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Abstract. For G a classical group, an equivalence is exhibited between:

A) G monopoles over R3, with maximal symmetry breaking at infinity,

B) families of (rank(G)) algebraic curves in TP, along with divisors on those
curves, satisfying certain constraints,

C) solutions of Nahm’s equations over (rank(G)) intervals, satisfying the
appropriate boundary conditions.

A) and B) are linked by twistor techniques, B) and C) via the Krichever method
for solving non-linear differential equations, and A) and C) via the ADHMN
construction, providing a unified picture of techniques for solution. Amongst
other things, an asymptotic formula for the Higgs field of the monopole is
computed.
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Introduction

In recent years, monopoles have been studied quite extensively, from different
points of view. One method is direct, involving analysis [JT, T1, T2]; another is
complex-analytic, and employs twistor methods [W, Hil]; yet another, due to
Nahm [N] is an infinite dimensional version of the algebraic ADHM construction
of instantons, and involves the solution of some non-linear ordinary differential
cquations, Nahm’s equations.

From all of this, a fairly complete picture has emerged of the SU(2)-case. In
particular, a beautiful paper of Hitchin [Hi2] gives the equivalence between

—an SU(2)-monopole
—-an algebraic curve in TP ,(C) satisfying certain constraints
-—asolution to Nahm’s equations satisfying the appropriate boundary condition.

Using this equivalence, Donaldson [D] was able to give a description of the moduli
space. Recently, the dynamics of monopoles have been studied in terms of geodesic
motion on this space [AHi].

Our aim is to extend these results of Hitchin to the other classical groups, in
the case of maximal symmetry breaking at infinity. As in [Hi2], we will prove an
equivalence between three types of objects. These are defined as follows:

I) The Case of SU(N). Our objects are:

A(SU): SU(N) Monopoles: Let H be a rank N complex vector bundle over R>.
Let V be an SU(N) connection on H, and let @ (the “Higgs field”) be a section of
the associated su(N) adjoint bundle. (H,V, @) is an SU(N) monopole if

Al) (V, @) satisfies the Bogomoln’yi equation, = F = V¢, where F is the curvature
of V and = is the Hodge duality operator.

A2) One has uniform asymptotic expansions, up to gauge transformation,
=idiag(u; — (k,/2r)) + O(1/r?),
IV®|=0(1/r?), and
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where (r, 0, p) are spherical coordinates in R*.

The u; and k; are fixed, independent of direction and satisly Xp, = Xk;=0.
The condition of max1ma1 symmetry breaking is that the y; are distinct; we order
them by

Uy > [y > e > Uy
The k;’s are integers; we define the p™ magnetic charge m,, p=1,...,N — 1, by

m,=ky+ -4k, 0.1)
The second type of objects we are going to study is

B(SU): Nahm Data. In the SU(N) case, one has analytic hermitian vector bundles
X, of rank m, on the intervals [, ;,u,], with, on the interior of each interval,
an analytic hermitian connection V, and threc analytic skew-hermitian endo-
morphisms Ty(z) satisfying:

B1) Nahm’s Equations:
V.T,=5%e [T, T,].

B2) Boundary Conditions. We adopt the convention mg = my =0. At a boundary
point y,, we distinguish three cases:

i)y m,>m,_:

In this case, there should be at y, an injection X ,_; — X ,, compatible with the
hermitian structure such that

—there exist well defined limits from above:

T, = lim Ty).
t=up*
—for t < p,, setting z=1—p,, one has in a covariant constant basis, the
expansion:
k, m,_y

(00 | OGN &,
T‘(‘)“<0(Jk*“’) J T/ +0(_)> m,

The diagonal blocks are meromorphic; the off-diagonal blocks are z(¢ 1/ x
analytic. The residues r,,i = 1,2,3 define an irreducible k,-dimensional represent-
ation of su(2).

i) m, <m,_,

One imposes the same boundary conditions, but with the roles of (., 1. 1,),
(4, ptp— 1) TEVersed.

i) m,=m,_,
We then have an identification at u, of X, with X,_,, such that if one sets

AL = (T (1) + iT5(0) + 20 TS () + (T, (1) — i T, ()% (0.2)
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one asks that the one-sided limits A4 "((), 47 ({) of A(t,{) exist at u,, and that
A% () — A7(C) be at most of rank one, for all {. This is equivalent to asking that
there be vectors ug, u;,eC™ with

AT = AT = (o +uy Oy — 0" (0.3)

For both SU(N) monopoles and solutions to Nahm’s equations we can define
spectral curves S, TP,(C), i=1,...,N — 1. For monopoles, this is outlined in
Sect. 1; for the case of Nahm’s equations, let { be an affine coordinate on P, and
let # be the associated fiber coordinate in TP ; the i spectral curve is defined by

det(nl — A(t,{))=0

for te(y;, 1, 1;). Nahm’s equations are isospectral, so this is independent of the ¢
chosen. Let O(k) denote the lift to TP, of the line bundle ¢/(k) on P; in both cases
the curves S, belong to the linear system [(/(2m,)|, and are compact. We will say
that the monopole or the Nahm’s data is generic if

S,nS,_ consists of 2m,m,_, distinct points, for p=2,...,N — 1,

ie. S, and S,_, intersect transversally

It is a non-trivial fact that generic monopoles and Nahm data exist. Let L*(k)
denote the line bundle over TP, with transition function exp(un/{)C* from
Uy ={{#0}toUy={{+# w}. Let : TP, - TP, denote the real structure t(n, () =
(—7/2%, —1/&). We will show that, from a generic monopole, or generic Nahm
data, one can extract:

C(SU) Spectral Data. This consists of the compact, real (r-invariant) curves
S,el0(2m,)|, p=1,...,N — 1, in generic position, along with a splitting

S8, 1 =8,,-19S,-1, p=2,....N—1
into disjoint subsets of points of equal cardinality, such that
C1) Over §,

O te(m,_y +my e ) =Sy 01— Spp-1]
C2) One has the vanishing theorem

HS,, I m, +m, | —2)[—S,_,,])=0

for a) p,., <z<uy,
b) z:,upzfrﬁp,lgmp
and ¢) z=p,,, ifm,<m,.,.

C3) The reality constraint

T(Sp,p+ 1) = Sp+ 1,p*

C4) The positivity constraint.
Let , be the section realizing the isomorphism in CI; set Y = t*(,,). Then
Y Wk cuts out in S, the divisor of S,,;nS,_,; the union of these curves can be
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given real equation
Gp—19p+1=n"" """ 4 (lower order in ).
One then has that (f,;)/(g,-19,+1) is a real constant ¢,; one asks that
—(=1ymermete >0,

II) The Cases of SO(k), Sp(k). For the other classical groups, the definitions given
above must be modified somewhat.

A(S0), A(Sp): G-Monopoles, G =S0(k), Sp(k). One adds an orthogonal or symplectic
structure to the bundle H over R3; V is then compatible with this structure, and
@ is a section of the associated so-, sp-adjoint bundle.

We will treat the case of SO-, Sp-monopoles as SU-monopoles endowed with
extra structure. One has the following table: (note [M] that a G-monopole has
rank (G) magnetic charges):

(0.4)
A G-monopole with embedded As an SU(N)- and it has
for G = G-charges in SU(N) monopole, its SU(N) charges
Higgs field 1s m,, with

asymptotic to
diag () with:

Sp(k) Fioeenn Fi N =2k W= =1, m,=nly,_, =T,

=1.....k 1=1,... .k
SO(2k) Fiseeosli-2s N =2k M= —Hopvr M=y, =r
LT i=1,. ..k i=1...., k—2
e T L
m,=2r,.
SOk +1) FlseeesTy N=2k+1 W= =l 2y My=Myps - = I,
i=1..., k+1 i=1,... k-1

m,=m ., =21,

With this table in mind, one asks that the monopole conditions A-1 and A-2
again be satisfied.

B(S0), B(Sp): Nahm Data. In these cases, referring to (0.4), the Nahm data is the
same as in the SU(N)-case, with the added condition:

(B-3) There are matrices C; such that, for ze(p; ., 1), i=1,2,3,
T{—2"=C,;T(z)C;"*
C,and C;_, are compatible in the obvious way at ;. Also,
Cy—j+1=—C] for SO,C] for Sp.
0), C(Sp). Spectral Data:

(s

( p): For Sp(k) monopoles, one can define [M] spectral curves R,e[C(2r,)

= 1,....k. The genericity condition is that R,nR,,, ; consist of 2r,r,, dlstmct
pomts, i.e. that the intersection of R, and R,,, be transversal. Under (0.4), the
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SU-spectral curves arc:
S,=Su-,=R,. i=1.... k.
The conditions C(Sp) are then exactly those of C(SU).

C(SO(2k)). Here, [M] yields spectral curves R,,...,R,_,, R ,R_, R,e[C(2r)],
R, €|0Q2r.)|. The genericity conditions are that R,and R, ,p=1,...,k—3, R,
and R_, R,_, and (R, UR_) intersect transversally. Under (0.4), the associated
SU-spectral curves are:
S,=Su-,=R,, p=1,....k-2,
Si-1=8+1=R,UR_,
S,=2R, (ie., with multiplicity two).

Also
Sp,p+1 :SZk-p.Zk-p—l’
Sp41.p=S2k-p-1.2k-p-
The conditions on S,,...,S,_,,Sc+2,--.,32,-; are then exactly the same as for

SU. In addition, one has:

C-1,) Over R,
O L my ) [ = Sp -5 1]

and over R_,
¢ zL”k/‘ﬁL”k(mk—z)[‘Skf1,k~2]-

C-2,_,) For S, _,, the same vanishing theorem as for SU
C-2,) The isomorphisms C-1. yield an identification

L (my ) & I%(my - )
over R, nR_. Define the bundle Q, over R, by the exact sequence.
0— Q= L*(my ) ® L™ " (my ) > L"*(my ) Ig, ~r 0.
The vanishing theorem is then:
H'R,,Q®L ¥ (—=2)=0 for a) —pu<z=p,
b) z=p, if ry<r._.
C-2, ;) The vanishing theorem is:
HOS oy, LY 27 ey +my 5 = 2)[—=Sis14421) =0 for
Q) W2 SZS iy
b) z=pyy M ryzro

C) z=py s if my,, Smy,

C-4,) The extra positivity constraints:

Let  , realize the isomorphisms in C-1,;then . y% =e, g, 5, with g, _,=n™ 2+
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(lower order in #), e a real constant. One asks that:
— (=12t >0,

C(SO(2k 4 1)): In this case, one has spectral curves R,e[0(2r,),p=1,...,k, with
the genericily condition that R, and R, ,, p=1,...,k— | intersect transversally.
One has:
S,=Su+1-,=R,, p=1,...k—1,
Si="S8+1=2R,.
Also,
Sp,p+1 :SZk-(-l*p, 2k - p>
Sp+ 1.p = S2k—p,2k+1~p-
The conditions on Sy,..., Sk {, Sk 2,.--,3, are as in the SU-case. In addition,
one has:
C-1,) Over Ry,
O~ Ly ) =Sk 1l
C-2;), C-2,.1) The same vanishing theorems over S,, S, ., as in the SU-case.
C-4,) The extra positivity constraint:
Let y, realize the isomorphism C-1,; then Y, ¥ = e,g, 1, gx— 1 =™ ' + (lower
order in #), ¢, a real constant. Then
_(_ 1)(1111( -1 +rk)ek >0.
It is thus our intention to prove, for the cases G = SU(N), SO(k), Sp(k) with
maximal symmetry breaking:

Theorem 1. There is a natural equivalence between

A) Generic monopoles,
B) Generic Nahm data,
C) Spectral data.

The condition of genericity, using analvticity results of [JT], is a (real)
Zariski-open one. Let M,,, m=(my,.... M) be the union of the connected
components of the charge m G monopole moduli space which contain generic
monopoles; elements of M, are limits of generic monopoles. One can then show

Theorem 2. There is u natural equivalence between

A) Monopoles in M,
B) Nahm data.

This result is used in [Hu3] to describe M,, in terms of rational maps of P,
into flag manifolds; amongst other things, M,, is connected. It is conjectured that
the moduli space of charge m monopoles is connected, and so is equal to M,,; this
is indeed the case for SU(2) and SU(3) [T2]. For an arbitrary monopole, one still
obtains curves, and a generalization of the vanishing theorem. This in turn enables
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us to define a solution to Nahm’s equations; the problem lies in showing that it
satisfies the boundary conditions.

The paper is organized as follows. In Sects. 1 to 4, we concentrate on the case
of SU(N).

Section 1 is connected with the passage 4=-C. We recall from [M] how, from
a monopole, we can obtain a holomorphic bundle E over TP, along with two
flags of subbundles E;*, E;” . The spectral curve S, is (set-theorctically) the support
of the sheaf E/(E,; + Ey_,).

We then prove the vanishing theorem and show how in the generic case, the
conditions on the spectral data are satisfied. We also show how one can construct
E from the spectral data, and derive an asymptotic formula for the Higgs field of
the corresponding solution to the Bogomoln’yi equations in R>.

In Sect. 2, we study the correspondence C=> B; from this we show how any
monopole gives a solution to Nahm’s equations, and prove that monopoles in M,,
give solutions satisfying the boundary conditions.

Section 3 gives the inverse of the construction of Sect. 2; from a generic solution
to B, we obtain the spectral data C.

Section 4 is concerned with the ADHMN construction of a monopole from a
solution to Nahm’s equations. This construction is described; we also show that,
in the generic case, under the equivalence given in Sects. 2 and 3, it gives the same
monopole as the twistor construction. This fact is then exploited: regularity is
immediate from the ADHMN point of view, whereas using the twistor construction,
one easily obtains from the asymptotic formulae of Sect. 1 that (V, @) satisfies the
boundary conditions.

In Sect. 5 we explain very briefly how these constructions must be modified
for the cases of SO(k), Sp(k).

Section 6 provides a summary and conclusion, showing that the circle of ideas
does indeed close.

1. From Monopoles to Spectral Data

la) Bundles and Flag Structures. In [M], it was shown that, from a solution
(H,V,®) to the SU(N) Bogomolny equations over R3, one can obtain a rank
N(SI(N, C)) holomorphic vector bundle E over TP, (C). Recall [Hil] that the space
of oriented lines in R* has a natural complex structure, and is holomorphically
equivalent to TP (C). This correspondence can be given in coordinates as follows.
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Let { be an affine coordinate on P,(C), and let n be the corresponding fiber
coordinate in TP, (C) (n - nd/d{). Note that TP, (C) is covered by two coordinate
patches Uy({ # oc) and U, ({ #0) with coordinates (1,) and (i7,{) = (n/¢?, 1/0)
respectively. The correspondence between x = (x,, x,,x3)eR? and (,{) is then:

n=(x,+ix,) = 2x3{ + (—x, +ix,) % (1.1

This can be viewed in two ways: fixing #,{, it defines a line I(,{) in R?; fixing x,
it defines the image C, of a section P, -» TP,. Also, TP,(C) has a real structure
. TP, — TP, given invariantly by reversal of orientation along a line, and
in coordinates by t(n,{) = (—#/C2, —1/0).

If [ is a line in R, define E, = space of solutions s along! to (V, —i®) s =0,
where u is the positive unit vector field on . As (H,V, @) satisfies the Bogomoln’yi
equations, E has an integrable holomorphic structure [Hil].

The fact that V is an SU(N) connection, and that @ is skew adjoint implies
that if (V, —i®@)s = 0 along a line [, and if (V, + i®)t =0, then d/0u{s,t) = 0. Thus
the dual of E,, via the isomorphism given by the metric on H, is the space of
solutions to (V,+i®@)t=0. This however, is the same as the solutions to
(V_,—i®)t =0, ie. E,. In short, there is an antilinear map ¢: E — E*, lifting the
map ©: TP, - TP,.

If (H,V, @) satisfies the boundary conditions A-2, then it is shown in [M] that
E possesses additional structure. Before recalling this, we again define some basic
line bundles over TP,: first, one has the pull-back from P, of the standard line
bundles O(k), keZ. These have {* as a standard transition function from U, to U,
i.c. a section of (U(k) is described by functions f; on U ; with f, = (¥ f, on the overlap.
Next, define line bundles I*, ueR by the transition function ¢*'* from U, to U,,.
If F is any bundle, define F (k) to be F® C (k).

Lemma 1.2.

a) In the standard trivialisations over U,, H'(TP,, O(k)) = polynomials in n,{ of
degree <k, where degree (y)=2, degree ()= 1. Therefore, h°(TP,, €(2))) =
(j+ 1)% and h°(TP,OQ2j + 1)) =(j + 1)(j+ 2).

b) HY(TP,, L*k)) =0, for all u+#0, for all k.

o) H(TP,,0(k)) = C(UynU,)CU)®CWU,). Thus, H(TP,,C(k)) is infinite
dimensional. With respect to the covering by U, U, the cocycles n'/l%, i =0,
je{l,....2i — k — 1} respect non-zero elements in H'(TP, O(2k)) which are all
linearly independent.

Proof. a) is the result of explicit computation, using the transition function from
U, to Uy.

b) is proven in [Hi2], p. 164.

¢) follows from the fact that U,, U, form a Leray cover of TIP,.

We now can recall results from [M], specialised here to the case of SU(N).
One has, as r— oo, that @ = idiag(uy, o, ..., py) — idiag(k,, ..., ky)/2r + O(r~ )
as [ty >, > -+ > fy, this implies that along each line, for each pe{l,..., N}, there
is a p-dimensional subspace E, of solutions to (V, — i®)s = 0 which are bounded
by const.exp(— w,)r* as r—co. This defines a flag O c E{ ¢ -~ c Ey_; c E,
which varies holomorphically; or, in other terms, a reduction of the structure group
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of E from SL (N,C) to a Borel (e.g. upper triangular) subgroup. Considering
boundary behaviour as r— — oo along each oriented line similarily gives a flag
OcEf cE; «---cEy_,<E. The real structure on E maps E, to the
annihilator of Eﬁ_p. Moreover, one has the identifications:

E;;Lm('_—kl)f
0—>E1+——->E2+——>L"2(—k2)—>0,
0—ES > E; > I!(—ky)—0,

0> EY_ |2 E->IY—ky)—0, (1.3)

El_ gLHN(kN)a
0—-Ef - E; » LV (ky_,)—0,
0-E; »E; > 2ky_ ,)—0,

0> Ey_—E—I1"(k)—0. (1.4)

In [M], it is shown that for ({, ) generic, and in particular for ({, #) outside a
compact set, these two flags arc transversal, ie. E; nEy_, = {0} for all p. It is
the set where these are not transversal, however, which is important.

Definition 1.4. The p™ spectral curve S, (pe{1---N — 1}) of the monopole is defined
by the vanishing of the map APE, — AP(E/Ey_)).

Remarks. 1) From (1.3), APE; is L% " (—ky —---—k,), and AP(E/Ey_))
is [t e (kg + -+ + k). S, is therefore a curve in the linear system [¢'(2m,)],
where m, =k, 4 --- + k,, is the p™ magnetic charge. As noted above, S, is compact;
it can thus be given the equation

9ol O ="+ @, O ey, (O =0, (1.5)
where the a,; are of degree 2i.

2) An alternative definition of S, is by the vanishing of AY 2E;_)—
ANTEJE,). As a set, S, is the locus where E; nEy_, # {0}.

3) The real structure o:E—E* mapsE, at (1,{) to the annihilator (Eg_,)"
of Ey_, at t(y,{); Ey_, is mapped to (E;)". However E nEy ,# {0l <
(ES) N (Ey_,)" # {0}; therefore S, is real (preserved by 1).

From (1.3) there is an exact sequence

0— /\”E;~—> ANE] - /\”_IE;®L””'”(—kp+1)~>0. (1.6)

The map A"E, . —» AP(E/Ey_,) then passes to the quotient over S,; there

is over S, a well defined map APTTE S @I (= ky,p )= AP(E/Ey ). Restrict
this to AP NE,_)®L" (—k,.,); using (1.3), the restricted map gives an
element p, of HO(S,, L' "= (m,_, +m, ). In a similar vein, one obtains {rom
the map AN P NE , )@L7 (k,.)—> AN HE/ES) over S, an clement ¢,
of HO(S,, L'»+* "o(m,_ | + m,.,)).

Another way of defining the spectral curves is as follows. Choose a trivialisation
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of E in which the positive flag E;" is mapped to the standard flag in C". The
negative flag E; then defines, locally, a map from TP, into the flag manifold.
The spectral curves are then the pull-backs of the closures of the codimension one
Bruhat cells. In a similar fashion, the intersections of the spectral curves are the
pull-backs of the closures of the codimension two cells; in particular, the intersection
of the curves S, and S,,, corresponds to the closure of two codimension two
cells; correspondingly, one can write S,n S, as the union of two pieces:

Spprdim(E, nEy_, )21,

1.7
S dim(E,, nEy_,)=22. (.7

ptl,p
It is easy to check that they are interchanged by the real structure.

We now discuss genericity. If one refers to Taubes’ construction of SU(N)
monopoles [T1], one finds that they are obtained there from approximate solutions
which are the superposition of Xm, well separated SU(2)-monopoles of charge 1.
These have spectral curves which are real lines C, in TP,. Furthermore, as in
[AHi, Proposition 3.10; M7, the spectral curves of the monopole one obtains
approximate this union of lincs; this approximation improves with the separation
of the SU(2) monopoles. As the C, can be chosen with well separated distinct
intersections, one obtains monopoles whose spectral curves intersect in distinct
points.

Our generic monopoles are then those for which §,n S, | consists of 2m,m, . |
distinct points, forp=1,...,N — 1. When § ,n§ have no common components,
we have the lemma:

Lemma 1.8[M]. Over S,

ptl

a) The divisor S, ,+ S, ,-\ is cut out by S, ,, and therefore is in the linear
system |(C(2m,, _)|; similarly, S, ,. + S,y piscut out by S, i, and is in the linear
system |O(2m, ;)]

b) The divisor of &, in HO(S,, L'~ “r(m,_y +m, ) is S, -1 + S, 41 that of p,
is Sy, + 8,01, € py are interchanged by the real structure.

If [D] refers to the line bundle corresponding to a divisor D, then the fact that
Lt o(m, o+ m, ) =[S, ,-1+S,,.1]over S, imposes non-trivial constraints
on the curve. This is condition C-1

From this lemma, we find by computing degrees that S, ,,, and S, , both
consist of m,m,, ; points, and so in the generic casc:
S,,+1and S, , are disjoint. (1.9)

This has several consequences:

dim(E, nEy_,—;)=1 on §,,.,, O0eclsewhere,
dim(E, nEy_,)=1 on S, 0 elsewhere.

ib) A Meromorphic Reduction to a Torus. Both the positive and the negative flags
define reductions of the structure group of E from SL(N, C) to Borel subgroups.
Away from the spectral curves, the two flags are transversal, and define holomorphic
reductions to a (complex) torus (i.c. a Cartan subgroup): £ can be thought of as



46 J. Hurtubise and M. K. Murray

a sum of line bundles E/AE, + Ey_,_,). This reduction fails over the spectral
curves; this is why we refer to the reduction as “meromorphic.” This failure encodes
the essential structure of E. Before examining this, we first study the structure of
certain quotient sheaves of E, when E is generic.

iy E(E, +Ey_,): This sheaf is concentrated over S, Its structure can be
obtained as follows. Using the genericity conditions (1.9), one sees that dim (E,; n
Ey_,) =1 over S,; the same is then true of E/E, + Ey_,) and the sections of
ENE; + Ey_,) form a locally free rank one sheaf over S,. Next, from the exact
sequence O0—E; —E  ,—I""'(—k,.)>0, one sees that the natural
mapE, ., > E/(E,; + Ey_,) factors through L*!(—k,.,). Referring to (1.7),
this is zero precisely at S, ,. Therefore, over S, E/E, + Ey_,) = L'r*'(—k,,)
[S,+1,,] Referring to (1.8), this can be written as:

ENE; + Ey_ )= L m,+m,, )[—S,,: ] (1.10)
Similarily, one can get
EfE; +Eg_ )= L, +m)[ S, 1]

ii) EAE, + Ey_,_): One first notes that E; nEy_, = {0}, except over
S,p+1» Where dimE; nEy_,_,=1, by genericity. The quotient Q=FE/
(E, + Ey_,-,) is then free (a line bundle) away from S, . ,. We first examine its
global structure, then consider the local structure near S, ,,;. From the exact
sequence of sheaves

pp+

0—-E, ®Ey_,-,»E—->Q-0,

one has an injection of sheaves AN NE; @ Ey_, )®Q— AVE. Referring to
(1.3), this yields an injection Q — L'»*(m,, + m,,.,), which is an isomorphism away
from S, ,,,. Locally, this can be thought of as an injection Q — ¢, the sheaf of
functions of TP ;Q is an ideal sheaf. We now show that in fact Q is locally the
ideal sheaf .#(S, ,.,) of S,,.;. Let v{ be a section of E;,v; a section of
Ey_,-, with of =v; at a point x of S, ,, ;. We complete to local bases:

vy,...,v, of E;, vy Uy-p-y Of Ex 1,

ViU,

T + = - -
Uy Uy O Epyy, v ooy y,oy_, of Ey

by genericity, as S
One has:

at x: vy, -, span E/E; +Ey_,_})

along S,\{x}: v,y spans E/E; + Ey_, )= E[E,S + Ey_,), but vy_, maps to
zero.

along S, \{x}: vy_, spans EE, +Ey_,_ )=E[E;, +Ey_, ), but v
maps to zero.

One can in fact choose local defining equations a=0, b=0for S, S, ;, so that
locally one has the exact sequence

00— 0925Q-0.
J= af.bf)

(s, 1) [0,y +toy_, 1.

o+ 1.pisdisjoint from S, ., Eisthesumof E,, ; and Ey_, near x.
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This is, however, precisely the form of the Koszul resolution of .#(S, ., ,):
00— 0°°>4(S,,.,)—0
[ (af.bf)

(s, t) —(sb — ta),
and so, locally, Q = #(S, ,. ). Therefore, globally,
ENE; + Ey_,_) = L (m,+m,, VRIS, 1) (1.11)
We now give a description of E valid for any monopole bundie.

Proposition 1.12. One has the short exact sequence of sheaves:

E/Ey §

® O EAES +Ey)
ENET + Ey-2) ®

® ENE; + Ey_»)

0—>E—’+E/(E2++E§_3)/ ® o

@ > ............
ENEx-2+E7) ~

® EfEy_+E)

E/Ey -
where the map between the second and third terms is of the form (a, ---ay)—(a, — a,,
Ay —Qzy...,0y_ 1 — dy).

Proof. The only non-trivial part is showing that ker 7 = Im i, i.e. that 7 = 0 imposes
sufficient constraints on a section of the middle term for it to come from E. Let
(x; +(EXf +E5y_))i=0,...,N —1 represent a local section in ker . One wants
a section y of E such that

N-1
VH(E +Ex_ ;- )=x;+(Ef + Ey_,_,) forall i, and so ye .OO x;+(Ef + Ey_y).

Now if A, B are subsheaves of E, one has the sequence
0->E/(AnB)->E/A®E/B—-E/(A -+ B)—0. (1.13)

As xg x; map to the same element in E/E{ + Ey_,), there is a y, +
(Ey_10(Ef + Ey_,)) mapping to both x,+Ey , and x,+(E{ +Ey_,).

N—-1
The problem is now to find ye(ﬂxi+(E,~++E§,-41)>m(y1+(E,;_1r\
i=2
(Ef +EN_,). As Ey_,cEy_ n(Ef +Ey_,), it suffices to find ye
N—-1
<ﬂxi+(E,.++E§4i_1)>n(y1+E§~2). Now, by hypothesis, y, and x,
i=2

map to the same element in E/(E; + Ey_,); proceeding as above, there is a
v, +(Ex_>(ES + Ey_3)) mapping to both y, + Ex_, and x, + (E; + Ey_,), and
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N-1
[
Iterating this procedure, one obtains y;, y4,...,and yy_; = y.

Using the identifications of the quotients given above, we therefore see that in the

generic case E fits into an exact sequence:

the problem then reduces to find ye< x;+ (Ef +E§,i~1)>m(y2+E,§_3).

1#(m,) -
@ o L (my)]s,
L2(my +may) @ (S, 5)
@ o L2(my +my)[ =S, 5]s,
0 E— LMy +my)® F(Sy3) 7 cooeevrereeennn 0.
............ N
@

Lp.N—l(mN_l +mN—2)® /L‘ﬂ(S.V~2,N—1)
@ ~ L imy oy +my ) [ = Sy—an—11lsn-
L (my )
(1.14)

Let r, denote restriction to the p™ spectral curve, and, referring to (1.8) and
(1.5), let f,=p,g,+, be a meromorphic section over S, of L'»"“* (m, _; —m,, 1),
which has poles at S, ,,, and zeroes at S,_, ,. The map between the second and
third terms above is:

I(a,,....ay) = (ri(a)) — f1r1(a2), r2(as) — fora(as), ... ry—s(ay —4)
— Sy 1rv-1lay).
We call the curves S, and the splitting S,nS,., =S, ,+,YS,+,, the spectral

data of the monopole. As the divisors § S determine the sections f,, we
have from (1.14) a result from [M]:

ppt L Yp—1,p

Proposition 1.15. A generic monopole is determined by its spectral data.

Remark 1.16. Note that one can also interpret the flag structure of E in terms of
(1.12). Local sections of E, are elements in the kernel of IT of the form (ay,...,a

b p,
0,...,0). This forces a, not only to vanish on S,_, ,, but on the whole of S; a,

is then a local section of L'r(m,_, —m,) = L*7(—k,). From this, one can reobtain
the extensions

0-E, ,—E; - I'*(—k,)—0.
Similarly, local sections of Ey_, are of the form (0,...,0, ay_,1,...,ay).
One also notes that one has exact sequences, for any monopole
0-I(—k,)>E(E,_,+Ey_,)—>E(E; +Ey_,)~0,
0 I'r(ky) > ENE, - + Ex- ) > EAE, 1 + Ex_,,1)—0.
1C) A Vanishing Theorem.

Theorem 1.17. Let S, be the p™ spectral curve of a generic monopole. Then W, =
HO(S,,L"*(=2)® E/AE; + Ey_,)) =0. (Generically,
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W, =H(S,, L*»*(m,+m,_ —2)[ = S,-1.,1))

a) VZE :up+1a:up)
b) For z— . if my<m, 1. (1<p)
)FO"Z‘—,Upﬂalfm = p+1-(P<N)~

Proof. Theidea is to use (1.12). By a coboundary map 6, the space W, above maps
into HY(TP,, EL™*(~— 2)). This, in turn, by the twistor transform, corresponds to
solutions to a Laplace type equation over R3. By computing boundary behaviour
of solutions in §(W,), we show that they must vanish.

We start by showing that § is an injection. An element s of W, can be thought
ofasasection (0,...,0,s,0---0) of the right-hand term of (1.12) (twisted by L™ *(— 2)).
If it maps to zero in HY(TP,, EL™*(— 2)), then it is the image of a section of the
middle term of (1.12). Let us first consider the generic E. For these, in case a), the
middle term has only the zero section, as by (1.2), HY(TP,, L!(k)) =0 Vk, ¥Vt #0,
and so s =0. In case b), consider the following portion of (1.14)® Li**(— 2):

D=Lt nm, 4y = D@5, 2, 1)
~
B=Lv o(my 4 my D[S, 2,-11ls, |
/
C=0m,+m,_, —2)@F(S,_,)

A=0m,+m, —2)[ =S, 1,15,
e
E=Lv " (m,,  +m,—2)®.9(S, , 1)

For the section (0,s) of (B, A) that we are considering to be in the image of the
left-hand side, one must have sections (d, ¢, ¢) of (D, C, E) with (0,5)=(r,_,(d) —
So—17p-1(0)r,(c) = f,r,(e)). However, by (1.2), d = ¢ = 0. Therefore e vanishes on
S,-1, and so can be thought of as a section of ((m, —m,_, — 2). By hypothesis,
this has negative degree; therefore ¢ =0, and so s = 0. Injectivity for the third case
of the theorem is proven in a similar fashion.

When E is non-generic, the injectivity is proven in essentially the same fashion
but is notationally more complicated: one uses the sequences of (1.16) to express
the lifts to the middle portion of ((1.12) ® L™ *( —2), of sections of the right-hand
side of the form (0,0,...,0,s,0,...,0) in terms of sections of @,/ *(k; — 2), which
must vanish.

Having shown that ¢ is injective, we compute Cech and Dolbeault representa-
tives for d(s). Let V,, i=0,...,n be a sufficiently fine covering of TP, with I,

i==1,...,n covering the spectral curves, () V; lying inside a compact set, and
i=1

V, not intersecting the spectral curves. Over each V;, one can pull back the section

(0,0,...,0,5,0---0) to the middle term of (1.12)® L™ *(— 2), in two particularly

convenient ways:

1) as a local section f{ of E,, of the form ( fl1,~~ S ,0),
(2) as a local section [, of E‘ ». of the form (0,....0, f, b1 .A,‘f',-:\y).
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Setting f5 =0, d(s) then has two representative cocycles /. defined by /5 =
fE— fi over V,nV,;,differing of course by a coboundary; f, represents an element
of H(TP, E} L"*(—2)), /_, an element of HY(TP,, Ey_ L *(— 2)).

Dolbeault representatives are obtained in a standard way. If o; is a partition
of unity subordinate to V, set 07 =0( Zo— i) 0 =0F on overlaps, and so

144

one gets globally defined forms 0% Q% 1( SLA(— )) 0" eQ*HEy_ L %(—2)),
both representing J(s). Furthermore, if /—Za —f), 67F ~0 ——57. Note

that as O(—2)~ IT*(K(P,)) (IT: TP, > Py), : can be considered as (1, 1) forms
with values in EL™% these forms have terms in d{ A dij,d{ A d and none in
dn A dC, dn A dif; furthermore, 07,0~ and y are all compactly supported in some
disk bundle D inside TP,.

The proof is now a slightly refined version of that found in Hitchin, [Hi2, p. 162]
(see also [HiM]). Recall the twistor transform over R?. First, the bundle H over
R* is reobtained by H,= H°(C,,EL™?). Secondly, as EL™* trivial over C,,
H'(C,,EL"*(—2))~HC,,EL")® H'(C,, O(— 2)). By Serre duality (integrating
a representative (1,1) form), H}(C,, O(— 2)) =~ C. Thus, restricting our element J(s)
to C,, we get an element [(x) of H,. F is in fact the solution to a Laplace type
equation over R*; the map from H(TP,, EL™*— 2)) to the space of such solutions
is bijective.

We examine the behaviour of our solution at a point x of R® as x — o. For
concreteness, take x to be the point (0,0, — b/2); then C, is defined by n = bg. The
intersection of C, with D, for |x| large, is the disjoint union of two open sets 4,
A7 centred around { =0, { = v respectively on C,. Note that their radii (in {)
tend to zero linearily in b~ ! as b— oc.

Let F be written locally as «d{ A dﬁ + fEdL A dE; let their restrictions to C,
be Zs o dl A dif + BEAC A dD) Zs o + BE)dl A dl, where the s, are an

orthonormal basis of the sections of E over C,. Similarly, set y over C, to be
Xs;(p;d{). One has, over C,, [(boc + B — (ba; + B7)1dL A dT = d(p;d() = d(p,d)).
The coefficient of s; in F(x) is

[ (o + BH)dS A dl= | (boyt + BF)dL A dl + f (bay + p;)d¢ A dC,
Cx it
using Stokes’ theorem.

We now use the fact that 0" eQ"'(E,; L™?). Elements of E, L™* at a point
of TP, correspond to solutions of (V,—i®)s=0 which are bounded by
const. [exp(—(u, —2)b)b~*?] as b— . Following Hitchin [Hi2, p. 163],
this means that the coefficients o, B are bounded over A7 by
const. [exp (— (1, —z)b)b~*»']. In the cases a, b,c which interest us, the integrand
is then always bounded by const.[b]; however the area of 4, is bounded by
const. [b~ 2], and so the integral over A4, is bounded by const.[»~']. The same
argument, applied to 0~ eQ"!(Ey_,— L ?) bounds thc integral over 4, by const.
[b~ 17, and so | F(x)] is bounded by const. [b~*]. As in [Hi2, p. 164], keeping track
of the derivatives gives |VF(x)| bounded by const. [~ 2], and so the argument
given there (essentially the maximum principle) applies, forcing F = 0. Therefore
s=0, and the vanishing theorem is proved.
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1d) The Asymptotic Higgs Field. To begin, note that the spectral curves all lie
within some compact disc bundle D over P;. Then, for each xeR? outside a compact
set K, C,n S, is a set of 2m, points which partitions naturally into two clusters
C5 ., Cy of m, points: the points in CJ . are lines in R* through x which point
(approximately) away from the origin, and the pvints in C°, are the same lines,
but with orientation reversed, and so pointing towards the origin; ©(C9,) = C;..

Let U <V be open sets in P, representing a “cone” of directions in R3. Set
A=(TP\D)un '(V)ut(r~}(V)), where m: TP, —» P, is the projection. If |x| is
large enough, and the line Ox has direction in U, then C, < A.

Let g,=0 be the equation defining S,; one can define an element of
H'(A, ¢(—2)) by the cocycle -(dg,/0n)/(2nig,), relative to the covering of 4 by
TP, \n~ Y(V), TP, \t(z~}(V)). This in turn, by the twistor transform [Hi3], corres-
ponds to a solution of the (ordinary) Laplace equation, defined for the x’s in R?
such that C, < 4. Varying U, these solutions patch together to give a global
solution v, which is defined outside a compact sct of R*. ¥, has the following
alternate formulations, proven in [Hul, p. 386-387]:

Lemma (1.18).
a) Along the line in R® corresponding to sections n=b{, b— — o,

kbp:@bl()g( H Ci)z _ab10g< n Ci)'
(bLaL)eC?, (bGuleCsy

b) Along C,, T(TP,) splits into the sum of two canonically isomorphic bundles:
TF, the tangents to the fibers of TP, - P,. and TC,. Assuming that C, intersects
S, transversally, at smooth points of S,; then a tangent vector v to S, at geS, N C,
then decomposes at (v, v, ), and the “slope” s(q) = (v, )/(v;) of S, at q is well defined.
Then

quyJ
Theorem (1.19). Let E be a vector bundle E over TP, defined by the sequence (1.14),
where the S,’s are real. Then,
a) For X outside a compact set K in R, E is trivial when restricted to C,.
b) E defines a Higgs field @ and a connection V over R3\K such that
asymptotically, the eigenvalues @ ; of @ are approximated by

(d)j)as = lﬂj + l('vbj - l//j— 1),

where Yo, Yy are defined to be zero. This approximation is valid up to exponentially
decreasing terms with exponentially decreasing derivatives.
c) (V, @) satisfy the boundary conditions of a monopole.

Proof. We will compute the Higgs field for x =(0,0, —b/2), as b— — oo: this
corresponds to lines C.:n=5b{. We will suppose that (1,{)=(0,0)¢S,, and so
7(0,0)¢S,. This can be done without loss of generality, as for a given small cone
of directions in R, one can shift the origin so that this is true. For convenience,
we will suppose that the intersection of C, with the curves S, consists of 2m,
distinct points; the presence of multiple points does not change the proof, but, as
we are using Lagrange interpolation, it does change the formulae.
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Over the line n = b{, a section of (k) is represented over U, by polynomial
So in ¢ of degree <k, and over U, by a polynomial s, in (™! of degree <k, such
that on the overlap:

so = e"l¥s,. (1.20)

Let C, intersect S, in 2m, points with {-coordinates {,;=(, (b), i=1,...,2m,,.
As C, and S, are real, one can order the points so that { ,.:€CY , (therefore {, ;-0
ash— —)fori=1,...,m,andsothat{,, ;= —1/(,,i=1,...,m, Intheexact
sequence (1.14), meromorphic sections f, of L “r*i(m,_, —m, ) over S, are
involved. Represent these by functions f, over U, f, over U;, with f,=
exp (i, — Hp+ /O =1 "r+1), £ on the overlap. Set f,, j(b) to be the value of f,
at {, {(b). Then, referring to (1.14), a section of E over C, can be represented in
the U, trivialisation by polynomials s, of degree m,+ m,_,(my, = my=0) with
the constraints

Splp )= Lo spe1(Cp ) j=1--2m,, p=1--N—1 (1.21)

As b tends to infinity, the points {,, ;, j=1,...,m, tend to zero; the {, ,, ; tend
to infinity, linearly in b. As | f, is bounded near { = co, then, as n = b{ on C,, the
Spm, +j cONVerge to zero, exponentially in b. The equations (1.21) for a section are
then, up to exponentially decreasing terms:

Sp(Cp,j) = p.jSp+ I(Cp,j)’
Spllpmp+)=0, j=1,...,m, (1.22)

As b— — 0, (1.22) does not quite tend to a finite, well defined limit. However,
note that b{, ;—c¢, , where ¢, ; are the n-coordinates of the points of intersection
of {{=0} with S,. We therefore set t,(b{) = s,(); if g, ; are the values of f, at
{{=0}nS,, then (1.22) becomes in the limit:

1) =gy itp+1(c, ), and t, has an m-fold zero at { = o
‘(i.e. t, is of degree m, ) (1.23)

For E to be trivial over a line C,, it suffices to find a basis of solutions ‘s = ('s,,),
i=1,...,N, to (1.22), spanning the fiber of E at a point. Taking this point to be
{ =0. one adds to conditions (1.22) the extra constraint

is (0) = (1.24)

pii*

Adding this condition into the limit equations (1.23), the linear system one
obtains is non-degenerate, and in fact solvable by Lagrange interpolation. There-
fore, for |b| large, (1.22) and (1.24) are also solvable and E is trivial over y = b(.
By varying our coordinate system (n, {) (i.e. rotating in R?), one obtains part a).

We next compute the Higgs field, again along # = b{. We begin with a remark:
all the functions involved in this computation are of the form (in b)exp (—kb) x
(meromorphic in b~ !). Thus, in general terms if we obtain an exponential approxi-
mation g’ of a quantity ¢, the derivatives of ¢’ will also approximate the derivatives
of ¢ exponentially.

With this in mind, we construct an exponential approximation ‘s, to a basis
of sections of E over # = b{; this amounts to finding ‘s, solving (1.22) and (1.24),
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which is simply a matter of Lagrange interpolation. For i fixed, one gets:
—is,=0 for p<i,

_p _mp»l(_c_igv_i L) 17 E = Cpmpes) 1
* /Dl (_‘:p—l.j) Jl:ll (”‘Cp.m,,+j) ( 25)
The ‘s, for i<p can be computed similarily. Thus the matrix S={(s,) is
lower triangular.
We then construct the asymptotic Higgs field in this basis. The family of sections
C, all intersect at (0, 0) and (0, 0). There are two natural connections on the bundle
H (H,= H°C,, E)) over the line (0,0, —b/2) in R*: one, V,, has flat sections
defined by fixing values of elements of H, at (0,0); the other V_, is similarily
defined at (0, 0). The Higgs field is then [Hil]

®db=i(Vy—V.,).

The basis S above is V,-constant by (1.24), and V,, then has zero matrix. To obtain
the matrix of V_, one must first evaluate the basis at { = oc; taking the change
of trivialisations (1.20) into account, one evaluates (in our approximation)
[diag {exp (— wb){~™+™-D}-S] at oo, obtaining a matrix M. Write M as
diag (exp (— wb)). T; T is lower triangular, with diagonal elements

mp -1 myp

— -1
Tp.n‘ H 1» 1, 1 H p mp +} :

=1 i=
The matrix of V_, is M~ !(0,M)db; that of @, is then
O, = —iM'OM = — (T ' diag(— )T+ T~ '6,T).

®,, is lower triangular; its diagonal entries (®,,), (eigenvalues) can be computed
from those of T, to obtain

mpy - my,
((Das)p = i/“tp + Ipb 10g< n L:P‘ 1.j II L-’I7-'”p + i>’
i=1 j=1
referring to Lemma (1.18)

((Das)p = l/"'p + i(lpp - lﬂp— 1)~
To prove c), one notes that

mp -y mp,

ﬂ (L:/p' ].j) n (C[Lm,,wtj)
j=1 j=1

has leading term h™r~"r-t = b*» as b— oo; this gives @, =i(u, — k,/2r) + O(r %),
The other estimates follow by taking derivatives as in [Hul]. One uses
IVO|? = A|D]?)2.

fe) Reality Conditions. Our monopole bundles E are equipped with an anti-
holomorphic map ¢: E— E* lifting 7. We examine how this is encoded in the
spectral data; we begin by showing how to define ¢ for a bundle E derived from
the spectral data via (1.14). Note that the two real structures ¢, T define an operation
* from sections of E to sections of E* by f*(p)=o0f(tp) for p in TP, and if f is
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holomorphic so also is f*. If f and ¢ are sections of E over a real section C,, we
can define a pairing by {f,g) = f(g*) which on a real section is a holomorphic
function, and so a constant complex number. This defines a pairing on the bundles
H on R?® (H,= H%C,, E)).

We shall show that this pairing is hermitian and positive definite, and also,
that if one performs the twistor construction of the (V, @) associated to E, the
pairing is compatible with the connection and Higgs field. This means the monopole
we have constructed is an SU(n) monopole.

First et us make some normalization conventions. Every bundle (k) has a
real structure ¢ mapping (k) to L™ *(k) and covering 7. This can be chosen so
that when bundles are tensored the real structures are tensored, and we shall
denote all these different real structures by the same symbol. The operator * on
sections of I(k) then satisfies ** = (— 1), If g, is our normalised section of /(2m,)
defining S,, then we have

g5 =gy (= 1™

Similarly the meromorphic sections f, in (1.14) are normalized to satisfy

- 9Ip-1
fof ¥=e,~%—, where e,=+1,
g[7+1
and
_(_l)m,,,‘-impep>0

for all p from the conditions on the spectral data. We shall see below that
it is this condition on the sign of e, that makes the hermitian form positive definite.

We start by defining a pairing between the fibres E(y) and E(z(y)) for any y in
minitwistor space. Consider an open set U about y. Then a local section of E over
U, from diagram (1.14), can be regarded as a collection s = (s,,..., sy), where

s,€HOU, Li*(m, +m,_ )@ F(S, - )
and
sy = /152 on Sy,

Sy = f583 on S,,

Sy-1=[y-15y on Sy
Let s be a local section of E over U and ¢ a local section of E over 7(U). Then
t* is a local section over U and we can form the interesting expression

N

p(s, t) = Z (— 1)p€1€2"'ep-15ptﬁg1 Yp-29p+1 YN -1
p=1

By using the above formulae it is easy to check that this section of ¢(2m; + - +
2my ) vanishes on all of the spectral curves so we can define

{s(), 1y)) =——=—(y). (1.26)
g1 gn-1

Using the normalization for the g, the result on * squared and the fact that
o on functions is conjugation, it follows that the induced inner product on H is
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hermitian. We shall show next that this inner product is compatible with the
connection and Higgs field.

Consider any line y in R® not on a spectral curve and the corresponding family
C,, xey of real sections in TP,. If s and ¢ are sections of E over any of these real
sections, then the inner product {s,t) is a holomorphic function and therefore
constant, so it can be determined by evaluating at any point, for example y or 7(y)
the two intersection points of the family of real sections. Choose two sections s
and ¢ of the bundle H over the line in R?* so that as induced sections of E over
the family of real sections s is constant at y and ¢ is constant at t(y). Then {s,t>
evaluated at y is independent of where we are on the line in R3. Using the definition
of the connection and Higgs field this means that if (V,—i¢)(s)=0 and
(V, + i$)(t) = 0 then their inner product is constant. It is easy to deduce then that

%(s, )=V, —i®)s, t) + (s, (V, +iD)t>

for z a parameter along the line, and if we cxpand this out and equate the pieces
which are symmetric and conjugate-symmetric in s and t we obtain the desired
result. We have, in fact, only proved the result for lines not on the spectral curves,
but these are dense in the space of all lines so the complete result follows by
continuity.

Because the inner product is invariant under the connection, it is enough to
show that it is definite somewhere to deduce that is definite everywhere or instead
to show that it is asymptotically definite, which is the approach we shall take.

Consider again the family of real sections parametrised by the points of the
line y = (0,0,— b/2) in R®. Assume that we are in the generic situation of Sect. 1d);
we have an asymptotic basis of sections s satisfying (1.22), (1.24), and so (1.25). It
suffices to evaluate (1.26) at the point (n, {) =(0,0)eC, for b— oo, and show that
it is positive. It is easy to check that this asymptotic basis is orthogonal; to check
definiteness, we need to show that the sign of

("s,"s)

G

is positive; at (0, 0), this equals
PS .PS* g
L i ) (1.27)

— e
*
Sp+1 Sp+1 Yp-1

Pp+1

Evaluating, we find

__egn(__ Zp—l,i)_l._n(_Z}7,mp+i)k1gp+l(o)
H(_Cp,i)_ln(_ §p+1,mp+1+i)—]gp~ 1(0)

Using {,,,,, +i = — 1/C, ;. this is

H((:p+ l‘iC_p‘F 1,i)n(6p- 1,i)gp— 1(0)

from the fact that g% =(—1)"rg,, and that b{,;—~c,; one can easily show that

p.is
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(1—[[ Ep!i>gp(0)>0 for all p. The expression above is then indeed positive, by
i=1

the condition on the e,

To finish this section we show that when the spectral data is obtained from a
monopole that the inner product on the monopole has this form and therefore
the spectral data of a monopole satisfies the condition C-4. By continuity it suffices
to work over a real section which doesn’t intersect the intersections of the spectral
curves.

Consider the part of the dual of figure (1.14) over a real section which is

ol
LN-J

S

L S~ 1 i N
Ef " nEyi,— E*

Eyt,
It is straightforward to check that the real structure on E induces a map

VIrE: - +1 Al
E/E, "Ey_, 1= E,"0EyZ,_,

which covers the real structure on TP, and is a multiple of ¢ composed with
multiplication by g, _ ,g,. It follows that the inner product on holomorphic sections
of E over a real section obtained by using the real structure on E must take the form

N s l*
(sty =) a,—2—
p=1 Yp—1Yp
We can now use the fact that this is a holomorphic function over the real
section and defines a positive definite, hermitian form to reverse the arguments
above and discover that if we set a, = — 1, then we have

ap = (A 1)"61 ”'ep>1

and
- (__ 1)’"1}* 1+m,,€p > 0.

To obtain the first condition one just applies the inner product to a section
vanishing at a point of §,nC,, and to obtain the second one uses an asymptotic
orthonormal basis as above.

2. From Spectral Data to Nahm’s Equations

2a) Introduction and Notation. The purpose of this section is to obtain from the
spectral data a solution T(t) to Nahm’s equations which satisfies the conditions
Boftheintroduction. Let us first combine the matrices Ty(t) into a polynomial; define

A O = (T, +iT,)(0) = 2 T30 + (T, — iT)O = Aglt) + A, () + A0
set Ay(t, ) =3 A,(1) + A,(t);; Nahm’s equations are then equivalent to
A+[A,, A]=0. (2.1
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To solve this over cach interval (u, .y, u,), we first define a vector bundle X
over ({,+ 1, i, ); then we define a polynomial A(z, {) with coefficients in I" (End (X)).
From there, to get our matrices A(t, (), it suffices to choose a correct trivialisation
of X; we will do this by specifying a connection. The main problem will be to
show that the solution one obtains satisfies the boundary conditions B-2.

As all our computations will be on the fixed interval (u,. 4, i), to reduce the
number of indices we will define some notation particular to this section:

t flow parameter for solutions to Nahm’s equations.

z: 7=,

m: om=m,

n: n=m,_.

g: g(n, g)—n’" +a; O™+ 4 a0 =g, 0). g = 0is alocal equation of S,

h: h(n, ) =n" +by(On" "+ - b(O)=¢,-(n,{). h=0 is a local equation for
S,-1-

D: D=S, ,,1D)=S,,

M: M= C x §,. we will denote line bundles and divisors on §, and their lifts
to M by the same symbol.

Z: y is the line bundle over M defined by |, = L%

X: =the direct image sheaf P, (%(m+n— l)[ D]) (P:M—-C is the
prOJectlon)

' I'=PJ (%Lm+n+1)[—D]).

. E=P (Zm+n—1))

N: N=CxS§,_

Y: Defining !f, P as above, but with respect to N instead of M,Y =

P (Lm~+n—-1)[—-D])

G O = 22, ) = 0" + 2, (0" + -+ 2, 0)

h: Wz, n,{)=z"h(n/z, ).

z8,. 28,18 §, “shrunk” by a factor of z in the -direction; it is defined (fixing z)
by g(z.m, i:) =0.

F®:  The k'™ formal neighbourhood of the zero section in TP, defined by #** ' = 0.

M:  Surface in C x TP, defined by gz, 1,{)=0. Let P: M — C be the projection;

then P~10)=F™ Y, and for z ;éO P~ !(z) = zS,. Again, bundles on TP,

their lifts to C x TPI, and their restriction to M will be denoted by the

same letter.

E=P (Lim+n—1)),

<

o

2b) Solution Over (g, ,,#,). In this section, we will recall the version of the
“Krichever construction” of the solution to Nahm’s equations which is due to
Hitchin [Hi2]. Let V, denote the sheal L {(—1)®(E/E; + Ey_,)); for generic
monopoles, V,=L»" m+n—1)[—D]. If T, denotes the fiber of TP, - P, at
aelP,, then one has the exact sequence over S,

0-—>V[(— 1)_’Vz'_>Vr|5nﬁ7a"’O~ (22)

For te(u, 1, 1t,), H(S,, V,(—1))=0. by the vanishing theorem (1.17). As the
genus of S, is (m — 1)?, and the degree of L'* ~'(m + n — 2)is (m — 1)> — 1, Riemann
Roch then implies that H'(S,, V{(— 1)) =0, and referring to (2.2),
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X, =HS,,V)~HS,nT, V)~C" (2.3)

That h%(S,NT,, V,) =m is easy to see in the generic case, as S, T, consists of m
points, counted with multiplicity and V, is a line bundle. In general, if one writes
out a local basis for E, E;,E,_, along T, it is straightforward to show that
the number of independent sections of ¥, along T, is exactly the multiplicity of
S,- Next, as the dimension of X, is constant in ¢ (2.3), the space X, fit together
nicely to form a vector bundle; in sheaf theoretic terms, X, is the fiber X, at ¢ of
the direct image sheaf X.
In a similar vein, one obtains

[~ HO(S,, V(2)) =T

We next define the endomorphisms A(t,{). One way to do this [AHH] is
to use (2.3). If { =, corresponds to the point aeP,, then one defines A(t,{,) by
the commuting diagram:

restr

X, S, AT, V) (2.4)

Ao | L
X, —ZSHS,N T, V)

A section at a point ({,, 17;,) of multiplicity k of S,n T, is a truncated power series
Zui(n — ) the map x y multiplies this series by #. Note that this means that
the spectrum of A(t, {,) is the set of n,y; also, in the generic case when V, is a
line bundle, that dim ker (n1 — A(t,{)) < 1, for all , 5.

An equivalent way of defining A(t, {,) is that of [Hi2]: the map

HY(S,, 02)® X, ~ T, (2.5)

has an m dimensional kernel; taking a basis #, 1, {, (* of H%(S,, ¢(2)) (in the
standard trivialisation), it is shown that there are endomorphisms A,, 4,, 4, of
X,, such that the maps—n®s—1® Ay(s) —{® A, (s) — {*® A,(s) is an isomor-
phism of X, onto the kernel of (2.5). One thus sees that A(t,{) is a polynomial of
degree 2 in {.

One must then give the trivialisation of X. As this is a bundle over a one-
dimensional base, then, up to an irrelevant overall change of basis this is equivalent
to giving a connection on X. One fixes trivialisations of I*(k) over TP, in which
the transition functions from U, to U, are exp(un/0)(%; this determines an iso-
morphism e:HS,nU,, V,)>HS,nU,, V,) for a fixed t,. One then shows
that there is a well defined connection V acting on sections of X over S, x C defined
by

Vis)=e (0, +edy)s. (2.6)

It then follows [Hi2] that writing 4 in a V-flat basis gives a solution A(t, () to
Nahm’s equation (2.1).

2c¢) Behaviour of X at u,. One thus obtains flows over the intervals (i, . 1,),
(U Uy~ 1)s. .. etc. The problem then arises of studying boundary behaviour, at u,,
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say. The particular boundary conditions we are studying are preserved under
limits; therefore, it suffices to consider the generic case. As in the definition of the
solution over (i, y, #,), we will analyse this in three steps, studying

i) the fiber Xup of X at u,,
ii) the endomorphism A(z, () at t = p,,
ili) the matrices A(t,{) at t = pu,,.

The next three sections are devoted to this analysis. As everything we do
concerns behaviour at t = u,, it is more convenient to change our parameter, and
set z = (i, — 1). We incorporate this change into our definitions of X, 4, etc., and
so we will refer to X, as X, A(u,, () as A(0,{), etc.

The first thing to do is to analyse X at z =0. Approaching O from below, one
isstudying L(m +n—1)[ = D] ~L**"'(m,+m,_; —1)[ =S,_;,pJover S,as t—pu,;
approaching u, from above, one is interested in L' ' "'(m,_, +m,_,—1)
[—S,-2,-1]overS,_,ast— u, however, using the section of (1.8), this last bundle
isisomorphic over S, _; to I*(m + n — 1)[ — D]. Thus, in both cases one is looking at
the same bundle, as z — 0. Symmetry then allows us to consider only one case, say
that of S,,.

By general theory, as X is torsion free over a one dimensional base, X is locally
free. However, at z=0, at least for m>n, one does not necessary have the
isomorphism (2.4). The evaluation map on the fiber X, of X at z=0:

evo: X o— H(S,, O(m + n— 1)[ - D]) 2.7)

is not necessarily surjective: the dimension of the space H%(S,, L(m +n — 1)[— D])
may jump (upward) at z = 0. ev, is, however, injective; any section of X mapping
to zero in (2.7) corresponds to a local section of #(m + n — 1)[ — D] vanishing at
z = 0; this is then divisible by z, and so cannot be a generator of X. The problem
is then to determine what the image is in (2.7).

To do this we will consider the sheaves =, e (see 2.a) over C, which in a similar
fashion are locally free; the evaluation maps:

ev,: E,—> HO(S,, [i(im+n— 1)),
&v,: 5, > HYP Yz), Lim+n—1)), (2.8)

I

are again injections, and are bijective for generic z. Sections of X, = (and of Z)
over V < C are to be thought of in terms of the corresponding sections of the bundles
over P~ 1(V)(ﬁ “YV)); using the U, trivialisation, they will be thought of as functions
f(z,n,¢) over P~YV)(P~YV)) satisfying certain constraints. X is a subsheaf of =,
consisting of those sections which vanish along C x D.

There is a very useful link between Z and Z:

Lemma (2.9). There is a map of sheaves
p: L(k) | = L (k) |y

given locally as follows. If in the standard trivialisation over U; a section s of L(k)
over M is represented by fiz,n,0) then p(s) is represented over M by fiz,n,{
iz, 1z, 0). Away from z =0, this is an isomorphism.
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Proof . It suffices to verify that over M, f;, = exp(zn/{)f;: this is immediate.

Corollary (2.10). Taking direct images, there is a map of sheaves over C

e

—

y

0

>

which is an isomorphism away from z = 0.

We now study the sheaf =; we find that the map&v of (2.8) is always a bijection
near z =0 by showing that the right-hand side has constant dimension. First, let
us consider z=0; P~1(0) is F™~ . Note that SL(2, C) acts on F™1; this action
lifts to L(k) [Hi2].

Lemma (2.11). One has the decomposition
HO(FO= D Lim4+n— 1))~ HOF™ 1 Lim—1 4+ n))
@nHO(F(yn71+n~2),L(m_ 1 + 1’1*2))

D P HOFE™ 129, Lm — 1+ n — 2s)),

where s =min (m — 1,n). The n' are to be thought of as sections of ((2i), and there
are implicit restrictions to F™ =Y on the right-hand side. The decomposition is SL(2, ©)
invariant.

Proof. We use Proposition 5.4 of [Hi2] repeatedly, which states:
Under restriction, one has an SL(2, C) invariant isomorphism

HOUFY 1(j)) ~ HYFO, L(j) =~ H(P, ((j)) (2.12)

and

HOFD, L(j— 1)) =0. (2.13)

Let ¢ be a section of L(m + n — 1) over F™~V; then (2.12) implies that there is
a section o, of L(m+n—1) over F""" "1 such that the restriction of 0,0, to
F© are the same: then ¢ — o, = 5o, say, over F™" Y where as no, is defined
over F"~Y g is defined over F™~?; as 5 is a section of ¢(2), ¢, is a section of
L(m +n—1—2). One can then reapply (2.12) to o; iterating this procedure, one
obtains

0—(0g+noy + o) =n""o,.y,
where the ¢, are restrictions to F™ ™ '79 of sections of L(m+n—1—2i) over
Fmtn=1-20 and g, ;€ HOF™ 170Dy 1 (m — 1 — 2(s + 1)). This procedure trun-
cates either when s = m — 1 asthenn*¥! =0, or when s = n, as then (2.13) implies that
0.+, =0. It is easy to see that this decomposition is an isomorphism; SL(2, C)
invariance follows from the naturality of the construction.

Corollary (2.14).

1) hWO(F" D Lm+n—1))=m(n+ 1).

2) Ifk > j, the restriction map HO(F®, L(k + j)) — H(FY, L(k + j)) is an isomorphism.
One next looks at the case z # 0:
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Lemma (2.15) There is an interval 1 containing 0 such that for z #0, zel,
ho(zS,, Lim + n— 1)) = m(n + 1).

Proof. By Lemma (2.9), h°(zS,, Lim+n—1))~h%S,, IF(m+n—1)). By the
vanishing theorem (1.17), and Riemann Roch, h'(S,, [F(m +n—2)[—-D])=0; a
fortiori, h*(S,, L*(m + n— 1)) = 0. Riemann Roch then gives h°(S,, Li(m + n— 1)) =
m(n + 1).

As (2.8) is always an isomorphism, from (2.11) one therefore has a clear picture
of what the fiber of £ is at z=0; the next step is to exploit this to study

Z at z=0, using the map p of (2.9). We start with a lemma describing
HO(Sp, Om+n—1)).

Lemma (2.16). The restriction map:
HYTP,, O())— HS,, ¢())

is surjective. Its kernel is the set of sections of the form g, () f(n, (), with
11, OHeHYTP,, O j-2m)), and so is zero for j < 2m.

Proof . We use the exact sequence 0— O j-2m) — ¢( j) = O(j)|5, — 0. The only non-
trivial statement is surjectivity; to prove this, one shows that the map (multiplication
by g) from HY(TP,, O(j-2m))— H'(TP,, ((}j)) is injective. This is easy to sce if one
uses the explicit description of these spaces given in (1.2).

Combining (2.16) and (1.2), one sces that H%(S,, O(m + n— 1)) is composed of

m—1

sections given in the U, trivialisation by Z n'f¢), where the f; are polynomials of

degree m+n—1--2i(f,=01if m+n— I A21<0)

Proposition (2.17). The fiber Z, of £ at z =0 is mapped under the evaluation map
eV Zo o HUS,, Om+n— 1))

to the subspace of sections of the form (in the U, trivialisation):

S

Y ' f{0),  where the f; are polynomials of degree (m +n—1—2i), (2.18)

where s =min (m— 1,n). Thus, ev, is a bijection<m —2 < n.

Proof . As the subspace of H%(S,, O(m + n — 1)) represented by (2.18) is in all cases
of dimension m(n + 1), i.c. the dimension of =, it suffices to show that all sections
of the form (2.18) are in the image of ev,,.

Let & be a local section of = near z =0; ¢ can be written ¢ = Z n f(i], () + O(2),

where f; represents a section of L(m +n — 1 — 2i) over F” 179 lhen E=p@) is

2 n2) finz, O) + 0(z) = o(0, )+ O(2). As [f,(0,{) can be an arbitrary

polynomlal of degree (m+n— 1), this shows that the i =0 portion of (2.18) is
realised; to get the rest, one has to be a bit more careful.

Let0<r<s. Suppose one has a section & = Zc:,}m tiz* of Z, such that c,lk =0
fori+k<ré=z"p()is then a section of =. We will show mducuvely in r that
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one obtains in this way, at z =0, all sections in (2.18) of the form ) #'f{({).
<o

Over M, one has the exact sequence of formal neighbourhoods of {z =0},
0‘—}@F(m—l)"‘)(9(21(*1:0}‘_}(9{2&:0}_)0. (219)

If one tensors this sequence with L(m + n — 1), and recalls from Hitchin ([Hi2,
p. 1747) that HY(F™ Y, Lim+n—1))=0 for n= — 1, then it is clear that any
section of L(m+n—1) over {z*"' =0} extends to {z*=0}. By Grothendieck’s
theorem (see, e.g. [Ha]), this means that any section over a formal neighbourhood
of z=0 extends to an actual neighbourhood; it is thus sufficient to work over
formal neighbourhoods.

Over {z=0} = F"~ 1, consider a section &, given over U, by 1" fy(1, (), and
over U, by (7/¢?) f,(n.(), where the f, represent any element of HO(F™~1+n=21),
L(m + 1 + n— 2r)). One therefore has over M N {z=0},

1 foln, ) = exp (n/0C™ "~ (/) 111, ),

and so, over TPy,
' fo +n"s = exp (/O /02y T

where s is some function. However this implies that modulo z"*1,

@™ ") o + gs = exp (/O (g N 1),

and so (§/n™ ") fo, (G/n™ ¢, define a section of I"*"~! over {2/ ' =0}; it is
casy to check that this section satisfies &;;, =0 for i + k <r, and that & =z""p(¢)
is at z =0 of the form:

Fol0, O + ay (& 4 -+ al&)).

One sees from this that one can obtain all terms in (2.18) of order r in #;
inductively, one already had all terms of order <r— 1, and so one now has all
terms of order <r.

The last step is to reinsert the constraint of vanishing at D, that is to consider
X instead of = In this, it is useful to distinguish two cases:

1) m<n.

In this case, the preceding discussion is not even necessary. One has, at z=0,
the same vanishing theorem (1.17) one had for z < 0; this implies h%(S ,, O(m + n — 1)
[ — D])=m, which in turn gives us:

Proposition (2.20). If m <n, the map ev,, in (2.7) is an isomorphism.
i) m>n:

Proposition (2.21). If m > n, evy(X,) in (2.7) splits into two summands Z, @ Z .
Zy is of dimension (m — n) and consists of sections vanishing on S,NS,_,; in
the U, trivialisation, these are of the form h(n, () -p({), p({) a polynomial of degree
<m-n-1
n—1
¢ is of dimension n, and consists of all the sections of the form Y n'ti(()
s=0

which vanish on D.
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Proof. Let W =HC(S,, O(m+n—1)[ —D]); we will show that ev,(X,)=Wn
evo(Zo); as evo(Xo) = Wanevy (&), it suffices then to show that W nevy(Z,) is of
dimension m.

By Proposition (2.17), the space Zj sits inside W nevy(Z,), and has dimension
(m — n); furthermore, if s is any element of W nev,(Z,) then there exists an element
s of Zj (determined by the n" component of s) such that s —s' =s"eZ{. The
only thing to be shown is that Z} has dimension n. As evy(X,) = Z,® Zy,
its dimension is at least n. Let s"eZg. By (2.16), it is the restriction to S, of a

n—1
section t” over TP, which vanishes on D; as t” is of the form ) #'p,({), " does
i=0

not vanish when restricted to S,_;. One then has an injective map from Zj
to H%(S,- 1, O(m + n— 1)[ — D]); by case i), this latter space is of dimension n, and
so dim(Z3) =n.

The proof of (2.21) also tells us how the bundles X, Y should be glued at z = 0.
One uses the diagram:

HY TP, O(m +n— 1)® .4(D)) (2.22)
e ~\
H(S,, O(m +n—1)[ - D]) HO(S,_, C(m+n—1)[— D]).

When m>n, Y, is mapped isomorphically into the summand Z; of X,.
Note that when m = n, the maps in (2.22) are both isomorphisms.

2d) The Endomorphism A(z, ) at u,. Having now established what the fiber of X
is at z=0, we turn our attention to the behaviour of the endomorphisms A(z,{)
defined by (2.4) as z—0. As z—0 from above, A(z,{) is defined using the curve
S,-1s as z—0 from below, A(z,{) is defined using the curve S, As the two
situations are symmetric, we confine our study to the latter. As before, it will be
useful to distinguish the cases: m <n,m>n, m=n.

1) m<n.

Referring to the exact sequence (2.2), and case b) of the vanishing theorem, (1.17),
one can apply the same arguments one had for te(u, ., u,) to the case =y,
(z = 0), showing that the restriction map in (2.3) is an isomorphism at z =0. This
enables one to show that there is a well defined finite limit A(0, {). of A(z, ().

i) m>n.

In this case, the restriction map in (2.3) is no longer an isomorphism; as we shall
see, A(z,{) has a pole at z=0. As before, when analysing this case, it is more
convenient to work with M than with M. Let

4, =ideal of functions X f,;n'(’z* with f;;, =0 for i + k <p. (2.23)
The proof of (2.17) gave an isomorphism
z‘"p:ﬁné-e =,

Let X =(z7"p)~ }(X). In a similar fashion, define I"= (z ~"p)~(I"). The follow-
ing lemma explains how the maps #, A(z, {) involved in (2.4) transport from M to M:
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Lemma (2.24). The diagram

commutes, where either i) F = zn, F= n
i) F=A(z,)=F

The proof is straightforward; as a consequence, if one sets B(z,{)=zA(z,{),
(n— A(z,0)X =0<(n — B(z,))X = 0. We will compute B instead of A.

As a first step, we define near z =0 two subbundles Z’, Z"({,) of X of rank
(m—n), n respectively, which extend the summands Zj, Zj of X, defined in
(2.21), in such a way that:

—local sections of Z' correspond over M to sections which are divisible by h,
to order (m — n) (inclusively) in z.

—-local sections of Z"({,), considered as sections over M, restricted to { ={,

and written, using Lagrange interpolation in 7, as polynomials in # of degree < m,
n—1

are of the form Z a,(z)n'; all such functions can be obtained.
=0

The subbundle Z' is obtained by constructing the appropriate subbundle 7
of X. Apply the division algorithm in 5 to obtain:

g(n, Q) = k@, Oh(n, &) + r(n. ), (2.25)
where k is of degree (m — n) in 5, r of degree less than n in 1. One has

2g(n/z:.0) = (2" "k(n/z, O)"h(n/z. ) + 2"r(n/z, O);
rewrite this as
3(z.n, 0 = kiz.n.0)h(z,n, ) + 2"r(n/2. 0). (2.26)

Thus, mOdlilO the ideal 7, (2.23), g = kh. Now consider the surface 0 = C x TP,
defined by k= 0; let R: Q —» C be the projection. Define

=R (Lim—n—1) (2.27)

then X, by (2.12), is
HOE™ =D Lim — 1 — 1)) =~ HOF, Lim — n— 1)), (2.28)
Let C,i=1,...,m—n be the clements of a local basis of X, which over F(®

correspond to the section {'7%; C, can be represented by functions f?i over U;
with fo; =exp (y/OC™ "~ 1 f,; + ks;, where s; is some function. Therefore,

B for = exp (/O "= Y(h/E2") [1) + Khs. (2.29)

ie, modulo .7, hf,; = exp (m/Q)m Y(h/EP™f,) + gs: modulo .7, one has local
sections of L(m+n—1) over M which are divisible by . One checks, order by
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order in z, similarily to the proof of Lemma (2.17), that such sections extend to a
neighbourhood of z = 0. Applying z ™ "p to the é; one obtains scctions e, - ¢,,_,,
divisible by h to order (m — n) in z; Z' is the subbundle spanned by these sections.
The definition of Z"({,) is more straightforward. The elements of X, whose
n—1
Lagrange interpolations over (={, are of the form ) a;', form a rank n
i=0
subbundle of X ,; at z =0, this is a consequence of (2.17), and away from z =0, of
the isomophism (2.3). One has a natural basis e, _,,,---¢, of Z"({,) restricting
over {={,ton" ' ..., 1
One would like to study B(z,{,) at z=0; as for A4, one has two definitions
of B. The first uses a diagram similar to (2.4).

restrz q

X

H(zS,nT, Lim+n—1))~C"

as

B0 | [xn (230)

1estiz a

X,———H(zS,nT, Lim+n—1))~C"

Again, the spaces on the right-hand side arc to be thought of as the space V
of polynomials in » of degree less than m, using Lagrange interpolation. The
diagram (2.30) defines B(z, (), as long as restr, , is an isomorphism; the problem
is that this is not the case at z=0. Let us consider the action of restr, , on the
subbundles Z', Z"(,) of X corresponding under z "p to Z', Z"({,). Remember
¢; =z "p(@). For e, i=1,...,m—n (ie. the local basis of Z') restry ,(é;) = y"
(polynomial p,(n)), as h=n" over z=0. Referring to (2.11), (2.28), the & at zero
form a basis of n"HO(F™ "~ Y Lim—n—1)); as HOF™ " Y, Lim—n—2))=0,
the restr, ,(¢;) form a basis of the subspace V, of V' consisting of polynomials of

m
the form Y an'.
i=n
On the other hand, for i=m—n+1,....m, restr, (¢) has leading term
n™ i and so restrg ,(€;) = 0; Z"({,) maps to zero.
We modify the map restr, to obtain an isomorphism at z = 0. Set for z =0,

mrestr, ,(6;) =restr, ,(é;), i=1,...,m—n,
=z""""restr, (¢;) i=m—n+1,...,m. (2.31)

Then mrestr, , is an isomorphism for all z+#0, and the limit mrestr, . is an
isomorphism also. Define B'(z, {,) by

mrestrz 4
_—

X.
Blzly) |

~ mrestrz g

X,—

|4

J X 1.

14

B' is continuous, well defined at z=0; in fact, changing the basis &,---¢,,_,

_ .m—i+1

of Z' so that restr, (&) =1# ,
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B0,{o)e) =0 if i=1

Proposition (2.32).
1) B(z, () is continuous at z = 0. _
it) With respect to the decomposition X = 2'@® Z"({), B(z,{) is of the form:

[Oﬂ(z, O 0@
oz"™"), 0(z) |

i) Writing oz, {) = a(2) + o, (2)¢ + 25(2) % the a0} = z;,i = 0, 1, 2 are the generators
of an irreducible representation of sl(2, C).

Proof. 1) One uses the expression above for B'(z, {)(e;); one gets, e.g., for { ={,:
B(z,{o)e)=0(z) i=1,
¢, +0(z), i=2,....m—n,
ze;_q, i=m—n+1,...,m (2.33)

iii) Equation (2.33) shows that B(0,{)(Zy)<=Z,; to see that one gets
the representation, it is more convenient to use the second definition of B
analogous to that of A given after (2.5): one has the map

HYTP,, 0Q2)@X - T .
B is defined by (n—B(z))(X)=0. At z=0, restricted to Z, the
map X # is:
x " HO(F™ "=, Lim —n — 1)) »y"HO(F™ "D Lim —n + 1)).
Using (2.11), this becomes:
X HOE™ 0, Lo —n = D) =" [ HOF® 0, Lon—n + 1))
@nHO(F" ™Y, Lim —n— 1))
@nzHO(F(m—n—s)’ L(m —n— 3))
x 118 just the SI(2, C) invariant isomorphism into the second summand. Referring to
Hitchin [Hi2, p. 178], if one sets in the basis ¢&; which, at z=0, over "' =0,
corresponds to the monomial #"{' ™
(é )=(—(m— n))éﬂ 1
(é )=(=2j+(m—n+ 1),
2e) =0 — 1, (2.34)

then the a’s give an irreducible representation of s/(2,C), and (y + X ¢;{)(Z}) =

Il

ii) One must show that the fact that B(z {)(Z,)cZ, at z=0 extends to
order (m — n) in z. For this, we go back to the construction of the subbundle Z';
referring to (2.25), (2.27) and setting S’ to be the curve defined by (k =0), then
R™Y(z)=2z8', for z#0, and R™(0)=F™ "~ Y. One can show that h°(R™'(z),
Lim—n+1))=(m—n) for z near 0, and the restriction maps:
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2. =HR '2),Lm—n—1))>H R '(2)n T, Lim —n— 1)) ~C" "

are isomorphisms for all z near 0. This implies that, as before, there are 4,(z)
with (7 — &o(z) — 81(2){ — d,(2){*) 2 = 0. N .

Again, let a local basis of sections of 2 be represented by functions f; on Uj;
then

~

(f01v-~afo,m—n)('7 — Go(z) — 3 (2){ — OA‘2(Z)<:2): Oy, Ty )k,

where the #; are functions; multiply this by h:

(Efm» ey Efo,)n*n)(r’ - &O(Z) - OACI(Z)C - &Z(Z)Cz) = (51 AR 5m—n)ga

to order (m —n) in z. Note that the hf,, are precisely what defined the basis of
sections & of Z'. One has then has, to order (m —n) in z, that 8,(z) = a;(2), and
that (y — Za(2)()Z' = 0.

This finishes the proof that the endomorphisms 4 have the correct boundary
behaviour on both sides of u, for m # n; one then must check that they patch
together. Referring to (2.24), we have that in a basis of X whose first (m —n)
elements generate Z' and whose last n elements at z=0 generate Z¢, A(z, ()
is of the form, near z =0:

[G(C)/Z +d(Q)+0@), b+ 0(2)}
o@E"™""1), D)+ 0(z2)

with a(z) corresponding to an irreducible representation of SU(2). This is computed
using S, for ze(0, u, — u, 4 ;); similarily, one has, for ze(u, — u,-,0), a solution
A(z,{), computed using S,_;; A(z,{) is there an endomorphism of the rank
n bundle Y, and we saw that there is a well defined limit 47({) at z=0. In
fact, under the identification of Y, with Z{, we have that A~ = ¢, as follows.

Remember from (2.16), that, for m>n, HYS, Om+n+1)[—D])~
HY TP, Om+n+1)® F(D)). Thus, at z=0, if (e,---e,)n— A4(z,{)) =0 over
S,, the same is true over TP,; in particular, at z =0,

(2.35)

m—n

n
Oznem~n+i+ Z ejbj,i(g)+ 2 en14n+jcj,i(C)
ji=1 i=1
over TP,;. However, at z=0, over S,_,,ejy,...,¢,_, vanish, and so, over S,_ |,

0= Nen—m+i + Z em-n+jcji(C)-
j=1

Under the identification (2.22) this forces c({) = 4~ ({).

iti) The Case m = n.
This case is rather similar to that of m < n; again, the vanishing theorem (1.17
applies in the limit at z = 0 and so one has well defined, finite limits 47 ({), A *({), as z
tends to zero from below or above.

A*(() and A7), are not the same, however. Whereas X, and Y, are well
identified by (2.22), the spaces Iy and A, = H(S,_{, O(m + n + 1)[ — D]) are not,
via the analogous diagram:
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W =H(TP,, Om+n+1)® 4(D)) (2.36)

/" .

FO A()

The map p has a two dimensional kernel, consisting of sections of the form
(x 4+ y0)g, x, yeC; similarly, the map ¢ has a kernel of sections of the form
(x + y0)h. Referring to (2.5), this allows 4* and A4~ to be different.

Represent a basis of sections of X,= Y, =2 H (TP, O(m+n—1)®.#(D)) by
polynomials v; in {, # of degree less than m in #; A, 4~ are defined by

(V155 )11 = A7) = (Soi + {81155 Som + ES1m) s
(01,0 — A7) = (toi + Ctigseoslom+ Ctim)h,
S 1;EC. (So; +51,() is the (#™71) term of v, as is (to; +t,,0); therefore sq; =10,
Sy =ty Writing s;=(s;1,...,5;,), we get
()0, )AT () — A7) = (h—g)lso + {sy)- (2.37)
(h—g) represents a section of @(2m), which vanishes on S,nS,_;; as
HY(S,, 02m)[ — D))= HY(S,, 02m — 1)[— D])® H*(S,, O(1)),(h — g) decomposes

as Y. v;(ug; + Cuy;), with u;eC. Writing u; = (u;y,...,u;,), and substituting into

(2.3!;)1 yields
(W15 0 ) AT = A7) = (v, ., v g + Cug) (8o + {5y

and so:
Proposition (2.38).

A0 = A0 = (ug + Luy) (5o + Ls1),
ie, AN — A7) is of rank one.

2e) The Matrices A(z,{) at z=10. One remembers that before one could obtain a
solution to Nahm’s equations, one had to trivialise the bundle X so that the
endomorphisms A(z,{) could be written as matrices A(z,(); this trivialisation
is chosen to be flat with respect to a certain connection V.

The definition (2.6) of the connection involved the maps A(z, {). When these
have finite, well defined limits at z =0, there is no problem obtaining a smooth
V-flat trivialisation at z = 0; the boundary behaviour of A4 is then, in essence, that
of A4, that is:

-—for m < n, there is a finite well defined limit A(0,{) = lim A(z, ).

z=0*
—for m = n, there are well defined limits A ~(), A*({) with
AN = A0 = (1o + 110 (ao + a,0).

It is the case m > n which poses the problem, as A(z, {) bas a pole at z=0.
Lete,,..., e, be a local basis of X; set C(z,{) = Cy(z) + C,(2){ + C,(2){? to be the
expression of A(z,{) in this trivialisation of X. If s is a section of X, let (s),
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denote the function representing s in the U, trivialisation. The connection is

defined by:
(V) =0 +z< ( +(c>>
ji/ 0

Note that this implies that there is a matrix

Az, {) such that = Z ;D ,i(z.0))o.
Now assume that the ¢;’s are chosen so that ey,...,e, _, form a basis of Z’; then
the (e;)o, i =1,...,m —n, are divisible by k, to order (m —n) in z. The same is then

true of d(e;)y/¢z, to order (m —n - 1); D thus has the block decomposition with

respect to X =Z2'®@Z":
D/ D//
O(Zm—n—l) D/// N

Referring to (2.35), similar decompositions hold for C,, C,, and so for the connection
matrix " =D +%C, +(C,. Finally, as in [Hi2, p. 178], the polar part of I" has

the block diagonal form
m—n—10(1 0
2z 0 0f

These facts then imply that one can find a change of basis matrix S of the form

—(m—n—1)/2 O
[f) ﬂ]m +0()]

from this basis to a V-flat basis, with the O(z) term having the appropriate block
form. Expressing A(z,{) with respect to the V-flat basis, one obtains (referring
to (2.35)
Ao [a(g)/é 70 +0(), 0" “/2)}
Oz =), (0 + 0(2)

which completes the proof that the boundary behaviour of our solutions to
Nahm’s equations is that given in condition B-2.

(2.39)

2f) Real Structure. We now have a solution T;(z) to Nahm’s equations, satisfying
the right boundary conditions; the last step is to show that the solution can be
made skew adjoint. As before, this is done in several steps:

i) One defines a positive definite hermitian form on X.

ii) One shows that the endomorphisms T; are skew adjoint with respect
to this form.

iii) One shows that the connection preserves the form, and so the matrices
Ti(z) can be made skew adjoint.

iv) One must show that the boundary conditions and the hermitian structure
are compatible, i.e. that the block decomposition of Ty(z) at z=0 can be
obtained in an orthonormal basis.
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Step i), the definition of the form, is an adaptation of that of Hitchin [Hi2, p.
179]. Let s, teX,~ HS,, [{(m+n— 1)[— D]); the real structure pulls back
IFm+n—1)[—D] to L™*m+n— 1)[ —t(D)]; there is an antilinear map

o HS,, L'(m+n—1)[—D])—>HS,, L *(m+n—1)[—t(D)]). (2.40)

s o(t) is a section of HY(S,,, ¢(2m + 2n — 2)[ — D — 1(D)]); remember that DU t(D) =
S,nS,_; thinking of s-o(t) as a section of O(2m + 2n —2) over TP, (2.11), this
means that there exist acH)(TPy, O(2n — 2)), be HY(TP,, O(2m — 2), with:

s-o(t) = ag + bh. (2.41)
Therefore, over S,

s a(t) = bh
and over §,_:

s o(t) = ag.

By (2.16), and (1.2), b decomposes uniquely as boy™ '+ b (O™ 2+ -
+ b,,_ (), with b; of degree 2i. One then sets

{8, 1), =bg. (2.42)

Once ¢,) has been defined, steps ii) and iii) are proven exactly as in Hitchin
[Hi2], and so will not be repeated here.

We now consider step iv). In the case m > n, what must be shown is that the
decomposition X = Z'@ Z"(¢,) is orthogonal at z =0, to order (m —n)/2 in z. Let
s be a local V-flat section of Z’; then s’ =z ""/2 5 is a smooth section of X, and
s'=hp over TP, to order (m —n) in z, for some p'. Let ¢t be a local section of
Z"(&,)- Using the fact that s' =z "p(8), t = z 7 "p(), it is.fairly easy to see that s'o(t)
has no terms of order = (m + n — 1) in n, to order (m — n) in z; therefore, to order
(m—n) in z, one has

s'o(t) = hp'o(t),

and so, to order (m—n) in z, the (order (m— 1) term in y of b=p'a(t)) is the
(order(m + n — 1) term in # of s'a(t), which is zero.

Finally, we check compatibility at the boundary, and positivity. We note that
one has

s,teH(S,, v~ (m, +m,_; — )[—S, ,-11)
=~ HO(Sp’ Lﬂp‘t(mp+mp+1 - 1)[_Sp,p+1])

using the section f, of (1.8). One then sees that

s'o()eH (S, O2m,+2m,_, —2)[—S,nS,_])
= HO(S,, €Q2m, +2m, ., — D[~ S,0S,,,]).

The technique used above therefore gives two possible forms {,>,, {,}.; it is
easy to check that (,), =e,{,},, where e, is the constant of C-4 in the introduction
normalised so that |e,| = I; one then has e, = — (— 1) "™~ 1,

We now check that the definition of {,) is compatible with the glueing of Y,
and X, at z=0. Without loss of generality, set m = n. Let elements s,¢ of Y, =
HO(S O(m + n — 1)[ — D]) be represented, using (2.16), by polynomials of degree

p— 1>



On the Construction of Monopoles for the Classical Groups 71

less than n in #:

{s,t)y,=degree (n— 1) term (inn) of a
= —degree (m — 1) term (in #) of b, by (2.41)

== {S’ I}Xo
=(= 1) M st )y, (2.43)

Now let us show that the form is definite. We begin on the interval (u,, ;).
The form is preserved by the connection, and is compatible with the T}; in particular,
at u,, the residues of T; define an irreducible representation of su(2); these residues
are skew hermitian with respect to <,», which forces the form to be definite. In
fact, one can compute its sign to be (—1)", from the basis of X, , using the
description of (2.21). Transporting to u,, one has the same form there on Y,,. If
m, < m;, this form transfers to a definite form on X,, = Y,,, of sign (— 1)"2, by
(2.43). If my>my, then X, =Z) @ Z,, as in (2.21); on Z},,. the sign of the form
is (— 1)™, by “transfer” from Y, , above; on Z,, explicit computation from (2.21)
gives that the sign is also (- 1)"2. Continuing in this way, one checks positivity
on each interval in turn.

3. From Nahm’s Equations to Spectral Data

In this section, we show that a generic solution A(t,{) to Nahm’s equations,
satisfying conditions B, yields back the spectral data. From A(t, {), we must obtain:

i) real curves S, of degree 2m,, for p=1,....N — 1,

ii) the partition of S,nS,_, into S, ,_, and S,_, ,.
iii) the section &, in HO(S,, L»* '™ #*(m,_, + My ) =S, ,01—S,,-11)
iv) the fact that S, satisfies the vanishing theorem (1.17).

Part i) of this data is easy to obtain: let S, be the curve in TP, defined
by
det(n1 — A(t,{))=0 (3.1

for any te(u, 1, up); S, is thus the spectrum of A(t, {) (recall that Nahm’s equations
are isospectral). As the T;’s are skew adjoint, (> A(— (1) = — A((), and so S, is real.

To obtain parts ii), iii) and iv) of the data, we begin by inverting the procedure
used in Chap. 2 to obtain A(t, {); here, therefore, from the flow A(z, {), we obtain
the appropriate flow K, of line bundles over the curves. Recall that in Chap. 2,
AL, 0) = Ao(t) + A, () + A5(0)C%, for te(u, ., 1), was derived from the exact
sequence

0= HO(S,, L™ (— D E/E, + Ey_,)® (O~ 2) =
(3.2)
H(S,, L™~ )@ EAE; + Ey_))® 05 L~ )@ EAE; + Ey_,) >0,
where ev is the evaluation map. More succinctly:

O—>(0(‘- 2)®mp__,(9@mp«_)L“t(_ 1)®E/(E;' + Eﬁ_p)—)()
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Generically, of course, E/(E, + Ey_,) is the restriction to S, of If/(m, +m,_ )
[—S 1. We now invert this procedure. Let # also denote #1. Define

K, = coker (n — A(t,0)): O(—2)®™» — O®™»,

p—1,p

Note that K, is not necessarily locally free over S,,; it can have torsion at eigenvalues
of higher multiplicity. One way to smooth it out is to take a dual, which is torsion
free; one has, over S,

K¥ ~ker (7 — A(t, 0))T:0°" — 0(2)®". (3.5)
Let the suffix adj denote the classical adjoint:
(1 — A6, )" (n — A(t, ) )aq; = det(n — AL, )1 (3.6)
One has, over S,
Im (n — A(t,0)sg; = K- (3.7)

When (y— A(t, {)) has corank one (17 — A(t, )).y; is of rank one, and one has equality
in (3.7); K, is then a line bundle. When the corank of (y — A(t, {)) is greater than
one, the classical adjoint vanishes.

To begin, we show that the flow of bundles is in the right direction. Let s be
a (meromorphic) section of K, for t =1; let s be represented over U, = {{ # w0}
by u, and over U, = {{ #0} by v; let g(t,) be a transition function for Kj; then
u = ¢g(to)v. One has over U,

(1 — Alto, 0)'u =0,
and over U,
{72 — Alto. ) v =0.
Let A,(t,{) = A,(t)/2 + A,(1){; varying ¢, we ask that, as t varies:
%:A@, (3.8)
then, using Nahm’s equations,

0

(= A)Tu=Aln— A)u
ot
and so,ifuis a solution to (3.8), (1 — A)Tuis also; as the initial condition for this linear
equation is (7 — A)Tu =0, then (5 — A)"u =0 for all ¢.
Similarly, one can ask that

dv -
i —(4/L— A",
ensuring that {~*(y — A)"v =0 for all ¢; then,
du dg
Agu = ol g(A/L =AY,

and so
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Ty :4u :fagg’lu.
4 ¢ ot
Integrating,
g(t, 773 C) = e"l/ig(lo’ n, é,)
therefore,

Kf=Kf®I . (3.9)

The flow K* is, at least, in the right direction; to identify K,, one must examine
the boundary behaviour of A(t,{) at the points u,. In the study of boundary
behaviour, we readopt the notation of Sect. 2. We begin with the case m > n.

Set k =m —n. Then, near z =0, one has, for z > 0, the block decomposition:

a(z,0)z7", 67(z, )z 102

T _

Aed= (ﬂT(z, DA e )
ATism xm, ol is k x k; o, 8,7, 6 are quadratic in {, and are written a(z, {) = oy(z) +
o, (2){ + 25(2)(?, ete. Let a'(0,0) = a((), ﬁT(O 0 =b(0), T(Q, 0= c(0), 07(0,0) = d().
One also had, forz< 0,an n x n solutlon AT(z,0), with 47(0,{) = ¢({). Conjugating
(3.10) by diag (z*~ V2, 1), one gets

oM(z,0z7 " 6%z, 024!
(ﬂT(z, 0 77(z,0) > ' (3.11)

Recall that from a({) = ao + a,{ + a,{?, one defined an irreducible k-dimensional
representation of sl(2,C). For each {, a({) has a one dimensional kernel; one can
choose a basis e; so that kera({)=({*"*,{*~2,...,1)7; in this basis, for example,
a(0)e; = e;, ;. We compute a section of ker (5 — A)!, or equivalently, (as we shall
see) a scction of Im (y — A)lej We do this first at { = 0; it suffices to compute the
first column of (7 — A),y;, i.c., the minors along the top row. We find:

(3.10)

0 ]
_ 0
Kl | —det(y - o)

P P 0 )

row: 1

(71— c(0))ag; b0) |
1 (3.12)

Multiplying through by (— 1)z **! one obtains a non-zero limit vector, at z = 0.
Similarly, when { is arbitrary, one has the limit section of ker (3 — A4)7,

“k— 1

S

“k--2

Fi000 _(detln — @) T ||
<f2(’7>()> < (17— cA0)aqj b0 > : (3.13)
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Note that, at {=0, if one computes the (k+i)" column of (n — A)Ly;, one
obtains for the first k entries, the finite limit at z =0,

¢i(n,0)" =(0,...,0,[(1,0,...,0)d(0) (1 — c(0))sq; 1))" (3.14)

similarly, as { varies, one has a finite limit ¢} (n,{). As rank (5 — A(z,{))l;; <1
over §,, the (k + iy column and the first column of A are proportional; at the
limit z =0, the factor of proportionality normalised by —(—z)**! is ¢\/f;. As
f is finite, the limit vector e} of the last n entries in the (k + i) column is finite,
when det (n — ¢({)) # 0. Hartogs’ theorem (in the variables {, z over S, x C) then
forces €5 to be finite even when det (y — ¢({)) = 0. We write the limit of the (k + i)™
column at { =0 as:

(€f,€5)" =(0,...,0,((1,0,...,0)d(0) (1 — ¢(0))qj)i> €51 »- .-, €5,) " (3.15)
Furthermore, one has, for some p(#),
det (n — A(0)) = det (n — ¢(0))- p(n) — (1,0---0)d(0)(1 — ¢(0)),q;6(0)(0---0, )T, (3.16)

which relates the equation of S,(det (n — 4(0)) = 0) and that of S, _ | (det (7 —¢(0)) =0)
over { =0. Now suppose that we are in the generic case. Genericity precludes
intersections of the spectral curves at multiple points; at S,nS,_;, therefore,
(n — A)l4; is of rank one. On the other hand, away from the intersections, over
S, where det(y —c(()) #0, (3.13) shows us that (n— A)ly; 1s again non-zero,
and so (1 — A) has everywhere corank one on S,. Similarly, changing {-coordinates
if necessary, from (3.16) one sees that (1 — c¢({)),q; i non-zero on S, ; away from
S,, and so (1 — ¢({)) has everywhere corank one. Therefore, the sheaves K, on S,
and S, _, are line bundles.
We now identify the bundles K, at z=0.

Proposition (3.17). Let m > n. Suppose that the Nahm data is generic. There is a
partition of S,nS,_, into divisors D, (D) such that, over S, and over S,_,, K, ~
Om+n—1)[—D].

Proof1). Over S,. The column vector (3.13) defining a section of K§ = O®" has,
as entries, polynomials of degree < (m + n — 1); (3.13) can be thought of as a map
O(—m—n+ 1)-> K§, or, dually, as a map

Ko—Om+n—1), (3.18)

We must show that this map vanishes on an appropriate D, and only on D. Let
E be the divisor cut out on S, by S,_,; one wants D + ©(D)= E. The f, portion
of (3.13) vanishes on E, as §,_, is defined by det(n —¢({)) = 0; f; will vanish on

any D<E. Set fi(n,0)={""""1fy(c(n,0) = (""" fo(— /7% —1/0); consider
the n x n rank 1 matrix f,f%".

Lemma (3.19). There is a positive divisor D such that f, vanishes on D and
D+ t(D)=E if and only if f,f%" vanishes on E.

Proof. The proof in one direction is obvious; in the other, let f,/%” vanish on
E; then f, ;f%; vanishes on E,V; ;. The fact that E is real means that it can be
written as E = Xm,(p, + t(p,)), where p, are points of S. Let f, ; vanish at p, with
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multiplicity g,; and at t(p,) with multiplicity h, ;. As f,;f%; is zero on
E, gi;+ Iy ;= m for all i,j. Set g, = min(gy ), by =my — g,;then f,; vanishes at
D =Xg,p, + h(py) for all i, and D + (D) = E.

Returning to (3.17), to show that f, /%" is zero over E, let peS,NS,_,.
Changing coordinates on TP, if necessary, let p be located at { = 0. One has from
(3.13):

500 =(—n=d=T DNy ®o(=TH| |
1
as the Ty(t) are skew adjoint, (2c(— 1) = — ()T, (2b(— {Y) = — d()"; therefore
at { =0, up to a sign,

Fof 7= 01— cO)agsb©)| [ (1., 0)d(O)1 — c(0))s;
1

One now uses the fact that (3.12) and (3.15) are proportional over §,; as we are
at a point where det (7 — ¢(0)) = 0, this forces either (n — ¢(0)),4;P(0)(0, ..., 1)" =0 or
(1,0,...,0)d(0)(n — c(0)),4; = 0, by (3.16).

The final step is to show that (3.18) vanishes only at D. This is done by remarking
that deg(K,) =deg(O(m +n—1)[ — D]) = m(m — 1).

ii) Over S,_,:K§ is defined over S,_, as the kernel of (n —c(0)); referring to
(3.13), f, is a section of K§. The proof that K, ~ @(m+n—1)[— D] over §,_,
is then just the repetition of that given over S,. W

We now analyse the case m=n. At z=0, one has limits 4% ({), A7({) with
det(n —A7(0)) =0, det(n — A ({)) = 0 defining S,,_ ;, S, respectively. Furthermore,

AN — A =50+ Ls1)(51 — L50)" = s(0s*(O)", (3.20)

where s,, s; are column vectors.
Again we define a section of ker (n — 47 ({))" over S, and of ker (n — 4~({))"
over S,. Recall the “Weinstein—Aronzajn” relation:

det(n— A" =det(n— AT —s*s")=det(n— A~ ") —s"(n — A7) Lg;s*. (3.21)
Then, over S,
(1 —A)(n— A )ags* =det(n—A47)s*=0
and, over S,_,,
(=AY — A7 )gs™ = — A7) — A7 )jg;s* — s%s7(n — A7 )yq;5* =0,
by (3.21).

(1 — A7(0))Lys* thus defines a section of K§, both over S, and S,_,. Formula

(3.21) shows us that, away from S, S, _,, (1 — A7) is non-zero on §,; symmetri-
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cally, (1 — A™)Jy; is non-zero on S,_,. The genericity condition then tells us that
these are also both non-zero at the intersection. K, is then a line bundle, both on §,,
and on §,_,

Proposition (3.22). Let m = n. Suppose that the Nahm data is generic. There is a
partition of S,NS,_; into divisors D, t(D) such that, over S, and over S,_, K, ~
Om+n—1)[— D]

Proof. As (n— A~ ({))ays* is of degree (2m — 1), as before, we have a map.
Ko— 0Q2m—1).

To show that this vanishes on the appropriate D, we use Lemma (3.19). It
suffices to show that (n — A~ (0)%;s*s"(n — A~ ({))La; vanishes on S,nS,_,. From
(3.21), over S,nS, 1, s"(n — A~ (0)ky;s* = 0. As (i — A7 (0)1y; is of rank one over
S,- 1, it can be written as a product uw”, where u, w are column vectors. Therefore,
sTuwTs* =0, and so either sTu=0, or wls*=0. Then, (n— A )l;s*=0 or
sT(n — A7)T =0, which yields the result. As above, one shows that it only vanishes
on D.

One now has the necessary material to obtain parts ii) and iii) of the spectral
data. S,_, ,, of course, is just the divisor D of the above propositions. As for part
iii) consider the flow K, of bundles over S, for te[u, 1, i, ]

-att=p,,, onec has K, =~ (O(mp +m, = D=8, 1]
——att=p, K —(O(m +m, = D[—S,-1 1

One knows however, that KuP~L"P“"‘PK this can be written as an

isomorphism

Hp +1’

(O NLup+l_up(mp+1 - mp-l)[_Sp,p+1 + Sp- l,p]
NLﬂp+lv—up(mp+l +mp—1)[_~Sp,p+l _Sp,p~1]
as O(2m,_)~[+S,-1,+S,,-1]. This isomorphism is the section &, of iii).

For part iv), one must show that H%(S,, K (— 1)) =0, whenever A(t, ) is finite.
By the definition (3.4) of K, as a sheaf over TP, one has the exact sequence,

s HYTP,, O(— 1)) — HO(S,, K(— 1)) -
HY(TP,, (- 3)®") =22, gy(TP,, 0(— 1)°™),

HO(TP,, O(— 1)®") = 0; referring to the explicit form of H'(TP,, ¢O(— j)) given in
Lemma (1.2), the map F is injective. Therefore, H%(S,, K(— 1)) =0.

To prove the positivity condition C-4, one considers both ends of the interval
(#p+ 15 1p); One has, at w, ., the section f(u,.,) of O(m,+m,, )[—S,,, ], and,
at u,, the section f(yp ) of O(m,_; +m,)[— Sp 1.p)> given by (3.13) or (3.21). One
then “propagates” f from p,, to p, using Eq.(3.8), obtaining S (). Setting
v, = f(1,) /f(,up) one then must compute

Fu)* f ()9,

€ ="0p UP(gP' l/gp+ 1) :f(ﬂp)*rf(ﬂp)gp+ 1 .
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However, from (3.8), 0,(f*7f) =0, and so:
:Z(ilgj])*Tf(ﬂp+l)~ gp—i o
? Ip+1 S )* " f ()

referring to the definitions, and keeping careful track of signs, one obtains
—(=1yrermeoie > 0.

4. Reconstructing the Monopole

4a) Introduction. In this section we explain the ADHMN construction and show
how it associates a monopole to Nahm data. Starting with a solution (T, T, T5)
to Nahm’s equations, we show how to construct a rank N bundle C over R3 with
connection and Higgs field (V, @) which are regular and satisfy the Bogomolny
equations. We then must show that it is a monopole, that is that (V, @) satisfy the
BPS boundary conditions.

We do this first in the generic case, when the Nahm data has associated
spectral data to it and a holomorphic bundle E. From this, via twistor methods,
one can construct a bundle H on a dense open subset U of R3, along with a
connection and Higgs Field (V, @) which satisfy the Bogomolny equation. U
consists of the xeR? for which E|._is holomorphically trivial (once we are done,
we will see that U = R?). In Sect. 1.D, it was shown that R — U is compact, and
that (V, @) satisfy the BPS coundary conditions.

We achieve our aim by defining an _isomorphism C~H on a smaller open
dense subset U and by showing that (V, @) ~(V, @) over U. One then has a global
regular solution over all of R?, which satisfies the boundary conditions.

4b) The ADHMN Construction. For each interval [u, , ,, 1] let % be the Sobolev
space of I* sections of Y, = X,® C? which have I? derivative. (The subscript p
denotes the interval.) By the Sobolev lemmas such sections are continuous. Similarly
let Z, be the space of I* sections of Y,.

At a boundary point  u, of Lipsppd, i myzm, Y, (up)
Y, 1(u,) @Y, 1(u ) and we adopt the terminology connnumg for vectors in the
first space and terminating for those in the second. If m, < m, _ all vectors of Y, are
continuing; thus, continuing vectors on both sides are identified. Define similar
terminology for the other end.

The Sobolev space .# , is defined to be the subspace of 3? consisting of sections
whose terminating components at each end are zero. Define the operator D (x), for
xeR3, by

D, (x):H# ,—> L, D, x)=iV,—(T? +ix), 4.1)

where TP = XT;®e¢; and x = Tx,(1 ®¢,) for (e, e,, e5) the unit imaginary quater-
nions. Because the components of the section acted on by the singular part of T7 are
zero this operator is well defined and has image in % ,.

If m,=m,_, the boundary condition for the solution of Nahm’s equation
implies that for some xe X ,(u,) and some aeC?,
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TPy~ T% pt,) = x @ x* @ (@ * — o, 2> 1/2)eEnd (X (1,)) ®1(2, ©).

In such a case, let W, be the span of x® « and let 7,: Y, (1) —» W, be the orthogonal
projection.

N-1
Define # < (P #, to be the space of all sections f =(fi,...,fy-,) such
p=1
that f,(u,) = f,-1(i,). Nahm’s operator is defined to be

D) H— L = <Né§ 9),,)@( &) Wq>
p=1 *?nq_,

f:H{ [(Dl(x)fla e 7DN— l(x)fN— 1)]: [(nqlfql(,uql), e >nq,.f r(l’tqr)] }s

where ¢,,...,q, are all the indices for which the jump m, —m,_, is zero.
Note that the kernel of Nahm’s operator is all (f4,..., fy-) such that

—D,f,=0
-—each f, is I?
—the terminating components are zero (4.2)
—the continuing components are continuous
—at zero jumps, f,(x,) is in W,.
Define
D¥(x) =iV, + (T? + ix).

Then integrating by parts it is easy to deduce that the cokernel of %(x) is all
{[g1,--29y-11 [Wy,»-...w, 1} such that:

—D3(x)g, =0, (4.3)
—g, is in L?
—the continuing components are continuous except at zero jumps, where
Jalttg) = gg—1(1tg) = weeW,.
Notice that the terminating components of the g, are not constrained except by
the I* requirement.
Let us call these boundary conditions for the kernel of Z(x) and the cokernel

of Z(x) the Nahm and co-Nahm boundary conditions.
We define the “bundle” C(x) by

C(x) = coker %(x) = &.

We shall show, by calculating the index of &(x) and proving that dim ker %(x) =0,
that rank C(x)= N, and so C is in fact a bundle.

To do this we investigate the behaviour of solutions to D¥(x)¢ =0 on an
interval (u, 1, 4p). If z =t — u,, is a parameter near p, and k =m, —m,_, >0, then
the theory of singular, regular, ordinary differential equations (as used in
Hitchin [Hi2]) tells us that the 2m, dimensional space of solutions to D}(x)p =0
decomposes into a direct sum of three pieces:

1) A k—1 dimensional space which are O(z~*~"/?) near p,;
2) A k+ 1 dimensional space which are O(z*~"/?) near y,; and
3) 4 2m,_, dimensional space of solutions which O(z°) at .

The first two of these are terminating and the third is continuing.
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For each interval [, , 1,1, p=1,...,N — 1, let V, be the 2m, dimensional
kernel of D}; let Vo =Vy=<0). Define U,cV,xV,_, for p=1,...,N to be
the space of pairs satisfying the co-Nahm boundary conditions at ,.

The analysis of the boundary behaviour shows that (m, = my = 0)

dimU,=m,+m,_; + 1.

Define a linear map

X ((05 121)9 (ula qu)’ (u25 123)7 ey (uN’ 0))'_)(121 — Uy, 122 —Up,.., Z'AlN - uN)a
whose kernel is clearly the cokernel of %(x). We want to show that the cokernel

N-1
of y is dual to the kernel of 2. It will then follow that the index of Z is ) 2m, —
p=1

N

Y (m,_y+m,+1)=—N.

=1
! Notice that because of the Liebniz rule if D,f =0 and D}¥g=0 then {f,g)
is a constant in t. Hence V} can be identified with the space of all solutions to
D,f =0. For this equation we can repeat the analysis of boundary behaviour above
and find a similar result, except that the dimensions k—1 and k+1 are
interchanged.

Assume now that (fi,...,fy-,) belongs @V* and annihilates the

image of y. At u, if we apply y to ((0,u,), (0,0)-- (0 0)) then {fi,u,; > =0 for all
u, in the m; + 1 dimensional space of decaying solutions. Hence f; is in the m; — 1
dimensional space of decaying solutions to D,f; =0. At a typical point u, with
say, k=m,—m,_, >0, if we take a pair (u,_,4,) with u,_(u,) = i,(u,) under
the glueing then 0: <X((0»0) (Mp 1s p) (0 0))» (f1>~-"fN~1)> =
Gty s fy> = il £y = <ty 1o fy-1(1p)— fy(1) S0 the  continuing
components of f,_,, f, match.

Next, if we take u,_, =0 and i, with zero continuing component and decaying
terminating component, it follows that f, has decaying terminating component.
If k =0 we can, in addition, choose @,(u,) — u,_,(u,)e W,, so that f,(u,) = f,- (1)
and

0= <1’Atp(:up) —Up- 1(:“;1)9 fp(/“p)>

In all cases, f satisfies the Nahm boundary conditions
Clearly, the converse is also true, if (fy,..., fy-,) is in the kernel of & it
annihilates the cokernel of y. So we have proved:

Proposition 4.4. The index of Nahm’s operator is — N.
It remains to prove a vanishing theorem for the kernel at &. Using Nahm’s
equations, it is straightforward to calculate the Weitzenbock type formula

DF(x)D(x) = —((d/(dz))(d/(dz)) + (T7 + ix)*(T" + ix).
Hence if D (x)f,= 0, we have
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0= §<< dd p>,fp>+<(_T"+i>,<)fp,(_T”+iz<)fp>

| v st (Y1, = (45,
z z
[ U4 00,17 T 11 )+ (T 91 )

If (fi,..., fy—1) is in the kernel of Z(x) and there are no zero jumps, then the
continuity of f, and T” gives
N-1

2
0=y |4
p=1

dz

and hence f, =0 for all p.
If there are zero jumps, this expression has additional terms of the form

— (TP =T N fp foo (1),
but inspection of the boundary behaviour of T? — T?~ ' shows that for f,(x,)e Wf,
this whole term is non-negative.
Therefore ker Z(x) = 0 and we have that C(x) is a rank N bundle on R>,
The connection and Higgs field for C are defined by composing differentiation
and multiplication by iz with the orthogonal projection n: ¥ — C:

V,=n.(0/0x"), @®=n.iz. (4.5)
The same proof as that of [Hi2] shows that this defines a smooth solution to

the Bogomoln’yi equations; in the next section we shall relate these constructions
to the twistor approach for gencric Nahm data.

4c) Link to the Twistor Approach. In the previous discussion we realized the
cokernel of Nahm’s operator #(x) as the kernel of an exact sequence

U, Vi
@ ®
0-C(x)— @ —t> © =0 (4.6)
® @
Uy V-1

This should be a familiar sight to the reader by now! If we take a real section C,
not intersecting any of the S, , ., or contained in any spectral curve, then restricting
1.14 to this real section gives an exact sequence

HO(C,, *(m,))

® HO(SI NC, I*(my))
HO(Cx’ L2 (my + my)) @
HOS,nC,, [*¥(m, + my))
0-HC,E)— @ - -0
: : (4.6a)
@ @

H°(C,, LN (my - 1)) HO(SN— 1 NC, N my, g +my ).
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Our purpose is to identify this term by term with (4.6). This will give us
HO(C,, E) = coker & and identify the bundle obtained over R? by this construction
with that obtained by the twistor construction.

Notice first that because L is trivial on C, we have

dim H°((C,, L (m, +m,_,)) =m,+m,_; + 1,
and because S,nC, is 2m, points
dim H(S,n C,, L“*(m, + m,_,)) = 2m,,.
Recall the vanishing theorem 1.17 which can easily be extended to
HO(S,, It~ "(m,+m,_ +1)[—S,,-11)=0 for r=<-2,
HY(S,, 1» (m,+m,_y+r)[—=S,,,1)=0 for r=-2

for u,,, <t<u, with the appropriate results also at the boundary points. The
Riemann—Roch theorem gives

ho(S,, L~ H(m, +m,_ +1r)[ =S, ,-11)—h' (S, L' (m, +m,_, +1)[—S,,-,]1)
=2 +rm,.
From the exact sequence on P,
0—0(—1)-» 0% - 0(1)>0

obtained by evaluating sections on C?=~ H°P,, (1)), and the vanishing
theorem we have

HO(S,. L~ (m, +m,_)[ =S, ,—1 1) =HS,. L'r " (m,+m, =[S, ,_ HRC?
=X, (®C.
This space is then naturally identified with Y (1). Also, from the vanishing theorem
and the sequence 0 — ((—2)— 0 — O _—0,

HO(Sp’ Lup_t(mp + mp*l)[— Sp,p—l]) = HO(Spans L#p—t(mp + mp—l)['_' Sp,p—l])'
4.7

Over C, we can fix a “C,-trivialization” of I’ which is defined relative to the
standard trivialisations over U, by the functions ¢,,

bo(t, ) = exp(t((x; — ix;){ + x3)),
b1 (t,8) = exp (t((— x5 + (x; + x,)/0).

Evaluating with respect to this C, trivialization at these 2m, points fixes an
isomorphism HO(Spm C.,'» (m,+m,_)[—-S,,-,]1) into a fixed 2m,
dimensional space; composing with (4.7), one then has a 2m, dimensional space
V, of sections of Y, defined by asking that the image be constant under this map.

Proposition 4.8. V,, is the kernel of D}(x), i.e, V,=V,,.
Proof. Start with a section s of
HO(Spal‘uP_t(nlp_*_ mp*l)[*Sp,p—lj),

which is some
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s(t,1,0) = po(0) folt,m, {) = e =L ™ M1, (0) f (2, 1, O, €),

where g is the transition function for [ —§,_; ,], the f; represent sections in X (1)
over U; and the p,({) represent sections of ¢(1).

If we restrict to S,nC, = {(n;,(;), i=1,...,2m,} we find that the coefficients
of the section with respect to the C, trivialisation are

Poll) folt, i, CpJettn ™00+ (e =ik,

and these are required to be constant.
From the definition of the connection (2.6)

d

— =V, =T+ {T, —iT,),

dz 3+ (T 2)
and moreover as we are on §,nC, we have that

0= X1+ ixy = 230, + (()P(x; — ixy)
and
Ni=Ty+iTy +2iT5(; + () (=T, +1iT,)

from the definition of the T* in Sect. 2.
Combining all these and choosing a basis of H*(TP,, ¢(1)) gives us

[V, + T + ix)s](n:, £, 1) = 0.
But the isomorphism (4.7) then implies that
(V,+T7+ix)s=0
as required.

We now have an isomorphism V,~H%S,nC,, L**(m,+m,_;)) and an
embedding

HO(C,, L (my, +m,, )
->HS,nC,, L*(m,+m, )®HS, ,nC,Llr(m,_ ; +m, ,)=V,®V, i,

the next step is to show that the image is U,

We start with the case of m, > m,_,. Recall the analysis above of the solutions
about y,. To make statements about the decay of sections we have to choose a
trivialization of the bundle Y. We shall consider two different kinds. The first is
a covariantly constant (using the connection on X, defined in 2eand Y, = X ,® C?)
trivialization, which we shall call a Nahm trivialization, and the second is a
trivialization using sections of

HO(Spa LupAt(mp + mp—l)[_ Sp,p—l])

which are holomorphic in ¢ and defined at y,. This we shall call a holomorphic
trivialization.

We saw above that, in a Nahm trivialisation, letting k = m, —m,_, and setting
z =t — u, the 2m, dimensional space of all solutions is a direct sum of three pieces:

A) A k —1 dimensional space of solutions blowing up like z ¢~ 1/2,
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B) A4 k + 1 dimensional space of solutions decaying like z*~1/2, 4.9)
C) 4 2m,_, dimensional space of solutions which are of order z° at p,.

If, as is more natural in the twistor picture, we use a holomorphic trivialization,
the results of section 2e imply that these spaces become:

A) A k—1 dimensional space of sections blowing up like z~*~ ),
B) A k+ 1 dimensional space of sections which are of order z° at u,,  (4.10)
C) A4 2m,_; dimensional space of sections which are also of order z° at p,.

The upshot of this is that to satisfy the co-Nahm boundary conditions a section
in the holomorphic trivialization has to live in the sum of the B) and C) components
on the “larger side” and also be continuous in the C) components.

First, the decay behaviour. From the results of Sect. 2¢),

Yp(iup)cHO(Sp>0r(mp+mp—l)[_Sp.p—l]) (411)
breaks into three pieces:

Y,:A k—1 dimensional space of sections of O(m,+m,_,) of the form
09,15, where (p, = 0) defines C, and s is pulled back from P,.

Yp: Ak + 1 dimensional space of sections of O(m,, + m,_,) of the form g, _, s
where s is pulled back from P,.

Yc:A 2m,, ; dimensional space of sections of ¢(m, + m,_ ) which are of
degree m,_, — 1 in n and vanish on S,_, . 4.12)

Consider now the restriction maps

Yp(.up) _") Ho(cmem (y(mp + mp—— 1)[_ Sp,p—l])
IP (@.13)
HO(Cx’@(mp + mp‘l)['— Sp,p—l])'

For t < p, the map ¢ in (4.13) is an isomorphism and for ¢ = p, it clearly kills the
space Y. Notice that the map p is an inclusion because H(P,, O(—m,+m,_))=0
when m, >m,_,. In addition we have

Proposition 4.14. The map o in (4.13) maps Yz @® Y, isomorphically onto the image
of the map p.

Proof. As, from 2¢), HY(TP,0(m,+m,_)® I (-8, ,-)) = HS,, C(m,+m,_,)
[ =S, ,-1]) then extending to TP, everything in ¢(Y,(x,)) is in the image of the
vertical map.

Let s in Yz @® Y, vanish on C,nS,. Divide s by p, el (0(2)), lift to TP, then
restrict the result to S,_;; the vanishing theorem tells us that the result is zero. s
is then divisible by p, and g,_,, which contradicts the fact that its degree in # is
less than m,_,.

The map is thus an injection and so, counting dimensions, an isomorphism.

Thus, at u,,, the isomorphism (4.7) fails. The values in H*(C,NS,, O(m, + m,_,)
[—S,,-1]) that do correspond to solutions in V, are those in a(Y,(u,); by
Proposition (4.14), this is H(C,, O(m, +m,_)[ =S, ,-1]).
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As there are no constraints on decay behaviour on the “smaller” side,
H°(C,,0(m,+m,_)[—S,,-1]) therefore corresponds on both sides of i, to
solutions with the right decay behaviour; to see that it also matches them up
correctly we note that at the endpoints the glueing of the spaces is accomplished
by the diagram

HO(T[FDD (O(mp + mp—— 1)=Q5‘p.p— 1))

P
HO(Sps(Q(mp + }np—l)[_ Sp,p—l]) HO(Sp—l’@(mp + mp—l)[~Sp,p~1])
I 4.15)
Yp(/’tp) Yp— 1(Aup)!

where the left diagonal map is an isomorphism. Lifting back and pushing down
defines an isomorphism from Y. to Y, _(u,).
If we restrict to C, and use the proposition we have

HO(C,\" C()(mp + mp*l)[‘ Sp,p* 1])
= 7 ~ (4.16)
YB® YC = Yp(up) Yp— l(lu'p)a

so a bounded solution is continuous if its component in Y. and its component in
Y,_1(u,) are related by this map. The patching condition follows tautologically
and so H°(C,, O(m,+m,_)[— S, ,-]) really does correspond to U,,.

Consider now the case of m, —m,_, = k,=0. There is no problem with decay
behaviour; as for patching, the identification of V,(u,) and V,_,(u,) induces an
identification of Y,(u,) and Y, _(u,). If we start with a section in H(C,,O(m,+m,_ ,)
[—S,,-1]) its images in Y,(u,) and Y,_,(u,) are related by the pulling back and
pushing down described above. As k, =0, m, +m,_, =2m,=2m,_,, and there is
an ambiguity in lifting back a section from C, NS, to C,, namely all the multiples
of g,; similarly, that in lifting from C,nS,_,C, is g,_;. The net effect of this is
that a section in the kernel of Nahm’s operator arising from a section of E over
C, may have a discontinuity at u, which is a multiple of (g, — g, ). Comparing
with (2.27) we see that this means that the discontinuity is in the image of 47 (() —
A~ (), which is precisely the result required. Again U, is identified with
HO(Cx’ @(mp + mp— 1)[ - Sp,p~ 1])

4d) The Equivalence of the Connections and of the Higgs Fields. The isomorphism
of (4.6) and (4.6a) now yields an isomorphism of two bundles over R?,

C(x)=H(x)=H°(C,,E), (4.17)

each of which is equipped with a solution to the Bogomoln’yi equations. We
complete the discussion by showing that the connections and Higgs fields are
equivalent.

Recall from [Hul] that fixing a direction (0,0,x;) in R* means looking at a
family of real sections in TP, all intersecting on P, in the same two points, 0 and
co. We can trivialize the bundle E over any of these real sections by evaluation
at either of these points and define two “evaluation” connections V, and V in
H along (0,0, x;). Then these relate to the connection and Higgs field by
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Ddx> =%(V0—Vm), Ve =3(Vy+V,). 4.18)

Notice that if we know these two quantities for every choice of line, then the
connection and Higgs field are completely determined, and vice versa. It is enough
then to show that under the identification of C with H, both constructions give
rise to the same V, and V, or, because of the symmetry, the same V,,.

From Nahm’s point of view the operator V,, is defined by n(d/0x5 + t), where
7 is the orthogonal projection onto the cokernel of %. To establish the equivalence
we will show that a section constant for Nahm’s V, when interpreted on TP, via
the isomorphism (4.17) is constant for the twistor V,, that is it takes a constant
value in the fibre of E over 0.

Suppose for simplicity that none of the k, are zero. Let f (t, x3) = f = (f1,..-./x-1)
lie in coker(Z(x)) and suppose that n(d/0x; +t)f =0. There then exists a g =
(g5 gn-1)eHA with (0/0x; +1)f, =D, (x)g, for all p. Expanding the 2 x 2

matrices in D}, we find
0 0, 0
D* —+t|=| )
[ p(x3)> x5 + } |:0, 2:’

Writing f, = (f", /)", we have that 2*%g=(0,2/")". From the positivity and
reality of ¥*% it follows that g =(0,¢") and thercfore

¢ R _ (T, + iTZ).L]/)/r
<ax+4>fp—— —|: h } (4.19)

p

for some h,,.
If we think of these as sections over TP, we can use 1 and { as a basis for
C2=H%TP,,¢(1)) and obtain

5 . ” 4 ” o o I ”
(6Y3+t>f‘p: _(Tl +ZT2)gp+ghp: 7A0gp+ghp: *(’77(3/41 —‘QZAZ)gp_*_Chpv
(4.20)

where f,=f,+{f,. To obtain a section over C, we have to change the
trivialization to F, = exp(x51) f,,, and therefore using this and Eq. (4.20) we obtain

cF,

=== (A, =AYy, + e Ch,. 4.21)
0x5

Evaluating at { = n = 0 we see that F, is constant in the x direction as required.
The case when some of the k, are zero is proven similarly.

5. Modifications for the Cases SO(k), Sp(k)

In this section, we briefly summarize the modifications necessary for treating the
cases of SO(k), Sp(k).

5a) From Monopoles to Spectral Data. We now suppose that the bundle H over
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R* is equipped with a (symmetric or skew) bilinear form, compatible with the
unitary structure, preserved by the connection, with respect to which the Higgs
field is skew adjoint. The asymptotics of the Higgs field satisfy ;= — uy_,5 1,
ki=—ky_;r,. Along a line, the form applied to a pair of solutions s,s" of
(V—i®)s=0 is constant; the bilinear form thus passes over to a bilinear form
(, ) defined on the bundle E over TP,. Alternately, one has an antilinear map

J:E>E (5.1)

lifting the map 1. Composing with the map ¢ of 1e), one has a holomorphic bundle
map oJ:E— E* The form is then given by (a,b) =0aJ(a) (b). In the orthogonal
case, J2 = 1; in the symplectic case J? = — 1.

As the flags are defined by decay rates at + co of solutions to (V —i®)s =0,

evaluating the bilinear form near + oo gives us:
(E,) =(Ey-,)
ie. the flags are “isotropic-coisotropic.” As a consequence, ((E, nEy_,) = 0)<
(E,;-,nE, )=0),ie.
S,=Sy_p

Similarly,

Sp,p-\‘-l = SN—p,N»p—l

Spi1p= Sv-p-1N-p

In [M], spectral curves R, are defined for G-monopoles, G any compact Lie
group. Some Lie theory then shows that in our case, the curves R, and S, are
linked by the relations given in the introduction.

The existence of monopoles with the R, in general position is proven in the
same way as in Sect. 1. In the case of Sp(k)(N = 2k), it then follows that the curves
S, are in general position, and the whole of Sect. 1 goes through verbatim.

In the orthogonal case, one must recompute some of the quotients in (1.12).
For SO(2k), the isomorphisms C-1 (proven in [M]), give us, over R, NR_,
an isomorphism L™ **(m, _{) = [*(m, _,). Using this, one has:

()"E/(El:r + Ek_)—){Luk(mk—1)®L—uk(mk~1)})R+ = I*my_1)Ig, nr- 0,
OHE/(E;ﬂ + Ep ) > L(my_ ) @D {Lﬁ#k(mk—l)}hu = L"(my_)|g, A0,
O*E/(EJZL+E::~1)“’{Luk(mk—1)lk+}@L_“k(mk—l)}"Lﬂk(mk—lﬂkmm_’0~

The other quotients are as in the unitary case. For SO(2k + 1), one has {rom [ M ]
the isomorphism

$:0 = (- ) — Sk—1.1d-
Consider now the exact sequence:
0 O(=my)|g, = Ulrg, = Clg,— 0
and tensor it by L'*(m,_ )[ — S - {.x]- The coboundary d(s) in
HYR,, L*(m, _; —m)[ —Si_ 1))~ H'(R,, 0)
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defines an extension P, over TP, :
0—0Olg,— P~ O(my) -0,

one has Py~ E/(E;S + E; ). All the other quotients are as in (1.12).

From this point, the vanishing theorems, as well as the asymptotic estimates
on the Higgs field, follow more or less as in the unitary case.

One must also show that one can construct an appropriate form on a bundle
built starting from the spectral data, as in (1.14). It is easiest, in fact, to build the
map J. Some thought shows that J should descend to the sum of the quoticnts
P,=E/Ef + Ey_; ), interchanging P; and Py_,,,. In the Sp(k) case, for
example, this amounts to finding a J:L*(m_;+m)@F(S;_1 )~
L™ *(m;_y + m;, ) ® F(S; ;- ) lifting 7, which certainly is possible.

5b) From Spectral Data to Nahm Data. Given the spectral data, the next step is
to construct bundles X over the intervals (g; , 1, i;), as well as a solution to Nahm’s
equations over these intervals. This is done in essentially the same way as in Sect. 2,
the proof that the boundary conditions are satisfied being modified slightly to
take the different structure of the quotients Q, = E/(E, + Ey_,) into account.

One must also construct the matrices C; of condition B-3. Invariantly, this is
equivalent to giving a pairing of X, with X _,, covariant constant with respect to
the connection on X, and such that Ti(z) and T;(— z) are adjoints of one another.
As above, this form is most easily defined by giving an antilinear map J: X, — X __,
and then using the unitary structure. Note that for ze(w; ), X.=
HO(S, 0, ® L *(—1)). To define J, onc uses the map J given above; J can be
“pushed down” to a map J":Q;— Qy_; one also has a map J": [F(— 1) L™ %(— 1),
with (J”)?> = — 1. J is then the map induced on sections by J'® J”; one has (J2 = + 1)
(J2= T 1),and so J2 =1 for Sp, — 1 for SO. An alternative definition of the form is
given in [Hu3].

6. Summary and Conclusion

We have now built up all the ingredients of our theorem; it is perhaps appropriate
to sum up by showing how they all fit together to give the desired result.

First, the gencric case. In Sect. 1, we showed how a generic monopole gave
one spectral data; we also showed that the map was injective; the inverse (twistor)
construction gives back the original monopole. In Sect. 2 and 3, we proved that
there is an equivalence between spectral data and generic Nahm data. In Sect. 4,
we showed that any spectral data yielded back a monopole. This is done by
building a bundle E on TP,, and applying the twistor transform. To see that
applying the construction of Sect. 1 gives back the same spectral data, one notes
that the bundle one obtains from the monopole by the inverse twistor transform
must be E[Hil]; to see that the spectral data is the same, it is sufficient to show
that the flags E;*, E; are the same. Referring to Sect. 1d on the asymptotic Higgs
field, one sees that this is indeed the case, as the sum of the asymptotic eigenspaces
corresponding 1o - u; is indeed E;"; and similarly, for E;. Alternately, one
can apply the result of [HiM], showing that the spectral data is the same. Thus,
theorem 1 is proven.
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In the non-generic case, Sect. 2 showed that a monopole gives a solution to
Nahm’s equations; if the monopole is a limit of generic monopoles, then the solution
satisfies the boundary conditions. Conversely, given Nahm data, we showed in
Sect. 4 how to construct a solution to the Bogomolny equations over R?. The set
of Nahm data is connected [Hu3] and so our Nahm data is the limit of generic
Nahm data with spectral curves of the same degree. If one examines the construc-
tion, it is easy to see that the solution to the Bogomolny cquations is a limit of
monopoles. The monopole version of the Uhlenbeck compactness theorem [AHi,
Proposition 3.9] implies that this limit is a monopole of possibly lower charge.
However, if the charge is lower, this implies that the spectral curves do not stay
bounded as we approach our limit, which is precluded in this case. Alternately, onc
could use an improved formula for the asymptotic Higgs field, with explicit bounds
on the exponential error term; note that this formula remains defined in the limit, as
it involves only the geometry of the spectral curves.

The circle therefore closes, giving one various points of view for attacking the
problem. Each construction highlights certain aspects: the twistor viewpoint
emphasizes the role of algebraic curves, and gives us asymptotic bechaviour quite
neatly; the regularity, however, is ecasiest to see from the Nahm viewpoint. This
latter is also the most convenient for computing moduli [Hu3].

Several problems remain: one is showing that this construction yields all mono-
poles. This is equivalent to showing that the monopole moduli space for fixed
charge is connected; it seems quite likely that this is the case [T2]. Another problem
is extending these ideas to arbitrary groups, and to non-maximal symmetry break-
ing (y; not distinct.)
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