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Abstract. Each “graded KMS functional” of a Z/2-graded C*-algebra with
respect to a “supersymmetric” one-parameter automorphism group gives rise
to a cyclic cocycle.

In order to match algebras of primary mathematical interest for which there are no
p-summable Fredholm modules, A. Connes introduced the wider notion of
B-summable Fredholm module [1], which also encompasses the Dirac operator on
loop space rigorously constructed by A. Jaffe and collaborators [2] - and
subsequently developed the corresponding generalizations of cyclic cohomology
and of the Chern character [ 3]. For constructing the latter, Connes had to resort to
a “formal square root” (Ref. [3], p. 20), so to speak enforcing supersymmetry, and
thus leading to conjecture a deep relationship between cyclic cohomology,
supersymmetry, and the modular theory of Von Neumann algebras [4]. On the
other hand A. Jaffe, A. Lesniewski and K. Osterwalder were led by the
investigation of supersymmetric field theoretical models [2] to propose (under a
different name) an interesting alternative construction of the Chern character of a
0-summable Fredholm module [5] (cf. [9]).

The purpose of the present note is two-fold: first, using a Z/2-graded version of
cyclic cohomology [6, 7], we enrich the (slightly adapted) Jaffe et al. (overall even)
cocycle by a second component (odd both for the degree-of-form and the intrinsic
grading)’. Second, we point out, as a first step towards the program [4], that the
Jaffe et al. construction may be reinterpreted to pertain to “graded-KMS
functionals” with respect to one-parameter automorphism groups “supersym-
metric” in that they possess infinitesimal generators “with a square root.” Under
this aspect, [ 5] appears as describing the cocycle attached to the “superextension”
of KMS-states of a type-I flavour. We defer to a later publication the discussion of
more general cases.

! We in fact also treat the overall odd case (cf. 9 below)
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1. Definition. Let A= A°+ A' bea Z/2-graded C*-algebra (i.e. A% and 4! are closed
linear spaces with A'47C A"/ mod2)? possessing a unit 1. A continuous one-
parameter automorphism group of 4 is called supersymmetric whenever

(i) o preserves the Z/2 grading:

afA)cAl, i=1,2, teR, (1
(ii) the infinitesimal generator of «:

_4
il

is the square of an odd derivation ¢ of A4, i.e. one has on the domain Z; of ¢
(contained in the domain Z,, of D):

D o, )

D=62, (3)
d(ab)=(0a)b +(—1)*adb, a,beD;nA°NA", (4)

[note that (1, 2), (1, 3), and (1, 4) hold on the *-subalgebra A4, of infinitely
differentiable (=smooth) elements of A4].

2. Definition. With («, 4) a supersymmetric one-parameter automorphism group of
the Z/2-graded C*-algebra A=A°+ A!, and with teR, a (bounded) linear
form ¢ of A is called graded t-KMS whenever one has?

o(ba)=(—1)"%¢p(an, (b)), abeA NA°NA", (5)
and
poa,=¢, teR (hence @-5=0). (6)
With these definitions one has

3. Theorem. Given a Z/2-graded C*-algebra A= A°+ A, a supersymmetric one-
parameter automorphism group («,0) of A in the sense [1], and an (even*) graded
t-KMS form @ of A in the sense [2], setting, for agy, ay, ...,a,€ A,

agda - da) =13 0% (a0 [ o 0a) .30, 00, ™)

where
I:’:{te(tla"':tn);Oétlé-nétnét} (8)
yields a cyclic cocycle of A in the sense that one has

@'(fe+B)=0, ©)

2 We shall denote by da the grade of ac A°U A", and by 6 the grading automorphism of 4 (for
ac A° 8a=0 and Oa=a; for ac A', da=1 and Oa= —a)

3 Condition (6) is not independent of (5). Note that in restriction to 4%, ¢ is --KMS in the usual
sense

4 Even in the sense that ¢ vanishes on 4! (could be left out, cf. 9)
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where® Be=f'e—oac with, for ag, a,,...,a,,,€ A°UA",

Be(agda,...da,, )=(—1)""aqa, da1 da,

+ zl(—n’* E oo agda,...d(aa;, ))...da, ., (10)
&

ocs(aodal...da,,+1)=(~1)(1%“"“)("+kgoaak)a,,ﬂaodal...dan, (11)

and B=ByA with )
By(ayda, ...da,)=1dayda,...da,+(1)"" 0" ayda,...da,d1, (12)

and A=Y 7" on Q" where
k=0

Magda,...da)=(—1)" 0" E )y daoday...da,_, . (13)

In fact one hus

n—1

@' Belagda,...da)=t 2 "l (5a0 [ o (da,). .. aitn(éan)dt>

I"
=—¢'-Blayda,...da,), (14)

The proof follows from a sequence of lemmas.
4. Lemma. With u,, i=1,...,n differentiable functions: R— A, setting f,=1 and
‘f;;)(ul""aun): I‘f ul(tl)"'un(tn)dta tEIRa (15)

od o
we have that, with i, = Eui, i=1,..,n, for 1<k<n,n=1,2,...:

f(L)(ub Ups o “n):f(;— 1)(”1”2= Uz, ..o un)_ul(o)f(;— 1)(”27 s Uy)

ﬁ:z)(ul’ au ks o un):f(;—l)(ula ""ukuk+1> "‘9“;1)-181— 1)(“1: ~'~,uk—1uka ...,M,,)

"t
n ERRRS ] - Y - ERERS) —1 U\ — Ju - seers U2y Uy Uy
Sonluy Uy~ 1> ) = fn— 1) Uy~ Uy (8) — fiu— 1)Uy Uy 3 Uy — 1 Uy) (16)
and, with 1 the constant unit function,
n—1
kzl f;;-&- 1)(”13 --wukv ]17 uk+l, 'Hvun):tf;;)(ulv ...,Lln). (17)

Proof. Equation (16) follows straightforwardly from (15); and (17) by termwise
adding the relations obtained by making i, = M(u,(t)=t1) in (16) for k=1,...,n

5. Lemma. Setting, for aq,a,,...,a,e A°UA",

Pagda,...da,)=ag fn(0ay, ..., 04,), (18)

5 We have used the definition of the Hochschild boundary fe and the operator 4 of Z/2-graded
cyclic cohomology as formulated within the differential cnvelope Q= P Q" [6]. For the
formulation in terms of multilinear forms, see 6 below neN
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where a, denotes the function t—o(a,), k=1,...,n, (so that ¢'= t_zi"(p ¥ cf (7))
we have, for® weQUQ, ae A°UAY, be A:

V(B e(adwdb)) — (— 1)° O (adw) V(o (b)) = d P (adwdb) — daP' (Lwdb), (19)
where e is the operator (10).

Proof. For ay, a,,...,a,e A°UA" we have, using the derivation rule (4), and
relations (3) and (16),

- (1)6006105{];1")(591’ cees 5gn)}

:(— 1)aaoa0a1f£;* 1)((542; R 5gn)
n1 j 3 éa, -
+ Y (=) E g fl - (Say, 8@ ), s 0a,)
j=1

n-t
n—1+ L ¢a,

—(—1) k=0 kaoﬁ;—l)(égh~"55Qn—1)git(an)
= _5{a0f(;)((3gls ces (Sgn)} +5aof(£.)(5£l1, ..., 0d,), (20)
yielding (19) for ag=a, a,= b, w=day, ..., da, _;.

Equating the values for both sides of (19) of a graded t-KMS linear form ¢ of 4
then yields the first equations (14), since’

(= 17990 (ad o) V(o D)} = (— 1744 D (W(1) P'{ader))
={ ¥V (adwdx))} . (21)
For the proof of the second equation (14) we need

6. Lemma. Let ¢ be an even graded t-KMS linear form of A, and set, for a,,
gy, €4,

F:n)(aos al) cees an) = (P(aoj&)(gla LERE) gn) . (22)
We have the properties
an)(anamala--~aan71):('—1)aanF:n)(a03als~~'san): aneAOUAla (23)
and
kzo Flos g, ..oap 1, .. a,)=tF,(ag,ay,....a,). (24)

Proof. Using (5) and (6) we have

F?n)(am als ey an)

= . j]n (P{aoocm(a1)~~-°‘iz,,(an)} dt

-

Ea,‘?Z da
=(—1) k%o ‘ f] Qo{an“i(t—t,,)(ao)“i(ﬁz,,-r,)(aﬂ--~O‘i(z+z,rlft“)(an‘l)} dt, (25)
telry

6 Q% and Q' are the even, respectively odd parts of the differential envelope Q for its total grading
(sum of the n-grading and the intrinsic grading). The total grade of we Q°U Q' is denoted dw
7 Note that the first equation (14) holds for all graded (-KMS linear forms of A, irrespective of
parity
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however, with s=(sy,...,S,), S; =t —t,, S, =t—1t,+1ty,....,8,=t—t,+1,_,, one has
n

telliff seI}; and ¢ is even, i.e. vanishes unless Y da,=0: this proves (23). As for
k=0

(24), it immediately follows from (22) and (17).
We now check the second equation (14): rewriting definition (7) as

@'(aoday...da)=t 2i"F,(ao,da,, ...,0a,), (7.a)
we have from (12), since 1 =0, and using (23),
_nt1
q)r @ ]BO(aOdal o 'dan) =t 2 in+ 1F:ni— 1)(5a0: 5ala s (361", ]l) > (26)
hence, since ¢, and thus Fj,, ,,, is even

+1

o' BoMagday...da)=1 2 "TF L (dag, ..., 00, w1, ..., 0a,),  (27)
whence our result, by termwise addition.

7. Remark. As explained in [6] Remark [3, 5], the following regauging of ¢":

n
( 1)k deéak-{—nl Zofak
— o < =

™ag, dyy ... ay)= ¢p'(agda,...da,) (28)

will produce the cocycle condition (b + B)t'=0, where

n—1

(bt (ag,ay, ..., ay) = AZO (—1Y1'(ags ..o aajs g, .. ay)
J= -1
—(=1) T E g ag. ay, - ay ), (29)
and B=AB, with
(Bot) (ag,ay, ...,a,)=7(1L,a,,...,a,) (30)
and A= Y J* where
K=o ,
(A1) (ag, ...,an):(—1)"+5“"r<§om"rt(a,,, Ay Ay ey q). (31)

8. Remark. In a quantum field theory situation we know from [8] that any
extremal invariant f-KMS (temperature) state of the bosonic part 4° extends
uniquely to a state ¢ of 4 invariant for o(IR) and ) and such that

p(ba)=plaloz ) (b)), abed 32)

with y=id but, for ¢ odd, (32) is a reformulation of (5).

9. Remark. Theorem 3 holds as well for odd (graded = ordinary) t-KMS forms.
Indeed, as one checks casily, for ¢ odd relation (23) holds without the sign factor
right hand side, whilst (26) and (27) hold as they stand.
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Note added in proof. Theorem 3 suggests the following questions:

(1) In which situations is the entire cohomology class independant of temperature (as found
in [5])? If this prevails in physics, to which extent is the construction of relativistic supersym-
metric field theories tantamount to computing the entire cyclic cohomology of a universal
algebra (array of local type IIIs with intermediate type Is)?

(i) Are the KMS-states the adequate generalization of clliptic operators to the non-
commutative (possibly type III) frame?





