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Abstract. We consider quantum fields with weak coupling in two space-time
dimensions. We prove that the set of their ultraregular Gibbs states consists of
only one point and this point is an extremal Gibbs state.

1. Introduction

In this paper we prove the uniqueness of Gibbs states for general P(¢p),-weak
coupling models. This extends to the case of the P(¢),-model results proven before
for weak trigonometric interactions [AHK1] and exponential interactions
[Ze1, Giel].

The method we use is the method of cluster expansion [GJS1,2]. In a
companion paper [AHKZ] we used other methods (essentially FKG-order) to
yield a uniqueness result and the global Markov property for the p3-models. Weak
coupling P(¢),-models have been constructed by Glimm et al. [GJS1, 2], see also
[GlJa], using their method of cluster expansion, starting from the models given by
an interaction confined to a bounded space-time region.

In analogy with classical statistical mechanics, see [Do, LaRu] and also e.g.
[Pr] one can define Gibbs states associated with quantum fields given in a
bounded space-time region. This has been first discussed by Guerra et al.
[GRS1, 2], see also [Si] and pursued e.g. in [FrSi, DoMi, DoPe, AHK 1]. Roughly
speaking, the construction of Gibbs states corresponds to Kolmogorov’s construc-
tion of Markov processes from Markov kernels (“local specification”). For these
general connections see [F62] (who also discusses the relations with Martin-
Dynkin’s boundary). The work on Gibbs states and their local specifications from
a potential theoretical point of view, applied to the study of quantum fields, has
been pursued in [AHK1, Giel, 2, Zel-5, R61-3, R6Z]. The structure of Gibbs
states is rather well understood in classical statistical mechanics, both in specific
models (like in 2-dimensional Ising ferromagnets, where one has a complete
structure theory by work of [Aiz, Hig], see also [Me]) and in general models
(Pirogov-Sinai theory [Sin]; this theory uses preceding work by Dobrushin,
Minlos-Sinai, Gercik).
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For an extension of Pirogov-Sinai results to the study of phase transitions in
quantum field theory see [Im] (see also [GlJa, FrSi] and references therein).
Structural results on the space of Gibbs states have been given for free fields
([HoSt, R63]) and for the case where the fields have trigonometric or exponential
interaction [Ze4]. That the set of tempered Gibbs states reduces to a point
(“uniqueness of Gibbs states™) was first proven for trigonometric interactions in
[AHK1]. The result was extended to general exponential interactions in [Zel]
(see also [Giel]). Independence of classical boundary conditions was shown for
@5-models in [GRS1,2] and for weak coupling P(¢),-models in [FrSi, GJS1,2].

For uniqueness results in statistical mechanics of lattice systems see [Do,
AHKO, Fo61, BePi, MaNi, Ge].

In this paper we give the first proof of uniqueness of Gibbs measures for general
weak coupling P(¢),-models. Basic ingredients of our proof are:

a) estimates on the solutions of the Dirichlet problem with distributional data.
Estimates of this type were first obtained in [AHK1], see also [DoMi2], and
considerably refined in [R61-3]. These estimates yield a basic regularity of free
conditional expectations;

b) an adaptation of the method of cluster expansion, originally developed in
[GJS1, 2], see also [GlJa];

c) a representation of “ultraregular measures” in the sense of Froéhlich and
Simon [FrSi]. Further discussions of related models and the related — but far from
immediate! — proof of the global Markov property is given in [AHKZ].

The present paper is structured as follows. We start with some basic definitions,
we then formulate the basic uniqueness theorem and prove it. Two technical
lemmas are in the appendices.

During the final writing of this paper the terrible news of the sudden death of
our dear friend and coworker Raphael Heoegh-Krohn reached us. We deeply
mourn his departure, with great sorrow and gratefulness for all he did for us.

S. Albeverio B. Zegarlinski

2. Uniqueness and Extremality

Let & be a family of open bounded sets 4 CIR?* with piecewise C! boundaries 0.
Let #,={4,€Z },.y be an increasing sequence consisting of squares centred at
the origin and such that () 4,=R?2 Let G=(—A4+mj) ™", respectively, for A€ Z,

let G?'=(— A% +m2)~ ", with a positive constant m2 and 4 the two dimensional
Laplacian respectively, 474 the Laplacian with Dirichlet conditions on 84. For a
real function f on R? we shall introduce the notation

LAl =162 f .

Let (&', ) be the space of real tempered distributions in R? with Borel s-algebra
generated by the weak topology. For an open set 4 CR? let %, be the smallest
o-algebra such that all coordinate functions (evaluation functions) {¢(f):fe %,
supp f C A} are 4, measurable. For a closed set 4 CIR* we define B,={n% .. A’
open, ACA'}. A probability measure u on (&, %) is called regular if for any A € F
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there is a constant 0<c, < oo such that
'uerp(f)éeu(llflhﬁIIle’l) (1)

for all fe&, suppfCA and some peN (we use the notations uF for the
expectation of F with respect to y, i.e. uF = [ F du). In particular the Gaussian
measures i, and u5* with mean zero and covariances G respectively G%/ fulfill (1)
with ¢,=3. Moreover all probability measures p associated with Euclidean
quantum fields in two space-time dimensions with exponential, trigonometric and
polynomial interactions satisfy (1), as we shall discuss in App. 1. In fact such
measures satisfy the estimate

ne?V <explall G+, + bl f12 1 +clG*f 7] (y

for some b>0, a,c=0, p=4, with * for convolution, which implies (1) with
¢, = C|A]*"* for some constant C (where |- | means volume). The set of all regular
measures is denoted by M,. For A€ % let yl*(x), (ze 04, x € A) be the Poisson
kernel associated to the operator (— 4 +m?) [i.e. p24(x)is — 4 +m?*-harmonic in A
and is ,(x) on 04]. Let {h e C*(R?)} be a sequence converging to the é-function
as k—oo and for ne %" denote n,(x)=n(h(- —x)). Then for pe M,, the sequence
w4 (x) = [yi(x) n,(z) dz converges in L,(u) for any 1 <p<co. Moreover its limit

wi4(x)= lim p(x)isfor pa.e.ne .S asolution of the following Dirichlet problem
in A4 (see [R61, AlHe, DoM]):

(—A+my)ypi*(x)=0 for xeA }

. 2
pii(x)=n for xeintA° @

Let A% be a log-normal set, ie. such that: for any xe 4, G%/(x,y)—0 as
d(y,04)—>0and K(x,x)= | dzyl*(x) G(z,x)isin L(4,d,x)forany 1 <p<oo. We
o4

remark that, in particular, all rectangles are log-normal (see e.g. [Si]). From now
on we will restrict ourselves to the subfamily of log-normal sets, denoting it by the
same letter #. It follows from (1) and the definition of J*(x) that for any log-
normal set 4 and ueM,,

13 () L a0 < 00, p—ace. ©)
For a semibounded polynomial P(-)and 4 € # define an interaction functional by
Ulp):= Zﬁ :P(@):o(x)dyx (4)

with 0< 1< oco and : :, the normal ordering with respect to y, (cf. e.g. [Si, GlJa]).
[It is assumed that the polynomial P(-) is normalized in the sense of its constant
term being equal to zero.] By basic estimates following from e.g. [GlJa] and [Si],
using the assumed regularity property of 1 and estimates on y?* given in the above
references we obtain, for any ue M,

Uilp+wi"e L(u'®u (5)
and

0<pfle U vl < on pyae.n. (6)
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Here we denote by ¢ the integration variable with respect to ud* and the
p-integration is with respect to the variable x in wJ*. This implies that the
probability kernels

pete” Va0V (g + )

E}{(F):= A~ Ualo i 44) : (7)

are, for any ud*® u-measurable bounded F, well defined for all € Q with some
Borel subset QCY¥’, w(Q)=1VYueM,. Denote X=#nQ and, for ACR?
2, =B40Q. The family & ={E"} .5 4.0 is a local specification in the sense of
([F6, Pr]), i.e. fulfills the following conditions:

a) E".(-) are probability measures on ({2, X) such that for any Fe X ., E".(F)
=0,(F), (we write Fe X, to mean F is 2 ,.-measurable).

b) For any Fe 2 the function Q3%+ E"(F) is 2 ,~-measurable.

c) The compatibility conditions: For any F € X if A,CA, then E'sE[(F)
=E"¢(F). For a detailed construction of local specifications, in this sense, for
euclidean fields in two dimensions we refer to [R62] (see also [AHK, Ze2]).

A probability measure p on (2, 2) is called a Gibbs measure for & if for any
AeF

HE (F)=pF )

forall F e L(1). The set of all Gibbs measures for & is denoted by %(&). By 0%4(&) we
denote the subset consisting of Gibbs measures which have no nontrivial convex
linear representations in terms of other elements from %(&).

For the construction of Gibbs measures for euclidean fields with polynomial
interactions in two dimensions see e.g. [GlJa, Si, GRS, FrSi] and references
therein, see also [R62]. Denote by

oy = lim—Inpye ™ Va@ 9)
im, s (
the infinite volume pressure for polynomial interactions (4) (this exists [Gu], see
also e.g. the above references). Let ue %(&). Following [FrSi] we call u ultraregular

if for any rectangle A,

s () =e Mgy (0™e™ V1), (10)
with the boundary density ¢°*€ X, , fulfilling

a) 04>0 py—ae.,

b) ¢**eL,(u,) for 1<p<oo and

le™l,<exp(cloA]), (11)

with a constant 0 <c< oo independent of the rectangle A (for |04]|>1). By the
notation p,4, we denote the restriction of u to a sub o-algebra 4. It was shown in
[FrSi] that if 1 <p<$% then

le™1,=1 (12)

for all sufficiently big rectangles 4. The set of all ultraregular measures € %(&) will
be denoted by %,.(&). The class of ultraregular P(¢), measures is quite rich and
contains in particular [FrSi, Theorem 7.2] all measures constructed
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a) by the Glimm-Jaffe-Spencer (GJS) cluster expansion,

b) via monotonicity arguments [half-Dirichlet = HD — states for P=0Q —ho
(Q even)],

¢) the maximal measures up for any semibounded polynomial P constructed
in the cited paper.

We prove the following result on uniqueness of Gibbs states.

Theorem. Let & be the local specification corresponding to the LP(¢),-interaction
given by (4) with 0< 1<, for some sufficiently small J,. Let p=1imE":°, with
E'.€&. Then 9,(&)={u} C0%(&). Fo

Proof. Let pu,jfie%,(&) and let ¢%, respectively §°4, be the corresponding
boundary density. Using GJS cluster expansion we will show that if the coupling
constant 0 </ is sufficiently small, then for any polynomial function F

lim 4@ gl E"F — E%F| =0 (13)
Fo

(here i respectively 7j is pu-integration variable respectively fi-integration variable).

This equality implies uniqueness and extremality of the ultraregular Gibbs
measures. Using ultraregularity (10) of 1 and ji and the definition (7) of E ,. for any
polynomial function Fe X, , 4,CA €%, we have

HORIEN(F)— El(F)l =e~ >~ ® o [0 07§ ® 5
x e WWale tuiH VAo F (g i) = F(@+ i T, (14)

where p,, fi, respectively ud*, ig* are the free field measures with free respectively
Dirichlet boundary condition on 04, and ¢ respectively # are the integration
variables with respect to uj” respectively i, and analogously @ respectively 7 are
the corresponding integration variables of 3" respectively fi,. We can and do
assume that d(4,,04)>3. For Ae %, let y**eC®(A) be such that 0= y%(x)
<1 V¥xeAd and

2
3.

0 for d(x,d4)

XM(X)Z{1 for d(x,04) (13

=
=

We will also assume that |4y°“| and |V y°*| are bounded by a constant independent
of AeF,.
By change of the integration variables

P+t o+ Myt (16)

in the integration with uJ'®j" we get (using the Cameron-Martin type
translation formula for Gaussian measures, see e.g. [Fr])
U@ A|EY(F) — El(F)|= e 2= ® fig {075
x g @G (exp[— U4 + (1 — 2 wy") — U 4(¢ + (1 = 2 p3")]
x exp[—@((— A +m?) " py") — l(— A +m?) 1 pih)] - (F(o) — F()
x [exp —3 (™ w13 1+ 1wy 13 01} - (17
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Since p2* (and y?*) fulfill in 4 € %, the equation
(—4+m*)pit(x)=0 (18)
for y-a.a. ne ¥ and any ue M, [cf. (2)], so the change of integration variables (16)
is possible. Moreover, the function
hA(x)= (= A+m?) (17400 wy (X)) = (= Ax ™)y =27 - Py

is supported in the set {xe4:2=<d(x,04)<3}. Analogous statements hold for
Wt =(—A+m?) 2", For fixed 2 and y?” (such that the above holds) and a
subset X C A define

Vi@, 3)=Ux(@ +(1— " i) + Ux(@+ (1 — 1) ps")
- )I{ @(x) hoA(x)d,x — )I( B(x) B4 (x)dx . (20

Note that if X C{xeA:d(x,04)=3} then we have the symmetry:

Vi@, §)=Vx($, ¢). 21

Now we apply GJS cluster expansion ([GJS, GlJa]) to the unnormalized
measure

K@ e M 22)

[in L'(uy®fi,)-sense, as specified below]. For that we define the family of
interpolating covariances %(s) by iteration of the formula

%(5,)=(I®G+GRI)(5) =5,G @I +(1 —5,) G ®1
+5b1®G‘M+(1 __Sb)[®GBAub 23)

with 0<s, <1 and be(Z?)* a bond on the unit lattice Z>. Let (s) (with s a set of
variables of the type s,, only finitely many different from 1) be an interpolating
covariance. Consider the measure defined as in (22) but with the free measure
1o ® ol (s With covariance (s) instead of uJ*®@fij". We see that, for any 4, € Xy,
A,e X, x if for all be 0X one has s,=0, then our measure factorizes, i.e.

Ho ®la0|‘€(sax G Vae.9)4 1A= ® flojgsox = 0)(e “Vx(@.94 1)
X 1o ® fojgssx :0)(e* Vaxe.24,) (24)

(since in this case one has Dirichlet boundary conditions on 0.X). In particular for
XCA,A,=1 and A, of the form

Ay =B, ¢)(F(o)—F(9)) (25)
with B a symmetric function
B(p, §)=B(p, ¢) (26)

the right-hand side of (24) vanishes [since also Vy(¢, ) = Vy(®, @)). Let us recall the
formula for differentiation of measures ([GJS, GlJa]): for suitable A

d - N 1
a5 #0®,“0|(5(s)(14):ﬂo®#0|<g(s) _A‘é(s)A> > (27)
ds, 2
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where A4, is a well defined operator given by the symbolic notation

s 9 5 6
A= rdzxdzy[(G(s)® )% y) 5 S0(x) 500y )+(I®G(s))( D550 5¢(yJ

=4%(s)- Ao 5) (28)

~—

d
with G(s)= s G(s). What is important for us is that the operator Ay, is symmetric
b
with respect to ¢ < .
Applying successively the fundamental theorem of calculus in the form

o d
M@ M(A) No®ﬂo|<g(sb 0) (A)+ jdsbd H0®.“0|<g(s,,)(A) (29)

we get the representation

ﬂgA®ﬂ(5)A(A)= cz; Ajdsyayu0®ﬂ0[‘€(sv)(A)’ (30)
YyCLain
with %(s,)=%({0=<s,<1 for bey, 5,=0 for b¢y}) and 0,= [] —— We take
bev Sp
A=e "4 D(F(p)—F(p)), (31

with a polynomial function F localized in a union X, of unit cubes (contained in A).
After the partial resummation of the expansion (30) we get

o' @ figte VAP F(g) — F(¢))
= ¥ [ds(Ornto®iioy,, e~ ¥ PF — F)) ug X @i X~V axto ),
ey (32)

where the summation goes over the pairs (X, ') with X CA4, XS X and ' CZ%nA
I'CintX and each component of X\I“ meets X .
Since by (27) the differentiation gives us

ar!‘o@ﬁomsr,(e ~Vxle. O(F — F))
=ﬂo®ﬂo|@(sr)[ Y 11 0,%(sp) A e "X OP(F—F )] (33)

ne (') yen

[with 2(I') being the partitions of I'], so using the symmetry of 4, ), and Vy(¢, §)
together with antisymmetry of F(¢)—F(¢) with respect to ¢« @ for
X C{d(x,04)=3}, we get

Orto®foje, e X (F(g)— F($)=0. (34)
Hence our sum on the right-hand side of (32) reduces to
@V ) (F—F)
= 2 fdsrarﬂokg(sr)(e ~Vx(@O(F — )

(X,I)
Xn{d(x,04)<3}+0

% ”aAuax® ~aAuaxe—VA\x(w @) (35)
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Let us set
A={xeA:d(x,04)=24}. (36)

Let ug* denote the free measure with Dirichlet boundary conditions on 9(4\ X)
and Neumann boundary conditions on 9.
Now we remark that (by conditioning inequalities of [GRS1,2])

ugAubX@)ﬁgAuﬁXe =V ax(o, )
éﬂ‘&x)@)ﬂgx)e_VA\(/iuX)(‘l’sa’)u%(X)@ﬁf)(X)e_V(A\X)f\/i((p’a’) . (37)

From Lemma 1 proven in the Appendix 2 we have, using also the definition of V
for any X such that Xn(4\4)=+0, that

e~ 204l o0 @) 1eX)p =V (41300 (92 9)

= (e~ %l e = U)o il0))2 < peld(AX)] (38)

with a constant 0<c< oo independent of A,c¢(X) and mg, A for my=M, and
0< M, < oo sufficiently big, and 0 <1< 1, with 0<1,< co sufficiently small.
Let us introduce the notation, for arbitrary X:

Ortto ®ﬁo| %r,(e ~Vxle, @(F - F)) =Ho ®ﬂ0|%r)(Rx, re” Vx(@, q’)) (39)

for Ry  being the polynomial localized in XU, defined in (27) and (33). Then
using (35) and (37) together with triangle and Holder inequalities we get the
following bound for (17):

U@ A|EY(F)— E"(F)|
= xzr fdsr{(/lo@ﬂo[#o@ﬁolmr)mx,rlr])l/r “Ax,r-Bxr

Xn(A{A)d:@
X HQM”L,,(uo) “@aA“Lp(uo)} > (40)

where

Ay, r=po® /o [/‘o ®flojgq, e X pg @ g Ve A ax D

1/q N
><{CXP—%(Hx“w?ilil+llx“w§AHil)ﬂ g7 BraXUCAXAL (41

and

By r =[P @jige Y annie™ 20el(A\X)n Al (42)
. 4 1 1 1 . - .
with 1 <p< 3 and ; + " + p =1. By ultraregularity of u and fi we have [FrSi]

10* Lo 187 Ly S 1 (43)
for1<p<%.
Remark. What will be important for us afterwards is that the bound

HQM”LPWO), HLSMHLP(;;O) <eflol (43)
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holds with a constant 0 < ¢ < oo independent of A € %, and 0 <A< 4y, my> M, for
sufficiently small 0 <A< 4, and sufficiently big 0 <M, < o0.

From (43) and (38) it follows that the quantity By, 0™z, e 187 IIL, 0
appearing on the right-hand side of (40) is bounded by exp(c|04UdX]) with a
constant 0 <c< oo independent of A, X and 0<i< iy, mo>M,, 4, sufficiently
small, M, sufficiently big.

The polynomials Ry differ from the corresponding polynomials coming from
the cluster expansion for the interaction U ,(¢)+ U ,(() nonessentially since
V4(, @) differs from U 4(¢) + U ,(@) only by a linear term (k") + @(h3*) localized
in {2<d(x 04)<3}. Hence the L,-norm of Ry - in (40) will have, after integration
with respect to u,®fiy, as good estimations as in the usual case considered in
Glimm-Jaffe-Spencer’s cluster expansion [GJS], namely

(Ho®floLio® floj g, |Rx 7] S e~ 2 (44)

with a constant a=a(mj, 2)>0 increasing (to infinity) as the free mass m, is
growing (to infinity) and the coupling constant A>0 is decreasing (to zero).
Using Hoélder and conditioning inequalities we estimate (41) by

AX r é(u()@ﬂoe—wwxﬁ/}(qa) + Uxﬂ;l(tb))l/w

~ o(X) ~c(X)[, — oIV 4\ i(0, @)] —%{Hx""w‘?g'ﬂil} 1/v
X (Lo ® fio(uo V' ® fig Ve Al e 1) (4%5)

with w™!+v~1=4""1 (we also used the fact that «_ >0). The first factor on the

right-hand side of (45) is bounded with the use of standard arguments [GlJa] by

. A . L A .

e?*'Xl with a constant b=b <;n7> decreasing with o The second factor contains
0 0

interactions concentrated at the boundary and is bounded in Lemma 2 in

Appendix 2 by e2*174! with a constant b’ >0 decreasing as m2 is increasing and 2 is

decreasing (and independent of s). We recall that on the other hand the terms By 1

defined in (42) are bounded by ¢¢1%4V%X! with a constant 0 < ¢ < co decreasing with

A . . .
2 (and like the other constants is independent of X, I', and A4). Combining the
0
estimation on all the factors in each term of (40) we get the following estimate:

u@ﬁlE”Ac(F)—Eﬁc(F)lé Z e—2a|X|+2b|X|+2b’|6A]ec|0Au0X| (46)
Xm(ﬁ‘\l/:l)¢0

(where we also used the sp-independence of the estimates).

Taking into account that the entropy estimations for I'C X are the same as in
usual case [GJS1,2, GlJa], the fact that 0 <a is increasing and all the constants
b,b" and c are decreasing as m$ increases and 4 decreases and also the fact that all
X\ (A\A) %0 are such that |X|>d(0,04)—4, we conclude with the bound

HQAIEL(F)— E}(F)| s e 24020 (47)

with 0<d<oo independent of AeZ, for all co>m3>M3 and 0<i<i,, if
0< M3} < oo respectively 0< 1, < co are taken suitable big respectively small. By
this we are finished with the proof of (13) and hence with the proof of the theorem.
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Appendix 1

Lemma Al.l. For any 2<p=<oo and in dimension d=2 we have ||[G*f]|,
<C|fl -y for any fe H_,(R?), with a constant C>0 (independent of f ) (with
G=(—4+m5)~").

Proof. For co>p=2 by Hausdorff-Young inequalities we have (for arbitrary
dimension d)
1

1627, —en'

1

nG*fnL,,g(zn)"(f

/1 f

(k2+1)”2 .(k2+1)1/2

-1
q

Lq

(A1.2)

1 1 . . .
with ’ + p =1, 1<g<2 with”denoting Fourier transform).

Now by Holder inequalities we get

||

”Gf“Lqé (k2+1)1/2

= fl-1 IR+ D72, (AL3)

Ls

(k2 + 1)1/2

Ly
U S S
with 3 + S = a Since 1<¢=<2, so s>2 and for d=2 we have
(> +1)" 12, <00, (A1.4)
which then yields Lemma A1.1.

Remark. The same argument hold for 2<p<6 in dimension d =3, but for d=4
one needs 2<p<4.

Lemma A1.2. For any feH_,(A), AeF,
1G= [y, ZclAM 1 f] -, (ALS5)

with a constant ¢ >0 independent of AeF and f.

Proof. Let A={xeR%d(x,/)<2}. Let y,eC®R?, 0=Zy,<1, suppi,
C{xeR%:d(x, /)<1} and y,(x)=1 for x € A. We have with fe H_,(A),

[daXIG * fl(x)= [dgx|G* f]+ [ dgx]|G * f(x). (A1.6)
A A€
For the first term from right-hand side (A 1.6) we have the following estimation:
[dXIG* fl(x) |4 ([ dgx|G *flz(X))”2
A A
él/ﬂ”z(I dgx|G =‘<fl2(x)>”2
R4

iz If G \'2
"IA’ ! (]Rfdddk(k2+1)2)

SIAP NS SCHAM ) - (AL7)
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with a constant C, >0 independent of 4 € & (for sufficiently big |A[). Consider now
the second term from the right-hand side of (A 1.5). We have

1 4X1G*f19= [ dxl[diyGlx=) f)
= AjcdaXII dyG(x—y) 140 SO, (A1.8)

since fe H_,(A4) and y,(y)=1 for ye 4. The integrand in (A1.8) can be further
estimated as follows:

[ dayG(x—y) x40 I =(G(x = ) sl ) S Diyway
=I(=4,+ D" Gx = ) x4 ) (=4, + D)2 f (), o
SI(=4,+ D2 G = ) xa( )l Lywey (= A+ D)2 f L, me
= (=4, 4+ D" Gx— ) 2a( L,y 1 1= (AL9)

We have also
[ dx|(=4,+ 12 Glx— ) 240 ) | omey
AC

= j dgx[[ dyGlx—y) 14) (= 4+ 1D)(G(x = y) 1,01

;c dgx[[ dyG(x —y) x40 (=2V,G(x = y) V, 1 4(y) — Gx — y) 4, x 4(¥))]*"*

< sup 12V,G(x— ) Vx40 + G(x — y) A,y 40)|12 - | A\ A2
YE)SC“EPPXA
x jddx( sup G(x-y))m§CZ|Z\A|§C3|A|V2 (A1.10)
A€ yesuppxa

with some constants C,, C;>0 independent of 4e.% (for sufficiently large A).
Combining (A 1.8)-(A1.10) we get

AJCdaXIG*fI(X)§C3I/1I”2 (pa/y (A1.11)

From (A1.7) and (A1.11) we get the statement (A1.5) of our lemma. []

Appendix 2
Let A={xeA:d(x,04)=4}, AeF.
Lemma A2.1. For any set X CA defined in the cluster expansion (32),

JEANX emUaxnil) ~aol X A] L peldA\X] (A2.1)

. . ~ A
with a constant C>0 independent of A, X, and A decreasing to zero as — is
decreasing to zero. Mo

Proof. First we note that by conditioning inequalities [GRS] we have with
Y=A\Xn], )
e U7 < e U (A22)
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(with YD meaning the free field measure with Neumann boundary condition on

0). Let po , be the gaussian measure with mean zero and covariance sGN@?
+(1—s)G=G(s), se[0,1]. Then we have [GlJa]

d _ _
%#O,Se Ur Z#O,s(% AGe UY)

<#0 sZAGe UY) Lo.< -Uy

/‘0,3
=By(s)pto. ¢ V7. (A2.3)
Hence we get, by Eq. (A2.3) and using reflection positivity, a bound
o, ~UT < (g V)P S eIy (A24)
with
By= sup By. (A2.5)

se[0,1]
Now by definition of Az we have

1 —uy .0 0 ., 0 0
By(s)= 5(#0&3 <(_ 1) <G %’% Uy > + < G% UY’% UY>)> (A2.6)
[)uO,se_Uy]_la

. d - . .
where G = = G(s)=G" Y — G. Applying the standard cluster expansion [GJS1, 2,

GlJa] to (A2.6) and using the fact that G decays exponentially fast with distance
from 04 we get the estimate
[By(s)| = cl(0A\X)| (A2.7)

. . A . .
with a constant ¢ >0 decreasing to zero as et is decreasing to zero. This together
0
with (A2.4) gives us the estimate (A2.1). []

Lemma A2.2. For any peN and sufficiently big my,>0,
Ko (ﬂ% eXp{ —pUnil@ + (1N py") — plo((— 4 +mg) 1wy ™)

- g i 1l% 1}> L eblod] (A2.8)

. . A
with a constant b’ >0 decreasing to zero as — decreases to zero. (Here  is the free
mg
measure with Dirichlet boundary condition on 6 A and Neumann boundary condition

on 04).

1
Proof. By the Holder inequality we have w1th + — =1 that the left-hand side of
(A2.8) is less or equal to

[1o® o exp(—s-pU 440 +(1\ )y 1"

t 1/t
x [uo@)ug exp< —t pLo(— A+ mdy i) = T 2 lﬂ (A29)
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The first factor in (A2.9) has an estimation of the type (A2.8), by the usual
arguments using Duhamel’s expansion (e.g. [DiGl, GRS1]) and the fact that
[A\A|<4]04|. Concerning the second factor we first observe that performing
first the ,uo-integration with respect to the variable ¢, it is enough to bound

Uo EXP [( P’ - HX "|| 4 1} with some fixed ¢, p independent of m, 4, 4. We

also observe that [(—4+md)y**vi*1(x) is supported in the set {xeA,
2=<d(x,04) <3} [by definition of y** in (15) and the fact that (— 4 +md) p2*(x)=0
in A]. Moreover the kernel p™(x) is exponentially decaying with mgd(x, 04).
The exponential in the above uq-expectation has the form
exp {j [ dzdz'n(z) k(z, z’)n(z’)} with a kernel k(z, z’) which is Hilbert-Schmidt on

I12(04 x 0A), since it is of the form C [ 10 Mp24(x) (— A +md) x74(x) wii(x)d,x for

some constant C > 0. That k(z, z') is Hllbert Schmidt follows from its exponential
decay in mg|z—z'| and its regularity.

[We also use the fact that d(supp(—4+m)y**yi4,04)=1, so we have no
logar1thm1c singularity coming from Neumann boundary conditions on 8 in the
region {2=<d(x,04)<3} which is relevant for our estimates.]

It also follows that G~ */2kG ™~ '/2 is also Hilbert-Schmidt, since k is smooth. By
known results on Gaussian measures the p,-expectation is then finite, see e.g.
[GlJa], and estimated by ‘1?4l with ¢ going to zero for m,— oo as e~ 2™, This ends
the proof of the lemma. []

Remark. Using the fact that the kernel k(x, x’) is small and exponentially decaying
one can get the estimate for pqe!***¥#* 1% 1 by applying the checker-board estimate,
Holder’s inequality and analyticity arguments.
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