the algebra of differential operators, with the same
choices for c, g as in Sect. 4, one can easily check that the subalgebra Q of Schwartz
functions on the line (i.e. differential operators of zero order) fulfills the conditions
(6.5), (6.6) of the reduction theorem.

We end this section by observing that taking into account the definitions of T
and T.

S)" 1 ; T = Λ f f _ 1 ( l - S ) - 1 ; S = Ad,, (6.19)
and that

lTφ,g] = φ {Tφ,g} = 2Tφ (φeV). (6.20)

A direct inspection allows one to conclude that the vector fields (6.18) are exactly
the vector fields (3.7), so that the hierarchies corresponding to T and T actually
coincide (a proof of this fact, for the extended formalism referred to in Remark 3
of Sect. 4, has been given in [9]).

Concluding Remarks

In this paper we have shown how the algebraic approach of the GN manifold and
the Lenard bicomplex successfully explains the recursive properties of the integro-
differential ILW hierarchy of NEE's, as well as those of the differential NEE's
considered elsewhere. In this regard, we point out that the integro-differential
operators (4.11), (4.14) appear explicitly only in the last step of the construction,
i.e. in the realization by a particular algebra, whereas the reduced vector fields (3.7)
are defined in any abstract algebra in terms of any solution of the mYB equation.
So different solutions can give rise to new integrable NEE's. The abstract approach
enables one to obtain the recursion scheme of a NEE both in local and in extended
form [2], i.e. both in the algebra of differential operators and in the algebra of
distributional kernels. Moreover, it allows one to handle in a unitary way with
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NEE's both in one and in two spatial dimensions, the difference being given only
by the choice of the algebra and of some parameters (e.g., c = dx, g = Qxpηdx for
the ILW in (1 -f 1) and c = dx, g = exp ηdy for the ILW in (2 -f 1) dimensions). At
last, the existence of the second representation for the ILW hierarchy (as well as
for KP systems) gives rise to the following two problems:

i) does any integrable NEE admit two (or more) representations?
ii) how are the different reduction techniques (such as those given by Theorems

(3.1), (6,1)) related with these representations?

To the best of our knowledge, they are still open problems, which we hope to be
able to analyze in a forthcoming paper.
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