
Communications in
Commun. Math. Phys. 120, 71-95 (1988) MathθΠΓiatlCal

Physics
© Springer-Verlag 1988

The Renormalization Flow, Spaces of Two-Dimensional
Field Theories, and Connes' Geometry

Vipul Periwal*

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Abstract. We formulate a local renormalization flow using Connes' non-
commutative geometry. This formulation allows a geometric description of the
renormalization flow, and an intrinsic characterization of the operator product
expansion. We define spaces for string theory, in terms of a ring of correlation
functions and a renormalization flow on this ring, which are the analogues of the
category of Riemannian manifolds with metric for general relativity. The beta
function is related to a differential form of relative entropy between two
renormalization flow trajectories.

1. The Problem

The problem of characterizing spaces of two-dimensional field theories originates in
string theory, where one would like to understand what a background independent
formulation of string theory might involve. However, since the deepest aspects of
string theory involve two-dimensional critical phenomena, this problem is of
interest in the context of statistical mechanics as well. The "classical" equation of
motion of string theory, as we presently understand it, is the condition that the
nonlinear sigma model describing string propagation in a particular background be
conformally invariant, which is to say, describing behaviour at a (second or higher
order) phase transition. An understanding of what spaces one might embed these
critical models into, might be considered analogous to understanding that solutions
to Einstein's equation are objects in the category of Riemannian manifolds with
metric. Furthermore, given an action, or equivalently, in terms of the Feynman path
integral, a measure on the set of objects of the category, such an embedding defines
the dynamics and ίnvariance structure of the theory. The naϊvest possible embedding
one can envisage in string theory is that with which we are concerned in this paper,
the embedding of solutions of string theory into spaces of two-dimensional field
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theories. In particular, we shall see indications of why critical models are "classical"
solutions of string theory.

In this paper, we give a definition of spaces of two-dimensional field theories, or
equivalently, spaces of two-dimensional statistical mechanics Hamiltonians, and
renormalization flows on such spaces. With this data, we define "renormalization
groupoids," which are possible candidates for categories of objects needed to define
string theory. We have endeavoured to escape the seductions of arguments based on
Feynman diagrams; our considerations are closer to real-space renormalization
flow and statistical mechanics arguments. The picture presented is, to some extent,
motivated by [1].

As is natural in any study of the physics of critical phenomena, the renormaliz-
ation flow (RF) plays a major role in the following discussion. We will be concerned
solely with the exact RF. The viewpoint on the action of the RF adopted in this
paper is that formulated by Wilson [2, 3], Kadanoff [4], Polyakov [5], Friedan [6]
and more recently, Polchinski [8], and Warr [9]. Various aspects of the RF are
discussed in [10-12]. The work of Polyakov [7], Lovelace [13], and Banks and
Martinec [14], is of some interest in the present context. The basic idea of
renormalization is that, given a physical system, and probes available at some
energy scale, the interaction of the system with these probes is described by an
effective action. Local systems contain infinitely many degrees of freedom. In a
nutshell, the renormalization of a quantum field theory involves constructing a
sequence of cutoff approximations that describe the same low-energy physics. It is
then possible to speak of the local quantum field theory, by which we mean the entire
sequence of approximations. The limit of these cutoff theories, as we decrease the
length scale of the cutoff, may not exist in certain cases, in the sense of having infinite
coupling constants, masses and so on, but the low-energy physics we probe knows
nothing of this. Throughout this paper, local will always mean local relative to scales
much larger than the cutoff.

The usual picture of the RF amounts to studying the global rescaling properties
of interactions. One expects that critical phenomena will involve fluctuations at all
scales [2,3,11,12]. Hence, it is not clear that global rescalings alone are a complete
framework for studying critical phenomena; by locality, there is no reason that the
effective action we deduce must be derived from some bare action by global
rescalings. In the operational framework of the renormalization flow, these
arguments imply that we should consider a local version of the RF. When we make
local changes in the scale of microscopic physics, we expect to be able to adjust the
local bare couplings so as to ensure that the effective action at the observable scale
remains invariant.

We may think of this, in a picturesque fashion, as follows: consider a field theory,
which describes physics above a certain length scale, on a manifold, M, with some
metric, g. The length scale is measured with respect to g. Suppose that this field
theory is the effective theory that arises from some microscopic physics, described by
some bare cutoff field theory, where again, the cutoff is referred to g. The local RF
amounts to studying the change in the bare cutoff field theory required to keep the
effective field theory invariant, when we let the cutoff be measured with respect to a
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metric, gφ, that is conformally equivalent to g:

At physical length scales, by assumption, we cannot distinguish between g and gφ,
by measuring any observable invariant charge [16], e.g., dimensionless combin-
ations of a physical length and curvature.

In string theory, we are interested in amplitudes, G7, describing the interactions
of excitations of the string background. These are obtained from correlation
functions of vertex operators on the string worldsheet, by integrating over the
positions of the vertex operators on the worldsheet. These integrated amplitudes are
the equivalent of low-energy physics in the above discussion; "low-energy," in the
context of the worldsheet, refers to the zero eigenvalue of the Laplacian on the
worldsheet, which corresponds to functions constant on the worldsheet (assuming
that the worldsheet is compact and without boundary). These amplitudes are
functions that are constant along trajectories of the RF; they are the invariant
charges of the RF [16]. Their definition involves understanding the local field theory
on the string worldsheet: if H stands for a certain two-dimensional statistical
mechanics system, defined with respect to some metric y and cutoffs, upon changing
the metric to exp (2φ)γ = /, we change the "couplings" of the system to H' such that
integrated amplitudes are constant,

GI(H9γ) = GI(Hf

9γ
f). (1.1)

This should be compared to the usual procedure in quantum field theory (see,
e.g., [16]) where ^-matrix elements and poles in physical propagators are examples
of invariant charges. In that situation, these physical parameters satisfy homogeneous
renormalization flow equations, albeit for a global version of the RF. We shall be
interested in a local version of the RF, which we have seen may be geometrically
formulated in terms of conformal changes of the metric. The constant eigenfunctions
of the Laplacian are invariant under arbitrary changes of the metric. Hence, the local
RF enables us to go from a pair (H, y) (in the notation of the pevious paragraph) to
(H',γf) satisfying (1.1), where y' is any metric obtained from y by conformal
diffeomorphisms and Weyl rescalings. In two dimensions, conformal equivalence is a
particularly simple restriction on the geometry on which the system lives. Conformal
equivalence is, of course, also of geometric interest in higher dimensions [17].

We return now to the motivation mentioned in the first paragraph of this section.
We expect that two-dimensional statistical mechanical systems for a given set of
observables (up to an intrinsic equivalence structure, to which we return in the
following) provide a suitable configuration space for string theory. Therefore,
motivated by the Feynman path integral, we want to consider an integral of the form

\2Jt, (1.2)
A

where A is "a space of two-dimensional Euclidean field theories," and Q)Jt is some
measure on A, which we may think of as being of the form ΏJ{ = Q>H exp ( — S). For
orientation, we compare (1.2) to its analogue in the theory of gauge fields, where we
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consider

j ^4exp(-||Fμ)||2); (1.3)
<#(P)

here, #(P) is the space of connections on a principal G-bundle, P, G is a compact
simple Lie group, and ^^4exp(— ||F(y4)||2) is the Yang-Mills measure. Ex-
pression (1.3) is ill-defined as it stands, because the Yang-Mills measure is invariant
under automorphisms of P. We expect the same situation to hold for (1 .2), though we
are somewhat hampered by the fact that we do not know what A is, we do not know
what Q)Jί is, nor do we know the analogues of the automorphisms of P for (1.2).

We consider the physics that (1.2) models, in order to motivate our answer to the
last two of these problems. The first problem will occupy us for a large part of this
paper. When we study strings in some background, i.e., study the correlations of
vertex operators, $b weighted by some Hamiltonian, H0, the Polyakov integral for
the correlation of (9i is written as

<0ι02 >ι/o = Σ 9klΰJj^X^(-H0\y,X,d^X^G,G2..., (1.4)
k = 0

where &γ is a measure for integrating over all metrics on a two-dimensional sur-
face of genus k,g is an additional parameter (the coupling constant), and
@X exp( — H0 [y, X, d(n)X^\) is a measure for an integral over configurations of the
string worldsheet in the background corresponding to the local (i.e., involving only a
finite number of derivatives oίX) Hamiltonian, H0. We find that those H0 for which
the integral over metrics decouples (up to a finite-dimensional integral over moduli)
are simple to treat in this picture; these are the conformally invariant theories. Of
course, only for some (9b the conformally invariant operators, does the integral over
metrics in (1.4) decouple.

These conformally invariant correlations describe certain fluctuations, h, about
H0, in a manner that we shall indicate presently. Here, we note that it is (believed that
it should be) possible to find Sft[0, H09 h] such that the field theory defined by the
Feynman path integral

is a generating functional which reproduces the conformally invariant correlations
of the Polyakov approach. The conformal invariance of the statistical model
described by H0 shows up as gauge invariance in the field theory described by (1.5).
In formulating (1.5), we lose some of the invariances of (1.4); we have to make a
choice of conformal frame in going from (1.4) to (1.5). Of course, (1.5) also defines
correlations of operators that are not invariant under conformal transformations,
but we have no means of connecting these to the Polyakov picture, since they depend
on the conformal frame that defines (1.5). It is, in a formal sense, posible to eliminate
the choices involved in setting up (1.5): all we need do is to average over them, which
would bring us to

(1.6)

Expression (1.6) looks formally similar to (1.2), if we consider y and h as jointly
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describing fluctuations about the Hamiltonian, H0. Of course, this is overkill, since
we must now attempt to make sense of (1.6); neither does this lead to any insights as
to why H0 was a "good" Hamiltonian from the point of view of (1.4).

While (1.6) superficially resembles (1.2), our dissatisfaction with (1.6), or for that
matter with (1.5), leads us to attempt to make sense of (1.2) without going through
the path indicated in the previous paragraph. Therefore, keeping the local two-
dimensional aspects of the worldsheet in mind, we consider now a different
"decomposition" of A. Spaces of Hamiltonians only make sense if we consider them
as spaces of cutoff Hamiltonians. Since a cutoff presupposes a metric, when we speak
of a cutoff Hamiltonian, H, in the following, we shall implicitly assume that we are
given a pair (//, y), as in our previous discussion of the local RF. In line with our
remarks about invariant charges of the RF, assume that Q)Jl is such that
S[/f] = S[Heff], if H lies on the RF trajectory labelled Heff. We may then use the
natural action of the RF on spaces of cutoff Hamiltonians as motivation for writing
the measure in (1.2) as

= &HM exp(- S[/feff])0Λ(#eff), (1.7)

where &He{f denotes a measure on "a space of renormalization flow trajectories,"
and &R(He{{) denotes a suitably normalized measure along the local RF trajectory
that defines the effective Hamiltonian, He{{. (A natural candidate for Q)H is provided
by the GNS metric, which we discuss below.)

One of the questions we address is the possibility of making sense of such a
decomposition, (1.7). Of course, this is equivalent to the existence of the local
renormalization flow, so our effort is mainly to cast the physics of the RF in a precise
and suitable framework. We note that the decomposition in (1.7) is somewhat in the
spirit of Faddeev-Popov. This is our basis for understanding the gauge symmetry of
string theory, the equivalence under the local renormalization flow. We conjecture
that the term involving S in (1.7) is actually absent. This provides a simple
explanation for why critical points of the RF are "classical" solutions of string
theory. We expect that "many" (or very few) RF trajectories pass through fixed
points of the RF, depending on the attractive (or repulsive) character of the fixed
point. Heuristically, since integrated amplitudes are invariant charges for the local
RF, consider a (local) parametrization of the space of trajectories in terms of some
physical quantities, say, values of certain amplitudes, Gj. The number density of RF
trajectories, n(Gj), with values for these amplitudes close to G7, is the integrand of
Q)Gl in these coordinates. This could be considered as the Jacobian for moving from
intrinsic to "physical" coordinates. In other words, if we wished to specify the
measure, $)Jt in (1.2) as ^G7exp( — SGl\ we would define

SGlcc-lnn(Gj)

as the "action" for string theory. Attracting critical trajectories are those points
where n(Gj) is locally extremal.

Implicit in the conjecture formulated in the previous paragraph is the idea that
the entropy (which should not be confused with the relative differential entropy we
introduce in Sect. 5) of the local renormalization flow governs dynamics. We
consider the fact that Planck's constant and temperature play analogous roles in
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Feynman path integrals, the former appearing in quantum mechanics and the latter
in statistical mechanics. In this light, the absence of Planck's constant is equivalent
to the statement that string theory is defined at infinite temperature. The (attracting)
critical trajectories are dominant in (1.7) because they correspond to the effective
Hamiltonians with a locally extremal number density of RF trajectories — this is the
sense in which they are the "classical" solutions of string theory. Following standard
procedures in field theory, we would like to use this to define an effective action.

We have made no mention of moduli in the above discussion. We could restrict
our discussion to two-dimensional field theories defined on a given compact two-
dimensional surface. However, we wish to provide a substitute for (1.4) or (1.5). The
main thrust of our approach is to consider cutoff two-dimensional field theories in a
unified manner, without any attempt to extract the dependence on the geometry.
Therefore, we must consider these field theories or statistical mechanical systems to
be defined on a suitably flexible set of two-dimensional manifolds. We will say
nothing about moduli in the main body of this paper, leaving this to future work.
The local renormalization flow does not relate metrics belonging to different
conformal equivalence classes, which implies that, as far as the space of local RF
trajectories is concerned, distinct points in moduli space give rise to distinct local RF
trajectories. We could, if we so wished, attempt to decompose the measure on the
space of trajectories as

we do not see any physical reason for actually doing so. In the present work, we
restrict ourselves to two-dimensional field theories defined on a compact topological
surface of finite genus.

We turn now to a discussion of how to describe spaces of Hamiltonians. To be
able to speak in a precise manner about "spaces of statistical mechanics Hamil-
tonians," or of the RF on such spaces, we need some new tools. In particular, we shall
be interested in considering the foliation (defined in the appendix) of such spaces by
the local RF. The leaves of this foliation are the trajectors of the RF, or, in the
language of the previous paragraph, the effective Hamiltonians of the given space of
cutoff Hamiltonians. Since our interest is in critical phenomena, especially with the
motivation given above, we are interested in foliations that degenerate, which means
that the situations we need to deal with are singular in terms of usual differential
geometry or topology.

In the past few years, A. Connes has sketched the outlines of a powerful set of
geometric constructs in operator theory which are applicable to many situations
where the usual tools of topology and geometry make no sense. The definition of
renormalization groupoids that we formulate, in terms of Connes' constructs, is
natural. Given the singular nature of spaces of leaves of foliations, standard
differential geometry does not suffice to understand measures on such spaces. An
understanding of the generating functional of transverse measures on renormaliz-
ation groupoids needs Connes' non-comutative integration theory [18].

We use the language of statistical mechanics [20]. The (two-dimensional) non-
linear sigma model path integral is, for the purposes of string theory, regarded as a
sum over spacetime trajectories of a string, hence the worldseet interpretation. Here,
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we regard it as a statistical trace, weighted by some Hamiltonian. In particular,
regard the path integral as a statistical trace,

where Sσ = Hσ is regarded as a statistical Hamiltonian on the right-hand side. (This
has nothing to do with the path integral, with boundary conditions, as a transition
amplitude in quantum mechanics.) Sσ may be thought of as the integral of a local
function of X and derivatives of X, up to some finite order. The path integral is
understood here as being done with some set of boundary conditions suited to
statistical mechanics, and we have not performed any integral over metrics, as we
would if we were following Polyakov's approach. Therefore, both sides of the
equation depend implicitly on a metric on some two-dimensional manifold. In this
formulation, one has a better picture of what is involved when one attempts to
formulate what a space of two-dimensional field theories ought to be, i.e., we may
think of spaces of states of some statistical mechanical system, as we now describe.

In statistical mechanics, the notion of a Boltzmann average has been codified
into the definition of a state on a C* algebra. More precisely, we consider a space of
observables, which is an abstract algebra, A. These need not strictly be "physically"
observable fields. A state on A is a linear functional on A, such that if p:A -> C is a
state, then

p(α*α)^0, Mae A.

This last condition is the positivity condition, and we do not expect it to hold in
theories with gauge symmetries, except in a subspace. (The usual definition in this
context is somewhat more involved.)

Denote the space of states on A by A. There is much more structure that can be
(naively) attached to such a space. Recall the GeΓfand-Naimark-Segal(GNS)
construction. This allows us to canonically associate a Hubert space J^p to given
state p, by noting that, for α, be A,

(aby = p(a*b\ (1.8)

defines an inner product, provided that we factor out the subspace generated by
aeA :p(a*a) = 0. Thus, one imagines a vector bundle over the space of states, which is
easily seen, from (1.8), to contain the information in correlation functions. The GNS
construction also supplies a * homomorphism

A^3S(J!fp\ (1.9)

into the bounded operators on 3fp. We may therefore consider a bundle of
operators over A,

I
A,

Roughly speaking, we shall describe A by means of the "matrix elements" of sections
of J* acting on the space of sections of ffl. We note that A is not the space of all states
on A in our definition. The GNS metric, defined by (1.8), is the natural metric on A
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because the vanishing of its curvature is exactly the strong associativity condition of
the operator product expansion [22].

This paper defines spaces of two-dimensional statistical mechanical systems, in
terms of spaces of correlation functions and the action of the renormalization flow
on such spaces, as understood in terms of Connes' constructs. The motivation for
our constructions is provided by (1.7). The idea is simple: we make the (given) space
of correlation functions into a ring in a suitable way, heuristically motivated in the
above discussion. We define the space of states of this ring, via the endomorphisms of
the module corresponding to the ring, as a certain subset in the automorphisms of
the module. A renormalization groupoid is then defined so as to describe this space
of states modulo an equivalence relation, two states being equivalent if they lie on
the same renormalization flow trajectory.

This paper is organized as follows:

• In Sect. 2, we sketch some constructions due to Connes.
• In Sect. 3, we formulate the problem in a suitable language for the use of Connes'

tools.
• In Sect. 4, we formulate the renormalization flow in terms of the constructions of

Sect. 3.
• In Sect. 5, we discuss various physical consequences of our formulation. We relate

aspects of the beta function to a relative differential entropy between two
renormalization flow trajectories.

• In Sect. 6, we make some concluding remarks.

An appendix contains a glossary of mathematical terminology.

2. Connes' Geometry

Connes' geometry is based on a simple idea: study a space through an algebra
associated to it. A locally compact topological space, X, can be described completely
in terms of the algebra of continuous functions ^(X) on it. The Serre-Swan theorem
[26] tells us that finite-dimensional vector bundles over a manifold, X, are
equivalent (in the sense of /", as defined below, being an equivalence of these
categories) to finitely-generated projective modules over ^(X\ i.e., a vector bundle,
F, can be described by its sheaf of sections, Γ(V\ with the natural action oϊ^(X) by
multiplication:

f:Γ(V)-+Γ(V) VfeV(X),

SH+/S, VseΓ(F).

The tangent bundle of a manifold can also be replaced by an algebraic construct, in a
very natural way. Let R = ̂ (X) in the following. A derivation of a ring, R, is an
element ίeDer(K) such that

The derivations from a Lie algebra, Der (R). In this setting, the tangent space oϊX is
understood through Der (R). This is natural, because if one studies a space by means
of the functions on it (here the ring R) then the action of the tangent vectors is
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through the sections of the tangent bundle acting on the elements of R as differential
operators:

) = Σ / . (2.D

If a Lie algebra acts on X, there are elements of Der (R) that represent the Lie
algebra. A foliation of a manifold is defined as an integrable sub-bundle of the
tangent bundle. An elementary theorem of Frobenius relates this to an equivalent
description of a foliation: a sub-bundle is integrable, iff the sections of the subbundle
form a Lie subalgebra of Der (R). Therefore, the spaces of leaves of foliations or
quotient spaces of Lie algebra actions can be described in algebraic terms.

The importance of these observations lies in the fact that these algebraic
descriptions continue to make sense even when there is no sensible topological space
underlying the algebra. Furthermore, the geometry of these algebras can be
naturally extended to non-commutative algebras, which turn out, in fact, to be
essential to the study of the X-theory of even the commutative algebras [25]. For
example, non-commutative algebras enter naturally in the proof of Bott periodicity
[26].

We now sketch some of Connes' constructs [23-25] that we shall use later to
define the action of the renormalization flow on the space of states corresponding to
a given algebra of observables. Let R be a ring, and let S be a module over R. We shall
be interested in the case that a Lie algebra, /, acts on R. As described above, this
means that we have a Lie algebra homomorphism / -> Der (R). A connection, δ, in
this context, is an element of Horn (R, R (x) /*), which we may write as (for f,geR, and
vel)

δ:R->R®l*,

This connection satisfies the Liebniz rule:

and, of course, δf:v\-+δvf£R. Curvature is defined as usual:

θ(v,w) = δυδw-δwδυ-δ[υtW]9 (2.2)

and is an element of End (R) (x) Λ 2/*. When the connection has curvature, it does not
induce a homomorphism from / -> Der (R). Here, by assumption, the connection is
flat, 0 = 0.

Now, given a finitely-generated projective module, S, over R, it is possible to
define a connection on S, i.e., a map V:S -> S (x) /*, which "extends" the connection on
R, such that for reJR, χeS, one has, regarding S as a left ^-module,

V(rχ) = rVχ + δrχ. (2.3)

Connes defines this lift to preserve a hermitian metric on S, i.e., a hermitian form < , > :
S x S -» R. One may attempt to find a lift of the action of / (via the connection, which
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on R is flat by assumption) to S, so as to satisfy the above requirement. We define the
curvature of this lift, ΘεEndR(S)®Λ2l*, as in (2.2), and again a representation of
the Lie algebra, extending the assumed representation on R is obtained, if the
connection, V, is flat.

Our motivating idea here is that of a flat connection defining a foliation of A as
endomorphisms of S. In our case, S will be a module over a ring, Fock R, of functions
on some surface. S is a ring of correlation functions, in terms of which we shall define
the space of states on some algebra of observables. The Lie algebra we are interested
in is the Lie algebra of conformal diffeomorphisms and Weyl rescalings of the metric
on the surface, which acts on R, and, with some choice of lift, on S.

We now come to a construct that is central to our understanding of the
decomposition of the measure in (1.7). This is the notion of a holonomy groupoid,
due to Winkelnkemper (as described in [24]). We refer to [24] for a complete
description. Given a manifold, 7, with a foliation, F, we wish to construct an object
that will describe the space of leaves, V/F, i.e., a partition of the manifold into
equivalence classes, with two points in V belonging to the same equivalence class iff
they lie on the same leaf of the foliation, F. Consider the set G = V x V x PV, where
PV denotes the set of maps from / = [0,1] -> V. Define G0 c G, as consisting of the
elements in G of the form (x, y, p) with p(0) = x, p(l) = y, and

dp
-Hί)eF,(f), Vie/;
at }

these are paths lying on the leaves of the foliation.
There is a natural map q:TV^ TV/Q, at each point of V. Bott [27] defined a

connection for transport in the normal bundle tangent to each leaf of the foliation
via:

where XεF, 5 is a section of Q and YeTV:q(Y) = s. Since F is integrable, and, by
definition, in the kernel of q, we see, using the theorem of Frobenius, that this is well-
defined on Q. Furthermore, the Jacobi identity implies that this is a flat connection,
called the Bott connection. This allows us to define a holonomy map, i.e., a map h
defined on the paths p of elements (x, y, p)eG0, h(p)eQy ® (βj* By the flatness of the
connection, the only closed paths with non-trivial holonomy are non-contractible.
This motivates the following definition: the holonomy groupoid of (F, F) is defined
to be

G ΞΞ GO/ ~ , where (x, y, p} ~ (x, y, p')oh(p] = h(p'\

It is also of interest to compute the holonomy of the GNS metric. G has a natural
composition structure, arising from the composition of paths, which makes it a
groupoid.

This is the simple and intuitive basis for the construction of an algebra C*(V, F)
to attach to V/F. We shall not describe this algebra precisely here, since we make no
use of it in the present treatment. Measures on the space of RF trajectories are
understood entirely in terms of this algebra. The physics of string theory is contained
in these measures. Here, we note that intuitively, one may think of C*(V,F) as
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"matrices" of the form kx>y where the "indices" x, y lie on the same leaf of (K, F), with
a product appropriate to a convolution algebra on the holonomy groupoid.
C*(V, F) is local, i.e., given an open V c K, and F' = F\v>, there is a *-isometric
homomorphism C*(V',F')->C*(V9F) [24].

3. The Formalism

Our formalism, in accordance with the ideas described in the previous section, is
defined in terms of function rings. Therefore, our considerations are both
coordinate-independent and independent of the topology of the surface. We assume
that we are given a real, C°° two-dimensional manifold, 0, the space on which our
statistical system lives, or the string worldsheet. Pick a ring of functions over 0, call it
R. We assume that the elements oΐR are infinitely differentiable; take R = C°°(0), for
example. The infinite differentiability we have assumed is not a restriction [23]. In
the present context, because we deal with cutoff systems on compact domains, we
will have physical reasons for assuming that everything we consider is smooth. This
is related to the fact that the non-analyticities that characterize phase transitions
only arise in the thermodynamic limit.

A is a set of observables, which we think of as classical fields on 0. In their role as
classical fields, elements of A can be defined at each point, and multiplied as well.
However, we shall have no use for this algebraic structure, since it makes little sense
quantum mechanically. We base our arguments here on the assumption that we are
given some basic set of "classical fields", Φ^ξ), £eO, which include an identity
element e:eΦi(ξ) = Φf(ξ). (See [22] for examples of this.) The elements of A are local
functions (i.e., with only a finite number of derivatives) of these fields, that have been
smeared (in the sense of the Wightman definition of fields as operator-valued
distributions [29]). They may be thought of as linear combinations of elements of
the form (for /e£)

where φ is some local function φ = φ(Φ), of our basic fields. The action of R on this
space is simply as

This arises from the natural homomorphism,

[ ]:/*-» End (Λ)

so A is an jR-module. (In the following, we will treat the square brackets as
understood.)

A maximal ideal of R is a subring of R that contains functions vanishing at some
point, peO. We assume that the module, A, is a local module with respect to R, i.e.,
for any two (distinct) maximal ideals, mb i = 1, 2, of R,

A = Q. (3.1)
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The intuition for this is as follows: when we pick two distinct maximal ideals, we are
looking at functions that vanish at two separate points, and the factor modules
A/niiA contain only those operators that are supported at exactly those two distinct
points. Therefore, this requirement, (3.1), is a physical one, we are simply assuming
that "field" degrees of freedom at two distinct "points" are independent.

Assume that there are operators in A that represent intrinsic information about
the metric on 0, such as covariant derivatives and curvatures. In particular, this
implies that we study statistical models including dependence on geometry. Part of
the information in the state is the choice of a metric on 0. Elements of A do not have
any connection to a given metric on 0, until they are represented via a state.
Furthermore, one can, of course, define derivatives of operators (schematically)
through the usual definitions:

φ(df) ^\dfφ=-\fdφ=- dφ(f) (3.2)
o

(We ignore boundary terms in the present work. These are important [28].) The
identity element, e, allows us to identify an K-submodule of A, which is denoted [K]
e and consists of elements obtained as follows:

(3.3)
o

so that we write

A = lK]e®A0. (3.4)

A final point is that in this whole scheme, it is necessary to consider, not just R, but

00 00

Fock R = 0 R®n, and Fock A=@ A®\
w = 0 ιι = 0

We define

R®Q = R, and A®° = R.

We consider Fock A as a Fock K-module in the obvious way.
On a space of statistical mechanics states (or equivalently, of Euclidean field

theories) there is a natural space of "functions" — the correlation functions. An
advantage of describing spaces of states in terms of correlation functions is that we
automatically work with constructs that are independent of the method of
regularization, provided we use physical regulators. Dimensional regularization, for
example, is excluded since its action on correlation functions is transcendental,
because it takes us "outside the ring." We will describe (and topologize) the space of
states, A, solely by means of correlation functions. Therefore, two states that arise
from different regulators, e.g., a lattice regulator and a momentum-space cutoff, but
have the same value for all correlation functions, are identified. Clearly, we need to
say more before it makes sense to compare the values of correlation functions for
two different regulators, but we certainly expect a map between the observables in
any two schemes. This is another reason why transcendental regulators cannot be
used in our approach. We indicate a natural equivalence between different physical
regulators in Sect 5.
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Consider the algebra defined by correlation functions, considered as "functions"
on the space of states. To be precise, V^eFock A, define a function, sa, on the space of
states in the obvious fashion, i.e., for peA,

Explicitly, if a = aί ®α2 >aneA®n, then

sa(p) = p(aίa2...an).

Call this set of functions, S, and note that S = ®^°=0SΠ? with the natural grading
induced from the Fock structure of Fock A. One doesn't a priori know how to
multiply elements of S"; there is just the product induced from the product in Fock A,

(sa ®
 sb)(p) = p(ab) = saφb(p)9 (3.5)

which makes S into a ring. We think of S as the "structure ring" of A. However, this is
obviously a very non-trivial algebraic structure, so it is necessary to exercise a great
deal of care. In particular, we will describe A solely in terms of 5, so we regard S as the
fundamental object.

S is naturally a Fock ^-module:

where f^R, φi<ΞS, and sφ .̂..̂  (eSJ is an π-point correlation function. (Here we
have defined the map on generators of 5W, the extension to arbitrary elements is via
linearity.) For an element sφ in Sn9 we can define the support of sφ, which we denote
Supp(s^) c O", as the closure of the set of points over which φ is smeared.

We draw attention, in particular, to S0, which is a module over R = #Θ°,
generated by a section we denote Z, so SO = RZ. We call Z the partition function. In
view of our previous definitions, we note that this is justified because

Z plays the role of the identity in the multiplication in S, as defined in (3.5).
We wish to study the space, A. It is clear that the ring S contains all the physical

information that we need to describe A. For example, suppose we pick a point in A.
We think of this point, intuitively, as having a Hamiltonian associated to it, which
we denote H, and we write the associated correlation functions as sa(pH) = ρH(a\ for
αeFock A Then, the correlation functions of a perturbation of this Hamiltonian,
denoted δH, are naively recovered from

PH + *H(<*)= Σ ̂

We have assumed that sδHeS; this is part of the more basic assumption that the states
are describable from within the algebra, A. This is not a restrictive assumption, since
we allow ourselves arbitrary (finite) linear combinations of elements in A, and deal
with a compact manifold, 0. The sum converges because 0 has finite volume and
every state is assumed to be provided with a cutoff. (This description of A is
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intended only in a local sense; we give a precise definition in Sect. 5.) When we
study the general case of a disjoint union of surfaces, as sketched in Sect. 1, we
will need to work somewhat harder.

We are now in a position to define the renormalization flow on A, through its
action on S. Cutoff dependence is a generic feature of the path integrals
(equivalently, traces) that define the physics of Euclidean quantum fields (statistical
mechanics systems, in the thermodynamic limit). If we exclude exactly critical and
ultralocal models, the action of Weyl rescalings of the metric and conformal
diffeomorphisms on correlation functions is quite nontrivial. This action is exactly
what the local RF captures for us, through a local version of the Callan-Symanzik
equation.

4. The Renormalization Flow

As far as string theory is concerned, we are interested in the spacetime action for the
"couplings" of the local Hamiltonian on the worldsheet; this is the "effective"
Hamiltonian attached to the entire surface, or the logarithm of the partition
function. Put differently, we regard the surface as an "auxiliary" construct, defined at
a length scale which we may define as 1. Integrated amplitudes describe the effective
action defined at length 1, i.e., the effective action we would attach to the surface as a
whole. These amplitudes only care about the conformal structure of the surface, and
not about the bare theory on the surface, defined with cutoff, in the sense that any
(bare action, cutoff) pair that gives the same integrated string amplitudes is
identified, in the sense of string theory and the renormalization flow. This is
analogous, for example, to the considerations of [8], except that we study the flow of
couplings under local rescalings, a modification we provided physical justification
for in Sect. 1, where this local RF was also the motivation for (1.7).

We now want to implement the renormalization flow in the framework of
Connes' geometry. Recall that in Sect. 2, we defined the notion of a lift of a
connection defined on the base ring to a module over the base ring. We also defined a
curvature associated to this lift. There is a natural connection on R:

(4.1)

where /* is the dual of the Lie algebra, /, of infinitesimal conformal diffeomorphisms
of 0 and Weyl rescalings of metrics on 0. This is defined as (for fεR)

where av(t) is any one-parameter family of diffeomorphisms such that άv(t = Q) = v,
for vel, with the usual action of diffeomorphisms on functions,

«*/(*) = /(«„(*)), VxeO.

Clearly, infinitesimal Weyl rescalings are in the kernel of this map, since elements of
R do not have any dependence on the metric. This connection induces a connection
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on

δ(f1®f2...®fn) = Σ A® (δfι)® f»
i = l

(We do not concern ourselves with deformations of moduli in the present paper; such
an extension of our approach is essential for string theory [19].)

We consider now that we are given a connection, V, on S, in the sense of (2.3), that
extends the connection on Fock R. We assume that the extension is such that

with the property that, for feR®\ sεSn,

if VsεSn + 1 (x) /*; if Vs = s0 + sl9 with sfeSn + ί® /*, i = 0, 1, we set (/<g) I)s0 = /s0. To
see that this makes sense, for f,geR®n, s£Sn, we have

and, consistent with this, we have

= δf(

= δfgs + (/ ® l)δgs + (/ <g> l)(g ® l)Vs

Weyl rescalings of the metric are in the kernal of δ. We assume that V, restricted to
the abelian subalgebra consisting of only Weyl rescalings, is compatible with the
action of infinitesimal conformal diffeomorphisms on metrics (in a sense made
precise in the appendix.) We call V the local Callan-Symanzik (CS) connection, for
reasons that should be clear.

What do we demand of this connection? The partition function must be
covariantly constant. This requirement is ignored (intentionally, and with good
reason) in the usual treatments of the renormalizaton flow.

This connection, V, cannot be assumed to satisfy the Leibniz rule for products in
5; this is prevented by the operator product expansion (which we discuss below). We
now wish to argue that the CS connection must be flat. If it were not flat, the local CS
equations would not be integrable and the local RF would not exist. However, this
implies that the global RF would not exist, since, as we argued in Sect. 1, locality and
the global RF imply the local RF. The existence of the global RF is central to most of
our understanding of critical phenomena and renormalization; therefore, the local
CS connection must be integrable, in other words, its curvature must vanish.

One of the main reasons for the introduction of cutoffs in the study of local
systems is the fact that correlations of observables are singular when we let the
positions of the observables approach a common point. The operator product
expansion (o.p.e.) [31-35, 16] studies these singularities, which are of great
importance since their form determines the RF[7]. The usual form in which the
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o.p.e. is written,

Φί(^)ΦJ(^r^2Σ^^-^)Φk(
Xλ^\ (4.2)

k \ 2 J

(assumed valid within arbitrary correlation functions as xl ->x2) does not make a
great deal of sense in terms of geometry.

The fact that we deal with cutoff states implies that it is not physically correct to
assume that we can localize the o.p.e. as (4.2) would have us do; since we started with
smeared operators, our framework gives us a natural description of this physical data,
and we now make precise what is meant by an operator product expansion in our
formulation of the RF. The basic idea is that we are studying functions defined on
some number of copies of 0, and these correlation functions are singular along (some
of) the diagonals of this product space. We make sense out of these singularities by
introducing a cutoff, which implies that we multiply these correlation functions by
cutoff functions (denoted χ in the following discussion) that vanish rapidly along
diagonals. When we make a change in the cutoff function, by changing the metric
by a Weyl rescaling or by a conformal diffeomorphism, the changes in a given
correlation function can be represented as an integral over an additional copy of
0, along with a smeared kernel function.

Concretely, suppose that p is a state, with associated metric y, and cutoff ε. We
think of correlations in the state p, as expectations in a trace Tr [exp (— //).], where
H is the Hamiltonian associated with p. In particular, let us consider

Xl)φ2(x2)...) (4.3)
U(xι)

is some correlation function, with U(x1) a small neighbourhood of x l 5 and x2£U(x1).
For simplicity, we assume that the other observables (denoted by .. . in (4.3)) are at a
distance larger than the cutoff, ε, from the boundary of U(xί\ as mesured with the
metric 7. (We are suppressing the factor of ^Jy in integrals, and only write s = s[y]
when we need to keep the dependence on the metric in mind.) If w is an infinitesimal
local Weyl rescaling of the metric y -> exp (w)y, with w = 0 outside U(x1), we expect to
write Vws as:

5[exp(σ)y]|σ = 0

β(w) + terms due to scaling each operator

J d2x0Σcί2

i(xι,X2>
J

δσ(x0)
χ(x1,x2)[exp(σ)7,ε]|σ==0. (4.4)

While this form appears to be complicated, the essential features are simple to
identify:

i. β(w) (the β operator) is the change in the Hamiltonian, H, associated with p, and
by locality we expect it to be the integral of some local observable in a
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neighbourhood of U(xί). The correlation sβ(w)®s also incorporates a cutoff,
"linking" the integral that defines β(w) (as we just mentioned) and the integral in
(4.3).

ii. χ (as mentioned above) is a cutoff function that has a functional dependence on
the metric and on the cutoff ε (Sect. 3) associated with the state p.

iii. The scaling terms are simple and we do not discuss them further here. They can
be written in terms of a functional derivative and an added integral.

iv. The kernel ctj

k makes sense in geometric terms.
v. This kernel form extends trivially to the simultaneous operator product of more

than two operators.
vi. It is clear from the form of the individual terms in (4.4) that V:Sn-+

Computing the commutator of the RF transformations corresponding to two
distinct Weyl rescalings, we obtain relations between the various terms that arise, by
demanding that the curvature of the CS connection vanish, i.e., the RF exist.

5. Physics

We now provide a precise construction of the space of states, A, using only the ring of
correlation functions, S. In fact, we need one additional piece of data, namely, that
there actually exists a state corresponding to 5. To be precise, given the Fock R-
module, we think of A as being a set of evaluation maps, which take an element of S
and assign to it the value of that correlation in a particular state.

The intuition for our definition is extremely simple: operator insertions on the
string worldsheet arise as derivatives of the Hamiltonian:

Tr [exp(- H + <5H)] « Tr[exp(- H)] + Tr[exp(- H)δH~\.

This is a standard expansion in the study of nonlinear sigma models for the purposes
of string theory, corresponding to the insertion of vertex operators on the string
worldsheet, (see, for example, the discussion in [7],) and is illustrated in (3.6). In our
formalism, products in S are insertions of additional operators on the worldsheet.
We therefore consider the linear maps from S -» S, that are defined as multiplying
correlation functions with additional operator insertions on the worldsheet. The
derivative of Z in the direction of an RF trajectory close to the trajectory on which p0

lies, may then be written as sφ9 where sφeSly is a one-point function. We have

Z(p0 + eφ) = Z(p0) + εsφ = (1 + εsφ®)Z(Po), (5.1)

for small enough ε.
Given this intuition, we generalize it in the following way: we give ourselves an

evaluation map, i.e., a state, which we call p0, and we let End0(S) be a set of
endomorphisms of S, and AutF(S) denote the automorphisms (up to "finite rank") of
S. We then define A(p0) as follows: let P0 be the set of paths / = [0, 1] -> End0(S), and
P0 be paths w:/->AutF(5) obtained as solutions of

(5.2)
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for some £eP0, with the additional restriction that we have w£(0) = 1. We have the
natural definition that the space of Hamiltonians is the set of automorphisms that
are the endpoints of paths in P0 obtained as a result of solving (5.2), i.e.,

A(p0) = {tteAutF(S)|there exist vεPQ:u = v ( l ) } . (5.3)

Note that the tangent space of AutF(S) at a given point is identified with End0(S).
While A(PQ) might appear to be contractible, we should keep in mind that the
automorphism group of a structure like S is rather big, and questions of topology
need to be carefully addressed. In particular, it is probably more reasonable to define
the space of states as the closure of A(p0), in Aut^S), in a suitable topology on
AutF(S).

A seemingly troublesome feature in this construction is the dependence on p0.
This is identical to usual φ4 quantum field theory, for example, where we start with
the action defined for fluctuations about some field configuration, usually φ = Q. We
note that there is a natural isomorphism between the spaces A(p\ that we determine
using (5.3) for different initial states, p, by virtue of these sets being subsets of AutF(S).
Furthermore, to be precise, we have only defined a neighbourhood of pQ.

We recall (1.7), which constituted our motivation for the study of the RF on A. We
are interested in extracting a space of effective Hamiltonians (equivalently, RF
trajectories) from the space of Hamiltonians, by "factoring" out equivalence under
the RF. The definition of A that we have just given is particularly well-suited to the
study of this equivalence, as we now show. However, we must first specify the
transport of the CS connection, V: we do this via

, Vceί, (5.4)

/ being the Lie algebra of Weyl rescalings and infinitesimal conformal diffeomorph-
isms. This defines

V^EElV^for.e/}, (5.5)

as a subspace of End0(S), at p = uE(l)eΆ, where uE(ΐ) arises from E via (5.2). This
preserves the zero-curvature condition. The intuition here is partly derived from the
notion of conjugate flows, as used in the study of dynamical systems.

We have now defined a space of states, A, a natural tangent space to the space
of states, Endo(S'), and, at each point pe/4, we have defined a subspace of
End0 (5), Vι(p). Since the curvature of the CS connection is assumed to vanish, we
have a map of / into the "tangent space" of A, which defines an integrable subbundle
of the tangent bundle of A, which at each point in A, has fibre Vt(p), as defined in (5.5).
In our context, we take this to be the equivalent of a foliation of the space of field
theories A.

Spaces of leaves of foliations (here, the space of RF trajectories) are topologically
rather ill-behaved. As mentioned above, one of Connes' main motivations was to
attach meaningful algebras to such degenerate spaces. In a straightforward analogy
with the notation in Sect. 2, we form the holonomy groupoid, which we call the
renormalization groupoid, with the data described in the previous paragraph, and
denote it (A, V;). As far as we are concerned, S is the fundamental object and A is a
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derived object. Explicitly, we consider paths in A whose tangents at each point on
the path lie in the subspace of the tangent space to A, defined via (5.4). pt = u^A,
i=l,2, are on the same RF trajectory if there exists EeP0 with associated
M£(ί)eAutF(S), such that UE solves (5.2) with the boundary conditions:
M£(0) = M l 5 uE(l) = u2. The holonomy is computed for these paths via the Bott
connection (Sect. 2), (or the GNS connection [22]) with the map g:End0(S)->
End0(S)/Vz, and this completes the definition of the renormalization groupoid. It
will be noted that for every leaf, this holonomy is a measure of the "twisting" of
physical correlations (i.e., those that are annihilated by the local CS connection)
as we move about on a particular RF trajectory. These are the integrated string
amplitudes we assign to this RF trajectory.

We have now assembled the basic structure for understanding the RF
equivalence structure on the space of Hamiltonians. We must consider measure
theory on renormalization groupoids so as to make sense of the decomposition in
(1.7), since we expect the string action to be a transverse measure on the
renormalization groupoid.

There are some questions involved as to what we should allow in End0(S). The
most natural definition, given that we based our construction on locality in the RF,
appears to include multiplication by any linear combination of elements in Sl9 which
would include operators smeared over only part of the worldsheet. Furthermore, the
work of Fischler and Susskind [37] provides us with very interesting "topological"
operators in End0 (S). Therefore, in this paper, we assume that End (S) is generated
by the image of / under V, by the above-mentioned "multiplication" (by elements in
SJ endomorphisms, and by "field redefinitions" (which we consider below). More
precisely, we assume that End (5) is generated (as a ring) by a set of endomorphisms,
End0(S), with all elements £eEnd0(S) satisfying E:Sn^Sn®Sn + 1.

The automorphism group that one associates to the CS connection is the "gauge
group" of our construction. This trivially includes the transport of the RF from one
point of an RF trajectory to another. Another part of it arises from "field
redefinitions," i.e., automorphisms of the algebra A. We note that endomorphisms of
A have the obvious lift to Fock A, and they then lift to S, canonically. These are the
infinitesimal classical field redefinitions, which we denote as End (A, S) c End (S).
We can consider which of these field redefinitions continues as a symmetry in the
quantum theory: a minimal requirement is that the quantum mechanical sym-
metries of the theory are those elements of End (A, S) which commute with the local
RF endomorphisms, Vv. We can extend the foliation to include directions generated
by these "tangent vectors," or we may view these as additional symmetries of the
space of leaves of the renormalization flow that we have considered so far. The latter
point of view is preferred as far as (1.7) is concerned. Another part of the
automorphism group of the flat CS connection is a suitable set of deformations of
the cutoff function χ in (4.4). This is one sense in which the CS connection depends on
the particular (physical) regularization that we picked.

Given the dynamical systems analogies that appear naturally in our formalism,
we turn now to another aspect of the renormalization flow with some dynamical
systems connections, namely, we consider the entropy of the RF. We define the
relative entropy ([38] and references therein) between two states, pi9 i = 1,2, which
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we naively identify with traces corresponding to two Hamiltonians, Hb i = 1, 2, as

i, Pi) = y(Hl9 H2) = Tr [exp (- H^H, - tf 2)].

With a local choice of coordinates on A, around Hί9 we define an analogous
differential construct,

which is a "1-form" on A, d^(Hί)EEnά0(S)^1 = End0(S)*; this 1-form maps a
"vector" αeEnd0(S) to d<f(ά) = aZεS. Note that V,(/f J is in the kernel of d< ,̂ since,
by definition, the partition function is constant along RF trajectories. This may be
construed as the statement that the one-point function of the β operator is 0, where
we think of β^Σ/J'Φi, for φteA9 in the sense of (3.6) and (4.4) [7]; we think of
d^(β)(H1) = SptHΊ). (Of course, we determine a different β for every element of/, so
we might think of β more abstractly as an element of End0 (S) (x) /*; this is natural in
terms of our definition of V.)

We note another connection of beta functions with this relative entropy: if pί5

/ = 0, 1, 2, are states corresponding to Hamiltonians Hi9 H0 = H1-\- εφ9 some φeA,
and H2 is obtained from Hl by an infinitesimal RF transformation, H2 =
//! + εβ(v)9vel9 then

29 H0) - ^(H^ HQ) = Tr [exp ( - H ̂ (εεβWφ)] = εεtsβ{v) ® Sφ] (H,).

By expanding β(υ) as in the previous paragraph, and making use of the GNS Hubert
space inner product, it is possible to extract the values of each beta function
separately. These beta functions are therefore seen to be closely connected with
infinitesimal changes in relative entropy.

We now turn to a discussion of Zamolodchikov's seminal observation [39]
regarding the entropy of the renormalization flow. (The first part of)
Zamolodchikov's c-theorem states that there is a function defined on the space of
couplings which decreases along RF trajectories. We provide a simple argument
that is a mild generalization of Zamolodchikov's result. Consider a naϊve
decomposition of the space of Hamiltonians into a space of couplings and a space
of metrics. We will show that there is a function on the (sub)space of renormalizable
couplings that decreases in the direction of the RF flow, for constant Weyl re-
scalings. Denote β(V) as "the" beta operator, namely, the beta operator correspond-
ing to a global increase in the cutoff. Then, we consider ^6End0(S')*|H, such
that for ίeEnd(5)0|H, t:VAt = 0, i.e., operators of canonical dimension 2, <&(t)\H =
— sβ(v)<S)t(H). For these renormalizable directions in the tangent space to the space of
couplings, we have

). (5.6)

If the GNS metric had positive signature, this would imply Zamolodchikov's result,
provided that ^ is a closed form. Let us compute dΉ on the subspace of re-
normalizable couplings:

, x) =

= Vv(st(S)sx)-Vv(sx®st) = 0, t,xeA, with
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We have used (5.4) here, and the fact that st®sx = sx®st. The space of couplings
is simply connected, so closed forms are exact, and, therefore, # is the differential
of some function, which we identify with Zamolodchikov's ofunction. By (5.6), the
c-function decreases along renormalization trajectories. In fact, it decreases in any
direction such that sβ(w)<g>β(v)>09 WE/; this leads us to conclude that this decrease
holds for a small cone about V in /. It goes without saying that our argument is
not as physically compelling as Zamolodchikov's; it may have some merit in a
more general approach.

6. To Conclude

To conclude: we have formulated a local renormalization flow, on spaces of two-
dimensional field theories. This two-dimensional local renormalization equivalence
is a physically natural candidate for the gauge symmetry of string theory. Analogies
with statistical physics were important in all aspects of our discussion. In a sense,
we have formulated string theory without strings. As a consequence, our formula-
tion makes no reference to string perturbation theory. The physics of string theory
lies in transverse measures on the space of local RF trajectories. There is no natural
way to separate the dynamics from the kinematics in our formulation. We gave
a physical argument for why critical models are important for these measures.

In more detail, we used some of Connes' geometric constructs to define a renor-
malization groupoid as a quotient of a space of two-dimensional field theories by
the local renormalization flow, via a local CS connection. A minimal definition of
the data we require to define a renormalization groupoid is:

1. a module, 5, over FockK, with a graded ring structure, and identity, Z,
2. a flat connection, V:S->S® /*, satisfying V(SJ c= (Snθ Sπ+1) ®/*, extending (in

the sense of Sects. 2 and 3) the action of / on R, such that VZ = 0, and
3. a set of endomorphisms of S, End0(S), such that elements in End0(S) map

sn-+sn@sn+1.
We seek invariants of such renormalization groupoids, to classify them; these in-
variants would be analogous to the dimension of spacetime in general relativity.
Our construction only gives us a path-connected component of the space of field
theories we would like to attach to a given set of observables, though the closure
may be topologically non-trivial.

An important observation is that renormalization groupoids are local on spaces
of field theories, i.e., can be constructed for a small neighbourhood of a given two-
dimensional field theory. Local calculations of the renormalization flow are
important ([40] and references therein).

We note connections of our work with previous work in related areas. The
idea that different cutoffs are merely different descriptions of the same effective
physics is very old. It is implicit in the earliest works on the renormalization of
quantum field theories, and has certainly been quite explicit since the appearance
of the first papers on the renormalization flow [41,42]. The geometric local formula-
tion of this gauge invariance that we have presented is clearly inspired by the
symmetries of string theory and the suspected relation (see, e.g., [36]) between
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string theory equations of motion and beta functions of the renormalization flow
[6]. Wilson [3] discusses the analogy between the derivative and the renormaliza-
tion flow; the CS connection is a formulation of renormalization transformations
as (generalized) derivatives.

The idea that spaces of two-dimensional field theories are possible candidates
for configuration spaces of string theory is not new (see, e.g., [13]). Banks and
Martinec [14] were the first to take it seriously. They considered a possible descrip-
tion of the renormalization flow in the neighbourhood of fixed points and discussed
the possibility of deriving the beta function from an "actional" on a space of two-
dimensional field theories. They noted that it should be possible to calculate
tree-level string scattering amplitudes from the beta functions. Since we expect to
be able to calculate tree-level scattering amplitudes from the equations of motion
of a given field theory, this is equivalent to the belief that beta functions are the
classical equations of motion of string theory. They indicate that future work will
develop their formalism further. It would be very interesting to understand the
connections between their ideas and the framework that we have presented here.

Every construction in our work was genus-independent. We shall extend
our constructions to include deformations to moduli. This involves extending our
construction to the same construction defined over a base space, in the sense of
algebraic geometry. Hence, we consider a sheaf, ^, over a topological space, Jf >
and a map p:&-+ Jf, such that the inverse image of every point in Ji is a function
ring of the form Fock#. Keeping Fock.4 fixed, we define all the rest of our
constructions over every point in Jf exactly as above, and then require that all
dependence on Jf be continuous. This is essential to a natural understanding
of the problem.

Where does the perturbation theory embodied in (1.4) fit into this picture? We
have not developed the necessary tools to answer this question, in the sense that
we do not, as yet, have a concrete understanding of the role of the base space, Jf.
Before we attempt to extract (1.4) from our formalism, we must consider more
tractable problems, such as doing explicit calculations of renormalization flows
on spaces of field theories defined on, say, a sphere. This is much better defined
in terms of explicit computations, and this work is currently in progress [19]. It is
straightforward to show that the Virasoro-Shapiro amplitude is obtained by look-
ing for invariants of local rescaling for bosonic free fields on a sphere [19,22].

We have omitted several topics of interest for both string theory and statistical
mechanics. Introducing fermions into A is a triviality. The question of spin struc-
tures and superselection sectors in the space of states, or in the ring of correlation
functions, is more subtle, but can be understood naturally in this formalism. While
we have not discussed other applications at any length in the above, it is of great
interest to consider applying this formalism to gauge theories, where we could,
for example, consider the action of gauge transformations and the local RF on
spaces of cutoff, gauge-fixed Hamiltonians, described by means of a ring of correla-
tions.

Appendix

Horn pi, 7) will refer to the set of morphisms from X to Y. When Y = X is an
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abelian group, this set is a ring, which we denote End(X). The endomorphisms
of a module (ring) will always refer to homomorphisms from the additive group
of the module (ring) into itself. A module, 5, over a ring, R, is an additive group
with a ring homomorphism from R to End (S). EnάR(S) denotes the subring of
End (S) that consists of elements that commute with all elements in the image of
R in End (S).

Since we only used the concept of a sheaf in connection with vector bundles,
we give only a restricted definition. Suppose X is a smooth manifold and E is a
vector bundle over X, with projection map π. Consider an open set Y c X, and
a smooth map sγ:Y->Eγ, where Eγ denotes the restriction of the vector bundle
to 7. Such a map is called a section of Eγ if π°sγ = ly, the identity map on 7.
The set of all sections of Eγ over a given open 7 c X is an abelian group, since
the fibres of E are vector spaces. The sheaf Γ (E) is the map from the set of open
sets of X to the category of abelian groups, which assigns to each open set, the
abelian group of sections of E above that open set. We will not describe the
topology of the sheaf, since we do not use it in this work.

Let V and W be smooth manifolds, and f:V-+W a smooth map. We have
the induced map, called the differential of /, mapping the tangent bundle of V to
the tangent bundle of W,

TJ:TV-+TW

where T%fx is a linear map from TVx-*TWf(x). f is called a submersion when
T^fx is surjective for every xeV. A smooth sub-bundle, F, of the tangent bundle
of a manifold is said to be integrable, or a foliation of V, if it is locally the kernel
of the differential of a submersion, F = ker (T^f). The geometric picture is simple:
if V(W) is a manifold of dimension m(n\ with m > n, then if / is (locally) a sub-
mersion, we have a (local) decomposition of K,

U=\JΓ1(y)nU9
yeW

where U is a small enough open subset in V. Sets of the form f ~ ί ( y ) are called
the leaves of the foliation.

For a given differential manifold, the space of Riemannian metrics is fibered
by the relation of conformal equivalence. Weyl rescalings of the metric correspond
to motion along the fibres. There is also a natural action of diffeomorphisms of
the manifold on this space of metrics. Denote the Lie algebra of Weyl rescalings
by if, the tangent space of the space of Riemannian metrics by T, and the Lie
algebra of infinitesimal conformal diffeomorphisms by C. The connection, V, is
assumed compatible with this fibration, i.e., V = V ( 1 ) + V(2), with V(1) a connection
on / that factors through Γ(T) in the sense that if wei^ and ceC are such that
their images in Γ(T) (under the obvious maps) are equal, V(

VV

1) = V[1}. Furthermore,
we require that V^)= 0.
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