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Abstract For G a classical group, an equivalence is exhibited between:

A) G monopoles over [R3, with maximal symmetry breaking at infinity,
B) families of (rank(G)) algebraic curves in T P : , along with divisors on those

curves, satisfying certain constraints,
C) solutions of Nahm's equations over (rank(G)) intervals, satisfying the

appropriate boundary conditions.

A) and B) are linked by twistor techniques, B) and C) via the Krichever method
for solving non-linear differential equations, and A) and C) via the ADHMN
construction, providing a unified picture of techniques for solution. Amongst
other things, an asymptotic formula for the Higgs field of the monopole is
computed.
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Introduction

In recent years, monopoles have been studied quite extensively, from different
points of view. One method is direct, involving analysis [JT, Tl, T2]; another is
complex-analytic, and employs twistor methods [W, Hil]; yet another, due to
Nahm [N] is an infinite dimensional version of the algebraic ADHM construction
of instantons, and involves the solution of some non-linear ordinary differential
equations, Nahm's equations.

From all of this, a fairly complete picture has emerged of the S(/(2)-case. In
particular, a beautiful paper of Hitchin [Hi2] gives the equivalence between

—an S(7(2)-monopole
—an algebraic curve in 7'P^C) satisfying certain constraints
— a solution to Nahm's equations satisfying the appropriate boundary condition.

Using this equivalence, Donaldson [D] was able to give a description of the moduli
space. Recently, the dynamics of monopoles have been studied in terms of geodesic
motion on this space [AHi].

Our aim is to extend these results of Hitchin to the other classical groups, in
the case of maximal symmetry breaking at infinity. As in [Hi2], we will prove an
equivalence between three types of objects. These are defined as follows:

I) The Case of SU(N). Our objects are:
A(SU): SU(N) Monopoles: Let H be a rank TV complex vector bundle over U3.
Let V be an SU(N) connection on H, and let Φ (the "Higgs field") be a section of
the associated su(N) adjoint bundle. (//, V, Φ) is an SU(N) monopole if

Al) (V, Φ) satisfies the Bogomoln'yi equation, * F = Vφ, where F is the curvature
of V and * is the Hodge duality operator.

A2) One has uniform asymptotic expansions, up to gauge transformation,

Φ = zdiag(μ7.-(V2r))

| = O(l/r2), and
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dΩ \\ dθ J \ dp

where (f\θ,p) are spherical coordinates in [R3.
The μj and /c; are fixed, independent of direction and satisfy ΣμΊ = Σkj — 0.

The condition of maximal symmetry breaking is that the μ; are distinct; we order
them by

μ x > μ 2 > ••• >μN.

The k/s are integers; we define the pih magnetic charge mp, p= 1,..., N — 1, by

mp = kί + •• +fcp. (0.1)

The second type of objects we are going to study is

B(SU): Nahm Data. In the SU(N) case, one has analytic hermitian vector bundles
Xp of rank mp on the intervals [μ p +i,μ p ] , with, on the interior of each interval,
an analytic hermitian connection Vf and three analytic skew-hermitian endo-
morphisms Tt(t) satisfying:

Bl) Nahnΐs Equations:

B2) Boundary Conditions. We adopt the convention m0 = mN = 0. At a boundary
point μp, we distinguish three cases:

In this case, there should be at μp an injection Xp_ λ ~^Xp, compatible with the
hermitian structure such that

—there exist well defined limits from above:

Tf = lim Tiiή.

—for t < μp, setting z = t — μp, one has in a covariant constant basis, the
expansion:

kn mn_i

Tf + O(z)

The diagonal blocks are meromorphic; the off-diagonal blocks are z

{ik~1)l2) x
analytic. The residues roi~ 1,2,3 define an irreducible /c^-dimensional represent-
ation of su(2).

ii) mp<mp^:
One imposes the same boundary conditions, but with the roles of (μp+1,μp),

(μp, μp_j) reversed.

iii) mp = mp_!:
We then have an identification at μp of Xp with Xp^ l 5 such that if one sets

A(ί, 0 = {T^ή + iT2{ή) + 2/T3(r)ς + (Tγ(t) - iT2{t))ί\ (0.2)
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one asks that the one-sided limits A*(ζ), Λ~(ζ) of A(t,ζ) exist at μp, and that
A+(ζ) — A~(ζ) be at most of rank one, for all ς. This is equivalent to asking that
there be vectors uo,uueCm with

A + (ζ) ~A-(ζ) = (u0 + u&{ύi ~ «oθr- (0-3)

For both SU(N) monopoles and solutions to Nahm's equations we can define
spectral curves St c TP1(C), i= 1,...,ΛΓ — 1. For monopoles, this is outlined in
Sect. 1; for the case of Nahm's equations, let ζ be an affine coordinate on Pi9 and
let η be the associated fiber coordinate in ΓP X ; the ith spectral curve is defined by

detail -A(t9ζ)) = 0

for te(μί+1,μi). Nahm's equations are isospectral, so this is independent of the t
chosen. Let Θ(k) denote the lift to TPλ of the line bundle Θ(k) on Pλ in both cases
the curves Sp belong to the linear system \Θ(2mp)\, and are compact. We will say
that the monopole or the Nahm's data is generic if

SpnSp_1 consists of 2mpmp_1 distinct points,for p = 2,...9N — \,

i.e. Sp and 5 p _ x intersect transversally
It is a non-trivial fact that generic monopoles and Nahm data exist. Let Lμ(k)

denote the line bundle over TP1 with transition function εχip(μη/ζ)ζk from
U1 = {ζφ 0} to Uo = {ζ φ oo}. Let τ: TPί -> TPί denote the real structure τ(η, ζ) =
{ — ή/ζ2, — 1/ς). We will show that, from a generic monopole, or generic Nahm
data, one can extract:

C(SU) Spectral Data. This consists of the compact, real (τ-invariant) curves
Spe\Θ(2mp)\, p— 1,...,N — 1, in generic position, along with a splitting

S P nS p _ j, = SPiP_ i u S p _ l i P p = 2,..., N - 1

into disjoint subsets of points of equal cardinality, such that

Cl) Over Sp

C2) One has the vanishing theorem

for a) μp + 1<z<μp

b) z = μp ifmp-^m
and c) z = μ p + 1 Ίϊmp^m

C3) The reality constraint

C4) The positivity constraint.
Let φp be the section realizing the isomorphism in Cl; set φ* = τ*(φp). Then

φpφp cuts out in Sp the divisor oϊ Sp+1nSp_ι; the union of these curves can be
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given real equation

39

= Ά m p ι +mp '9p-i&P+ί= Άmp ι +mp ' ι + (lower order in η).

One then has that {ψpψ*)l{gp-ιgp+ι) is a real constant ep; one asks that

II) The Cases of SO(k), Sp(k). For the other classical groups, the definitions given
above must be modified somewhat.

A(SO),A(Sp): G-Monopoles, G = SO(k), Sp(k). One adds an orthogonal or symplectic
structure to the bundle H over R3; V is then compatible with this structure, and
Φ is a section of the associated so-, sp-adjoint bundle.

We will treat the case of SO-, Sp-monopoles as S£/-monopoles endowed with
extra structure. One has the following table: (note [M] that a G-monopole has
rank (G) magnetic charges):

(0.4)

A G-monopole with embedded

for G = G-charges in SU(N)

Sp{k) ru...j k N = 2k

SO(2k) / l 5 . . . , r A _ 2 , N = 2k

SO{2k+l) r,,...,}-, N = 2k + 1

As an SU(N)-

monopole, its

Higgs field is

asymptotic to

diag(μ,) with:

and it has

SU(N) charges

m,, with

μ, = —μ2k + i

i = 1 /c

/ - 1,. .Λ

i - ! , . . . , / < + 1

= r 4 -1- /* _

f = 1 Λc — 1

nk = mk+λ =2rk

With this table in mind, one asks that the monopole conditions A-l and A-2
again be satisfied.

B(SO% B(Sp): Nahm Data. In these cases, referring to (0.4), the Nahm data is the
same as in the Sί/(iV)-case, with the added condition:

(B~3) There are matrices CΊ such that, for ze(μ ; + l 5 μ 7 ), / = 1,2,3,

j and Cj_ { are compatible in the obvious way at μ; . Also,

CN^j+1=-Cj for SO,CJ for Sp.

, C^p): Spectral Data:

C(Sp): For Sp(/c) monopoles, one can define [M] spectral curves Rpe\Θ(2rp)\,
p=l,...,k. The genericity condition is that RpnRp+ί consist oϊ2rprp + ί distinct
points, i.e. that the intersection of Rp and Rp+ί be transversal. Under (0.4), the
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SL/-spectral curves are:

The conditions C(Sp) are then exactly those of C(SU).

C(SO(2k)): H e r e , [ M ] y i e l d s s p e c t r a l c u r v e s R l 9 . . . , R k _ 2 , R + , R _ , R p e \ Θ ( 2 r p ) \ ,
R + e\ Θ(2r +) |. The genericity conditions are that Rp and Rp+ί,p= 1,..., fc — 3, R +

and R-, Rk-2

 a n d C R + U J R _ ) intersect transversally. Under (0.4), the associated
S [/-spectral curves are:

$P = Sik-P — Rp> P— 1, • , /c — 2,

$k-ι = $k+ι = R+uR->

Sk=2R+ (i.e., with multiplicity two).

Also

Sp,p + 1 = $2k - p, 2k - p - 1 •>

^p+l.p = ^2k-p-l,2k-p-

The conditions on S1,...,Sk-.2>Sk + 2> ->S2k-i a r e then exactly the same as for
SU. In addition, one has:

C-1+) Over R + ,

Us ̂  L, {mk-2)i~~^k~2,k-lJ

and over R _,

C-2k_1) For -Sfe-i, the same vanishing theorem as for Sί/
C-2fc) The isomorphisms C-1+ yield an identification

over R+nR_. Define the bundle Qk over R+ by the exact sequence.

The vanishing theorem is then:

H°(R + ,Qk(g)L-z(-2)) = 0 for a) -μk^z^μk

b) z = μk, if r + ̂  r._.

C-2fc+1) The vanishing theorem is:

H ° ( S f c f l , L ^ + 2 - z ) ( m k + 1 + m f c + 2 - 2 ) [ - S f c + 1.k + 2 ]) = 0 for
a) μk + 2^z^μk + 1

b) z = μ k + 1 if r + ̂ r _

c) z = μfc + 2 if mk + ι ^mk + 2

C-4 + ) The extra positivity constraints:

Let ^+ realize the isomorphisms in C-l + ; then ψ±ψ%=e±gk^2, with gk_2 = ηmk-
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(lower order in η\ e± a real constant. One asks that:

-(-lfk~2+r±)e±>0.

C(SO(2k+ 1)): I n this case, o n e h a s spectra l curves Rpe\Θ(2rp)\,p = l , . . . , /c , with
the genericity c o n d i t i o n t h a t Rp a n d Rp+1, p=ί,...,k— 1 intersect t ransversal ly .
O n e has :

Sp = S2k+l-p = Rp> P= h'"Λ~ 1,

Sic = Sk +1 — 2Rk.

Also,

^p,p+l ~ ^2k + 1-p, 2k-p->

^p+ ί,p = ^2k-p,2k+ 1 -p

The conditions onS 1 , . . . ,^_ 1 , ί S U 2 , . . . ,5 2 i l areasmthe ( S£/-case . In addition,
one has:

CΛk) Over Rk,

C-2fc), C-2fc + 1) The same vanishing theorems over Sk,Sk+1 as in the SC/-case.

C-4fc) The extra positivity constraint:
Let ψk realize the isomorphism C-lk; then ψkψ* = e1cgh^1,gk^1 =ηmk~ι + (lower

order in η), ek a real constant. Then

It is thus our intention to prove, for the cases G = SU(N), SO(fc), Sp(k) with

maximal symmetry breaking:

Theorem 1. There is a natural equivalence between

A) Generic monopoles,
B) Generic Nahm data,
C) Spectral data.

The condition of genericity, using analyticity results of [JT], is a (real)
Zariski-open one. Let Mw, '•H = (m 1,...,m r a n k ( G )) be the union of the connected
components of the charge m G monopole moduli space which contain generic
monopoles; elements of Mm are limits of generic monopoles. One can then show

Theorem 2. There is a natural equivalence between

A) Monopoles in Mm

B) Nahm data.

This result is used in [Hu3] to describe Mm in terms oϊ rational maps of P1

into flag manifolds; amongst other things, Mm is connected. It is conjectured that
the moduli space of charge m monopoles is connected, and so is equal to Mm; this
is indeed the case for SU(2) and SU(3) [T2]. For an arbitrary monopole, one still
obtains curves, and a generalization of the vanishing theorem. This in turn enables
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us to define a solution to Nahm's equations; the problem lies in showing that it
satisfies the boundary conditions.

The paper is organized as follows. In Sects. 1 to 4, we concentrate on the case
oϊSU(N).

Section 1 is connected with the passage Λ=>C. We recall from [M] how, from
a monopole, we can obtain a holomorphic bundle E over Π P 1 } along with two
flags of subbundles Ef, E[. The spectral curve Sp is (set-theoretically) the support
of the sheaf £/(£ + + £#_,).

We then prove the vanishing theorem and show how in the generic case, the
conditions on the spectral data are satisfied. We also show how one can construct
E from the spectral data, and derive an asymptotic formula for the Higgs field of
the corresponding solution to the Bogomoln'yi equations in M3.

In Sect. 2, we study the correspondence C=>B; from this we show how any
monopole gives a solution to Nahm's equations, and prove that monopoles in Mm

give solutions satisfying the boundary conditions.
Section 3 gives the inverse of the construction of Sect. 2; from a generic solution

to B, we obtain the spectral data C.
Section 4 is concerned with the ADHMN construction of a monopole from a

solution to Nahm's equations. This construction is described; we also show that,
in the generic case, under the equivalence given in Sects. 2 and 3, it gives the same
monopole as the twistor construction. This fact is then exploited: regularity is
immediate from the ADHMN point of view, whereas using the twistor construction,
one easily obtains from the asymptotic formulae of Sect. 1 that (V, Φ) satisfies the
boundary conditions.

In Sect. 5 we explain very briefly how these constructions must be modified
for the cases of SO(k)9 Sp{k).

Section 6 provides a summary and conclusion, showing that the circle of ideas
does indeed close.

1. From Monopoles to Spectral Data

la) Bundles and Flag Structures. In [M], it was shown that, from a solution
(//, V, Φ) to the SU(N) Bogomolny equations over [R3, one can obtain a rank
N{Sl{N, C)) holomorphic vector bundle E over TP^C). Recall [Hil] that the space
of oriented lines in R3 has a natural complex structure, and is holomorphically
equivalent to TP^C). This correspondence can be given in coordinates as follows.
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Let ς be an affίne coordinate on P^C), and let η be the corresponding fiber
coordinate in TPX(C) (η->ηd/dζ). Note that TP^C) is covered by two coordinate
patches U0(ζΦcc) and U^ζφO) with coordinates (η,ζ) and (η\ζ') = (rj/ζ2,\/ζ)
respectively. The correspondence between x = (x1,x2,x3)e[R3 and (η,ζ) is then:

η = (xi + ix2)-2x3ζ + ( — x1 + ix2)ζ2 (l l)

This can be viewed in two ways: fixing η,ζ, it defines a line l(η9ζ) in R3; fixing x,
it defines the image Cx of a section IP-̂  -• TP1. Also, ΓPj(C) has a real structure
τ: ΓPi-^TtPi, given invariantly by reversal of orientation along a line, and
in coordinates by τ{η, () = ( — ή/ζ2, — 1/ζ).

If / is a line in [R3, define Et = space of solutions s along / to (Vtt — iΦ) s = 0,
where u is the positive unit vector field on /. As (H, V, Φ) satisfies the Bogomoln'yi
equations, E has an integrable holomorphic structure [Hil].

The fact that V is an SU(N) connection, and that Φ is skew adjoint implies
that if (VM - ίΦ)s = 0 along a line /, and if (VM + iΦ)t = 0, then d/du(s, f> = 0. Thus
the dual of Eb via the isomorphism given by the metric on //, is the space of
solutions to (Vu + iΦ)t = 0. This however, is the same as the solutions to
(V_u — iΦ)t = 0, i.e. Eτ{l). In short, there is an antilinear map σ: £->£*, lifting the
map τ:TPί-^TP1.

If (//, V, Φ) satisfies the boundary conditions A-2, then it is shown in [M] that
E possesses additional structure. Before recalling this, we again define some basic
line bundles over TPX: first, one has the pull-back from P)

1 of the standard line
bundles Θ{k), keZ. These have ζk as a standard transition function from U1 to L/o,
i.e. a section of Θ(k) is described by functions f( on U t with f0 = ζkf1 on the overlap.
Next, define line bundles U\μeU by the transition function eμnιζ from U1 to Uo.
If F is any bundle, define F(k) to be F®Θ{k).

Lemma 1.2.
a) /n t/ie standard trivialisations over Uθ9H°(TPl9Θ(k)) = polynomials in η,ζ of

degree 5Ξ/c, where degree (rj) = 2, degree ( c ) = l . Therefore, h°(TPί,@(2j)) =
( j + 1 ) 2 , andhΌ(TPuΘ(2j+l)) = (j+ 1)0"+ 2).

b) H°(TPuL
μ(k)) = 0, /or α// μ ^ 0, /or α// fc.

c) // 1 (TP 1 ,^(/c)) = ^ ( L / o n ( / 1 ) / ^ ( L / o ) ® C ^ ( ^ 1 ) . ΓΛMS, Hx(TPuΘ(k)) is infinite
dimensional. With respect to the covering by UQ^U^ the cocycles ηι/ζ\ i ^ 0,
je{\,...,2i — k— 1} respect non-zero elements in HL(TPι,Θ(2k)) which are all
linearly independent.

Proof, a) is the result of explicit computation, using the transition function from
υx to ι/0.
b) is proven in [Hi2], p. 164.
c) follows from the fact that L/o, Vλ form a Leray cover of TP1.

We now can recall results from [M], specialised here to the case of SU(N).
One has, as r-» oc, that Φ = iάmg(μ1, μ2,..., μN) — idiag(/cl9. ..,kN)/2r + O(r"2);
as / t̂ > μ2 > •" > μN, this implies that along each line, for each pe{l,...,N}, there
is a p-dimensional subspace Ep of solutions to (VM — iΦ)s = 0 which are bounded
by const. exp(— μpr)r{kp) as r-» oo. This defines a flag 0 cz E^ a ... c £^_ j c f ,
which varies holomorphically; or, in other terms, a reduction of the structure group
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of E from SL (JV, C) to a Borel (e.g. upper triangular) subgroup. Considering
boundary behaviour as r -> — oo along each oriented line similarily gives a flag
O c £ 1 " c £ 2 ~ c c £ ^ _ 1 c J E . The real structure on E maps £^ to the
annihilator of £#-/?• Moreover, one has the identifications:

( - fc3)->0,

{-kN)-+09 (1.3)

O-ίE^-^E-^fciHO. (1.4)

In [M], it is shown that for (ζ, η) generic, and in particular for ((, η) outside a
compact set, these two flags are transversal, i.e. Ep nEN_p = {0} for all p. It is
the set where these are not transversal, however, which is important.

Definition 1.4. The p t h spectral curve Sp (p e {1 N — 1}) of the monopole is defined
by the vanishing of the map Λ pEp -> Λ P(E/E^_p).

Remarks. 1) From (1.3), Λ P E ^ is L μ i 4 ' + ^ (-kt kp\ and ΛP(E/EN_P)
is Lμι + '" + μp {kx + ••• -f/Cp). Sp is therefore a curve in the linear system \Θ(2mp)\,
where mp = kλ -f + kp is the p t h magnetic charge. As noted above, Sp is compact;
it can thus be given the equation

gp(η, 0 - ηm* + apΛ{ζ)ηm>-* + ••• + flp.mp(ς) - 0, (1.5)

where the api are of degree 2ΐ.

2) An alternative definition of Sp is by the vanishing of ΛiY~~p(£^_p)->
ΛN~P(E/E"P). As a set, Sp is the locus where E+ nEN_p Φ {0}.

3) The real structure σ:£->£* rnapsE^" at (/?, 0 to the annihilator {EN^pγ
of £ N _ p at φ , 0; £iv-p is mapped to (E^) 1 . However Ep nEN _p Φ {0}o
(Ep)1 n(Eu-p)1 Φ {0}; therefore Sp is real (preserved by τ).

From (1.3) there is an exact sequence

I-^^O, (1.6)

The map ΛpEp+1-^ ΛP(E/EU-P) then passes to the quotient over Sp; there
is over Sp a well defined map Λ r % + ® L ^ + 1 ( - i c p + 1 ) - > Λ P ( £ / £ Λ 7 _ P ) . Restrict
this to Λp~1(Ep-ί)®ttlp-iί(—kp+ι); using (1.3), the restricted map gives an
element pp of H°{Sp,U

ίp~~μp+ι{mp-ι +mp+1)). In a similar vein, one obtains from
the map AN'p'\EN_p^i)®^^(kp+ι)^AN~p(E/Ep^) over Sp an element ξp

of HOiSpL^-'Hm^i +mp+ί)).
Another way of defining the spectral curves is as follows. Choose a trivialisation
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of E in which the positive flag Ef is mapped to the standard flag in C77. The
negative flag E[~ then defines, locally, a map from TPλ into the flag manifold.
The spectral curves are then the pull-backs of the closures of the codimension one
Bruhat cells. In a similar fashion, the intersections of the spectral curves are the
pull-backs of the closures of the codimension two cells; in particular, the intersection
of the curves Sp and Sp+ι corresponds to the closure of two codimension two
cells; correspondingly, one can write SpnSp+ί as the union of two pieces:

p _ 1 ) ^ 1,

Sp f 1)P:dim(E++ x n E ^ p ) ^ 2.

It is easy to check that they are interchanged by the real structure.
We now discuss genericity. If one refers to Taubes' construction of SU(N)

monopoles [Tl], one finds that they are obtained there from approximate solutions
which are the superposition of Σmp well separated 5'C/(2)-monopoles of charge 1.
These have spectral curves which are real lines Cx in TPV Furthermore, as in
[AHi, Proposition 3.10; M], the spectral curves of the monopole one obtains
approximate this union of lines; this approximation improves with the separation
of the SU(2) monopoles. As the Cx can be chosen with well separated distinct
intersections, one obtains monopoles whose spectral curves intersect in distinct
points.

Our generic monopoles are then those for which SpnSp+i consists oϊ2mpmp+1

distinct points, for p = 1,..., N — 1. When SpnSp^ λ have no common components,
we have the lemma:

Lemma 1.8[M]. Over Sp,

a) The divisor Sp_1 p + Spp_{ is cut out by 5 P _ 1 ? and therefore is in the linear
system | Θ(2mp_ λ)\; similarly, Spp+1 + Sp+ l p is cut out by Sp+1? and is in the linear
system |0(2m p + 1 ) | .

b) The divisor of ξp in H°(Sp, ί > + 1 μ*{™P-ι + mp+1)) is SPtP.1 + SP.P + 1; that of pp

is iSp_1>/7 + Sp+ltP. cp,pp are interchanged by the real structure.

If [D] refers to the line bundle corresponding to a divisor D, then the fact that
Llμ + i~"μp(mp^1 + mp+ι) = [Sp^p_1 + Sp p f x ] over Sp imposes non-trivial constraints
on the curve. This is condition C-l

From this lemma, we find by computing degrees that Siκp+1 and Sp+lp both
consist of mpmp f t points, and so in the generic case:

Sp.p + i and Sp+Up are disjoint. (1.9)

This has several consequences:

dim(Ep nEχ-p-1)= \ on SPtP+1, 0 elsewhere,

dim(Ep n £ γ _ ; ; ) = 1 on S]r 0 elsewhere.

1b) A Meromorphic Reduction to a Torus. Both the positive and the negative flags
define reductions of the structure group of E from SL(N, C) to Borel subgroups.
Away from the spectral curves, the two flags are transversal, and define holomorphic
reductions to a (complex) torus (i.e. a Cartan subgroup): E can be thought of as



46 J. Hurtubise and M. K. Murray

a sum of line bundles E/(Ep +EN_p_i). This reduction fails over the spectral
curves; this is why we refer to the reduction as "meromorphic." This failure encodes
the essential structure of E. Before examining this, we first study the structure of
certain quotient sheaves of £, when E is generic.

i) E/(Ep +Eΰ-pY This sheaf is concentrated over Sp9 its structure can be
obtained as follows. Using the genericity conditions (1.9), one sees that dim(£^ n
Eΰ-P)= 1 over Sp; the same is then true of E/(Ep + Eχ-P) and the sections of
E/(Ep + £# _p) form a locally free rank one sheaf over Sp. Next, from the exact
sequence 0->Ep ->EP+1 ->L/ίpi 1(— kp + ί)-+0, one sees that the natural
m a p £ + + 1 ^ £ / ( £ p

+ +EN_p) factors through Lμ*+1(-kp+ί). Referring to (1.7),
this is zero precisely at Sp+ltP. Therefore, over Sp,E/(Ep -f Eΰ-P) = Uίp+ι{— kp+1)
[Sp + lp]. Referring to (1.8), this can be written as:

Ϊ+ E^p)^Lμ^(mp + m,+ 1 ) [ - ^ p 4 1 ] . (1.10)

Similarily, one can get

ii) E/(EP + Eΰ-p-ι): One first notes that Ep nE^_p_1 = {0}, except over
SPtP+1, where dimEp r\EN_p_1 = \, by genericity. The quotient Q = E/
(Ep + f ^ p - J is then free (a line bundle) away from SPtP+1. We first examine its
global structure, then consider the local structure near SPtP+1. From the exact
sequence of sheaves

one has an injection of sheaves AN~1(EP ®E i ^_ i 7 _ 1 )®Q^ ΛNE. Referring to
(1.3), this yields an injection Q-+Lίp+1(mp + mp+1), which is an isomorphism away
from SPfP+1. Locally, this can be thought of as an injection Q->Θ, the sheaf of
functions of T P x ; β is an ideal sheaf. We now show that in fact Q is locally the
ideal sheaf <&{SPiP + 1) of SPfP+1. Let ϋj" be a section oϊ Ep,vϊ a section of
£ ^ _ p _ 1 ? with Vγ = υϊ at a point x of SPiP+ί. We complete to local bases:

i;!+,..., t;p

+ of £p

+, ^Γ' ^ - p - i oϊ EN^p^^

vϊ,...,υp

¥,vp

h

+1 of Ep

+

+1, i f i ^ p . ^ ^ v . p of EN_p,

by genericity, as Sp+ltP is disjoint from SPtP+1, E is the sum of Ep+1 and Eχ-P near x.
One has:
αί x: ι ; + + l 5 % _ p span £/(£+ + £ N _ p _ t )
flZowίf 5p\{x}: t;++1 spans £/(£+ -f ^ - p - J ^ E/(E+ + £ N _ P ) , but y^_p maps to
zero.
along Sp+ί\{x}: v^-p spans £/(£p

+ + £ N _ P _ ! ) ^ £/(£p

+

+ 1 + EN_p_x), but t;++ 1

maps to zero.
One can in fact choose local defining equations a = 0, b = 0 for Sp, Sp+ι, so that
locally one has the exact sequence
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This is, however, precisely the form of the Koszul resolution of <?(SPP+1):

/H+ (afbf)

(s,f) ι-φί> —ία),

and so, locally, β = ^(S p , p + 1 ) . Therefore, globally,

E/(E;+Eή_p_1)^Lμ>+i(mp + mp+1)®S(SPtP+1). (1.11)

We now give a description of E valid for any monopole bundle.

Proposition 1.12. One has the short exact sequence of sheaves:

Θ J E/(Et+EN^)
E/(Et+EN_2) φ

®

φ

where the map between the second and third terms is of the form (a1 •••aN)h->(a1 — a2,
a2-a3,...9aN-1-aN).

Proof The only non-trivial part is showing that ker π c l m i, i.e. that π = 0 imposes
sufficient constraints on a section of the middle term for it to come from E. Let
{xi

Jr(E^ + £ # _ I )) ί = 0,...,N— 1 represent a local section in kerπ. One wants
a section y of E such that

j ; + (Et + ^ - i - i ) = Xf + (^i+ + ^ - i - i ) for all i, and so ^ Π ^ i ( £ £

+ + ^ - J .
i = 0

Now if A, B are subsheaves of E, one has the sequence

B)^0. (1.13)

As xO5 χi m a P °̂ ^ n e s a m e element in E/(E^JrE^_ι\ there is a y x +
( £ ^ _ 1 n ( £ 1

+ + £ ^ _ 2 ) ) mapping to both xo + E^1 and xx +(E± + £^_ 2 ) .
/iV-l \

The problem is now to find ye\ Q *£ + ( £ + + £ J V _ i _ 1 ) i n O ^ + ( £ # _ ! n

(£j+ + £^_ 2))). AS £ ^ _ 2 CZ £ ~ _ 1 n ( £ 1

+ + £ N _ 2 ) , it suffices to find ye
N-l \

Γ) xt-{-(E* + Eΰ-i-ι))n(yi+Eΰ-2) Now, by hypothesis, y1 and x2
i = 2 )

map to the same element in E/(E2 + £ N _ 2 ) ; proceeding as above, there is a

y2 -h (£^_ 2 n (£2 + ^iv- 3)) mapping to both yj + E^- 2 and x2 + (E2 4- £^_ 3), and
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the problem then reduces to find ye[ f] xt• + (Ef + E ^ ^ ) )n(y2 + EN_3).

Iterating this procedure, one obtains y3, y4i..., and yN-i — y.
Using the identifications of the quotients given above, we therefore see that in the

generic case E fits into an exact sequence:

e

θ

θ ^ ^ ' v " 1 ( w J V _ 1 + m i V _ 2 ) [ - S i V _ 2 > J V _ 1 ] | S w . 1 .

(1.14)

Let rp denote restriction to the p t h spectral curve, and, referring to (1.8) and
(1.5), let fp = ppg~+i be a meromorphic section over Sp of Lμp~μp^ 1(mί7_1 — mp+1\
which has poles at S p ί 7 + 1 and zeroes at <Sp_1>p. The map between the second and
third terms above is:

Π{al9 . . . ,%) = ( r ^ α j - / 1r 1(α 2), r2(α2) - f2r2(a3),..., riY_ i(%_ x)

We call the curves Sp and the splitting SpnSp+1 — Sp^p+ί uSp+ι^p the spectral
data of the monopole. As the divisors SPtP+1, Sp-ltP determine the sections fp, we
have from (1.14) a result from [M]:

Proposition 1.15. A generic monopole is determined by its spectral data.

Remark 1.16. Note that one can also interpret the flag structure of E in terms of
(1.12). Local sections of Ep are elements in the kernel of Π of the form (al9...,ap,
0,...,0). This forces ap not only to vanish on Sp_1>p, but on the whole of Sp; ap

is then a local section of Lμp(mp^ x — mp) — Lμp{ — kp). From this, one can reobtain
the extensions

Similarly, local sections of £ ^ _ p are of the form (0, ...,0, aN-p+ι,...,aN).
One also notes that one has exact sequences, for any monopole

o -> L" ' ( - kp) - E/(E;. 1+ EU-p) - EKE; + E^_ P) -> o,

o -> u»(kp) - E/(E;. ! + £^_ p) -> £/(£;_ x + £ - _ p + 1 ) ^ o.

1C) A Vanishing Theorem.,

Theorem 1.17. Let Sp be the pth spectral curve of a generic monopole. Then Wz =
0 +Eΰ-p)) = 0. (Generically,
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a) Vze(μp + ί,μp).
b) For z = μp, ifmp^mp^x. ( l<p).
c) For z = μp+1, if mp^mp + 1. (p < N).

Proof. The idea is to use (1.12). By a coboundary map <3, the space Wz above maps
into H1(TP1,EL~Z(— 2)). This, in turn, by the twistor transform, corresponds to
solutions to a Laplace type equation over U3. By computing boundary behaviour
of solutions in δ(Wz), we show that they must vanish.

We start by showing that δ is an injection. An element s of Wz can be thought
of as a section (0,..., 0, s, 0 • 0) of the right-hand term of (1.12) (twisted by L" z{ - 2)).
If it maps to zero in Hι(TPu EL~Z{— 2)), then it is the image of a section of the
middle term of (1.12). Let us first consider the generic E. For these, in case a), the
middle term has only the zero section, as by (1.2), /ί°(TP1?L

r(/c)) = 0 Vfc, Vί ΦO,
and so s = 0. In case b), consider the following portion of (1.14)® Lμp( — 2):

E = Lμ'"-μ>(mp+1 +mp- 2)®J{SPtP+1).

For the section (0, s) of (B, A) that we are considering to be in the image of the
left-hand side, one must have sections (d,c,e) of (D, C, E) with (0,s) = (rp_1(d) —
fp^ίrp^1(c),rp{c)~ fprp(e)). However, by (1.2), d = e = 0. Therefore e vanishes on
Sp-!, and so can be thought of as a section of (9(mp — mp^ 1 — 2). By hypothesis,
this has negative degree; therefore c = 0, and so s = 0. Injectivity for the third case
of the theorem is proven in a similar fashion.

When E is non-generic, the injectivity is proven in essentially the same fashion
but is notationally more complicated: one uses the sequences of (1.16) to express
the lifts to the middle portion of ((1.12)® L~Γ( - 2), of sections of the right-hand
side of the form (0,0,..., 0, s, 0,..., 0) in terms of sections of ®iΏ

tι~z(ki - 2), which
must vanish.

Having shown that δ is injective, we compute Cech and Dolbeault representa-
tives for δ(s). Let Vb / = 0,. . .,n be a sufficiently fine covering of ΎΨ x with Vb

n

i—l,...,n covering the spectral curves, (J V{ lying inside a compact set, and
i= 1

Vo not intersecting the spectral curves. Over each Vh one can pull back the section
(0,0,...,0,s,0•••()) to the middle term of (1.12)®L~2(-2), in two particularly
convenient ways:

1) as a local section ft of £ ^ , of the form (/ /+ 1,...,/ t^,0,...,0),
(2) as a local section /." of EN _p, of the form (0,..., 0, fftP+ι,..., /ΰv).
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Setting f£ — 0, δ(s) then has two representative cocycles /+ defined by / j =
jf- — / / over Vt n Vj9 differing of course by a coboundary; / + represents an element
of H\TPl9 E; U\- 2)), /_, an element of H\TPl9 E^JpLrz(-2)).

Dolbeault representatives are obtained in a standard way. If σt is a partition

of unity subordinate to Vh set θf = d(Σσifn)> ®f=®k o n overlaps, and so

one gets globally defined forms θ + eί2° 1 (£ + L- ί (-2)), θ~ eΩ0Λ(EN_pL2z(- 2)),

both representing <5(s). Furthermore, if y=Ytσi(ff — fT\ θ+ ~θ~ =dy. Note

that as β?(-2)^77*(X(P1)) (77: T P ] - ^ P J , 0* can be considered_as (1,1) forms
with values in EL~Z; these forms have terms in dζ A dή, dζ A dζ and none in
dη A dζ, dη A dή; furthermore, θ + ,θ~ and y are all compactly supported in some
disk bundle D inside TPV

The proof is now a slightly refined version of that found in Hitchin, [Hi2, p. 162]
(see also [HiM]). Recall the twistor transform over (R3. First, the bundle H over
R3 is reobtained by Hx = H°{CX,EL~Z). Secondly, as EL~Z trivial over Cx,
H1 (Cx,EL~z(-2)) ~ H°(CX, EL~'z)(g)Hι(Cx, Θ(-2)). By Serre duality (integrating
a representative (1,1) form), H\CX9 Θ{— 2)) ~ C. Thus, restricting our element δ(s)
to Cx, we get an element F(x) of Hx. F is in fact the solution to a Laplace type
equation over M3; the map from H1(TP1 ,EL~Z(— 2)) to the space of such solutions
is bijective.

We examine the behaviour of our solution at a point x of U3 as x-> oo. For
concreteness, take x to be the point (0,0, — b/2); then Cx is defined by η = bζ. The
intersection of Cx with D, for |x| large, is the disjoint union of two open sets Ax ,
Ax centred around ζ = 0, C = oo respectively on Cx. Note that their radii (in ζ)
tend to zero linearily in b~ι as b-+ oc.

Let 6̂ ± be written locally as ^dζ A dή + β±dζ A dζ; let their restrictions to Cx

be Σs^α^dζ Λ dfy + jS^dζ Λ dζ) = ^^(feαf + β^)dζ A dζ, where the st are an

orthonormal basis of the sections of E over Cx. Similarly, set y over Cx to be
Σsiipidζ). One has, over Cx9 [(fcαf

+ 4- A+) - (fcαf + A~)]^C Λ JC = Φ ^ 0 = Φ ^ O
The coefficient of st in F(x) is:

I ( K + + A+)^C A dζ= j (^α,+ + j8f

+)dC Λ dζ + j (fear + 0 Γ ) # Λ C
Cx A Λ

+ ^

using Stokes' theorem.
We now use the fact that θ+eΩlΛ{E + LΓz). Elements of E + LΓ* at a point

of TPX correspond to solutions of (Vu — ίΦ)s = 0 which are bounded by
const. [exp( —(μp — z)b)b~{kp)~] as 6->oo. Following Hitchin [Hi2, p. 163],
this means that the coefficients α^+, βf are bounded over Ax by
const. [exp( — (μp — z)b)fo~(/Cp)]. In the cases a,b,c which interest us, the integrand
is then always bounded by const, [fe]; however the area of A+ is bounded by
const. [fe"2]5 and so the integral over Ax is bounded by const. [fe~1]. The same
argument, applied to θ~ EΩ1Λ(EN-P — LΓZ) bounds the integral over A~ by const.
[b~ 1 ], and so \F(x)\ is bounded by const. [b~ ι^\. As in [Hi2, p. 164], keeping track
of the derivatives gives |VT(x)| bounded by const. [fe~2], and so the argument
given there (essentially the maximum principle) applies, forcing F = 0. Therefore
s = 0, and the vanishing theorem is proved.
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Id) The Asymptotic Higgs Field. To begin, note that the spectral curves all lie
within some compact disc bundle D over Pλ. Then, for each xeU3 outside a compact
set K, Cx n Sp is a set of 2mp points which partitions naturally into two clusters
CpX,C™x of mp points: the points in C°PtX are lines in U3 through x which point
(approximately) away from the origin, and the points in C^x are the same lines,
but with orientation reversed, and so pointing towards the origin; τ(CPtX) = C*x.

Let ί / c l / b e open sets in P1 representing a "cone" of directions in 1R3. Set
A = (TP1\D)uπ~ι(V)uτ(π~1(V)\ where π:TPί-*P1 is the projection. If |x| is
large enough, and the line Ox has direction in U, then Cx c A.

Let gp = 0 be the equation defining Sp; one can define an element of
H1(A,Θ( — 2)) by the cocycle -(dgp/dη)/(2πigp), relative to the covering of A by
TP^π'^V), TP^φ'^V)). This in turn, by the twistor transform [Hi3], corres-
ponds to a solution of the (ordinary) Laplace equation, defined for the x's in U3

such that Cx c A. Varying [/, these solutions patch together to give a global
solution ψp which is defined outside a compact set of IR3. ψp has the following
alternate formulations, proven in [Hul, p. 386-387]:

Lemma (1.18).
a) Along the line in U3 corresponding to sections η = ft(, ft—• — oo,

ί \ ί
φ p = dblog( f ] C£ = — 5blog( Π

b) Along Cx, T(TP±) splits into the sum of two canonically isomorphic bundles:
TF, the tangents to the fibers of TP1-^P1. and TCX. Assuming that Cx intersects
Sp transversally, at smooth points of Sp; then a tangent vector v to Sp at geSpnCx

then decomposes at (vp vCχ), and the "slope" s(q) = (vCχ)/(Vf) ofSp at q is well defined.
Then

Theorem (1.19). Let E be a vector bundle E over TPX defined by the sequence (1.14),
where the Sps are real Then,

a) For X outside a compact set K in M3, E is trivial when restricted to Cx.
b) E defines a Higgs field Φ and a connection V over U3\K such that

asymptotically, the eigenvalues Φ] of Φ are approximated by

where ψ0, φN are defined to be zero. This approximation is valid up to exponentially
decreasing terms with exponentially decreasing derivatives.

c) (V, Φ) satisfy the boundary conditions of a monopole.

Proof We will compute the Higgs field for x = (0,0, — ft/2), as ft-> — oo: this
corresponds to lines Cx:η = bζ. We will suppose that (η,ζ) = (O,O)φSp, and so
τ(0,0)φSp. This can be done without loss of generality, as for a given small cone
of directions in [R3, one can shift the origin so that this is true. For convenience,
we will suppose that the intersection of Cx with the curves Sp consists of 2mp

distinct points; the presence of multiple points does not change the proof, but, as
we are using Lagrange interpolation, it does change the formulae.
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Over the line η = bζ, a section of Lμ(k) is represented over Uo by polynomial
s0 in ζ of degree ^ k, and over U1 by a polynomial s± in C~: of degree ^ /c, such
that on the overlap:

so = e ^ V (1.20)

Let Cx intersect Sp in 2mp points with ς-coordinates ζp>f = ζpj{b\ i= 1,..., 2m;r

As Cx and Sp are real, one can order the points so that ζ ^ e C ^ (therefore ζpΛ->0
as ft -> — oo) for i = 1,..., mp, and so that (p,mp + ι = — VΓP,i» * = 1,..., mp. In the exact
sequence (1.14), meromorphic sections fp of Lμp^μp+ι(mp^λ — mp + 1) over Sp are
involved. Represent these by functions ofp over Uo, Jp over C/1? with ofp =
exp((μp - μp + i M / O C ^ - ^ ' ^ ^ i Λ o n t h e overlap. Set fpJ(b) to be the value of Jp

at ζPij(b). Then, referring to (1.14), a section of E over Cx can be represented in
the Uo trivialisation by polynomials sp of degree mp + mp-1(m0 = mN = Q) with
the constraints

sp(ζpJ = f p J s p + 1 ( ζ p j ) , 7 = l " . 2 m p , p = l - . J V - l . (1.21)

As ft tends to infinity, the points ζpj, j = \,...,mp tend to zero; the ζp,mp + ;- tend
to infinity, linearly in ft. As 1fp is bounded near ζ = oo, then, as 77 = ft( on Cx, the
fp,mp+j converge to zero, exponentially in ft. The equations (1.21) for a section are
then, up to exponentially decreasing terms:

sp(C,fmj,+J.) = O, ; = l , . . . , m p . (1.22)

As ft -> — 00, (1.22) does not quite tend to a finite, well defined limit. However,
note that bζpj —> cpJ, where cpj are the 77-coordinates of the points of intersection
of {ζ = 0} with Sp. We therefore set tp(bζ) = sp(Q; if gpj are the values of ofp at
{( = OlΠiS^, then (1.22) becomes in the limit:

tp(cPίj) = gpjp+1(cpj, and tp has an mp-fold zero at ζ = 00

•(i.e. tp is of degree m^.J (1.23)

For E to be trivial over a line Cx, it suffices to find a basis of solutions \s = (^p),
i = 1,..., N, to (1.22), spanning the fiber of E at a point. Taking this point to be
ζ = 0. one adds to conditions (1.22) the extra constraint

Adding this condition into the limit equations (1.23), the linear system one
obtains is non-degenerate, and in fact solvable by Lagrange interpolation. There-
fore, for |ft| large, (1.22) and (1.24) are also solvable and E is trivial over η = bζ.
By varying our coordinate system (η, ζ) (i.e. rotating in (R3), one obtains part a).

We next compute the Higgs field, again along η = bζ. We begin with a remark:
all the functions involved in this computation are of the form (in ft) exp (— /eft) x
(meromorphic mb~1). Thus, in general terms if we obtain an exponential approxi-
mation q' of a quantity q, the derivatives of q1 will also approximate the derivatives
of q exponentially.

With this in mind, we construct an exponential approximation ιsp to a basis
of sections of E over η = bζ; this amounts to finding ιsp solving (1.22) and (1.24),
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which is simply a matter of Lagrange interpolation. For z fixed, one gets:

- ' S ^ Ξ O for p < /,

trip- i / " r \ mp (Y Y \

— P^ = Γ f — -J^^iL Π - -E2^P±Jl (1-25)
7 = 1 \ — ^ p - l , j ) j = l K ±p,mp+j)

The *sp for £ < p can be computed similarily. Thus the matrix S = (ιsp) is
lower triangular.

We then construct the asymptotic Higgs field in this basis. The family of sections
Cx all intersect at (0,0) and τ(0,0). There are two natural connections on the bundle
H (HX = H°{CX,E)) over the line (0,0, -b/2) in U3: one, Vo, has flat sections
defined by fixing values of elements of Hx at (0,0); the other Vw, is similarily
defined at τ(0,0). The Higgs field is then [Hil]

The basis S above is V0-constant by (1.24), and Vo then has zero matrix. To obtain
the matrix of V^, one must first evaluate the basis at ζ = oo; taking the change
of trivialisations (1.20) into account, one evaluates (in our approximation)
[diag{exp(— μib)ζ~imτ + mι~l)} S'] at oo, obtaining a matrix M. Write M as
diag(exp(— μ )̂)= T; T is lower triangular, with diagonal elements

trip - i mp

TP,P= Π (—ζp-lj * T\(—ζp.mp+j) 1

7 = 1 J = l

The matrix of V^ is M~ί(dbM)db; that of Φ a s is then

Φas is lower triangular; its diagonal entries (Φ a s)p (eigenvalues) can be computed
from those of T, to obtain

\ P J Y [ p p

referring to Lemma (1.18)

{ΦJp = iμp + i(ψp-ψp-1).

To prove c), one notes that
nip - l nip

Π (ζp-lj)Π(ζp,mp + i)
; = 1 7 = 1

has leading term bmp~mp-χ = hk]J as b-*cc; this gives Φp = i(μp - kpβr) + O(r'2).
The other estimates follow by taking derivatives as in [Hul] . One uses
|VΦ| 2 -z4 |Φ| 2 /2 .

He) Reality Condiίionsa Our monopole bundles E are equipped with an and-
holomorphic map σ:£->£* lifting τ. We examine how this is encoded in the
spectral data; we begin by showing how to define σ for a bundle E derived from
the spectral data via (1.14). Note that the two real structures σ, τ define an operation
* from sections of E to sections of £* by /*(p) = cτf(τp) for p in TPU and if /" is
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holomorphic so also is /*. If / and g are sections of E over a real section Cx, we
can define a pairing by (f,g) = f(g*) which on a real section is a holomorphic
function, and so a constant complex number. This defines a pairing on the bundles
H on R3 (Hx = H°(Cx,E)l

We shall show that this pairing is hermitian and positive definite, and also,
that if one performs the twistor construction of the (V, Φ) associated to E, the
pairing is compatible with the connection and Higgs field. This means the monopole
we have constructed is an SU(ή) monopole.

First let us make some normalization conventions. Every bundle Lμ{k) has a
real structure σ mapping Lμ{k) to L~μ{k) and covering τ. This can be chosen so
that when bundles are tensored the real structures are tensored, and we shall
denote all these different real structures by the same symbol. The operator * on
sections of Lμ(k) then satisfies ** = (— l)k. If gp is our normalised section of Θ(2mp)
defining Sp9 then we have

Similarly the meromorphic sections fp in (1.14) are normalized to satisfy

—"> w h e r e

and

for all p from the conditions on the spectral data. We shall see below that
it is this condition on the sign of ep that makes the hermitian form positive definite.

We start by defining a pairing between the fibres E(y) and E(τ(γ)) for any y in
minitwistor space. Consider an open set U about y. Then a local section of E over
U, from diagram (1.14), can be regarded as a collection s = (su..., sN), where

and
Sl = flS2 0 Π S l 5

s2 = f2s3 on 5 2 ,

SN - l =
 IN - l SN

 o n
 ^N - l

Let 5 be a local section of E over U and t a local section of E over τ(U). Then
ί* is a local section over U and we can form the interesting expression

N

p(s,ή= X (-l)pe1e2 ep_ιspt*g1- gp-2gp+1- gN-ί.
p=l

By using the above formulae it is easy to check that this section of Θ(2mί + ••• +
2mN-1) vanishes on all of the spectral curves so we can define

< S ( y ) , ί ( 7 ) > = - ^ L ί i - ( y ) . (1.26)

Using the normalization for the gpi the result on * squared and the fact that
σ on functions is conjugation, it follows that the induced inner product on H is
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hermitian. We shall show next that this inner product is compatible with the
connection and Higgs field.

Consider any line y in U3 not on a spectral curve and the corresponding family
Cx, xEy of real sections in TPV If s and t are sections of E over any of these real
sections, then the inner product <s, ί> is a holomorphic function and therefore
constant, so it can be determined by evaluating at any point, for example y or τ(y)
the two intersection points of the family of real sections. Choose two sections s
and t of the bundle H over the line in U3 so that as induced sections of E over
the family of real sections s is constant at y and t is constant at τ(y). Then < s, ί >
evaluated at y is independent of where we are on the line in U3. Using the definition
of the connection and Higgs field this means that if (Vy - iφ){s) = 0 and
(Vy + iφ)(t) = 0 then their inner product is constant, it is easy to deduce then that

~ <5, ί> = <(VZ - IΦ)S, ί> + <S, (Vz + iΦ)t>
dz

for z a parameter along the line, and if we expand this out and equate the pieces
which are symmetric and conjugate-symmetric in s and t we obtain the desired
result. We have, in fact, only proved the result for lines not on the spectral curves,
but these are dense in the space of all lines so the complete result follows by
continuity.

Because the inner product is invariant under the connection, it is enough to
show that it is definite somewhere to deduce that is definite everywhere or instead
to show that it is asymptotically definite, which is the approach we shall take.

Consider again the family of real sections parametrised by the points of the
line y — (0,0,— b/2) in U3. Assume that we are in the generic situation of Sect. Id);
we have an asymptotic basis of sections ιs satisfying (1.22), (1.24), and so (1.25). It
suffices to evaluate (1.26) at the point (η, ζ) = (0,0)eCb for b-*co, and show that
it is positive. It is easy to check that this asymptotic basis is orthogonal; to check
definiteness, we need to show that the sign of

is positive; at (0,0), this equals

Evaluating, we find

Using ζPtmp + i = - 1/ζp.i, this is

from the fact that g* = (— \)mpgp, and that bζpΛ-*cPti, one can easily show that
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mp _ \

Π ζpi 6 fp(^)>^ f° r a ^ P ^ n e expression above is then indeed positive, by
ί = i ' /

the condition on the ep.
To finish this section we show that when the spectral data is obtained from a

monopole that the inner product on the monopole has this form and therefore
the spectral data of a monopole satisfies the condition C-4. By continuity it suffices
to work over a real section which doesn't intersect the intersections of the spectral
curves.

Consider the part of the dual of figure (1.14) over a real section which is

' 1

N- 1

It is straightforward to check that the real structure on E induces a map

E/Ep r\EN_p_^-^Ep π % _ r l ,

which covers the real structure on TPλ and is a multiple of σ composed with
multiplication by gv-xgp. It follows that the inner product on holomorphic sections
of £ over a real section obtained by using the real structure on E must take the form

P=I

We can now use the fact that this is a holomorphic function over the real
section and defines a positive definite, hermitian form to reverse the arguments
above and discover that if we set aι = — 1, then we have

and

To obtain the first condition one just applies the inner product to a section
vanishing at a point of $pnCx, and to obtain the second one uses an asymptotic
orthonormal basis as above.

2. From Spectral Data to Nahm5s Equations

2a) Introduction and Notation. The purpose of this section is to obtain from the
spectral data a solution Tt(t) to Nahrrfs equations which satisfies the conditions
B of the introduction. Let us first combine the matrices T^t) into a polynomial; define

A(U ζ) = (Tx + iT2)(t) - 2iT3(t)ζ + (T, - ίT2)(t)ζ2 = A0(t) + Aγ(t)ζ + A2(t)ζ2;

set A#(t, ζ) = \Ax{t) + A2(ήζ; Nahm's equations are then equivalent to

A + [A#,A~] = 0. (2.1)
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To solve this over each interval (μp+ι,μp), we first define a vector bundle X
over (μp+1,μp); then we define a polynomial A(t, ζ) with coefficients in Γ (Έnά(X)).
From there, to get our matrices A(t, (), it suffices to choose a correct trivialisation
of X; we will do this by specifying a connection. The main problem will be to
show that the solution one obtains satisfies the boundary conditions B-2.

As all our computations will be on the fixed interval {μp+ι,μp\ to reduce the
number of indices we will define some notation particular to this section:

ow parameter for solutions to Nahm's equations.

= μ-t

t: flow

z: z = μp-t.
m: m = mp.
n: n = mp-L.
g: g(η, () = ηm + a^Oη"1'1 + ••• + am(ζ) = gp{η, ζ) 0 = 0 is a local equation of Sp.
h: h{η,ζ) = ηn + b^Qrf1'^ + •••&„(() = gp-ι(η, ζ). h = 0 is a local equation for

Vi
D: D = Sp^.p,τ(D) = Sp.p_v

M: M = C x Sp; we will denote line bundles and divisors on Sp and their lifts
to M by the same symbol.

££\ ££ is the line bundle over M defined by ^| (_, xS = LΣ.
X: X = the direct image sheaf PJ(<£(m + n-\)\-D']) (P:M->C is the

projection).
Γ :

N: N = CxSp_ί.
Y: Defining if, P as above, but with respect to JV instead of M,Y =

g: g(z,η,ζ) = zmg(η/%Q = ηm + zaί(ζ)ηm-1 + ~.+zmam(Q.
h: h(z,η,O = znh(η/z,Q.
zSp: zSp is Sp "shrunk" by a factor of z in the ̂ -direction; it is defined (fixing z)

by g(z, η, ζ) = 0.
Fik): The kih formal neighbourhood of the zero section in TPlf defined by ηkΛ ι = 0.
M: Surface in C x TPX defined by g(z, η, ζ) = 0. Let P: M -> C be the projection;

then P~l{0) = Fim'l\ and for z^O, P"1(z) = zSp. Again, bundles on TPU

their lifts to C x TPl9 and their restriction to M will be denoted by the
same letter.

w-1)).

2b) Solution Over (μpil,μp). In this section, we will recall the version of the
"Krichever construction" of the solution to Nahm's equations which is due to
Hitchin [Hi2]. Let Vt denote the sheaf !/"'(-1)®(E/E+ + E^p)); for generic
monopoles, Vt = L^'^m + n- 1 ) [ - D ] . If Γfl denotes the fiber of ΓP )

1-^P )

1 at
aePl9 then one has the exact sequence over Sp:

0-+Vt(-l)^Vt-+Vt\SpnTa^0. (2.2)

For te(μp+uμp),H°(Sp, K f(—l)) = 0, by the vanishing theorem (1.17). As the
genus of Sp is (m — I ) 2 , and the degree oϊLμp~\m + 77 - 2) is (m — I) 2 — 1, Riemann
Roch then implies that H 1 ^ , Kr(~ 1)) = 0, and referring to (2.2),
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Xt = H°{SP, Vt) =.H°(SpnTa, Vt) = Cm. (2.3)

That h°(Spcλ Ta, Vt) = m is easy to see in the generic case, as Spn Ta consists of m
points, counted with multiplicity and Vt is a line bundle. In general, if one writes
out a local basis for E, Ep,E~_p along Ta, it is straightforward to show that
the number of independent sections of Vt along Ta is exactly the multiplicity of
Sp. Next, as the dimension of Xt is constant in t (2.3), the space Xt fit together
nicely to form a vector bundle; in sheaf theoretic terms, Xt is the fiber Xt at t of
the direct image sheaf X.

In a similar vein, one obtains

We next define the endomorphisms A(t,ζ). One way to do this [AHH] is
to use (2.3). If ζ = Co corresponds to the point aePx, then one defines A(t,ζ0) by
the commuting diagram:

^ (2.4)

*'-ω i J
x η

A section at a point (ζ0, ηi0) of multiplicity k of Spc\ Ta is a truncated power series
Σoίj(η — ηί0)

J; the map x η multiplies this series by η. Note that this means that
the spectrum of A(t, Co) is t n e s e t of Viol a l s o

?

 m t n e generic case when Vt is a
line bundle, that dim ker (ηί — A(t, ζ)) ^ 1, for all ζ, η.

An equivalent way of defining A(t, ζ0) is that of [Hi2]: the map

HΌ(Sp,&(2))®Xt-+Γt (2.5)

has an m dimensional kernel; taking a basis η, 1, ζ, ζ2 of H°(SP,Θ(2)) (in the
standard trivialisation), it is shown that there are endomorphisms Ao, Ax, A2 of
Xti such that the ma.pst->η®s— l®A0(s) — ζ(g)A1(s) — ζ2®A2(s) is an isomor-
phism of Xt onto the kernel of (2.5). One thus sees that A(t, ζ) is a polynomial of
degree 2 in ζ.

One must then give the trivialisation of X. As this is a bundle over a one-
dimensional base, then, up to an irrelevant overall change of basis this is equivalent
to giving a connection on X. One fixes trivialisations of Lμ(k) over TPλ in which
the transition functions from U1 to Uo are cxp(μη/ζ)ζk; this determines an iso-
morphism e:H°(SpΓ) Uo, Vt)-^H°(Spn Uo, VtQ) for a fixed t0. One then shows
t h a t t h e r e is a w e l l d e f i n e d c o n n e c t i o n V a c t i n g o n s e c t i o n s of X o v e r S p x C d e f i n e d
b y

Vt(s) = e~\dte + eA#)s. (2.6)

It then follows [Hi2] that writing A in a V-flat basis gives a solution Λ(ί, ζ) to
Nahm's equation (2.1).

2c) Behaviour of X at /î . One thus obtains flows over the intervals (μp+l9μp\
(μp,μp -i),. . etc. The problem then arises of studying boundary behaviour, at μp,
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say. The particular boundary conditions we are studying are preserved under
limits; therefore, it suffices to consider the generic case. As in the definition of the
solution over (μp+1,μp), we will analyse this in three steps, studying

i) the fiber Xμp of X at μp9

ii) the endomorphism A(t, ζ) at t = μp,
iii) the matrices Λ(t, ζ) at t = μp.

The next three sections are devoted to this analysis. As everything we do
concerns behaviour at t = μp9 it is more convenient to change our parameter, and
set z = {μp — ί). We incorporate this change into our definitions of X, A, etc., and
so we will refer to Xβp as X0,A(μp,ζ) as A(0,ζ), etc.

The first thing to do is to analyse X at z = 0. Approaching 0 from below, one
is studying U{m + n - 1)[-D] -L^-\mp + mp.1 - 1)[-S p _!,p] over Sp as t-*μp;
approaching μp from above, one is interested in Lμp~γ~t(mp^ι-\-mp^1 — \)
[ — Sp __ 2,p -1] over Sp _ ι as t -» μp; however, using the section of (1.8), this last bundle
is isomorphic over Sp_ 1 to JJ(m + n — 1)[ — D~\. Thus, in both cases one is looking at
the same bundle, as z-»0. Symmetry then allows us to consider only one case, say
that of Sp.

By general theory, as X is torsion free over a one dimensional base, X is locally
free. However, at z = 0, at least for m > n, one does not necessary have the
isomorphism (2.4). The evaluation map on the fiber Xo of X at z = 0:

e v o : X o ^ / ί ° ( ^ , ^ m + / i - l ) [ - / ) ] ) (2.7)

is not necessarily surjective: the dimension of the space H°(Sp, Π(m + n — 1)[— D])
may jump (upward) at z = 0. ev0 is, however, injective; any section of X mapping
to zero in (2.7) corresponds to a local section of if(m + n — 1)[— D] vanishing at
z = 0; this is then divisible by z, and so cannot be a generator of X. The problem
is then to determine what the image is in (2.7).

To do this we will consider the sheaves £Γ, Ξ (see 2.a) over C, which in a similar
fashion are locally free; the evaluation maps:

cvz:Ξz->H°(P~ \z\ L(m + n- 1)), (2.8)

are again injections, and are bijective for generic z. Sections of X, Ξ (and of Ξ)
over F c C are to be thought of in terms of the corresponding sections of the bundles
over P'1^)^^ 1(V)); using the Uo trivialisation, they will be thought of as functions
f(z,η,ζ) over P~1(V)(P~1(V)) satisfying certain constraints. X is a subsheaf of Ξ,
consisting of those sections which vanish along C x D .

There is a very useful link between Ξ and Ξ:

Lemma (2.9). There is a map of sheaves

given locally as follows. If in the standard trivίalisation over U{ a section s of L(k)
over M is represented by f(z, η, ζ) then p(s) is represented over M by f(z, η, ζ) =
fι(z, ηz, ζ). Away from z = 0, this is an isomorphism.
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Proof. It suffices to verify that over M,f0 = QXp(zη/ζ)f1: this is immediate.

Corollary (2.10). Taking direct images, there is a map of sheaves over C

ρ:Ξ->Ξ,

which is an isomorphism away from z = 0.
We now study the sheaf Ξ; we find that the mapev of (2.8) is always a bijection

near z = 0 by showing that the right-hand side has constant dimension. First, let
us consider z = 0; P'^O) is F ( m ~ υ . Note that SL(2, C) acts on F ( m - 1 ) ; this action
lifts to L(k) [Hi2].

Lemma (2.11). One has the decomposition

if % F ( m ~ 1 } , Urn + n - 1)) ~ if°(F (WI"1 +n\ L(m - 1 + n))

®ηH°(F{m-ι+n~2\L{m~\ 4- n - 2))

0 ^#0^01,-1+1.-2^ L(m - 1 + n - 2s)),

where s = min(m — l,π). T/ze 77' are ίo foe thought of as sections of 0(2i\ and there
are implicit restrictions to F(m~1] on the right-hand side. The decomposition is SL(2, C)
invariant.

Proof. We use Proposition 5.4 of [Hi2] repeatedly, which states:
Under restriction, one has an SL(2, C) invariant isomorphism

H°(FU\ L{j)) - H°{F{0\ L(j) ̂  H°(Pί9 G(j)) (2.12)

and

H°(Fu\L(j~ί)) = 0. (2.13)

Let σ be a section of L(m + n—\) over F{m~ υ ; then (2.12) implies that there is
a section σ0 of L(m + n— 1) over F{m + n'1) such that the restriction of σ, σ0 to
F ( 0 ) are the same: then σ — σo = ησ1, say, over F ( m ~ 1 } , where as ησ1 is defined
over Fim'ι\ σλ is defined over F{m~2); as // is a section of 0(2), σx is a section of
L(m -f n — 1. — 2). One can then reapply (2.12) to σx; iterating this procedure, one
obtains

σ - ( σ o + ̂ σ! -f ••• + ηsσs)^ηs+iσsi.ί,

where the σt are restrictions to J P ^ " 1 " ^ of sections of L(m + π — 1 — 2z) over

i7(m + /I-i-2i)j a n ( j σ ^ ^ H ^ F ^ " 1 " ^ " ^ 1 ^ ) , ^ - 1 - 2 ( s + 1)). This procedure trun-
cates either when s = m — 1 as then ηs + ί = 0, or when s = rc, as then (2.13) implies that
as + 1 = o . It is easy to see that this decomposition is an isomorphism; SL(2, C)
invariance follows from the naturality of the construction.

Corollary (2.14).
1) h o ( F i ' n - ~ 1 \ L ( m + n ~ l ) ) = m ( n ± ί).

2 ) i/fe >;, ίΛί? restriction map H°(F(k\ L(k +j))-> H°(Fij\ L(k +j)) is an isomorphism.
One next looks at the case z φ 0:



On the Construction of Monopoles for the Classical Groups 61

Lemma (2.15) There is an interval I containing 0 such that for z ^ 0 , zel,

h°(zSp, L(m + « - 1)) = m(n 4 1).

Proof, By L e m m a (2.9), h°(zSp,L(m + n-l))~h°{Sp,L
z(m + n-ί)). By t h e

vanishing theorem (1.17), and Riemann Roch, hι(Sp,U{m 4 w — 2)[ — D]) = 0; a
fortiori, fc1^, ί/(m + w - 1)) = 0. Riemann Roch then gives /7°(Sp, Π(m 4 w - 1)) =
m(« 4 1).

As (2.8) is always an isomorphism, from (2.11) one therefore has a clear picture
of what the fiber of Ξ is at z = 0; the next step is to exploit this to study
Ξ at z = 0, using the map p of (2.9). We start with a lemma describing
H°(Sp9Θ(m + n-l)).

Lemma (2.16). The restriction map:

is surjective. Its kernel is the set of sections of the form g(η,ζ) f(η,ζ), with
f(η, ζ)eH°(TPl9 Θ(j-2m))9 and so is zero for j < 2m.

Proof. We use the exact sequence 0-+ Θ(j-2m)-^Θ(j)->Θ(j)\s -^>0. The only non-
trivial statement is surjectivity; to prove this, one shows that the map (multiplication
by g) from H1{TPuΘ(j-2m))-+H1{TV>uΘ{j)) is injective. This is easy to see if one
uses the explicit description of these spaces given in (1.2).

Combining (2.16) and (1.2), one sees that H°(SP, Θ(m + n— 1)) is composed of
m- 1

sections given in the Uo trivialisation by ^ ηιfi{ζ), where the ft are polynomials of
i = 0

degree m 4 n — 1 — 2/ (f = 0 if m 4 n — 1 — 2/ < 0).

Proposition (2.17). The fiber Ξo of Ξ at z = 0 is mapped under the evaluation map

to the subspace of sections of the form (in the Uo trivialisation):

s

Σ ^ι/i(0» where the f are polynomials of degree (m 4 n ~ 1 — 2/), (2.18)
i = 0

where s — min (m — 1, n). Thus, ev0 is a bijectionom ~2^n.

Proof. As the subspace of H°(Sp, Θ(m 4 n. — 1)) represented by (2.18) is in all cases
of dimension m(n 4 1), i.e. the dimension of Ξo, it suffices to show that all sections
of the form (2.18) are in the image of ev0.

Let ξ be a local section of Ξ near z = 0; ξ can be written ξ = ^ ^ι'./l(//, 0 + O(z),

where /• represents a section of L(m 4 n — 1 — 2f) over F{m~λ ~ί}; then ξ = p(ξ) is

X (ηzΫfiiηz, 0 + O(z) - /0(0, Q 4 O(z). As /0(0, ζ) can be an arbitrary
ί = 0

polynomial of degree (m 4/7 — 1), this shows that the i = 0 portion of (2.18) is
realised; to get the rest, one has to be a bit more careful.

Let 0 g r g 5. Suppose one has a section ξ = Σξi^γ\%}zk of H, such that ξijk = 0
for i + k<r;ξ = z~rp(ξ) is then a section of S. We will show inductively in r that
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r

one obtains in this way, at z = 0, all sections in (2.18) of the form ]Γ ηιfi(ζ)
~ i = 0

Over M, one has the exact sequence of formal neighbourhoods of {z = 0}?

0->ΘF^n->(9{zk^ = o}^®{z« = o}->0 (2.19)

If one tensors this sequence with L(m + n — 1), and recalls from Hitchin ([Hi2,
p. 174]) that Hί{F{m'i\L(m + n-ί)) = 0 for n ^ - 1, then it is clear that any
section of L(m + n—1) over {zk~1=0} extends to {zk = 0}. By Grothendieck's
theorem (see, e.g. [Ha]), this means that any section over a formal neighbourhood
of z = 0 extends to an actual neighbourhood; it is thus sufficient to work over
formal neighbourhoods.

Over {z = 0} = F^n~1\ consider a section ξ, given over Uo by ηrf0(η,ζ), and
over Όx by (η/ζ2yfι(η,ζ)9 where the f represent any element of H°(F{m'1+n~2r\
L(m + 1 -f- n — 2r)). One therefore has over Mn{z = 0},

j/Tofa, 0 = exp(^C)Cm + π~ WC2)7i(>?, 0),

and so, over TPl9

ηrf0 + ηms = exp (η/QC + "~> ((η/ζ2γj\)

where s is some function. However this implies that modulo z r + 1 ,

and so {g/ηm~r)foΛg/rim~rζ2r)fι define a section of Lm+n~1 over {z'+1 =0}; it is
easy to check that this section satisfies ξijk = 0 for i + fe < r, and that £ = z~rp(<f)
is at z = 0 of the form:

One sees from this that one can obtain all terms in (2.18) of order r in η;
inductively, one already had all terms of order g r — 1, and so one now has all
terms of order ^ r.

The last step is to reinsert the constraint of vanishing at D, that is to consider
X instead of Ξ. In this, it is useful to distinguish two cases:

i) m^n.
In this case, the preceding discussion is not even necessary. One has, at z = 0,
the same vanishing theorem (1.17) one had for z < 0; this implies h°{Sp9 Θ(m + n — 1)
[ — D]) = m, which in turn gives us:

Proposition (2.20). Ifm^n, the map ev0 in (2.7) is an isomorphism.

ii) m > n:

Proposition (2.21). Ifm > n, evo(Xo) in (2.7) splits into two summands Z'0@ZQ.

Z7

O is of dimension (m — n) and consists of sections vanishing on SpnSp^^ in
the Uo triυialisation, these are of the form h(η,ζ) p(ζ), p(ζ) a polynomial of degree
^m — n—ί.

n- 1

ZQ 15 of dimension n, and consists of all the sections of the form ]Γ tft^ζ)

which vanish on D.
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Proof. Let W = H°(SP, &(m + n - 1)[-D]); we will show that e\0(X0)=Wn
evo(So); as evo(Xo) cz Wne\0(ΞΌ\ it suffices then to show that Wnevo(Ξo) is of
dimension m.

By Proposition (2.17), the space Z'o sits inside Wnevo(Ξo), and has dimension
(m — n); furthermore, if s is any element oΐWnev0(Ξ0) then there exists an element
s' of Z'o (determined by the ηn component of s) such that s — sr = S'ΈZQ. The
only thing to be shown is that ZQ has dimension n. As evo(Xo)cz Z'0@ZQ7

its dimension is at least n. Let S'ΈZ'Q. By (2.16), it is the restriction to Sp of a
n - l

section t" over TPι which vanishes on D; as t" is of the form £ rfPi(C), t" does
i = 0

not vanish when restricted to Sp^1. One then has an injective map from Z'ό
to H°(Sp-1? 0(m + n — 1)[ — D]); by case i), this latter space is of dimension w, and
so dim (ZQ) = π.

The proof of (2.21) also tells us how the bundles X, Y should be glued at z = 0.
One uses the diagram:

0 n-\)®tf(D)) (2.22)

H°(Sp-ί9 C(m + n- 1 ) [ - D]).

When m > n, Γo is mapped isomorphically into the summand Z'ό of Xo.
Note that when m = n, the maps in (2.22) are both isomorphisms.

2d) The Endomorphism A(z9 ζ) at ^ Having now established what the fiber of X
is at z = 0, we turn our attention to the behaviour of the endomorphisms A(z,ζ)
defined by (2.4) as z->0. As z-»0 from above, A(z,ζ) is defined using the curve
Sp-i,* as z->0 from below, A(z,ζ) is defined using the curve 5p. As the two
situations are symmetric, we confine our study to the latter. As before, it will be
useful to distinguish the cases: m<n,m> n, m = n.

i) m<n.
Referring to the exact sequence (2.2), and case b) of the vanishing theorem, (1.17),
one can apply the same arguments one had for fe(μp + 1, μp) to the case ΐ = μp

(z = 0), showing that the restriction map in (2.3) is an isomorphism at z = 0. This
enables one to show that there is a well defined finite limit A(0, (). of A(z, ζ).

ii) m> n.
In this case, the restriction map in (2.3) is no longer an isomorphism; as we shall
see, A(z, ζ) has a pole at z = 0. As before, when analysing this case, it is more
convenient to work with M than with M. Let

Jp = ideal of functions Σ fijkrfCjzk with fijk = Ofor i + k < p. (2.23)

The proof of (2.17) gave an isomorphism

Let X = (z'np)'1(X). In a similar fashion, define f= (z~np)~\Γ). The follow-
ing lemma explains how the maps η, A(z, ζ) involved in (2.4) transport from M to M:
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Lemma (2.24). The diagram

z~"p

commutes, where either i) F = zη, F = η

ii) F = A(z9Q = F.

The proof is straightforward; as a consequence, if one sets B(z,ζ) = zA(z9ζ\
(η - A(z, ζ))X = 0o(η - B(z9 ζ))X = 0. We will compute B instead of A.

As a first step, we define near z = 0 two subbundles Z\ Z"(ζ0) of X of rank
(m — ri), n respectively, which extend the summands Z'o, Z'ό of Xo defined in
(2.21), in such a way that:

—local sections of Z' correspond over M to sections which are divisible by /z,
to order (m — n) (inclusively) in z.

—local sections of Z"(ζ0), considered as sections over M, restricted to ς = Co
and written, using Lagrange interpolation in η, as polynomials in η of degree < m,

n- 1

are of the form ^ ai{z)η1', all such functions can be obtained.
i = 0 _

The subbundle Z' is obtained by constructing the appropriate subbundle Z'
of X. Apply the division algorithm in η to obtain:

) + r(η,ζ)9 (2.25)

where k is of degree (m — n) in ?y, r of degree less than n in η. One has

z^ίίj/z; 0 = (zm-"k(η/z, ζ))(z"h(η/z, Q) + zmr(n/z, ς);

rewrite this as

g(z,η,ζ) = k(z, η,ζ)-h(z, η, Q + z"V(f?/z, Q. (2.26)

Thus, modulo the ideal ,fm (2.23), g = kh. Now consider the surface Q c C x TP1

defined by k = 0; let ,R: Q -+ C be the projection. Define

* n - \ ) ) (2.27)

then Σθ9 by (2.12), is

H0(F(m-n-1)5 L ( m _ π __ i)) ^ //°(F(0), Um-n- 1)). (2.28)

Let Cί5 / = 1,..., m — π be the elements of a local basis of X, which over F ( 0 )

correspond to the section ζi~ι;Ci can be represented by functions ffι over U}

with / o ί = exp(^/ζ)ζm~"~171I + ksh where 5£ is some function. Therefore,

hfoi = ̂ p{η/0ζm + n~\(h/ζ2n)fu) + kh. (2.29)

i.e., modulo Jm, hfoi = exp(η/ζ)ζm + n~ί{(h/ζ2n)fli) + gs\ modulo Jm one has local
sections of L(m + n— 1) over M which are divisible by h. One checks, order by



On the Construction of Monopoles for the Classical Groups 65

order in z, similarily to the proof of Lemma (2.17), that such sections extend to a
neighbourhood of z = 0. Applying z~~np to the ei9 one obtains sections e1 -em^}V

divisible by h to order (m — n) in z; Z' is the subbundle spanned by these sections.
The definition of Z"(ζ0) is more straightforward. The elements of Xz whose

n- 1

Lagrange interpolations over ζ = ζ0 are of the form ]Γ atη\ form a rank n
i = 0

subbundle of Xz\ at z = 0, this is a consequence of (2.17), and away from z = 0, of
the isomophism (2.3). One has a natural basis en_w + ] « em of Z"(ζ0) restricting
over ζ = ζ 0 to η"'1,..., 1.

One would like to study B(z, ζ0) at z = 0; as for A, one has two definitions
of B. The first uses a diagram similar to (2.4).

fz

 r e S t r " α > H ° ( z ^ n T α , L{m + w - 1)) ~ Cm

: */ (2.30)

H 0(z5 pnΓα,L(m + n - l ) ) ^ C m

Again, the spaces on the right-hand side are to be thought of as the space V
of polynomials in η of degree less than m, using Lagrange interpolation. The
diagram (2.30) defines B{z, (), as long as restrz α is an isomorphism; the problem
is that this is not the case at z = 0. Let us consider the action of restrz a on the
subbundles Z', Z"(ζ0) of X corresponding under z~np to Z'9Z"(ζ0). Remember
ei = z~np{eί). For eb i=\,...,m — n (i.e. the local basis of Z') restr0 fl(^) = ηn

(polynomial Pi(η)\ as h = ηn over z = 0. Referring to (2.11), (2.28), the e x at zero
form a basis of ηnH°(F{m-n-ι\L{m-n-\))\ as HQ(F{m-n-~ι\L{m - n - 2)) = 0,
the restr0jΛ(£t ) form a basis of the subspace FM of K consisting of polynomials of

m

the form £ α^1".

On the other hand, for i = m — n+l,...,m, restrz Ω(β{ ) has leading term
ήm-izi-n-m^ a n ( j S Q r e strO f l(β.) = 0; Z'̂ Co) πiaps to zero.

We modify the map restrα to obtain an isomorphism at z = 0. Set for z = 0,

m restrz α(β;) = restr z α(^), i= 1,..., m — n,

= z

m - n - ι

r estr 2 j α (e ί ) i = m — n + l,...,m. (2.31)

Then mrestrZΩ is an isomorphism for all z # 0 , and the limit mrestrO z is an
isomorphism also. Define B'(z, ς0) by

^ mrestr2 a

x7 >v

^ mrestrz a

X, -

B' is c o n t i n u o u s , well defined at z = 0; in fact, c h a n g i n g the basis e1 -em^n

of Z ' so t h a t



66 J. Hurtubise and M. K. Murray

( o ) ( β i ) = 0 if ί = l

= e f - i if ϊ = 2 , . . . , m .

Proposition (2.32).
i) B(z, Q is continuous at z — 0.

ii) With respect to the decomposition X = Z'®Z"(ζ), B(z, ζ) is of the form:

(z)Ί

{z)\
*{z, 0 0{z)

(zm~nl 0(z

iii) Writing α(z, ζ) = αo(z) + aλ(z)ζ -f α 2(z)ζ 2 the α^O) = zi? i = 0,1,2 are ί/ie generators

of an irreducible representation of 5/(2, C).

Proof, i) One uses the expression above for B'(z, ζ){e& one gets, e.g., for ζ = ζ0:

ei-1 + O(z), i = 2 , . . . , m - n ,

z^ί-i, i = m - n + l , . . . , m . (2.33)

iii) Equation (2.33) shows that p , ( ) ( Z ' o ) c Z ' o ; to see that one gets
the representation, it is more convenient to use the second definition of B
analogous to that of A given after (2.5): one has the map

B is defined by (η ~ B(z, ζ))(X) = 0. At z = 0, restricted to Z;

o, the
map x η is:

x η: η

nH\F{m~n'ι\ L(m~n- 1)) -> n"H\F{m-n~l\ L(m~n+ 1)).

Using (2.11), this becomes:

x *?: ηnH°(F(m-n-1}, L(m - n - 1)) 1))

n-3\L{m -n-

x ff is just the S/(2, C) invariant isomorphism into the second summand. Referring to
Hitchin [Hi2, p. 178], if one sets in the basis et which, at z = 0, over ηn + 1 =0,
corresponds to the monomial ηnζι~x:

then the as give an irreducible representation of 5/(2,C), and (η + Za

(2-34)

) = 0.

ii) One must show that the fact that B{z, ζ){Z'o) czZ'o at z = 0 extends to
order (m — n) in z. For this, we go back to the construction of the subbundle Z';
referring to (2.25), (2.27) and setting Sf to be the curve defined by (k = 0), then
R-\z) = zS\ for z / 0 , and Λ"1(0) = F ( m - | 1 " 1 ) . One can show that / z 0 ^ 1 ^ ) ,
L(m — n + 1)) = (m — n) for z near 0, and the restriction maps:
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Σz = H°(R-\zl L(m-n- 1)) -> H°(R ' \z)n Ta9 L(m-n- 1)) - Cm~n

are isomorphisms for all z near 0. This implies that, as before, there are άf (z)
mth(η-άo(z)-ά1(z)ζ-6ί2(z)ζ2)Σ = 0.

Again, let a local basis of sections of Σ be represented by functions fβ on Up
then

where the vt are functions; multiply this by h:

to order (m — ή) in z. Note that the hfoi are precisely what defined the basis of
sections et of Z'. One has then has, to order (m — n) in z, that ά^z) — α^z), and
that (η-ΣφMZ^O.

This finishes the proof that the endomorphisms A have the correct boundary
behaviour on both sides of μp for mφn\ one then must check that they patch
together. Referring to (2.24), we have that in a basis of X whose first (m — n)
elements generate Z' and whose last n elements at z = 0 generate Z'ό, A(z, ζ)
is of the form, near z = 0:

/z + a'(Q + 0(z) b(Q + O(z)Ί

with α(z) corresponding to an irreducible representation of SU(2). This is computed
using Sp, for ze(0, μp — μ p + 1 ) ; similarily, one has, for ze(μp —μ p _ l 5 0), a solution
A(z,ζ\ computed using Sp_ ^ 4 ( 2 , 0 ^s t n e r e an endomorphism of the rank
n bundle 7, and we saw that there is a well defined limit A (0 at z = 0. In
fact, under the identification of 7 0 with Z'ό, we have that 4 " = c, as follows.

Remember from (2.16), that, for m > n, H°(Sp9Θ(m + n+l)[-D'])*
H°{TPuΘ(m + n+l)®J(D)). Thus, at z = 0, if (βj - em)(η - A(z, ζ)) = 0 over
Sp, the same is true over TP X ; in particular, at z = 0,

m — « ft

0 = ^ m _ n + i + X £ ; M 0 + Σ em-n + A .iίί)
7 = 1 J = l

over TPV However, at z = 0, over Sp-l9 eu...,em_n vanish, and so, over Sp-U

n

0 = ηen-m + i+ Σ em-n+jCji(O-

Under the identification (2.22) this forces c(ζ) = A ~~ (ζ).

iii) The Case m = n.
This case is rather similar to that of m < n; again, the vanishing theorem (1.17)
applies in the limit at z = 0 and so one has well defined, finite limits A ~ (ζ), A+(Q, as z
tends to zero from below or above.

A + (ζ) and A~(ζ), are not the same, however. Whereas Xo and 7 0 are well
identified by (2.22), the spaces Γ o and Δo = H°(Sp_ί9 Θ{m + n + 1 ) [ - D]) are not,
via the analogous diagram:
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W =• H°(TPl9 Θ(m + n + 1) ® J(D)) (2.36)

The map p has a two dimensional kernel, consisting of sections of the form
(x + yζ)g,x,yeC; similarly, the map q has a kernel of sections of the form
(x + yζ)h. Referring to (2.5), this allows A+ and A~ to be different.

Represent a basis of sections of XQ ^ Yo ^ H°(TPU Θ{m + n - 1)® «/(£>)) by
polynomials ^ in ζ, ̂  of degree less than m in η; A +, A~ are defined by

(ι> l5..., um)(f7 - 4 "(0) = (%

(t; l 9..., i J f a ~ 4 f (0) = (ίoi + C*i i, , ίom + ^ im)^

Sj^tjiSC. {soi + suζ) is the (??m"1) term of ι;ί9 as is (ίoi + ίHζ); therefore 5Oί = tOb

su = tu. Writing Sj = (^1 ?..., s,.J, we get

(vi Ό ( 4 + ( 0 - 4 " ( 0 ) = (ft-^)(s 0 + Cs1). (2.37)

(h — g) represents a section of Θ(2m)9 which vanishes on S p n S p _ i ; as
H°(Sp, Θ{2m)l- D]) ^ H°(S^ {9(2m - 1 ) [ - D])® H°(SP, C?(l)), (h - c;) decomposes

as ^ ^(woi + CwϋX w i t n wjfeC. Writing uj = (uju...,ujm\ and substituting into
ί = 1

(2.36) yields

and so:

Proposition (2.38).

A+(ζ)-A-(ζ) = (u0 + ζUl)
τ(s0 + ζSi),

i.e., A + (ζ) — A~(ζ) is of rank one.

2e) The Matrices A(z9 ζ) at z = 0. One remembers that before one could obtain a
solution to Nahm's equations, one had to trivialise the bundle X so that the
endomorphisms A(z,ζ) could be written as matrices A(z,ζ); this trivialisation
is chosen to be flat with respect to a certain connection V.

The definition (2.6) of the connection involved the maps A(z, Q. When these
have finite, well defined limits at z = 0, there is no problem obtaining a smooth
V-flat trivialisation at z = 0; the boundary behaviour of A is then, in essence, that
of A, that is:

—for m < n, there is a finite well defined limit ,4(0, ζ) = lim A(z, ζ).

—for m — n, there are well defined limits A~(ζ), A+(ζ) with

It is the case m> n which poses the problem, as A(z, ζ) has a pole at z = 0.
Let eί9...,embe3L local basis of X; set C(z, ζ) = C0(z) + C^ζ + C2{z)ζ2 to be the
expression of A(z9 () in this trivialisation of X. If s is a section of X, let (s)0
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denote the function representing s in the Uo trivialisation. The connection is
defined by:

Note that this implies that there is a matrix

die )
Djάz, C) such that -^°- = X (*Aife O)o

Now assume that the e/s are chosen so that e l 5 . . . ,e m _ n form a basis of Z'; then
the (ef)0, / = 1,..., m — n, are divisible by /z, to order (m — n) in z. The same is then
true of die^o/dz, to order (m — n — 1); D thus has the block decomposition with
respect to X = Z'®Z"\

D' D"

O(zm'n'1) Ό"

Referring to (2.35), similar decompositions hold for Cu C2, and so for the connection
matrix Γ = D + ^>C1 + ζC2. Finally, as in [Hi2, p. 178], the polar part of Γ has
the block diagonal form

( m - n - l ) Γ H 0

2z

These facts then imply that one can find a change of basis matrix S of the form

0

from this basis to a V-flat basis, with the O(z) term having the appropriate block
form. Expressing A(z, () with respect to the V-flat basis, one obtains (referring
to (2.35)

^ζ) = [ α ( 0 oU"---^Γ' Oίή0 + θ(zΆ (139)

which completes the proof that the boundary behaviour of our solutions to
Nahm's equations is that given in condition B-2.

2f) Real Structure. We now have a solution Tf(z) to Nahm's equations, satisfying
the right boundary conditions; the last step is to show that the solution can be
made skew adjoint. As before, this is done in several steps:

i) One defines a positive definite hermitian form on X.
ii) One shows that the endomorphisms Tt are skew adjoint with respect

to this form,
iii) One shows that the connection preserves the form, and so the matrices

Tt(z) can be made skew adjoint,
iv) One must show that the boundary conditions and the hermitian structure

are compatible, i.e. that the block decomposition of Tt(z) at z = 0 can be
obtained in an orthonormal basis.
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Step i), the definition of the form, is an adaptation of that of Hitchin [Hi2, p.
179], Let s, teXz*H°(Sp,L

Σ(rn + n- 1)[-£>]); the real structure pulls back
Π(m + n — 1)[— D] to L~z(m + rι — 1)[— τ(D)]; there is an antilinear map

p # ° ( ^ , ί Γ z ( m -f n - 1)[ - τ(D)]). (2.40)

s• σ(ί) is a section of H°(S1,, 0(2m + In - 2) [ - D - τ(D)]); remember that D u τ(D) =
S p Γ i S ^ ; thinking of s σ(ί) as a section of 0(2m + In - 2) over TP X (2.11), this
means that there exist aeH°(TPu Θ{2n - 2)), beH°(TPu Θ(2m - 2), with:

s σ(t) = ag + bh. (2.41)
Therefore, over Sp:

s σ(ί) = Wi
and over Sp-ii

s σ(ί) = ag.

By (2.16), and (1.2), b decomposes uniquely as b^™'1+bι(ζ)ηm~2 + •-
+ bm^ι(ζ\ with hi of degree 2i. One then sets

<s,t\ = b0. (2.42)

Once <,> has been defined, steps ii) and iii) are proven exactly as in Hitchin
[Hi2], and so will not be repeated here.

We now consider step iv). In the case m> n, what must be shown is that the
decomposition X = Zf ®Z"(ξ0) is orthogonal at z = 0, to order (m — ή)/2 in z. Let
s be a local V-flat section of Z'; then s' = 2^m~")/2 s is a smooth section of X, and
s' = hp' over ΓP^ to order (m — ή) in z, for some p;. Let t be a local section of
Z"(ξ0). Using the fact that s' = z~np(s), t = z~nρ{t), it is-fairly easy to see that s'σ(t)
has no terms of order ^ (m + n — 1) in η9 to order (m — n) in z; therefore, to order
(m — ή) in z, one has

s'σ{t) = hp'σ(tl

and so, to order (m — ή) in z, the (order (m— 1) term in η of b = p'σ(t)) is the
(order(m + n — 1) term in η of s'σ(ί), which is zero.

Finally, we check compatibility at the boundary, and positivity. We note that
one has

s9 teH°(Sp, U>-\mp + mp_1- 1 ) [ - Sp,p_ J )

using the section fp of (1.8). One then sees that

= H°(Sp, Θ(2mp + 2mp+1 - 2 ) [ - SpnSp+1]).

The technique used above therefore gives two possible forms <,>z, {,}z; it is
easy to check that <,>z = ep{,}z, where ep is the constant of C-4 in the introduction
normalised so that \ep\ = 1; one then has ep= - ( - l)mp + mp-i.

We now check that the definition of <, > is compatible with the glueing of 7 0

and Xo at z = 0. Without loss of generality, set m^.n. Let elements s, t of 7 0 =
H°(Sp _ x, d̂ (m + w — 1) [ — D~\) be represented, using (2.16), by polynomials of degree
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less than n in η:

<s5 ί>y 0

 = degree (n — 1) term (in 77) of a

= — degree (m — 1) term (in η) of 6, by (2.41)

= (_ ly 1 1 ^ 1 1 1 *- 1 ^);^- ( 2 4 3 )

Now let us show that the form is definite. We begin on the interval (μ2, Mi)
The form is preserved by the connection, and is compatible with the Tt; in particular,
at μu the residues of Tt define an irreducible representation of su(2); these residues
are skew hermitian with respect to <,>, which forces the form to be definite. In
fact, one can compute its sign to be (— l)m i, from the basis of Xμ i, using the
description of (2.21). Transporting to μ2, one has the same form there on Yμr If
^2 = mi> t m s f ° r m transfers to a definite form on Xμ2 c Yμ2, of sign (— l)m 2, by
(2.43). If m2 > ml9 then Xμ2 = Z'μ2®Z"μ2 as in (2.21); on Z"μr the sign of the form
is (— l)m 2, by "transfer" from Yμ2, above; on Z'μi, explicit computation from (2.21)
gives that the sign is also (— l)m 2. Continuing in this way, one checks positivity
on each interval in turn.

3. From Nahm's Equations to Spectral Data

In this section, we show that a generic solution A(t9ζ) to Nahm's equations,
satisfying conditions B, yields back the spectral data. From A{t9 ζ), we must obtain:

i) real curves Sp9 of degree 2mp9 for p = 1,..., N — 1,
ii) the partition of SpnSp^1 into SPtP-1 and Sp-ltP,

iii) the section ξp in H°(Sp,L
μp + ι~μp(mp^1 + m p + ι ) [ — SP}P + 1 — SJPtP-1'])9

iv) the fact that Sp satisfies the vanishing theorem (1.17).

Part i) of this data is easy to obtain: let Sp be the curve in TPί defined
by

-y4(ί,C)) = 0 (3.1)

for any te(μp+1, μp); Sp is thus the spectrum of A(t, ζ) (recall that Nahm's equations
are isospectral). As the Γ/s are skew adjoint, ζ2A(— ζ~ *) = — A(ζ), and so Sp is real.

To obtain parts ii), iii) and iv) of the data, we begin by inverting the procedure
used in Chap. 2 to obtain A(t, ζ); here, therefore, from the flow A(t, ζ\ we obtain
the appropriate flow Kt of line bundles over the curves. Recall that in Chap. 2,
A(t, ζ) = A0(ή -f A1(ήζ + A2(ήζ2, for te(μp+ί,μp\ was derived from the exact
sequence

(3.2)

where ev is the evaluation map. More succinctly:

0_> &{- 2fm»-> &φm--*LΓ'(- 1 ) ® E/(E; + EN_p)-• 0.
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Generically, of course, E/(Ep + EN^p) is the restriction to Sp of Lμp(mp -f mp_1)
[ — 5 p _ 1 > p ] . We now invert this procedure. Let η also denote ηί. Define

Kt = coker(η - A(t9 ζ))\Θ{-2)®m*-»Θ®m?.

Note that /Ct is not necessarily locally free over Sp; it can have torsion at eigenvalues
of higher multiplicity. One way to smooth it out is to take a dual, which is torsion
free; one has, over Sp9

K* ~ ker (η - A(t, ζ))τ\Θ®m^ -> Θ(2f'\ (3.5)

Let the suffix adj denote the classical adjoint:

(η - A(t, ζ))r(η - A(t, ζ))ldj = detfa - A(t, ζ))ί. (3.6)

One has, over Sp:

lm(η-Ά(t,ζ))Ί

ad^K?. (3.7)

When (η — Λ(t, ζ)) has corank one (η — A(t, ζ))Jdj is of rank one, and one has equality
in (3.7); Kt is then a line bundle. When the corank of (η — A(t, ()) is greater than
one, the classical adjoint vanishes.

To begin, we show that the flow of bundles is in the right direction. Let s be
a (meromorphic) section of Kf, for t = ίo; let s be represented over Uo = {ζ φ 00}
by M, and over U1 = {ζ φθ} by v; let g(t0) be a transition function for K*o; then
u = ̂ (ίo)ι;. One has over ί/0,

(17 - >l(ίo, C))ΓM = 0,

and over U1

Let A#(t, ζ) = A^ή/2 + ̂ 42(i)(; varying ί, we ask that, as t varies:

Al (3.8)

then, using Nahm's equations,

d

Jt
{η - A)τu = Aτ

#{η - A)τu

and so, if u is a solution to (3.8), (η — A)τu is also; as the initial condition for this linear
equation is (η — A)τu = 0, then (η — A)τu = 0 for all t.

Similarly, one can ask that

ensuring that ζ 2(η — A)τv = 0 for all ί; then,

τ du dg
# dt dt

and so
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ζU~ ζU~ d t °
integrating,

therefore,

K^K*®^-^. (3.9)

The flow Kf is, at least, in the right direction; to identify K0 one must examine
the boundary behaviour of A(t, ζ) at the points μp. In the study of boundary
behaviour, we readopt the notation of Sect. 2. We begin with the case m > n.

Set k = m — n. Then, near z = 0, one has, for z > 0, the block decomposition:

A (Λζ) k-\)\2
(3.10)

Aτ is m x m, aτ is k x fe; α, /?, y, <5 are quadratic in ζ, and are written α(z, Q = αo(z) +
αt(z)C + α2(z)C2, etc. Let αΓ(0, ζ) = a(Q, βτ(0, ζ) = b(ζ\ yΓ(0, ζ) = c(ζ), <5r(0, ζ) = d(ζ).
One also had, for z < 0, an n x w solution ^lΓ(z, C), with ^ Γ (0, ζ) = c(C). Conjugating
(3.10) by diag(z(/c~l)/2,H), one gets

Recall that from a(ζ) = α0 + α t ζ + α2C
2, one defined an irreducible /c-dimensional

representation of sZ(2, C). For each ζ, a(ζ) has a one dimensional kernel; one can
choose a basis et so that kera(ζ) = (ζk~1,ζk~2,...,l)τ; in this basis, for example,

ei = ei+ί. We compute a section of ker(^ — ^ ) τ , or equivalently, (as we shall

see) a section of lπι(η — /4)Jdj. We do this first at ζ = 0; it suffices to compute the
first column of (η — ̂ 4)Jdj, i.e., the minors along the top row. We find:

row: 1

k

k~+ϊ
»-i)V-

0

0

{η-c(O))adj-b(O)

/0\

0

0(2

(3.12)

Multiplying through by (— Yfz k +1

9 one obtains a non-zero limit vector, at z = 0.
Similarly, when ς is arbitrary, one has the limit section of ker (η — A)Ί\

/«*"!

V l

(3.13)
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Note that, at ζ = 0, if one computes the (k + i)th column of fa — A)lά-V one
obtains for the first k entries, the finite limit at z = 0,

4 ( ^ 0 ) τ = (0,... ϊ0,[(l,0,...,0)d(0)(^-c(0)) a d j] i)
Γ (3.14)

similarly, as ζ varies, one has a finite limit e\(η,ζ). As rank fa — A(z, Q)Jdj ^ 1
over Sp, the (k + i)th column and the first column of A are proportional; at the
limit z = 0, the factor of proportionality normalised by — ( — z)k + 1 is e\/f1. As
f2 is finite, the limit vector e\ of the last n entries in the (k 4- ί)th column is finite,
when det (77 — c(ζ)) Φ 0. Hartogs' theorem (in the variables ζ, z over Sp x C) then
forces e2 to be finite even when det fa — c(ζ)) = 0. We write the limit of the (k ~f i)th

column at ζ = 0 as:

(3.15)

Furthermore, one has, for some pfa),

det fa - A(0)) - det fa - c(0)) pfa) - (l,0-0)d(0)fa ~ c(0))adjϊ>(0)(0-»0, l)Γ, (3.16)

which relates the equation of Sp(det fa - A(0)) = 0) and that of Sp _ x (det fa - c(0)) = 0)
over ζ = 0. Now suppose that we are in the generic case. Genericity precludes
intersections of the spectral curves at multiple points; at SpnSp-u therefore,
fa - A)τ

Άά] is of rank one. On the other hand, away from the intersections, over
Sp9 where det fa - c(ζ)) ̂ 0 , (3.13) shows us that fa - A)lά- is again non-zero,
and so fa — A) has everywhere corank one on Sp. Similarly, changing (-coordinates
if necessary, from (3.16) one sees that fa — c(O)adj ^s non-zero on Sp^1 away from
Sp, and so fa — c(ζ)) has everywhere corank one. Therefore, the sheaves Ko, on Sp

and 5 p _ 1 are line bundles.

We now identify the bundles Kz at z = 0.

Proposition (3.17). Let m>n. Suppose that the Nahm data is generic. There is a
partition of SpnSp^ί into divisors D, τ(D) such that, over Sp and over Sp_1 ? Ko ~
0(m + n - l ) [ - D ] .

Proof ϊ). Over Sp. The column vector (3.13) defining a section of X* a Θ®n\ has,
as entries, polynomials of degree g (m + n — 1); (3.13) can be thought of as a map
Θ{— m — n + 1)-^K*> o r ' dually, as a map

X 0 ^ ^ ( m + π - l ) . (3.18)

We must show that this map vanishes on an appropriate D, and only on D. Let
E be the divisor cut out on Sp by Sp_1; one wants D -h τ(D) = E. The / x portion
of (3.13) vanishes on E, as Sp_ ι is defined by det fa — c(ζ)) = 0; f1 will vanish on

any D < E. Set /ffa, C) - Cm + fI" 'Λίτfa, 0) - Cm + M~ I ^ W , - VC); consider
the « x « rank 1 matrix /2/fΓ

Lemma (3.19). Γ/zβrβ zs α positive divisor D such that f2 vanishes on D and

D -f τ(D) = E ι/αn<i on/y if f2f%
τ vanishes on E.

Proof. The proof in one direction is obvious; in the other, let f2f\
T vanish on

E; then/ 2 j i/2,j vanishes on E,Vinj. The fact that E is real means that it can be
written as E = Σmk(pk + τ(pk)\ where pk are points of S. Let / 2 ; vanish at pk with
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multiplicity gkb and at τ(pk) with multiplicity hki. As f2tif2ίj is zero on
£, gki -f fzkj ^ mfe for all ίj. Set gk = min(gki), hk = mk — gk; then / 2 > ί vanishes at
D = Σgkpk + hkτ{pk) for all i, and D + τ(D) = E.

Returning to (3.17), to show that f2f*
T is zero over E, let /?E5pniSp_1.

Changing coordinates on TP1 if necessary, let p be located at ζ = 0. One has from
(3.13):

/(-0~* +

as the Ti(t) are skew adjoint, ζ2c(— ζ x) = — c(()Γ, ζ2^
at C = 0, up to a sign,

/0\

^ - ζ " " 1 ) ^ - d{ζ)τ; therefore

V i /

One now uses the fact that (3.12) and (3.15) are proportional over Sp; as we are
at a point where det (η - c(0)) = 0, this forces either (η - c(0))adjb(0)(0,..., 1)Γ = 0 or

The final step is to show that (3.18) vanishes only at D. This is done by remarking
that deg (Ko) = deg (Θ(m + n - 1)[ - D]) = m{m - 1).

ii) Over S;7_1:XJ is defined over Sp-ί as the kernel of (η — c(0)); referring to
(3.13), f2 is a section of K$. The proof that Ko - Θ(m + n - 1 ) [ - D] over Sp_j
is then just the repetition of that given over Sp. •

We now analyse the case m — n. At z = 0, one has limits ^4+(C), A~(ζ) with
det(^ — A + (ζ)) = 0, det(^ — A~(ζ)) = 0 defining Sp-ί,Sp respectively. Furthermore,

A + (ζ) -A~{ζ) = (s0 + CsxXSi - ζ50)
Γ = s(C)s*(C)T, (3.20)

where 50,5 t are column vectors.
Again we define a section of ker(^/ — v4+(C))Γ over Sp^ι and of ker(^ — A~(ζ))τ

over Sp. Recall the "Weinstein-Aronzajn" relation:

/1~T) - sΓ(^ - ^~)a

T

djs*. (3.21)

Then, over Sp,

and, over Sp_1 ?

(η - Γ)τ(η - A ~ ) a V* = det (η - A ~)τs* = 0

by (3.21).

(η — A~~(ζ))Zdis* thus defines a section of Kg, both over Sp and Sp-i Formula
(3.21) shows us that, away from SpnSp-u (η — X~)Jdj is non-zero on Sp; symmetri-
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cally, (η — A+)lά] is non-zero on Sp_v The genericity condition then tells us that
these are also both non-zero at the intersection. Ko is then a line bundle, both on Sp

and on Sp^1.

Proposition (3.22). Let m = n. Suppose that the Nahm data is generic. There is a

partition of SpnSp^1 into divisors D,τ(D) such that, over Sp and over Sp-i9K0 ^

0(m + w - l ) [ - D ] .

Proof. As (η — A~(ζ))lά]s* is of degree (2m — 1), as before, we have a map.

1).

To show that this vanishes on the appropriate Z), we use Lemma (3.19). It
suffices to show that (η - ^4~(C))ίdj5*5Γ(^ — ̂ Γ(O)Jdj vanishes on SpnSp-x. From
(3.21), over SpnSp.l9 sT(η -A-{Q%d]s* = 0. As (η -A~{ζ))^ is of rank one over
Sp_ l 5 it can be written as a product uwτ, where u, w are column vectors. Therefore,
sΓwwΓs* = 0, and so either sTu = 0, or wΓs* = 0. Then, (η — ̂ ")fd js* = 0 or
sΓ(>7 — v4~)Γ = 0, which yields the result. As above, one shows that it only vanishes
on D.

One now has the necessary material to obtain parts ii) and iii) of the spectral
data. Sp_lίP, of course, is just the divisor D of the above propositions. As for part
iii) consider the flow Kt of bundles over Sp for ίe[μ p + 1 ,μ p ]

-at ί =

—at t =

One

μ p + 1, one has Kk

μp,Kμp = Θ{mp +

knows however,

—

that

Θ(mp

μp

: - s p _ i

- 1 ) [

J
, βp μp + ϊ; this can be written as an

isomorphism

as Θ(2mp_ J ~ [ + S p _ 1>p + 5 p ί ? _ J . This i somorphi sm is the section ζp of iii).
F o r p a r t iv), one must show t h a t H°(Sp, Kt(— 1)) = 0, whenever A(t, ζ) is finite.

By the definition (3.4) of Kt as a sheaf over T P 1 ? one has the exact sequence,

--• -> H°(TP,, Θ(- lfmή-+ H°(Sp, Kt(- !))-*

H\TPί9 Θ(- 3fmή *=η-AU) )

H°{TPU Θ(- lfmή = 0; referring to the explicit form of H\TPU Θ(-j)) given in
Lemma (1.2), the map F is injective. Therefore, H°(SP, Kt(— 1)) = 0.

To prove the positivity condition C-4, one considers both ends of the interval
{μp+ί,μp); one has^at μp + 1, the section f(μp + ί) of Θ{mp + mp + ί)l-SPtP+ί], and,
at μp, the section /(μp) of Θ(mp_ι + mp)[— 5 p _ 1 > p ], given by (3.13) or (3.21). One
then "propagates" / from μp + 1 to μp5 using Eq. (3.8), obtaining /(μp). Setting
vp = /(μp)//(μp), one then must compute

f(μPf
τf(μP)gP-i_ J \rP,
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However, from (3.8), dt(f*τf) = 0, and so:

i)*τf(μP+\) gp-i

referring to the definitions, and keeping careful track of signs, one obtains

4. Reconstructing the Monopole

4a) Introduction. In this section we explain the ADHMN construction and show
how it associates a monopole to Nahm data. Starting with a solution (T1? T2, T3)
to Nahm's equations, we show how to construct a rank N bundle C over U3 with
connection and Higgs field (V, Φ) which are regular and satisfy the Bogomolny
equations. We then must show that it is a monopole, that is that (V, Φ) satisfy the
BPS boundary conditions.

We do this first in the generic case, when the Nahm data has associated
spectral data to it and a holomorphic bundle E. From this, via twistor methods,
one can construct a bundle H on a dense open subset U of 1R3

? along with a
connection and Higgs Field (V5 Φ) which satisfy the Bogomolny equation. U
consists of the xeU3 for which E\Cχ is holomorphically trivial (once we are done,
we will see that U = U3). In Sect. l.D, it was shown that U3 — U is compact, and
that (V, Φ) satisfy the BPS coundary conditions.

We achieve our aim by defining an isomorphism C ^ H o n a smaller open
dense subset Ό and by showing that (V, Φ) ̂  (V, Φ) over U. One then has a global
regular solution over all of [R3, which satisfies the boundary conditions.

4b) The ADHMN Construction. For each interval [μp + 1, μp] let Jftp be the Sobolev
space of L2 sections of Yp = Xp(g)C2 which have L2 derivative. (The subscript p
denotes the interval.) By the Sobolev lemmas such sections are continuous. Similarly
let ί£p be the space of L2 sections of Yp.

At a boundary point μp of [/ i p + l J μ p ] , if nip^mp.^ Yp(μp) =
Yp-i{μP)® Yp-iiμp)1, and we adopt the terminology continuing for vectors in the
first space and terminating for those in the second. If mp ̂  mp_ 1 all vectors of Yp are
continuing; thus, continuing vectors on both sides are identified. Define similar
terminology for the other end.

The Sobolev space J^p is defined to be the subspace of $p consisting of sections
whose terminating components at each end are zero. Define the operator Dp(x), for
xeM3, by

Dp(x):Jt?p-+^p, Dp(x) = Nt-(Tp + ix), (4.1)

where Tp = ΣTi®ei and x = Σxt(ί ®et) for (eu e2, e3) the unit imaginary quater-
nions. Because the components oΐthe section acted on by the singular part of Tp are
zero this operator is well defined and has image in 5£r

If mp = mp^ι the boundary condition for the solution of Nahm's equation
implies that for some xeXp(μp) and some αeC 2 ,



78 J. Hurtubise and M. K. Murray

T p (μ p )-Γ p ~ 1 (μ p )-x®x*®(α®α*-<α,α>V2)GEnd(X ; ? (μ p ))®5/(2,C).

In such a case, let Wp be the span of x ® α and let πp: Yp(μp)-+Wp be the orthogonal
projection.

N- 1

Define 2tf c @^p t o be t h e space of all sect ions f = (fι,...,fN-i) such
p=l

that fp{μp) = fp-i(μp) Nahm's operator is defined to be

/TV- 1 \ /

where qu...,qr are all the indices for which the jump mq — mq_1 is zero.
Note that the kernel of Nahm's operator is all (/l9 . . . , / # _ j) such that

—each fp is L2

—the terminating components are zero (4.2)
—the continuing components are continuous
—at zero jumps, fq(μq) is in Wq.
Define

D*(x) = Nt + (Tp + ix).

Then integrating by parts it is easy to deduce that the cokernel of Q)(x) is all

{[0i,...,0iv-i], K l 5 . . , w J } such that:

-D*(x)gp = 0, (43)
~gp is in L2

—the continuing components are continuous except at zero jumps, where

Notice that the terminating components of the gp are not constrained except by
the L2 requirement.

Let us call these boundary conditions for the kernel of <2>(x) and the cokernel
of 2$(x) the Nahm and co-Nahm boundary conditions.

We define the "bundle" C(x) by

We shall show, by calculating the index of @(x) and proving that dim ker $)(x) = 0,
that rank C(x) = N, and so C is in fact a bundle.

To do this we investigate the behaviour of solutions to D*(x)φ = 0 on an
interval (μp+1, μp). If z = t — μp is a parameter near μp and k = mp — mp^1>0, then
the theory of singular, regular, ordinary differential equations (as used in
Hitchin [Hi2]) tells us that the 2mp dimensional space of solutions to D*(x)φ = 0
decomposes into a direct sum of three pieces:

1) A k— 1 dimensional space which are O(z~{k~1)/2) near μp\
2) A k + 1 dimensional space which are O(z(k~l)l2) near μp\ and
3) A 2mp-1 dimensional space of solutions which O(z°) at μp.

The first two of these are terminating and the third is continuing.
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For each interval [μp + ι,μp], p = 1,. .,N — 1, let Vp be the 2m p dimensional
kernel of D*; let Vo=VN = (0}. Define L / p c F p x F ^ for p=l,...,N to be
the space of pairs satisfying the co-Nahm boundary conditions at μp.

The analysis of the boundary behaviour shows that (m0 = mN = 0)

Define a linear map

N N- 1

p = 1 p = 1

χ: ((0, ώ j , ( M 1 9 ύ2), {u2, ύ3),..., (%, O ) ) ^ ^ - uί9 ύ2-u2,...,ύN- uN),

whose kernel is clearly the cokernel of @(x). We want to show that the cokernel

of χ is dual to the kernel of @. It will then follow that the index of Θ is ]Γ 2mp —

N

Σ ( w p _ 1 + m p + l ) = -N.

Notice that because of the Liebniz rule if Dpf = 0 and D*g = 0 then </, g>
is a constant in ί. Hence F* can be identified with the space of all solutions to
Dpf = 0. For this equation we can repeat the analysis of boundary behaviour above
and find a similar result, except that the dimensions k—ί and k + 1 are
interchanged.

N- 1

Assume now that (fi, ..,fN-i) belongs φ F* and annihilates the
p=l

image of χ. At μx if we apply χ to ((0,1/^, (0,0)•••(0,0)), then </i,w1> = 0 for all
MX in the m1 + 1 dimensional space of decaying solutions. Hence f1 is in the m1 — 1
dimensional space of decaying solutions to Dpf1 = 0. At a typical point μp with
say, k = mp — mp_1 > 0, if we take a pair (wp_ 1? #p) with wp_ i(^p) = ύp(μp) under
the glueing then 0 = <χ((0,0)-..(Mp_l5ώp)9.. .,(0,0)),(/ l s.. .JN-,)} =
<u p _ 1 , / p _ 1 > - <ώp,/p> - (Up-^μpi fp-άμp) - fp(μp)y9 so the continuing
components of/ p_ l 5/ p match.

Next, if we take wp_ x = 0 and wp with zero continuing component and decaying
terminating component, it follows that fp has decaying terminating component.
If fe = 0 we can, in addition, choose ύp(μp) — up_^p)eWp, so that/p(μp) = fp-ι(μp)
and

In all cases, / satisfies the Nahm boundary conditions
Clearly, the converse is also true, if (/i,...,/jv-i) is in the kernel of Θ it

annihilates the cokernel of χ. So we have proved:

Proposition 4.4. The index of Nahm's operator is — N.
It remains to prove a vanishing theorem for the kernel at Θ. Using Nahm's

equations, it is straightforward to calculate the Weitzenbock type formula

D*(x)Dp(x) = - ((d/(dz))(d/(dz)) + (Tp + ix)*{Tp + ix).

Hence if Dp(x)fp = 0, we have
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j

dz

dz

dz'' dz'

II (Γ + iχ)fP II2 - <(Γ P
<(TP + iχ)fp, fP >(μP)

If (/1; . . . , / # _ i) is in the kernel of 3>(x) and there are no zero jumps, then the
continuity of fp and Tp gives

J V - l

o - Σ
p=l

dz

and hence fp = 0 for all p.
If there are zero jumps, this expression has additional terms of the form

but inspection of the boundary behaviour of Tp — Tp~ι shows that for fp{μp)sWp

this whole term is non-negative.
Therefore ker @){x) = 0 and we have that C(x) is a rank N bundle on U3.
The connection and Higgs field for C are defined by composing differentiation

and multiplication by iz with the orthogonal projection π:j£? ->C:

Vi = πo(d/dxi), Φ = πoiz. (4.5)

The same proof as that of [Hi2] shows that this defines a smooth solution to
the Bogomoln'yi equations; in the next section we shall relate these constructions
to the twistor approach for generic Nahm data.

4c) Link to the Twistor Approach. In the previous discussion we realized the
cokernel of Nahm's operator Q)(x) as the kernel of an exact sequence

0->C(x)-

Θ

Θ

Θ
(4.6)

This should be a familiar sight to the reader by now! If we take a real section Cx

not intersecting any of the SPtP+1 or contained in any spectral curve, then restricting
1.14 to this real section gives an exact sequence

0

H°{S2nCx,L
μ2{m1+m2))

o
(4.6a)

H°(Cx,lf»(mN-.1))
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Our purpose is to identify this term by term with (4.6). This will give us
H°(CX, E) = coker Q) and identify the bundle obtained over U3 by this construction
with that obtained by the twistor construction.

Notice first that because L is trivial on Cx we have

dim H°((CX, L
μr(mp + mp_ t)) = mp + mp_ x + 1,

and because Sp n Cx is 2mp points

άimH°(Spn C x , L^(mp + m p _ , ) ) = 2mp.

Recall the vanishing theorem 1.17 which can easily be extended to

H o ( S p , L ' " - f K + m p _ 1 +r)[-S 1 , , 1 ,_ 1 ] ) = 0 for r g - 2,

H 1 ( S p 9 L » - t ( m p + m p - 1 + r)l-SPtP-1]) = O fo r r ^ - 2

for μp+1 <t<μp with the appropriate results also at the boundary points. The
Riemann-Roch theorem gives

= (2 4- r)mp.

From the exact sequence on P1

obtained by evaluating sections on C2 ~ H°(Pu Θ(\)\ and the vanishing
theorem we have

= Xp(t)®C2.

This space is then naturally identified with Yp(t). Also, from the vanishing theorem
and the sequence 0 -> Θ( - 2) -• Θ -> ΘCχ -+ 0,

fl%L^-H + w p . 1 ) [ - S w _ 1 ] ) = H 0 ( S p n C , , L ^ - H + w p - 1 ) [ - S w . 1 ] ) .
(4.7)

Over Cx we can fix a "C^-trivialization" of Lf which is defined relative to the
standard trivialisations over £/,- by the functions φb

φo(t, C) = exp(ί((Xi - ix2)ζ + x3)),

φi(ί, C) = exp(ί(( - x3 + (Xi + x 2)/0

Evaluating with respect to this Cx trivialization at these 2mp points fixes an
isomorphism H°(SpnCx, L μ p - ί (m p + m p_ 1)[ — 5 p p _ 1 ] ) into a fixed 2mp

dimensional space; composing with (4.7), one then has a 2mp dimensional space
Vp of sections of Yp defined by asking that the image be constant under this map.

Proposition 48. Vp is the kernel of D*(x), i.e., Vp = Vp.

Proof. Start with a section s of

which is some
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s(t, η, 0 - po(ζ)fo(t, V, 0 = e*»'^ζmp + mp.l

where g is the transition function for [ — Sp-lfP]9 the/ f represent sections in Xp(ί)
over Ui and the pf(C) represent sections of Θ(l).

If we restrict to SpnCx = { ( ^ Q , i = l,...,2mp} we find that the coefficients
of the section with respect to the Cx trivialisation are

and these are required to be constant.
From the definition of the connection (2.6)

ciz

and moreover as we are on Spr\Cx we have that

ηi = x1 + ίx2 - 2x3ζ; + (ζ;) 2 ^! - ίx2)

and

ηt =T, + iT2 + 2iT& + ( Q 2 ( - Tx + iT2)

from the definition of the Tι in Sect. 2.
Combining all these and choosing a basis of H°(TPUΘ(\)) gives us

But the isomorphism (4.7) then implies that

(V, + Tp + ΰ φ - 0

as required.

We now have an isomorphism Vp^ H°(SpnCx, If^mp + mp-i)) and an

embedding

the next step is to show that the image is Up.
We start with the case oϊmp > m p _ 1 . Recall the analysis above of the solutions

about μp. To make statements about the decay of sections we have to choose a
trivialization of the bundle Y. We shall consider two different kinds. The first is
a covariantly constant (using the connection on Xp defined in 2e and Yp = Xp® C2)
trivialization, which we shall call a Nahm trivialization, and the second is a
trivialization using sections of

which are holomorphic in ί and defined at μp. This we shall call a holomorphic
trivialization.

We saw above that, in a Nahm trivialisation, letting k = mp — mp^ι and setting
z = t — μp the 2mp dimensional space of all solutions is a direct sum of three pieces:

A) A k— 1 dimensional space of solutions blowing up like z~
{k~1}/2,
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B) A k + 1 dimensional space of solutions decaying like z(/ί~1)/2, (4.9)

C) A 2mp_1 dimensional space of solutions which are of order z° at μp.

If, as is more natural in the twistor picture, we use a holomorphic trivialization,
the results of section 2e imply that these spaces become:

A) A k — 1 dimensional space of sections blowing up like z~ (/ ί~υ,

B) A k + 1 dimensional space of sections which are of order z° at μp5 (4.10)

C) A 2mp_1 dimensional space of sections which are also of order z° at μp.

The upshot of this is that to satisfy the co-Nahm boundary conditions a section
in the holomorphic trivialization has to live in the sum of the B) and C) components
on the "larger side" and also be continuous in the C) components.

First, the decay behaviour. From the results of Sect. 2c),

r^^cz/Z^^K + m^JC-^^J) (4.11)

breaks into three pieces:

YA'.A k—\ dimensional space of sections of Θ(mp + mp-1) of the form
Pxθp-is> where (px = 0) defines Cx and s is pulled back from P ^

YB: A k + 1 dimensional space of sections of Θ (mp 4- mp _ x) of the form gp _ 1 s
where s is pulled back from P t .

YQ.A 2mp_1 dimensional space of sections of (9(mp + m ^ . J which are of
degree m p _ 1 — \mη and vanish on Sp_lp. (4.12)

Consider now the restriction maps

(4.13)

For t < μp the map σ in (4.13) is an isomorphism and for t = μp it clearly kills the
space YA. Notice that the map p is an inclusion because H°(P 1,(9(~mp-\-mp^1)) = 0
when mp>mp-ί. In addition we have

Proposition 4.14 The map σ in (4.13) maps YB® Yc isomorphically onto the image
of the map p.

Proof As, from 2c), H°(TPuΘ(mp + m p -i)®•/(-$,,,-i)) = H°(Sp,Θ(mp + mp_ι)
[ - S ^ p - J ) then extending to TP1 everything in σ{Yp(μp)) is in the image of the
vertical map.

Let s in YB® Yc vanish on CxnSp. Divide s by pxeΓ(Θ(2)\ lift to Γ P 1 ? then
restrict the result to Sp^1; the vanishing theorem tells us that the result is zero, s
is then divisible by ρx and gp-u which contradicts the fact that its degree in η is
less than m p_ 1 .

The map is thus an injection and so, counting dimensions, an isomorphism.
Thus, at μp, the isomorphism (4.7) fails. The values in H°(CxnSp, Θ(mp + mp_ t)

[ — S ^ P - L]) that do correspond to solutions in Vp are those in σ(Yp(μp); by
Proposition (4.14), this is H°{CX9Θ{mp + mp-1)l-SPtP-1']).
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As there are no constraints on decay behaviour on the "smaller" side,
H°(Cx,Θ(mp + mp_1)[ — SPmP-ί']) therefore corresponds on both sides of μp to
solutions with the right decay behaviour; to see that it also matches them up
correctly we note that at the endpoints the glueing of the spaces is accomplished
by the diagram

( u ( p p ^ ) ( p , p ^ ) )

H°(Sp^(mp + mp^)[-SPfP^J) H°{Sp.l9Φ{mp + mp^)i- SPtP_J)

U II ( 4 1 5 )
YP(μP) YP-i(μP),

where the left diagonal map is an isomorphism. Lifting back and pushing down
defines an isomorphism from Yc to Yp_1(μp).

If we restrict to Cx and use the proposition we have

~ S X (4.16)
YB®Yc^Yp(μP) YP-ΛμP),

so a bounded solution is continuous if its component in Yc and its component in
Yp-^μp) are related by this map. The patching condition follows tautologically
and so H°(CX, (9(mp + m p _ 1 )[ — SPiP-{]) really does correspond to Up.

Consider now the case of mp — mp_ x = kp = 0. There is no problem with decay
behaviour; as for patching, the identification of Vp(μp) and F p_ 1(μ p) induces an
identification of Yp(μp) and Yp_x(μp\ If we start with a section in H°(Cx,Θ(mp -\-mp-1)
[ — iS^p-i]) its images in Yp{μp) and Yp_1(μp) are related by the pulling back and
pushing down described above. As kp = 0, mp + mp_ λ = 2mp = 2mp_ 1 ? and there is
an ambiguity in lifting back a section from Cx n Sp to Cx, namely all the multiples
of gp; similarly, that in lifting from CxnSp_ίCx is gp-ι The net effect of this is
that a section in the kernel of Nahm's operator arising from a section of E over
Cx may have a discontinuity at μp which is a multiple of (gp — gp_ J . Comparing
with (2.27) we see that this means that the discontinuity is in the image of Λ + (ζ) —
A~(ζ\ which is precisely the result required. Again Up is identified with

°

4d) The Equivalence of the Connections and of the Higgs Fields. The isomorphism
of (4.6) and (4.6a) now yields an isomorphism of two bundles over R3,

C(x) = H(x) = H°(Cx,El (4.17)

each of which is equipped with a solution to the Bogomoln'yi equations. We
complete the discussion by showing that the connections and Higgs fields are
equivalent.

Recall from [Hul] that fixing a direction (0,0,x3) in U3 means looking at a
family of real sections in TPλ all intersecting on P x in the same two points, 0 and
oo. We can trivialize the bundle E over any of these real sections by evaluation
at either of these points and define two "evaluation" connections Vo and V^ in
H along (0,0, x3). Then these relate to the connection and Higgs field by
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Notice that if we know these two quantities for every choice of line, then the
connection and Higgs field are completely determined, and vice versa. It is enough
then to show that under the identification of C with H, both constructions give
rise to the same Vo and V^ or, because of the symmetry, the same Vo.

From Nahm's point of view the operator Vo is defined by π(d/dx3 + ί), where
π is the orthogonal projection onto the eokernel of 3). To establish the equivalence
we will show that a section constant for Nahm's Vo when interpreted on TPλ via
the isomorphism (4.17) is constant for the twistor Vo, that is it takes a constant
value in the fibre of E over 0.

Suppose for simplicity that none of the kp are zero. Let/(ί, x3) = f = (f1,... ,fN- J
lie in coker(^(x)) and suppose that π(d/dx3 + t)f = 0. There then exists a g =
(gl9...9gN-1)eJtf? w i t h ( d / d x 3 + t)fp = D p ( x ) g p f o r a l l p . E x p a n d i n g t h e 2 x 2

matrices in D*, we find

0

2

Writing fp = (fp,fp)
τ, we have that Q)*Q)g = (0,2/")Γ. From the positivity and

reality of @*Θ it follows that g = (0,g") and therefore

for some hp.

ΐf we think of these as sections over TPι we can use 1 and ζ as a basis for
= H°(TPUΘ{\)) and obtain

(4.20)

where fp =f'p + ζ/^. To obtain a section over Cλ. we have to change the
trivialization to Fp = cxp(x3ήfp, and therefore using this and Eq. (4.20) we obtain

L e'-v3()? _ζAi_ ζ*A2)g; + e'xVιP (4.21)
e ( ) ? ζ A i ζA2)g; + eVιP

ox3

Evaluating at ς = η = 0 we see that F p is constant in the x3 direction as required.
The case when some of the kp are zero is proven similarly.

5, Modifications for the Cases SO(k), Sp(k)

in this section, we briefly summarize the modifications necessary for treating the
cases of SO(k\ Sp(k).

5a) From Monopoles to Spectral Data. We now suppose that the bundle H over
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[R3 is equipped with a (symmetric or skew) bilinear form, compatible with the
unitary structure, preserved by the connection, with respect to which the Higgs
field is skew adjoint. The asymptotics of the Higgs field satisfy μi= — μN_ ι + 1,
ki= ~^N-i+i Along a line, the form applied to a pair of solutions s,s' of
(V — iΦ)s = 0 is constant; the bilinear form thus passes over to a bilinear form
( , ) defined on the bundle E over TP1. Alternately, one has an antilinear map

J:E->E (5.1)

lifting the map τ. Composing with the map σ of \e\ one has a holomorphic bundle
map σJ:E-*E*. The form is then given by (a,b) = σJ(a) (b). In the orthogonal
case, J2 = 1; in the symplectic case J2 = — 1.

As the flags are defined by decay rates at + oo of solutions to (V — ίΦ)s = 0,
evaluating the bilinear form near ± oo gives us:

i.e. the flags are "isotropic-coisotropic." As a consequence, ( (£ p

+ n£ N _ p ) =

Similarly,

In [M], spectral curves Rp are defined for G-monopoles, G any compact Lie
group. Some Lie theory then shows that in our case, the curves Rp and Sq are
linked by the relations given in the introduction.

The existence of monopoles with the Rq in general position is proven in the
same way as in Sect. 1. In the case of Sp(k)(N = 2k), it then follows that the curves
Sp are in general position, and the whole of Sect. 1 goes through verbatim.

In the orthogonal case, one must recompute some of the quotients in (1.12).
For SO(2k\ the isomorphisms C-l (proven in [M]), give us, over R
an isomorphism L~μk(mfe_1) = Lμk(mfe_1). Using this, one has:

1 + £ Π - ^ m k _ ^

0 ̂  £/(£++£ fc-_ 0 ^ {^m k _ ^

The other quotients are as in the unitary case. For SO(2k + 1), one has from [M]

the isomorphism

Consider now the exact sequence:

0-+O(-mk)\Rk-+Θ\2Rk-+β\Rk-+0,

and tensor it by Lμk{mk-1)l — Sk-lίk]. The coboundary δ(s) in
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defines an extension Pk over TP1:

one has Pk & E/(Ek

+ + Ek). All the other quotients are as in (1.12).
From this point, the vanishing theorems, as well as the asymptotic estimates

on the Higgs field, follow more or less as in the unitary case.
One must also show that one can construct an appropriate form on a bundle

built starting from the spectral data, as in (1.14). It is easiest, in fact, to build the
map J. Some thought shows that J should descend to the sum of the quotients
Pi = E/(Ef + Eχ-i-ι\ interchanging Pt and PN_i+ί. In the Sp(k) case, for
example, this amounts to finding a J:Lμι(mί^1 + mi+1)®J(Si_1 ?ί)->
L~μι(mi^1 -f rni + 1)®J{SUi-1) lifting τ, which certainly is possible.

5b) From Spectral Data to Nahm Data. Given the spectral data, the next step is
to construct bundles X over the intervals (μi+1?, μf), as well as a solution to Nahm's
equations over these intervals. This is done in essentially the same way as in Sect. 2,
the proof that the boundary conditions are satisfied being modified slightly to
take the different structure of the quotients Qp = EftE* + E^_p) into account.

One must also construct the matrices Cj of condition B-3. Invariantly, this is
equivalent to giving a pairing of XΣ with X _z, covariant constant with respect to
the connection on X, and such that T^z) and Tt{— z) are adjoints of one another.
As above, this form is most easily defined by giving an antilinear map J:XZ-^X_Z,
and then using the unitary structure. Note that for ze(μi + 1, μt), Xz~
H°(SbQi®L~z{— 1)). To define J, one uses the map J given above; J can be
"pushed down" to a map J / :β ί ->Q i V _ i ; one also has a map J":LZ(— 1)-»L~Z( — 1),
with {J")2 = — 1. J is then the map induced on sections by J' ® J"; one has (J2 — ± 1)
(J2 = + 1), and so J2 = 1 for Sp, — 1 for 50. An alternative definition of the form is
given in [Hu3].

6. Summary and Conclusion

We have now built up all the ingredients of our theorem; it is perhaps appropriate
to sum up by showing how they all fit together to give the desired result.

First, the generic case. In Sect. 1, we showed how a generic monopole gave
one spectral data; we also showed that the map was injective; the inverse (twistor)
construction gives back the original monopole. In Sect. 2 and 3, we proved that
there is an equivalence between spectral data and generic Nahm data. In Sect. 4,
we showed that any spectral data yielded back a monopole. This is done by
building a bundle E on T P l 5 and applying the twistor transform. To see that
applying the construction of Sect. 1 gives back the same spectral data, one notes
that the bundle one obtains from the monopole by the inverse twistor transform
must be £[Hi l ] ; to see that the spectral data is the same, it is sufficient to show
that the flags Ef, E[ are the same. Referring to Sect. Id on the asymptotic Higgs
field, one sees that this is indeed the case, as the sum of the asymptotic eigenspaces
corresponding to μl"-μi is indeed E^\ and similarly, for Ef. Alternately, one
can apply the result of [HiM], showing that the spectral data is the same. Thus,
theorem 1 is proven.
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In the non-generic case, Sect. 2 showed that a monopole gives a solution to
Nahm's equations; if the monopole is a limit of generic monopoles, then the solution
satisfies the boundary conditions. Conversely, given Nahm data, we showed in
Sect. 4 how to construct a solution to the Bogomolny equations over Uό. The set
of Nahm data is connected [Hu3] and so our Nahm data is the limit of generic
Nahm data with spectral curves of the same degree. If one examines the construc-
tion, it is easy to see that the solution to the Bogomolny equations is a limit of
monopoles. The monopole version of the Uhlenbeck compactness theorem [AHi,
Proposition 3.9] implies that this limit is a monopole of possibly lower charge.
However, if the charge is lower, this implies that the spectral curves do not stay
bounded as we approach our limit, which is precluded in this case. Alternately, one
could use an improved formula for the asymptotic Higgs field, with explicit bounds
on the exponential error term; note that this formula remains defined in the limit, as
it involves only the geometry of the spectral curves.

The circle therefore closes, giving one various points of view for attacking the
problem. Each construction highlights certain aspects: the twistor viewpoint
emphasizes the role of algebraic curves, and gives us asymptotic behaviour quite
neatly; the regularity, however, is easiest to see from the Nahm viewpoint. This
latter is also the most convenient for computing moduli [Hu3].

Several problems remain: one is showing that this construction yields all mono-
poles. This is equivalent to showing that the monopole moduli space for fixed
charge is connected; it seems quite likely that this is the case [T2]. Another problem
is extending these ideas to arbitrary groups, and to non-maximal symmetry break-
ing (μi not distinct.)
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