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Abstract. Each "graded KMS functional" of a Z/2-graded C*-algebra with
respect to a "supersymmetric" one-parameter automorphism group gives rise
to a cyclic cocycle.

In order to match algebras of primary mathematical interest for which there are no
p-summable Fredholm modules, A. Connes introduced the wider notion of
θ'Summable Fredholm module [1], which also encompasses the Dirac operator on
loop space rigorously constructed by A. Jaffe and collaborators [2] - and
subsequently developed the corresponding generalizations of cyclic cohomology
and of the Chern character [3]. For constructing the latter, Connes had to resort to
a "formal square root" (Ref. [3], p. 20), so to speak enforcing supersymmetry, and
thus leading to conjecture a deep relationship between cyclic cohomology,
supersymmetry, and the modular theory of Von Neumann algebras [4]. On the
other hand A. Jaffe, A. Lesniewski and K. Osterwalder were led by the
investigation of supersymmetric field theoretical models [2] to propose (under a
different name) an interesting alternative construction of the Chern character of a
β-summable Fredholm module [5] (cf. [9]).

The purpose of the present note is two-fold: first, using a Z/2-graded version of
cyclic cohomology [6, 7], we enrich the (slightly adapted) Jaffe et al. (overall even)
cocycle by a second component (odd both for the degree-of-form and the intrinsic
grading)1. Second, we point out, as a first step towards the program [4], that the
Jaffe et al. construction may be reinterpreted to pertain to "graded-KMS
functionals" with respect to one-parameter automorphism groups "supersym-
metric" in that they possess infinitesimal generators "with a square root." Under
this aspect, [5] appears as describing the cocycle attached to the "superextension"
of KMS-states of a type-/ flavour. We defer to a later publication the discussion of
more general cases.

1 We in fact also treat the overall odd case (cf. 9 below)
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1. Definition. Let A = A° + Albz?i Z/2-graded C*-algebra (i.e. A0 and A1 are closed
linear spaces with AιAJcAι+jmoά2)2 possessing a unit i . A continuous one-
parameter automorphism group of A is called supersymmetric whenever

(i) α preserves the Z/2 grading:

OL^CA*, Ϊ = 1,2, ί e R , (1)

(ii) the infinitesimal generator of α:

D = - αt (2)
dtt=0

is the square of an odd derivation δ of A, i.e. one has on the domain Q)b of δ
(contained in the domain Q>Ώ of D):

D = δ2, (3)

δ{ab) = (δa)b-\-(-l)daaδb, a,be@δnA°nAι, (4)

[note that (1, 2), (1, 3), and (1, 4) hold on the *-subalgebra A^ of infinitely
differentiable ( = smooth) elements of A].

2. Definition. With (α, δ) a supersymmetric one-parameter automorphism group of
the Z/2-graded C*-algebra A = A° + A1

i and with teR, a (bounded) linear
form φ of 4̂ is called graded ί-KMS whenever one has 3

φ(ba) = (-ί)dadbφ(auit(b)), a,beA00r\A°nA1, (5)

and

φo(χt = φ^ tεR (hence φ°δ = 0). (6)

With these definitions one has

3. Theorem. Given a Z/2-graded C*-algebra A = A° + Aί, a supersymmetric one-
parameter automorphism group (α,<5) of A in the sense [1], and an (even4') graded
ί-KMS form φ of A in the sense [2], setting, for a0, au ...,aneA,

n

where

Itl = {te(tι, ...,tn); O^tι^...^tn^t} (8)

yields a cyclic cocycle of A in the sense that one has

0, (9)

2 We shall denote by da the grade of aeA°uA1, and by θ the grading automorphism of A (for
aeA°, da = 0 and θa = a; for aeA\ da = ί and θa= —a)
3 Condition (6) is not independent of (5). Note that in restriction to A0, φ is ί-KMS in the usual
sense
4 Even in the sense that ψ vanishes on A1 (could be left out, cf. 9)
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where5 βε = β'ε — aε with, for α 0 , α l 5 . . . , a n + 1 E A ° ^ J A 1 ,

β'ε(aodaι.. Λan + 1) = {~ \)da°aoa1da1 ...dan + 1

A

7 = 1

odaί...dan+ί) = (-l) v * = 0 )anJrlaodaι...dan, (11)

with

and A= Σ λn on Ωn, where
fc = 0

n- 1

λ(α0dα1...dαJ = ( - l ) ( 1 + a f l n H n +

 k ?o c f l % n dα 0 dα 1 . . .dα I I _ 1 . (13)

/n /αcί one foαs

n - 1

φ*oβz(aQdaι...dar) = ΓΓin~λφ (δa0 J α i ί l(5α 1).. .α i t n(5α I I)

= -φ ίoB(fl 0dα 1 . . .dαn), (14)

The proof follows from a sequence of lemmas.

4. Lemma. Wϊί/i Mi? i = l, ...,π differentiable functions: R->^L, setting /(

ίi) = H «wd

/i)(M l9...,«„)= J MiίίJ. .M^gΛ, ί e R , (15)
ί

ί/zαί, wίί// M, = — w/5 f = 1,...,n, for \<k<n, n = 1,2,...:

J(n)(Ul > ••? w f c ? •? U n ) ~ J(n- 1 ) ( W 1 ? J U k U k + 1 ? > U n ) ~ J(n- 1 ) ( W 1 ? •> w f c - l M / c ? •• >Un)

f{n)(u1,...,un-ί,ύn) = f{n-ί)(u1,...,un_1^

and, with i ίfe constant unit function,
n- 1

Σ /(ή4-l)(Wl5 J W k J l w k + ι , . . . 5 M π ) = ί/ (

f

π )(M 1,...,M l l). (17)
fc= 1

Proo/ Equation (16) follows straightforwardly from (15); and (17) by term wise
adding the relations obtained by making wfc = t(uk(t) = tt) in (16) for fe=l, ...,n.

5. Lemma. Setting, for ao,au ...,aneA°vA1,

5 We have used the definition of the Hochschild boundary βε and the operator λ of Z/2-graded
cyclic cohomology as formulated within the differential envelope Ω= 0 Ω " [6]. For the
formulation in terms of multilinear forms, see 6 below "FN
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n

where gn denotes the function t->ait(an\ fc = l, ...,n, (so that φt = t ^inφo ψ\ cf {!))
we have, for6 ω e Ω ° u Ω \ aeΛ°uA\ be A:

Ψ\β'ε{adωdb)) - ( - 1 ) d { a d ω ) Ψ\adω) Ψ\(x.it(b)) = δ Ψ\adωdb) - δa Ψ\tωdb) ,(19)

where β'ε is the operator (10).

Proof For α0, au ...,ane A°vA1 we have, using the derivation rule (4), and
relations (3) and (16),

~(l)da°aoδ{f<n)(δgu...,δgn)}

- ( - 1 ) " 1 + k = °ί>βkαo/(ίι-i)(^iJ 5^ι.-i)αi t(αn)

ά(^l,.. ;%J5 (20)

yielding (19) for ao = a, an= b, ω = dau ..., dan^ι.
Equating the values for both sides of (19) of a graded ί-KMS linear form φ of A

then yields the first equations (14), since7

( - 1 fw^φ {ψ\adω) Ψ\oiit(b))} = (~ 1 f{adω) {Gb+ί)φ{ Ψ\κ) Ψ\adω)}

= φ{Ψ\oc(adωdκ))}. (21)

For the proof of the second equation (14) we need

6. Lemma. Let φ be an even graded ί-KMS Hnear form of A, and set, for α 0 ?

F(π )(α0, au...,an) = φ(αo/(ί,)(« I > , «n) ( 2 2 )

F ^ /zα^e ί/zβ properties

F;^A%,...,^-i) = (-tf%K^iv.,^), α.G^u^1, (23)

Σ F\n + 1)(a0,...,akA ...,an) = tF\n){a0,au...,an). (24)
k = 0

Proof Using (5) and (6) we have

6 Ω° and Ω1 are the even, respectively odd parts of the differential envelope Ω for its total grading
(sum of the ̂ -grading and the intrinsic grading). The total grade of ωeΩ°κjΩ1 is denoted dω
7 Note that the first equation (14) holds for all graded ί-KMS linear forms of A, irrespective of
parity
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h o w e v e r , w i t h s = ( s l 5 . . . , s n ) , sλ — t — tm s2 = t — tn + tu . . . , s n = ί — ί π + fπ_l5 o n e h a s
n

t e I" iff 5 6/"; and φ is even, i.e. vanishes unless ]Γ 5απ = 0: this proves (23). As for
k = 0

(24), it immediately follows from (22) and (17).
We now check the second equation (14): rewriting definition (7) as

n

φt(aoda1...dan) = t"ϊinFt

{n){ao,δau...,δan), (7.a)

we have from (12), since (5ΐ = 0, and using (23),

_ n+ 1

φtoB0(a0da1...dan) = Γ~in+1Ft

(n+ι)(δa0,δa1,...,δan,t), (26)

hence, since φ, and thus F[,1 + 1), is even

φtoB0λ
k(a0da1...dan) = ί'~2"i''+iF[a+l)(δa0,...,δan.k,l,...,δa^, (27)

whence our result, by termwise addition.

7. Remark As explained in [6] Remark [3, 5], the following regauging of φu.

τ K f l i flJ^-^^^'^^VWfli...^ (28)

will produce the cocycle condition (b + B)^ = 0, where

n- 1

( / ? τ r ) ( α 0 , a u . . . , a n ) = Σ ( - l ) V ( α 0 , . . . , ύ f α + 1 , . . . , « „ )
7 = 0

, Λλn -I +dan Σ dak t , λ /ΛΓV\

-(-1) ^ o τ\ana0,au... , a n _ λ ) , (29)
and 5 = ABQ with

(βoτ0(α0, fll,..., an) = τ\% aθ9..., ΛJ (30)

and ^4= ^ 2fe, where
k-=0

(31)

8. Remark In a quantum field theory situation we know from [8] that any
extremal invariant β-KMS (temperature) state of the bosonic part A0 extends
uniquely to a state φ of A invariant for α(IR) and θ and such that

a,beA (32)

with 7 = id but, for φ odd, (32) is a reformulation of (5).

9. Remark. Theorem 3 holds as well for odd (graded = ordinary) ί-KMS forms.
Indeed, as one checks easily, for φ odd relation (23) holds without the sign factor
right hand side, whilst (26) and (27) hold as they stand.
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Note added in proof, Theorem 3 suggests the following questions:
(i) In which situations is the entire eohomology class independant of temperature (as found

in [5])? If this prevails in physics, to which extent is the construction of relativistic supersym-
metric field theories tantamount to computing the entire cyclic eohomology of a universal
algebra (array of local type Ills with intermediate type Is)?

(ii) Are the KMS-states the adequate generalization of elliptic operators to the non-
commutative (possibly type III) frame?




