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Abstract. We give a formula for the determinant of the super Laplace operator
in a holomorphic hermitian line bundle over a superconformal manifold. This
is then used to obtain an expression for the fermion string measure.

1. Introduction

The main purpose of the present paper is to give an expression for the determinant
of the super "Laplace" operator associated with an hermitian holomorphic line
bundle over a superconformal manifold [Eq. (61) in Sect. 3]. This formula is then
used to obtain an expression for the fermion string measure on the superconformal
moduli space. A comparison with [6] shows that, like the bosonic string measure
which results from the Mumford form, the fermionic string measure can be also
obtained from a superanalog of the Mumford form constructed in [6]. (A
somewhat different proof of this statement was given in [3].)

The paper is organized as follows. In Sect. 2 we explain in detail the definition
and an explicit construction of the super Mumford form of [6]. In Sect. 3 hermitian
holomorphic line bundles over a superconformal manifold and the determinants
of associated Laplace operators are analysed.

In what follows we exploit heavily the results of [5] on the geometry of
superconformal manifolds. Let us recall here some notation from [5]. If Jί is a
superconformal manifold then ω denotes a line bundle, the local sections of which
take the form Df for a scalar function / and for the spinor derivative D = d/dζ
+ ζd/dz. The space of holomorphic sections of a holomorphic bundle L over Jί is
denoted by stf(L). A principal simple zero Q of a local holomorphic section s of L is
defined by the equations s(Q) = 0, Ds(Q) = 0 [and dzs(Q) φ 0 for Q being a simple
zero]. A principal simple pole of a meromorphic section s is defined as a principal
simple pole of s~*, provided the latter makes sense. If φ is a meromorphic section
of the bundle ω, then there exists such a multivalued analytic function / that
φ = Df. The shift in the value of / corresponding to a cycle in the underlying
manifold is called the period of φ. The period which corresponds to turning once
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around P, a pole of φ, is called after dividing by 2πi the residue of φ, to be denoted

by res φ. /For ease of notation we shall write in this paper res φ instead of the more

correct res φ used in [
Pred

2. A Superanalog of the Mumford Form

In this section we describe certain constructions which make it possible to find a
measure on the superconformal moduli space. This measure possesses obvious
analytic properties as we shall see. After that we argue that the same measure arises
from fermion string theory.

Let us consider holomorphic line bundles L,K,M = K®L over a super-
conformal manifold J\f and a holomorphic section s of K. Our starting point is a
relation between the spaces of holomorphic sections srf(L), j/(L*®ω), and the
spaces stf(M\ j/(M*®ω). In other words, we are going to describe a relation
between the cohomology groups H\Jί,L) = sί{L\ Hί(JY',L) = Π(jtf(L*®ω))*,
H°(J^, M) = srf(M\ and H\JΓ, M) = Π(<zf(M* ®ω))*. We suppose that the section
sred of X r e d possesses only simple zeros and denote the corresponding principal
zeros of s by β 1 ?..., QN. Let M{ denote the fibre of M over Qt and M\ denote the
fibre of M®ω over Qt. Both M{ and M\ are of dimension (l|0). To every local
section of M holomorphic near Qt one can assign a point in a (l|l)-dimensional
space Wt with coordinates (φ(βf), Dφ{Q^)). The direct sum W= (x) Wi is thus an
(N|AO-dimensional space. Note that the space ΠM\ is embedded naturally in Wt.
The corresponding coset space can be identified with Mt\

M—W/ΠM'i. (1)

These identifications do not depend on coordinates used near β f. Indeed, local
coordinates and a local trivialization of M yield coordinates on Wb (φ(Qi), Dφ(βt ))
= (α,α), which transform as (α, α) = (gα,F[gα + Dg oc]) under a change of the
trivialization described by a function g and a change of coordinates giving D = FD.
Identifying ΠM[ with the subspace consisting of points (0, α) in Wt one obtains
Eq. (1).

The space H°(J^,L) can be embedded in H°(J^,M) by mapping a section
ψ e H°{Jί, L)toφ = sψe H°{Jf, M). The image of this map in H°{Jί, M) equals the
kernel of another natural map H°(J^, M)-> W. We obtain thus an embedding α of
the coset space

°°
into W. The multiplication by s defines similarly an embedding of H°(JV, M*(x)ω)
in //°(yΓ,L*®ω) by virtue of L*®ω = K®M*®ω. This gives us in the same way
as above an embedding β of the coset space

V = H°(jr, L*® ω)/iί°(yΓ, M*®ω)

into U=®Ui, where

R^UJΠR'i (2)

and Ri,R'i denote respectively the fibres of L*®ω, L*®ω®ω over the point Qt.
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Let us show that

ΠU—Wf (3)

for i=\,...,N. In order to prove this we have to describe a non-degenerate
coupling between the spaces Wt and ΠΌ^ Every element x in Wt can be represented
as (m(Qι), Dm(Qi)) for a local holomorphic section m of M. Let y e Ut be similarly
represented as (r(Q^Dr(Q^)) for a local holomorphic section r of L*®ω. Then the
coupling between x and y can be defined as follows:

mr
<x,.y> = r e s — . (4)

Qi S

This can be written also (using the definition of a residue, see [5]) as

(x,y} = D(mr/s)(Qi), (5)

provided s = (z — zi — ζζi) s(z9ζ) near Qi = (zi,ζi). The non-degenerate coupling
between W= 0 Wi and ΠU = @ΠUiis defined as the sum of residues of the form

(4).
Now we are able to define a map β*λ of W onto Π V'*, where λ is the

isomorphism between W and 77ί7*. One can readily verify that β*λa = 0. For this
aim one has to check that the coupling between X = OLXX and y = βyx gives zero.
Indeed, the elements xeW and yeU can be represented in this case by global
holomorphic sections meH0(Jί,M) and reH%/Γ,L*(χ)ω). [In fact m is to be
chosen from the class x1 e V= H°(JV, M)/H°(JV, L), and similarly r must belong to
the class y1 e F'.] Now mr/s represents a holomorphic field of type (1/2,0) which
has its poles only over the points Qίred, while the sum of all the residues of such a
field is known to be zero. This shows that the map β*λ defines a map of the coset
space W/V in ΠV*. The latter one is in fact an isomorphism. This can be verified
by counting the dimensions according to the Riemann-Roch theorem.1

We are going to deal with measures on the cohomology spaces. A measure μ on
a complex linear superspace E is understood as a function of the basis e = (eu...,en)
in E which obeys μ(e') = μ(e) det C for a change of the basis β = C\e y Every choice
of a basis in E defines obviously a corresponding measure on E demanding that
this measure equals 1 on the basis chosen. Any two measures differ by a scalar
factor; that is to say, the space of measures, mc(E), is a one dimensional complex
space. It is easy to see that

m^E*) = m^Efi (6)

(7)

1 The isomorphism W/V=ΠV'* is rather easy to prove directly. It follows from a long exact

cohomology sequence corresponding to a short exact sequence of sheaves, 0->L—•M->M-> 0,

where the map L—>M (embedding of sheaves) is determined by the multiplication by 5, a
holomorphic section of K = M®L*; denotes the sheaf corresponding to M restricted to the zero
set of s, so that, in particular, H°(^, M)= W and Hλ(Jr, M) = 0. The above short exact sequence
gives us Q^H°(JT,L)^H°(Jr,M)^W^Eι{jV, V)^U\Jί,M)^0 from which the isomorphism
WIV=I1V* follows immediately by virtue of Serre's duality H 1 (^ ,L) = ΠH0(J^,L*(x)ω)*.
Moreover, the Riemann-Roch theorem itself can be proved easily in this way



440 A. A. Rosly, A. S. Schwarz, and A. A. Voronov

and, for a (l|0)-dimensional space £,

= l | 0 . (8)

An important role will be played in what follows by the space mc(I'L), where

ΣL = H°(JT, L) ® ΠH°(jr, L* ® ω). (9)

Note that ΣL*<$ω = ΠΣL, and hence, by virtue of (7),

If E" = E/E', then any two given measures on E' and E" define uniquely a measure
on £, and one has thus an isomorphism

mc(£')® mc(£") = m c(£). (11)

In order to describe this explicitly lGte = (eu...,er,er + ι,...9er+q)be such a basis in
E that el9...,er make up a basis in its subspace E'. If π :£-•£" is the natural
projection then the vectors πer+u...,πer + q form a basis in E". Given some
measures μ! and μ" on respectively E' and £", the measure μ'®μ" on E is defined by
the relation

I f n o w s o m e a r b i t r a r y b a s i s ( e l 9 . . . , e r + q ) , ( e ' u . . . , e'r), a n d (e'[,...9 e q ) a r e c h o s e n i n E,
E', and E" respectively and μ, μ', and μ" are the corresponding measures [so that
μ{eu ...,er+q)=l, etc.] then μ differs from μ'®μ" by the following factor

.J μ'Θ/Λ (12)
B )

where the rectangular matrices A = (αfJ ) and B = (bjk) are determined from

(13)

(14)

The rectangular matrix B~ι of dimension q x (r + q) in Eq. (12) is defined as an
arbitrary one satisfying B~1B = Iq.

Equations (11), (6), (7) give us

l°{Jί, L)) = m(^H0{Jί9 M))® mc(iϊ0(yΓ, L))*, (15)

(16)
i ~\j\f, M*®ω))* ,

and, by virtue of the isomorphism W/V=ΠV'*,

(17)

Using Eqs. (15)—(17) and (9), (10), we obtain

(18)
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Note finally that m^W) = σs, where σs is the tensor product of the fibres ωf of the
bundle ω at the points Qb

σs = ψωi. (19)

This follows from Eqs. (1), (8), (11) (recalling the definition M ^ M ^ ω ^ ) ; indeed,

= mv(Mi)®m(C{Mi)*®m<c(ωi)* = m^ωf) = ωt.

Thus we have a canonical isomorphism

σs = mc(ZL)* <g> mc(ΣM) = m c (ΣJ* ® m c ( Σ L Θ K ) . (21)

This relation remains valid also if s is a meromorphic section of an arbitrary line
bundle K with principal simple zeros Qt and poles Pp provided the space σs is
defined as follows:

(22)

(This fact can be proved by reducing to the particular case considered above.
Indeed, a meromorphic section s of K can be represented as s = sjs2 for some
holomorphic sections sus2 of the bundles KUK2, such that Kι®K2

< = K.)
Let us apply the isomorphism (21) to the case of a holomorphically trivial

bundle L, i.e. L = Θ; then

. (23)

Combining Eqs. (21) and (23) we obtain

^C(^LΘX) = rnώΣI)®mς£Σκ)(g)mJίΣΘ)*. (24)

This can be rewritten, using the notation

ih^{ΣL) = m€(ΣL)

as

The last relation can be applied to the bundles ωk. Setting

Σk = Σωk = i μ

we have thus

m<c(Σk) = άΣtf®άΣY ~k ^Σ)2^1

[We exploited here the relation m(C(2'1) = m(C(2'(ί;)* which represents a particular
case of Eq. (10).] In the case of fc = 3, Eq. (26) gives us

5. (27)



442 A. A. Rosly, A. S. Schwarz, and A. A. Voronov

The above relations (26), (27) are analogous to relations proved in the bosonic case
by D. Mumford. The isomorphism (27) is mediated by a function Φ(e, f) of weight 1
with respect to e, a basis in Σ3, and of weight —5 with respect to /, a basis in Σx.
[Here, for a function depending on a basis, to have the weight w with respect to it
means that this function is multiplied by (det Cw) if the basis is transformed with a
matrix C ] The function Φ can be called the super Mumford form. It is worth
noticing that Φ is holomorphic on the superconformal moduli space (i.e. with
respect to changes of the superconformal manifold Jf\ provided of course the
bases e and / are chosen to depend holomorphically on the moduli. If the genus g
of Jί is more than 1, we have jtf(ω~2) = 0, and hence m(C(Σ3) = m(C(^/(ω3)). On the
other hand, Σί =s$(ω)@Πstf{G) and, if Jί is a normal superconformal manifold
[5], jtf(&) consists of constant functions, while j/(ω) is a superspace of dimension
(0|g). We are able thus to identify mc(Σj) with m(£(s^{ω)). Consequently, Eq. (27) can
be written under these circumstances as

m c(^(ω 3)) = m c (^(ω)) 5 . (28)

Let us consider now real measures on the spaces jtf(ω), jtf(ω3). We shall denote
by mR(E) the one dimensional real space of real measures on a real linear space E. A
real measure on E is by definition such a function of the basis in E which after a
change of the basis gets multiplied by the modulus of the determinant of the
corresponding matrix. If E is a complex linear space we leave the same notation
m^E) for E considered as a real space. In this case however we can identify rn^E)
with |mc(£)|2, where the symbol \F\2 denotes the subspace of F®F consisting of
elements invariant under complex conjugation. With these conventions we obtain
from Eq. (28),

) 5 . (29)

Let us recall now that there is a natural scalar product in jtf(ω) which is non-
degenerate if Jί is normal [5]. The scalar product yields a real measure2 on stf(ω).
This defines through Eq. (29) an element dμern^{stf(ω3)). The latter is however
nothing but a real measure on the superconformal moduli space Jίg. Indeed,
Πstf(ω3) can be identified with the cotangent space to Jig (see Sect. 3 of [5]). On the
other hand, to define a measure on the manifold Jίg means by definition to define a
measure on each tangent space ZΓ^Jί^ whereas

To be more precise, we have thus constructed a measure on a part, Jt'φ oϊJig only,
where Jί'g consists of classes of normal superconformal manifolds. Note also that
by construction this measure dμ on M'g can be expressed through the super
Mumford form defined in Eq. (27) [or, equivalently, in Eq. (28)]. Namely, if e is a
(complex) basis in j/(ω 3 ) = £ 3 , then the real measure dμ takes for this basis the
value equal to

dμ(e9 e) = \Φ(e9 / ) | 2 = |Φ(e, /)|2(det I m τ ) " 5 , (30)

2 If (βf) is a complex basis in a complex space E provided with an hermitian scalar product < , >,
then the real measure corresponding to this scalar product is defined as det<eί,eJ >. (In other
words, this measure can be determined by any orthonormal frame)
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where / is an orthonormal basis in jtf(ω) = ΣX (note that the left-hand side does not
in fact depend on the choice of such a basis); / = (/1?..., fg) is a basis in $ί(ω) which
consists of holomorphic type (1/2,0) fields on Jί with ^4-periods obeying
Ai(fJ) = δip while τ is the corresponding matrix of J3-periods, Tij = Bi(fj). The
function Φ(e, f) is holomorphic in moduli (provided e depends hollomorphically
on moduli). Equation (30) describes thus analytic properties of the measure on Jt'g.
This measure arises in fact in fermionic string theory. This will be discussed in the
next section.

Now we are going to express the measure defined above in terms of certain
analytic fields and their zeros on superconformal manifolds. As a matter of fact, all
the work is already done. We have only to express a number of the above canonical
isomorphisms in terms of explicit formulas.

Let us consider first the canonical isomorphism (21). Let βu ..., βn be a basis in
j/(L) and let 71? ...,yfcbe a basis in /7j/(M*(x)ω). In j/(M) we can choose a basis of
the form (sβ1? ...,sβn,α1 ? ...,αm), while in 77j/(L*(x)ω) we choose a basis
(syu ...,syk,εu ...,εt). If 5 is an even holomorphic section of K = M®L? and σis an
even meromorphic section (with σ r e d φ 0) of ω [i.e. a field of type (1/2,0)], then let us
define RL,M(s?σ) a s follows. We assume as usual that s red possesses only simple
zeros and σ r e d φ 0, oo at those points. Note that in practice it may be inconvenient
to deal only with sections possessing only simple zeros. However the formulas
below can be generalized easily to the case of multiple zeros. Let us pick a
coordinate system (z{ί\ £(0) in a neighborhood of each principal simple zero Qb

i = ί,...,N, of 5 with the origin at Qt in such a way that σ(Qι) = ί in these
coordinates. Then set

R L t M { s 9 σ ) = d Q t [ n _ ι ) 9 (31)

where

Da1(Q1)...Da1(QN)\

Λ=\\ i ! ! | , (32)

Wm(Qi) αmίOv) J>am(6i) DoLm(QN)

B =

s ... res εjs

resets ... τzsεjs
QN QN (33)

Qι : Qi

\resC(ΛΓ)ε1/s ... resC(jv;ε/Λ/
\QN QN I

Note that if s is represented near each point Qt as s = z(ι) s^ for a non-vanishing
function s*ι)(z(ι), ζ{ι\ then the residues in Eq. (33) can be written as follows:

res Sj/s = Disj/^) (0,0), (34)

res ζ{ί)ε Js = ε .{0, ϋ)l$\0,0). (3 5)
Qr ] 3
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[We have not indicated local trivializations of the bundles involved which must be
chosen of course in a way consistent with the relation K = M®If and with
trivializations of ω provided by the coordinates (z{ι\ ((ι)).] Note also that the matrix
on the right-hand side of Eq. (31) is in fact a square one of dimension (N\N)
x (N\N), for m + l = N\N by virtue of the Riemann-Roch theorem.

Every choice of bases in stf(L), j/(L*(x)ω), s$(M\ and tstf(M*®ω) defines
certain measures in ΣL and ΣM, and hence an element v in mc(Z1

L)*(g)m<c(ΣM). On
the other hand, every meromorphic section σ of ω defines an element v' in σs. It can
be verified directly that V is mapped by the isomorphism (21) to RL M(s, σ) v, i.e.

v' = RL f M(s,σ).v. (36)

In order to prove this one has to note that the vectors α l 5 . . . , α m e stf(M) generate a
basis in V= J / ( M ) / J / ( L ) , the vectors εi,...,ειeΠs/(L*®ω) generate a basis in
ΠV = Πsi{L*®ω)IΠs4{M*®ω\ and use then Eqs. (12), (31)-(33).

We have thus proved that if K possesses a holomorphic section s the
isomorphism (21) can be described by the function RL M(s,σ). The isomorphism
(21) corresponding to a meromorphic section s is described by a function which is
also denoted by RLtM(s,σ) and can be defined in this case as follows:

Here σ is an even meromorphic section (σ r e d φ 0) of ω such that σ r e d + 0, oo at zeros
and poles of s red; s1 and s2 are holomorphic sections of bundles Kί and K2 chosen
in such a way that K = K1®K%, s = sjs2. [Note that the computation of the right-
hand side of Eq. (37) requires a choice of basis in si{L®K^) and <s/(L*(x)Kf (χ)ω)
which must satisfy an obvious constraint following from the construction. The
result is however independent of this choice.]

Proceeding now to Eq. (25), we recall that it is constructed by means of two
isomorphisms of the form (21) [namely, Eqs. (21) and (23)]. Consequently, the
isomorphism (25) is served by the function

R&,K(S^)/RL,L®K(S,V). (38)

We are able now to compute the Mumford form Φ which realizes the
isomorphism (27). Recalling that the latter isomorphism results from repeated use
of (25), we find

φ =

 Rω2,ωis,σ)Rωίω2(s,σ)

ίRJ)Y '

s and σ being even meromorphic sections of ω. This expression can be regarded as
a superanalog of the Beilinson-Manin formulas in [2]. It must be pointed out that
Eq. (39) has a drawback. Indeed, it makes sense only if j/(ω 2 ) is a superspace, but
this is generally not the case. (This was pointed out to us by A. M. Levin.) However,
it is not hard, at the cost of certain complications, to obtain an expression
involving only s/(Θ), j/(ω), and jtf(ω3). Here jtf(Θ) and stf(ω) are superspaces in the
considered case of a normal superconformal manifold, while stf(ωk) is always a
superspace if fc^3. Let σ,sι,s2 be even meromorphic sections of ω such that
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cr r e dφ0, oo at zeros and poles of sus2. (As usual we assume that σ r e d φ0, etc.) Then
5 = 5^2 is a meromorphic section of ω2. Now one can find

φ= Rω,ω^9σ)
RΘ,ω(Sl>σ)RΘ,ω(S2>σ)

by applying twice Eq. (21) in the case of L = Θ, K = ω with σSt, ί = l , 2 , in the left-
hand side and then applying Eq. (21) for L = ω, K = ω2 with σs = σSι®σS2. [Of
course, the bases chosen to define the left-hand side of Eq. (40) must obey certain
obvious constraints in order to allow for the above threefold use of Eq. (21).]

Equations (30), (39), (40) give us an expression for the measure dμ on the
superconformal moduli space Mφ or, more precisely, on its part Jί'g corresponding
to normal superconformal manifolds. The fermion string partition function
represents an integral of dμ over Jίg (see Sect. 3). An alternative expression for the
partition function can be obtained with the help of an extended moduli space of
[3]. Namely, consider a manifold Jίg which is defined as the total space of a bundle
with Jί'g as its base and J(Jr)5 as its fibre over the point represented by a
superconformal manifold Jί. Here J(Jf) is the Jacobian of Jί and J(Jf)5 deenotes
the direct product of five copies oϊJ(Jί\ a manifold complex conjugated to J(Jί).
The manifold J(Jί) can be represented as a quotient of the space ΠΣί over a lattice
(see [5]). The tangent space £ΓJ(g contains a subspace 5ΠΣ1 (the direct sum of five
copies of 77IΊ), so that ZrjtJιSΠΣι=?rj('g = nΣ%. This implies

mc(^Jίg) = M€(ΠΣ*)(g)m€(5ΠΣ1) = mv(Σ3)®m<L(ΣίΓ
5 = <L, (41)

where the last equality is due to Eq. (27). The canonical isomorphism
m^^Jkg) = C defines a holomorphic measure Φ on Jίg. (As a matter of course, Φ is
nothing but the pull-back of Φ to Jig) Since the volume of J{Jί) equals 1 with
respect to the natural metric on the Jacobian, it follows that the integral of the
modulus squared of Φ over Jίg coincides with the integral of dμ over Jί'φ giving
thus the same partition function.

3. Hermitian Holomorphic Line Bundles. Determinants of Laplace Operators

Let us consider an hermitian holomorphic line bundle L over a superconformal
manifold Jί. (That is to say, we assume that an hermitian scalar product is defined
in the fibres of L.) The field FL of type (1/2,1/2) defined via

FL = DDlog\\s\\L (42)

will be called the curvature of the hermitian bundle L. Here s is an arbitrary local
even holomorphic section of L (with s red Φ 0) and FL is obviously independent of
the choice of s.3

3 The curvature of an hermitian holomorphic bundle over an arbitrary complex supermanfiold
can be defined also as a (1,1) differential form in the usual way. In the case of a superconformal
manifold two definitions of the curvature are related by means of the map β described in Sect. 1 of
[5]
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An hermitian structure in the bundle ω is referred to as a super Riemann metric
on a superconformal manifold. (This definition agrees with that given in [3].) The
curvature of the hermitian structure in ω will be called the curvature of the super
Riemann metric. Let us denote it by R; thus

R = DDlog\\φ\\ω9 (43)

where φ is a local even holomorphic field of type (1/2,0).
In a manifold endowed with a super Riemann metric, there is a natural

supervolume element dv (cf. [3]). This allows one to introduce a scalar product in
the space Γ{L) of sections of an hermitian bundle L; namely

iψu ΨI)L= ί (<Pi, ΨiliAv> ( 4 4)

with (φu φ2)L being the scalar product in the fibre. By means of scalar products in
Γ(L) and Γ(L(g)ώ) one defines an hermitian conjugated operator D£ for the
25-operator associated with a holomorphic structure of L, 0L:Γ(L)-^Γ(L(χ)ώ).
Then the operator

• L = J5+Z) L (45)

acts in the space Γ(L). Our aim is to study the determinant (i.e. Berezinian) of Π L

This will allow us to work out the string measure on the superconformal moduli
space. (This measure can be written in terms of d e t Π ω and d e t Π ω

3 )
The determinant det Π L

 c a n be conveniently dealt with in terms of a measure
on the space of zero modes. Namely, consider the superspace
ΣL = jtf(L)®Πjtf(L*<S)ω) constructed from the kernel and the cokernel of DL and
take some bases, (α1? ...,αm) in stf(L) and (β1,...,βn)in iLs/(L*(χ)ω). Let us define
(jVL)fj = <αί5 α7), (N'j)kl = <jSk, β{) by means of Eq. (44) (we suppress the subscripts L
and L*(x)ω in <,» . Then the expression

L det N'Ldmadnbdmάdnϊ), (46)

with ab bk being respectively complex coordinates in stf{L), iLo/(L*(χ)ω) corre-
sponding to the bases α, /?, can be considered as a real measure on ΣL.4 A variation
of dμL under an infinitesimal variation of the hermitian metric in L can be
expressed in terms of Seeley coefficients. (The variation of det Π L i

s given by Seeley
coefficients and zero modes α, β, while in the variation of dμL the contribution of
zero modes cancels [3].) Computing the Seeley coefficients, one finds

δdμL=(^δlog\\s\\lRd2zd2ζ\dμL, (47)

4 Note that the measure dμL differs by a factor of (det • L) 1 from the measure defined by the scalar
product in ΣL. The super Riemann metric on Jf and the metric in the fibres of L can be chosen in
such a way that the scalar product (44) restricted to the subspace of holomorphic sections is non-
degenerate. (This can be, for instance, the super Poincare metric on Jf) In particular, the super

volume J dv of Jf will be then an invertible element, i.e. (\ dv\ φθ
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where s is a meromorphic section of L and R is the curvature of the super Riemann
metric on Jί. In the case of a holomorphically trivial bundle L Eq. (47) implies
immediately

— J log ||5r||£ - Rd2zd2ζl (48)

where s is now a non-vanishing holomorphic section of L, while Θ stands for a
direct product bundle Jί x (C1|G endowed with the standard flat metric. (Notice
that L and $ are isomorphic as holomorphic bundles and differ only by a choice of
hermitian metric. The measures dμL and dμΘ are defined thus on the same space.)
We are going now to generalize Eq. (48) to the case of an arbitrary hermitian
holomorphic line bundle. For this purpose we consider additionally certain
constructions which are also of an independent importance.

Let s and sf be even meromorphic sections of hermitian holomorphic line
bundles L and L, respectively. These sections are supposed to possess only simple
principal zeros and poles. Let Q{ and P ; be the principal simple zeros and poles of s
and let Qr

k, P\ play the same role for s'. We define then {sr, s} by the following
relation:

^Lg\\\\L Σg\\\Qd\\LΣg\\s\PJ)\\Lλ (49)
π i J J

It is easy to verify that

{s',s} = {s,sf}. (50)

Indeed, {s\ s} can be rewritten as

π j

+ Σlog | |5(βi) | | L -Σlog | | s(Pί) | | L , (51)
k I

and the symmetry property (50) follows by integrating by parts. DDlog| |s ; | |L, in
Eq. (51) is understood in terms of distributions, so that

J

where δP denotes a (5-function on Jί supported at the point P; if P = (z0, ζ0) then

It is easy to find a change of {s\ s] caused by a change in s and s'; by virtue of (49),
one has in fact for a meromorphic function φ

\og{φs\s} = \og{s\s}+Σ^g\φ(Qi)\-Σ^g\φ(PJ)\. (52)
i J

Equation (49) allows us also to express the relation (48) in the following form:

{s,σ}~2, (53)
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where σ is a meromorphic section of the bundle ω. The latter relation hints at the
form of an analogous relation for dμL in case of an arbitrary (holomorphically non-
trivial) hermitian bundle L, as we shall see shortly. For this aim we have to clarify
the invariant meaning of {s',s}.

First of all let us consider the following construction. Given any two
holomorphic line bundles L and L one can define a one-dimensional complex
vector space [L', L] as follows. If s is as before an even meromorphic section of L
with principal simple zeros at Qt and principal simple poles at Pp then one defines
[L',L] = f(x)L Q \ (x) f(x)Lp V. 5 This definition is in fact correct; [_L,L] does not

depend on the choice of s. (That is to say, the spaces [L', L] given by different
choices of s are canonically isomorphic, as it will be seen below.) Moreover, one has
the following canonical isomorphisms:

[L',L] = [L,L'] ; (54)

[L',L*] = [L,L]* , (55)

[L',L^L^IL.L^®[L',L2] . (56)

The last two of these are obvious from the definition. The isomorphism (54), as well
as the consistency of the definition itself, follows from the symmetry \_φ\ φ]
= [φ, φ'~\ of the Weil coupling, \_φ', φ\ of two meromorphic functions ψ and φ'
discussed in Sect. 2 of [5]. Let us define now the Weil coupling [φ',s] of a
meromorphic function φ' and a meromorphic section s of L;

φ'(Pj), (57)

with Qt being principal simple zeros and Pj being principal simple poles of s. [The
coupling of two meromorphic functions is of course a particular case of (57).] Now
we are able to give (following Deligne [4]) an alternative definition of [L', L] which
makes the above properties obvious. The one-dimensional complex space [L', L] is
defined as a set of equivalence classes [s',s], where s',s are even meromorphic
sections of L', L which possess only principal simple zeros and poles such that the
set of zeros and poles of s' does not intersect the same set for s. If s", 5 is another pair
of sections and φ' = s'/s\ φ = s/s are thus meromorphic functions, then we set

[?, s] = [s\ 5] [φ', s-] [φ, s'] [φ', φ\ , (58)

where the factors [φ', s], [φ, s], \_φ\ φ] are already defined by means of Eq. (57). We
obtain thus a definition of [L', L] and of the Weil-Deligne coupling [V, s] for
meromorphic sections, so that [s'5 s] e [L, L]. Now it is straightforward to see that
the isomorphism of [L', L] and [L, L'] which identifies [s', s~] and [s, s'] is well
defined by virtue of the symmetry [φ', ψ] = \_φ, φ'~] for functions. It remains to show
that the latter definition of [L', L] coincides with the former. This can be proved by

5 Note that we have already met an example of such a construction. The space σs considered in
Sect. 2 with s being there a meromorphic section of a bundle K can be regarded as [ω, X].
Equation (23) can be thus written as m<L(Σκ)®m(L(ΣΘ)* = [ω,K~]. Note also that this relation
together with m^ΣJ = mJZ^)* [cf. Eq. (10)] yields m(Π(Σx)

2 = [ω,A:]2(8)[ω,ω]~1
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noticing that [s', s] can be identified with the point /̂ (g) s'(Qi)\ ® f(g) s'(Pj)\ ~1 in the

space ί(ψLQ\®ί(g)LPY. { i ' ^j '

The definition of {sf, s} [Eq. (49)] allows us to introduce a norm in the space
[L,L] for hermitian holomorphic bundles L,L. If x = [s',s] e[L',L], we set
||x|| = {5^5}. One can see directly from Eqs. (52) and (58) that ||x|| depends only on
xe\_L,L~] and not on the choice of sections s\s and that \\λx\\ = \λ\ \\x\\ with a
complex number λ as required for the definition of a norm. Moreover, Eqs. (50),
(52) show that the isomorphisms (54)-(56) are in fact isometries with respect to this
norm. Since the complex space [L'3 L] is one-dimensional, one can consider || | | 2 as
a real measure on it or, in other words, as an element in |[L',L*]|2. (Recall that
mπ(E) = |m c(£)|2 and that m^L, L]) = [L', L]* = [L', L*].) Therefore, to every two
hermitian holomorphic line bundles L and L we relate an element in |[L', L*]|2. Let
us denote it by κ(L',L*)e|[L',L*]|2.

According to the notation introduced in Eq. (46), dμL is a real measure on the
complex space ΣL and dμΘ is a real measure on Σ&; i.e. dμLem]R{ΣL),
This implies that dμL/dμΘ can be thought of as an element in
= |m(C(ZL)®m(Γ(Z'c?)

ϊiί|2. We have proved in Sect. 2 that there exists a canonical
isomorphism τ between m${Σj^d&m^ΣG)* and [ω, L] (see Eq. (23) and the last
footnote). Let |τ | 2 denote the corresponding isomorphism between
lm<c(^L)®mc(^)*l2 a n d | [ω,L] | 2 . This suggests that the proper generalization of
Eq. (53) takes the following form:

dμLldμΘ = \τ\\κ{ω,L)). (59)

In the bosonic case such a formula was proved by Deligne [4]. It is easy to check
that for a holomorphically trivial bundle L Eq. (59) reduces to (53). On the other
hand, Eq. (47) shows that both sides of the relation (59) vary in the same way under
a variation of hermitian metric in L. A complete proof would follow by verifying
that the same remains valid for variations of the holomorphic structure of L (it
seems that this can be done using a super-generalization of Quillen's formulas
given in [3]) and by checking then Eq. (59) for at least one bundle L on each Jί.

Applying the explicit form of the isomorphism τ [i.e. of the isomorphism (23)]
we get formulas for dμL and d e t Π L T n e result is as follows:

dμL = \R&,L(s,σ)\2{s,σ}-2dμ&, (60)

where \RΘfL(s, σ)\2 defined by (31)—(33) is regarded as a function of real bases in ΣL

and ΣΘ of weights 1 and — 1 respectively. Recalling Eq. (46), we obtain

^ ^ f (61)
Jί

where detNL, detΛ^, άetNΘ= ^ dv, and detΛ^ are the determinants of scalar
JΓ

products of basis vectors in, respectively, s$(L\ 77j/(L*®ω), sd(Θ\ and Π^{ω).
(The "determinants" are always understood as superdeterminants.) Introducing
the notation

d e t Π L
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we obtain immediately from (61)6,

d e t Π L Θ M = g r f ^ 77ί 7TTTΪ2- (62)

The latter relation was derived in [3], where it was used in construction of the

fermion string measure. In fact, Eq. (62) yields

gΪg y ; ; r

 2- (63)

We have used here (62) with L = ω, M = ω2 and with L = M = ω [and the relation

d e t d β ^ d e t Π ω ) " 1 ] - A^quick comparison with Eqs. (39), (30) shows that the

fermion string measure (det Dω3)~ 1 (det \Z\&)~5 does indeed coincide with the real

measure constructed in Sect. 2 by means of the super Mumford form. [Note that,

as we have pointed out at the end of Sect. 2, the relation (63) is of restricted use. This

can be improved with the help of expression (40) for the Mumford form and using

an analogous expression for detΠ ω 3 - ( d e t Π j ^ 5 . ]
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6 Rather, one has to use an obvious generalization of Eq. (61), namely,




