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Abstract. We consider quantum fields with weak coupling in two space-time
dimensions. We prove that the set of their ultraregular Gibbs states consists of
only one point and this point is an extremal Gibbs state.

1. Introduction

In this paper we prove the uniqueness of Gibbs states for general P(φ)2-weak
coupling models. This extends to the case of the P(φ)2-model results proven before
for weak trigonometric interactions [AHK1] and exponential interactions
[Zel, Giel].

The method we use is the method of cluster expansion [GJS1,2]. In a
companion paper [AHKZ] we used other methods (essentially FKG-order) to
yield a uniqueness result and the global Markov property for the φ2-models. Weak
coupling P(φ)2-models have been constructed by Glimm et al. [GJS1,2], see also
[GUa], using their method of cluster expansion, starting from the models given by
an interaction confined to a bounded space-time region.

In analogy with classical statistical mechanics, see [Do, LaRu] and also e.g.
[Pr] one can define Gibbs states associated with quantum fields given in a
bounded space-time region. This has been first discussed by Guerra et al.
[GRS1,2], see also [Si] and pursued e.g. in [FrSi, DoMi, DoPe, AHK1]. Roughly
speaking, the construction of Gibbs states corresponds to Kolmogorov's construc-
tion of Markov processes from Markov kernels ("local specification"). For these
general connections see [Fό2] (who also discusses the relations with Martin-
Dynkin's boundary). The work on Gibbs states and their local specifications from
a potential theoretical point of view, applied to the study of quantum fields, has
been pursued in [AHK1, Giel, 2, Zel-5, Rόl-3, RδZ]. The structure of Gibbs
states is rather well understood in classical statistical mechanics, both in specific
models (like in 2-dimensional Ising ferromagnets, where one has a complete
structure theory by work of [Aiz, Hig], see also [Me]) and in general models
(Pirogov-Sinai theory [Sin]; this theory uses preceding work by Dobrushin,
Minlos-Sinai, Gercik).



684 S. Albeverio, R. Hoegh-Krohn, and B. Zegarlinski

For an extension of Pirogov-Sinai results to the study of phase transitions in
quantum field theory see [Im] (see also [GUa, FrSi] and references therein).
Structural results on the space of Gibbs states have been given for free fields
([HoSt, R53]) and for the case where the fields have trigonometric or exponential
interaction [Ze4]. That the set of tempered Gibbs states reduces to a point
("uniqueness of Gibbs states") was first proven for trigonometric interactions in
[AHK1]. The result was extended to general exponential interactions in [Zel]
(see also [Giel]). Independence of classical boundary conditions was shown for
φ2-models in [GRS1,2] and for weak coupling P(φ)2-models in [FrSi, GJS1,2].

For uniqueness results in statistical mechanics of lattice systems see [Do,
AHKO, Fόl, BePi, MaNi, Ge].

In this paper we give the first proof of uniqueness of Gibbs measures for general
weak coupling P(φ)2-models. Basic ingredients of our proof are:
a) estimates on the solutions of the Dirichlet problem with distributional data.
Estimates of this type were first obtained in [AHK1], see also [DoMi2], and
considerably refined in [Rol-3]. These estimates yield a basic regularity of free
conditional expectations;
b) an adaptation of the method of cluster expansion, originally developed in
[GJS1, 2], see also [GUa];
c) a representation of "ultraregular measures" in the sense of Frόhlich and
Simon [FrSi]. Further discussions of related models and the related - but far from
immediate! - proof of the global Markov property is given in [AHKZ].

The present paper is structured as follows. We start with some basic definitions,
we then formulate the basic uniqueness theorem and prove it. Two technical
lemmas are in the appendices.

During the final writing of this paper the terrible news of the sudden death of
our dear friend and coworker Raphael H0egh-Krohn reached us. We deeply
mourn his departure, with great sorrow and gratefulness for all he did for us.

S. Albeverio B. Zegarlinski

2. Uniqueness and Extremality

Let #" be a family of open bounded sets A c R 2 with piecewise C 1 boundaries dA.
Let &r

0 = {AnelF}neN be an increasing sequence consisting of squares centred at
the origin and such that {JAn = lR.2. Let G = ( — A +ml)~ί, respectively, for A e#" ,

n

let GdΛ = ( — AδA + ml)~1, with a positive constant m2, and Δ the two dimensional
Laplacian respectively, ΔdA the Laplacian with Dirichlet conditions on dA. For a
real function / on 1R2 we shall introduce the notation

Let (βf\ SS) be the space of real tempered distributions in R 2 with Borel σ-algebra
generated by the weak topology. For an open set ΛciR2 let 88 A be the smallest
σ-algebra such that all coordinate functions (evaluation functions) {φ(f):fe£f,
supp/CA) are 88 A measurable. For a closed set Λ c R 2 we define 88A=.{c\8dA.\A
open, Ac A'}. A probability measure μ on (<?', 88) is called regular if for any A e SF



Uniqueness 685

there is a constant 0 < cΛ < oo such that

μeφ(f)<^Λ(\\f\\ -i + \\f\\£ι) n\

for all feSf, supp/cΛ and some p e N (we use the notations μF for the
expectation of F with respect to μ, i.e. μF= \Fdμ). In particular the Gaussian
measures μ0 and μδ

0

Λ with mean zero and covariances G respectively G M fulfill (1)
with cΛ = \. Moreover all probability measures μ associated with Euclidean
quantum fields in two space-time dimensions with exponential, trigonometric and
polynomial interactions satisfy (1), as we shall discuss in App. 1. In fact such
measures satisfy the estimate

μ ^ ( / ) ^ e x p [ f l | | G * / | | L l + & | | / | | 2 _ 1 + c | | G * / | | £ J (1)'

for some b>0, α, c^O, p ^ 4 , with * for convolution, which implies (1) with
cΛ = C\Λ\1/2 for some constant C (where | | means volume). The set of all regular
measures is denoted by Mψ. For Λe^ let ψd

z

Λ(x), (zedA, xeA) be the Poissony ψ

kernel associated to the operator (-A + m2) [i.e. ψd

z

Λ{x) is — A + m2-harmonic in A
and is δz(x) on dA~]. Let {hκ e C°°(R2)} be a sequence converging to the ^-function
as /c-»oo and for ηe&" denote ηκ{x) = η(hκ( —x)). Then for μeMψ the sequence
ψ™(x)= $ψd

z

Λ(x)ηκ(z)dz converges in Lp(μ) for any 1 Sp< oo. Moreover its limit
ψηΛ(x) = lim ψη*{x) is for μ a.e. f/ e 9" a solution of the following Dirichlet problem

κ-> oo

in A (see [Rόl, AIH0, DoM]):

(-A + m2

0)xpd

η

Λ(x) = 0 for

i/?^(x) = yy for j

Let Ae^ be a log-normal set, i.e. such that: for any xeA, GδΛ(x,y)^0 as

d{y, dA)^O and KdΛ(x, x) = f dzψδ

z

Λ{x) G(z9 x) is in Li/ί, rf2x) for any 1 ̂ p < 00. We
δΛ

remark that, in particular, all rectangles are log-normal (see e.g. [Si]). From now
on we will restrict ourselves to the subfamily of log-normal sets, denoting it by the
same letter SF. It follows from (1) and the definition of ψd

η

Λ{x) that for any log-
normal set A and μ e Mψ,

\\ψδ

η

Λ( )\\LP(Λ,d2X)<^,μ-^ (3)

For a semibounded polynomial P( ) and Ae^ define an interaction functional by

UΛ(φ)' = λ$:P(φ):0(x)d2x (4)
Λ

with 0<λ< 00 and : : 0 the normal ordering with respect to μ0 (cf. e.g. [Si, GIJa]).
[It is assumed that the polynomial P( ) is normalized in the sense of its constant
term being equal to zero.] By basic estimates following from e.g. [GIJa] and [Si],
using the assumed regularity property of μ and estimates on ψd

η

Λ given in the above
references we obtain, for any μ e Mψ

(5)

and

0 < μd

0

Λe - UΛiφ + ^Λ) < 00 μ-a.e. η. (6)
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Here we denote by φ the integration variable with respect to μd

0

Λ and the
^-integration is with respect to the variable η in xp6

η

Λ. This implies that the
probability kernels

dΛ - UΛ(φ + ψd

n

Λ) rγ , δΛ\

are, for any μ^Oμ-measurable bounded F, well defined for all ηeΩ with some
Borel subset Ωc6?\ μ(Ω) = l V μ e M r Denote Σ = ̂ nΩ and, for ΛcIR2,
ΣΛ = &ΛnΩ. The family δ = {Eη

ΛC}ΛeβrtηeΩ is a local specification in the sense of
([Fδ, Pr]), i.e. fulfills the following conditions:

a) Eη

Λc( ) are probability measures on (Ω, Σ) such that for any F e ΣΛC, E\C{F)
= δη(F), (we write F e ΣΛC to mean F is Z^c-measurable).

b) For any FeΣ the function Ω3η^>Eη

ΛC(F) is Immeasurable.
c) The compatibility conditions: For any F e Σ if ΛicΛ2 then Eη

Λc2E^(F)
= Eη

Λc(F). For a detailed construction of local specifications, in this sense, for
euclidean fields in two dimensions we refer to [R52] (see also [AHK, Ze2]).

A probability measure μ on (Ω, Σ) is called a Gibbs measure for $ if for any

μE'ΛC(F) = μF (8)

for all F e L^μ). The set of all Gibbs measures for δ is denoted by <g(δ). By d&{δ) we
denote the subset consisting of Gibbs measures which have no nontrivial convex
linear representations in terms of other elements from &(δ).

For the construction of Gibbs measures for euclidean fields with polynomial
interactions in two dimensions see e.g. [GUa, Si, GRS, FrSi] and references
therein, see also [Rό2]. Denote by

α^limi-hw-^ (9)
^o Ml

the infinite volume pressure for polynomial interactions (4) (this exists [Gu], see
also e.g. the above references). Let μ e $($). Following [FrSi] we call μ ultraregular
if for any rectangle A,

QδΛe'UΛ'), (10)

with the boundary density ρdΛ e ΣδΛ fulfilling
a) ^ > 0 μ o - a . e .
b) ρdΛεLp(μ0) for l^p<oo and

M (11)

with a constant 0<c<oo independent of the rectangle A (for \dA\>\). By the
notation μ^, we denote the restriction of μ to a sub σ-algebra 0&. It was shown in
[FrSi] that if 1 < / ? < | then

l l ^ l l ^ i (12)

for all sufficiently big rectangles A. The set of all ultraregular measures μ e
be denoted by ^ur(<f). The class of ultraregular P(φ)2 measures is quite rich and
contains in particular [FrSi, Theorem 7.2] all measures constructed
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a) by the Glimm-Jaffe-Spencer (GJS) cluster expansion,
b) via monotonicity arguments [half-Dirichlet = HD — states for P = Q — hφ

(Q even)],
c) the maximal measures μP for any semibounded polynomial P constructed

in the cited paper.
We prove the following result on uniqueness of Gibbs states.

Theorem. Let $ be the local specification corresponding to the λP(φ)2-interaction
given by (4) with 0<λ<λo for some sufficiently small λo. Let μ= lim£^"°, with
E\c e g. Then $ur(g) = {μ} Q d%{£). ^°

Proof. Let μ, μe^ur(<f) and let ρδΛ, respectively ρdΛ, be the corresponding
boundary density. Using GJS cluster expansion we will show that if the coupling
constant 0<λ is sufficiently small, then for any polynomial function F

\imμ® μ\E\cF-E\cF\ = 0 (13)

(here η respectively fj is μ-integration variable respectively μ-integration variable).
This equality implies uniqueness and extremality of the ultraregular Gibbs

measures. Using ultraregularity (10) of μ and μ and the definition (7) of EΛC for any
polynomial function FεΣΛo, ΛOCΛ<EΪFO we have

where μ0, μ0 respectively μd

0

Λ, μd

0

Λ are the free field measures with free respectively
Dirichlet boundary condition on 6A, and φ respectively η are the integration
variables with respect to μd

0

Λ respectively μ0 and analogously φ respectively fj are
the corresponding integration variables of μδ

0

Λ respectively μ0. We can and do
assume that d(Λ0,dΛ)>3. For Ae^0 let idAeCm{A) be such that 0^χdΛ(x)
^ 1 Vx e A and

0 for d(x,dA)S2

1 for di

We will also assume that \AχdΛ\ and \VχdΛ\ are bounded by a constant independent
o f Λ e J v

By change of the integration variables

d d Λ eΛψlΛ (16)

in the integration with μd

0

Λ®μSς,Λ we get (using the Cameron-Martin type
translation formula for Gaussian measures, see e.g. [Fr])

μ®μ\E"AF) - E%{F)\ = e

x \μdoΛ®μeoΛ(cxpl-UΛ

x exp [ - φ(( - A + m2)χδΛψd

η

Λ) -φ((-A+ m2)χeΛψ?η

Λ)] (F(φ) - F(φ)))\

(17)
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Since xpδΛ (and \p~η

A) fulfill in A e #" 0 the equation

(-Δ+m2)ψd

η

Λ(x) = 0 (18)

for μ-a.a. η e Sf' and any μ e Mψ [cf. (2)], so the change of integration variables (16)
is possible. Moreover, the function

hδ

η

Λ(x) = (-Δ + m2)(χδΛ(x)ψδA(x)) = ( - Δ χ d A ) ψ e

η

A - 2 V χ δ Λ Vxpd

η

Λ

is supported in the set {xeΛ:2^d(x,dΛ)^3}. Analogous statements hold for
h\A = {-Δ^m2)ιδA\p\A. For fixed ψδ

η

A and ψδ

η

A (such that the above holds) and a
subset XQA define

Fx(φ, φ) = Ux(φ + (1 - χ ^ ) φ f ) + Ux(φ + (1 - χ M ) ^ )

. (20)J j J
X X

Note that if XQ {xeA: d(x, dΛ)^3} then we have the symmetry:

VΛφ,Φ)=VΛΦ,φ). (21)

Now we apply GJS cluster expansion ([GJS, GUa]) to the unnormalized
measure

μeoΛ®μdoΛ{e-VΛiφ Φ)'} (22)

[in L^μoOμo^sense, as specified below]. For that we define the family of
interpolating covariances #(s) by iteration of the formula

sb)I®GδΛub (23)

with 0^sbS 1 and be{Έ2)* a bond on the unit lattice Έ2. Let <Sf(s) (with s a set of
variables of the type sb, only finitely many different from 1) be an interpolating
covariance. Consider the measure defined as in (22) but with the free measure

s ) with covariance ^(s) instead of μδ

0

Λ®μδ

0

Λ. We see that, for any AieΣx,
if for all bedX one has sb = 0, then our measure factorizes, i.e.

adx = o)(e-v*xiφ φ)A2) (24)

(since in this case one has Dirichlet boundary conditions on dX). In particular for
XQA, A2ΞΞ\ and Aγ of the form

Aι = B(φ,φ)(F(ψ)-F(φ)) (25)

with B a symmetric function

B(φ,φ) = B(φ,φ) (26)

the right-hand side of (24) vanishes [since also Vx(φ, φ) = Vx(φ, φ)). Let us recall the
formula for differentiation of measures ([GJS, GUa]): for suitable A

jμo®βoms)(A)μo®βoms)\~Ά(iis)A), (27)
αsb \z j
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where A^(s) is a well defined operator given by the symbolic notation

/i .. (28)

with G(s) = --- G(s). What is important for us is that the operator Δ^{s) is symmetric
dsb

with respect to φ <-> φ.
Applying successively the fundamental theorem of calculus in the form

1 ^
o dsb

we get the representation

μdoΛ®μdoΛ(Λ)= Σ \dsydyμo®μoms {A), (30)

with ^(sγ) = ̂ ({0SsbS^ for bey, sb = 0 for bφγ}) and dy= Y\τ- W e t a k e

dSbeydSb

(31)

with a polynomial function F localized in a union Xo of unit cubes (contained in A).
After the partial resummation of the expansion (30) we get

Σ $ Γ ( Γ μ 0 0 W ( s 0

ιx. n Γ> (32)
where the summation goes over the pairs (X, Γ) with XcA,X0QX and Γ C Z* <~>Λ,
ΓcintJΓ and each component of X\ΓC meets Xo.

Since by (27) the differentiation gives us

Σ ndy<*(sr) Aiφ.φ)e-rχl9'*KF-F)] (33)

[with &{p) being the partitions of f ] , so using the symmetry of ^ ( ( p φ ) , and Fx(φ, φ)
together with antisymmetry of F(φ) — F(φ) with respect to φ <-> φ for

{(x,5yl)^3} ? we get

\«iSr) 0. (34)

Hence our sum on the right-hand side of (32) reduces to

Σ
Xn{d(x,dΛ

x μlΛudx®μd

0

Λudxe-v^x{φ>Φ). (35)
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Let us set

4}. (36)

Let μc£X) denote the free measure with Dirichlet boundary conditions on d(Λ\X)
and Neumann boundary conditions on dΛ.

Now we remark that (by conditioning inequalities of [GRSl,2])

)e-v{Λ\X)r,Λ(φ,φ) ^ (37)

From Lemma 1 proven in the Appendix 2 we have, using also the definition of V
for any X such that Xn(Λ\Λ) + 0, that

= ίe-a00\(Λ\X)nΛ\ c(

with a constant 0 < c < o o independent of Λ,c(X) and mo,λ for mo^Mo and
0 < M o < 00 sufficiently big, and 0 < λ < λ0 with 0 < λ0 < 00 sufficiently small.

Let us introduce the notation, for arbitrary X:

d r μ o ® / W > ~ K χ ( * ' W ( f ^ ( 3 9)

for Rx Γ being the polynomial localized in XuΛ0 defined in (27) and (33). Then
using (35) and (37) together with triangle and Holder inequalities we get the
following bound for (17):

μ®μ\E\c{F)-E\c{F)\

S Σ ί dsΓ{(μo®μolμo<g)μoh{Sr)\RXiΓ\
rli)

llr AXΓ BXΓ
X1Γ

where

Dl (41)

and

4 1 1 1
with ί<p<- and — I h - = 1. By ultraregularity of μ and μ we have [FrSi]

ll^aylllL )J I I ^ I I L ) = i (43)

for l < p < | .

Remark. What will be important for us afterwards is that the bound

| | Λ < L 4 | | | | ~ δ y l | | ^ oc\dΛ\

lie llLp(μo)' I'e l lL p (μo)^ e
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holds with a constant 0 < c < oo independent oϊΛe<^0 and 0 < λ < λ0, m0 > Mo for
sufficiently small 0<λ<λo and sufficiently big 0 < M 0 < o o .

From (43) and (38) it follows that the quantity Bx,Γ\\ρdΛ\\Lp{μo)\\ρdΛ\\Lpiμo)

appearing on the right-hand side of (40) is bounded by Qxp(c\dAudX\) with a
constant 0<c<oo independent of Λ,X and Q<λ<λ0, mo>Mo, λ0 sufficiently
small, M o sufficiently big.

The polynomials RXtΓ differ from the corresponding polynomials coming from
the cluster expansion for the interaction UΛ(φ) + UΛ(φ) nonessentially since
VΛ(φ, φ) differs from UΛ(φ) + UΛ(φ) only by a linear term φ(hδ

η

Λ) + φ(h~η

Λ) localized
in {2<d(xdΛ)^3}. Hence the Lr-norm of Rx Γ in (40) will have, after integration
with respect to μo(x)μo, as good estimations as in the usual case considered in
Glimm-Jaffe-Spencer's cluster expansion [GJS], namely

(μo®μolμo®μowJRχM)ίfr^~2alXl (44)

with a constant a = a(ml,λ)>0 increasing (to infinity) as the free mass m0 is
growing (to infinity) and the coupling constant λ > 0 is decreasing (to zero).

Using Holder and conditioning inequalities we estimate (41) by

[e-v[V-^^ ^ { l l z ^ l | i l } ] ) ) ^ (45)

with w~1+υ~ί=q~1 (we also used the fact that α^^rO). The first factor on the
right-hand side of (45) is bounded with the use of standard arguments [GIJa] by

e

2b\χ\ with a constant b = b( — Ύ ) decreasing with — τ . The second factor contains
\m2j ml

interactions concentrated at the boundary and is bounded in Lemma 2 in
Appendix 2 by e2b'^δΛ^ with a constant V > 0 decreasing as ml is increasing and λ is
decreasing (and independent of sΓ). We recall that on the other hand the terms Bx Γ

defined in (42) are bounded by e

c\eAueχ\ with a constant 0 < c < oo decreasing with

—2 (and like the other constants is independent of X, Γ, and A). Combining the
m0

estimation on all the factors in each term of (40) we get the following estimate:

μ®μ\E\c{F) - E\C{F)\ ^ £ e~ 2a^ + 2b^ + ™\'Λ\f\eΛuex\ ( 4 6 )
x,r

(where we also used the sΓ-independence of the estimates).
Taking into account that the entropy estimations for ΓcX are the same as in

usual case [GJS1,2, GIJa], the fact that 0<a is increasing and all the constants
b, bf' and c are decreasing as ml increases and λ decreases and also the fact that all
Xn(Λ\Λ)Φ0 are such that \X\^d{0,dA)-4, we conclude with the bound

μ®μ\E\c{F)-E\c{F)\ύe-ad^dΛ) (47)

with 0<α<oo independent of AeϊF0 for all co>ml>Ml and 0<λ<λo, if
0 < Ml < oo respectively 0 < λ0 < GO are taken suitable big respectively small. By
this we are finished with the proof of (13) and hence with the proof of the theorem.
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Appendix 1

Lemma Al.l. For any 25Ξ/?^oo and in dimension d = 2 we have | | G * / | | L p

I _1 ? for any / e ί f ̂ ( R 2 ) , with a constant C > 0 (independent of f) (with

Proof. For oo > p ̂  2 by Hausdorff-Young inequalities we have (for arbitrary
dimension d)

I/I
| | G * / L ^(2π

with - + - = 1 , \<q<2 with ̂ denoting Fourier transform).
p q

Now by Holder inequalities we get

1
\l/2

(A1.2)

I/I 1
\l/2

with - + - = -. Since 1 <q<2, so 5>2 and for d = 2 we have
2 s q

which then yields Lemma Al.l.

(A 1.3)

(A 1.4)

Remark. The same argument hold for 2^p<6 in dimension d = 3, but for d =
one needs 2̂ Ξ

Lemma A 1.2. For any feH_x{A\

with a constant c>0 independent of

(A 1.5)

and f

Proof Let Λ = {xeΊRd:d(x9Λ)^2}. Let χΛeCω(JR.% O ^ χ ^ l , suppχ^
C{xeR d :φc,yl)^l} and χΛ{x) = l for xeA. We have with feH^λ{A\

fd dx|G*/|(x)= f d d x |G*/ |+ I ddx|G*/|(x). (A 1.6)
λ Λc

For the first term from right-hand side (A 1.6) we have the following estimation:

[ ddx\G*f\ (x) S \A\1/2 ([ ddx\G * / | 2 (x)y/2

Λ \Λ

1/2

1/2 1/2 (A 1.7)
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with a constant Cί>0 independent of A e 3F (for sufficiently big \Λ\). Consider now
the second term from the right-hand side of (A 1.5). We have

f ddx\G*f\(x) = 1 ddx\$ddyG(x-y)f(y)\

= \ddx\\ddyG{x-y)χΛ{y)f{y)\, (A 1.8)
A°

since feH-^A) and ^ ( J ) Ξ I for ye A. The integrand in (A 1.8) can be further
estimated as follows:

|J ddyG(x - y) χΛ(y) fiy)\ = (G(x - )χΛ( ),f( ) W )

y 2 ( m i - ( A 1 9 )

We have also

l
Ac

= ί dΛx

Ac

= J ddx[_\ddyG{x-y)χΛ{y){~2VyG{x-y)-VyχΛ{y)-G{x~y)ΔyχΛ{y))V12

Ac

S sup y y y
xeAc

yesuρvχΛ

y. \ddx( sup G(x-y)y / 2^C2M\^I^C3 |/ί |1 / 2 (A1.10)
A /

with some constants C2, C3 > 0 independent of A e 3F (for sufficiently large A).
Combining (A1.8)-(A1.10) we get

1 . (Al.ll)
Ac

From (A 1.7) and (Al.ll) we get the statement (A 1.5) of our lemma. •

Appendix 2

Let Ά = {xeΛ:d{x,eΛ)^4}9 Λ e # \

Lemma A2.1. For any set XCA defined in the cluster expansion (32),

δΛ\X ^e-UΛ\XπΛ(φ)e-oCoo\Λ\XnΛ\<ec\δΛ\X\

wfί/i a constant C>0 independent of A, X, and A decreasing to zero as —y is
decreasing to zero. m°

Proof. First we note that by conditioning inequalities [GRS] we have with
= A\XnA,

i X ) U N { d Λ ) U (A2.2)



694 S. Albeverio, R. Hoegh-Krohn, and B. Zegarlinski

(with μ^{dA) meaning the free field measure with Neumann boundary condition on
dΛ). Let μ0>s be the gaussian measure with mean zero and covariance sGN(dΛ)

+ (1 -s)G = G(s), se[0,1]. Then we have [GlJa]

e-Uγ

(A2.3)

Hence we get, by Eq. (A2.3) and using reflection positivity, a bound

with

Bγ= sup By. (A2.5)
S6[0,1]

Now by definition of AQ we have

where G = - G(s) = Gmλ)- G. Applying the standard cluster expansion [GJS1,2,

GlJa] to (A2.6) and using the fact that G decays exponentially fast with distance
from dΛ we get the estimate

\Bγ{s)\ύc\{dΛ\X)\ (A2.7)

with a constant c > 0 decreasing to zero as —y is decreasing to zero. This together
m0

with (A 2.4) gives us the estimate (A 2.1). •

Lemma A2.2. For any p e N and sufficiently big m o > 0 ,

μo[ μc

oexpi -pUΛφ + (l\χdΛ)ψδ

η

Λ)-p(φ((-A+m2

0)χdΛψd

η

Λ))

*'1^1 (A2.8)

with a constant bf>0 decreasing to zero as —j decreases to zero. (Here μc

0 is the free
m0

measure with Dirichlet boundary condition on dΛ and Neumann boundary condition
on dΛ).

Proof. By the Holder inequality we have with - -f - = 1 that the left-hand side of

(A2.8) is less or equal to S l

^ (A2.9)
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The first factor in (A2.9) has an estimation of the type (A2.8), by the usual
arguments using Duhamel's expansion (e.g. [DiGl, GRS1]) and the fact that
|Λ\yϊ|rg4|3/ί|. Concerning the second factor we first observe that performing
first the μo" i n t e g r a t i ° n with respect to the variable φ, it is enough to bound

Γ (tp)2 - tp Ί
T llx^Vvll + i L with some fixed ί, p independent of mo,Λ,Λ. We

also observe that [( — A + ml)χδΛψd

η

Λ'](x) is supported in the set {xeΛ,

2 ^ d(x, dΛ) < 3} [by definition of χdΛ in (15) and the fact that ( - A + mg) ψd

η

Λ(x) = 0

in A~\. Moreover the kernel ιpeΛ(x) is exponentially decaying with mod(x,dΛ).

The exponential in the above μ0-expectation has the form

exp ί J \ dz dz'η(z) k(z, z') η(z')\ with a kernel k(z9 z') which is Hilbert-Schmidt on
[dΛ dΛ j

L2(dΛ x dΛ\ since it is of the form C J χdΛψδ

z

Λ(x)(-A+m2

))χ6Λ(x)\pd/(x)d2x for
Λ\Λ

some constant C > 0. That k(z9 z') is Hilbert-Schmidt follows from its exponential
decay in mo\z — z'\ and its regularity.

[We also use the fact that d{supp{ — A +m2

))χdΛψd

η

Λ,dΛ)^l, so we have no
logarithmic singularity coming from Neumann boundary conditions on dΛ in the
region {2^φc, dΛ)^3} which is relevant for our estimates.]

It also follows that G~1/2kG~1/2 is also Hilbert-Schmidt, since k is smooth. By
known results on Gaussian measures the μ0-expectation is then finite, see e.g.
[GUa], and estimated by ec|ay1' with c going to zero for m0->oo as e~2m°. This ends
the proof of the lemma. •

Remark. Using the fact that the kernel k(x, x') is small and exponentially decaying
one can get the estimate for μoe

c" χdΛψ$Λ H ^ ί by applying the checker-board estimate,
Holder's inequality and analyticity arguments.
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