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Abstract. We consider small coupling fermion systems with ultraviolet and
space cutoffs and prove that they are asymptotically complete. The main
ingredient is the convergence in the real time linked cluster theorem.

Here we prove some conjectures which are either explicit or implicit in the classical
books by Friedrichs [1] and Hepp [2].

One of the main tools in the quantum many-body calculations is the linked
cluster theorem (see Theorems 2.7 and 2.8 in [2]), which up to now was a purely
formal result even with the adiabatic cutoff. Here the convergence of the
corresponding series is proven. The corollary is asymptotic completeness. We
stress that convergence is given in real time, using some experience in the euclidean
region. In general, cluster expansions in real time (necessary for asymptotic
completeness) seem to be more involved than in the euclidean region.

1. Notations

We use mostly notations and definitions of [2]. Let us consider the antisymmetric
Fock space ^ = ^(L2(RV)) over L2{RV); further on v ^ 3 , a*(f) and a(f) being
creation and annihilation operators, satisfying

a*(f)a(g) + α(g)α*(/) = (/, g), f,ge L2(R*), (1)

where the scalar product (/, g) in L2(RV) is antilinear in the second argument. Let us
denote by ̂ o(S) the set of vectors

in ^ such that fn(xu ...,xn)eS(Rvn).
We consider hamiltonains
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on #", where in the ^-representation

Ho = J ω{k)a*{k)a{k)dk, k e Rv

with the two cases: the massive case, with ω(k) = (m2 + /c2)1/2, and the massless case
with ω(k) = k2,

V= ί ί^(fc1,...,fcMι,fcmi + 1,...,fcW| + /ί)α*(fc1)...α*(fcmi)
i = 1

xa(km + 1)...a(km + ι)dk1...dkmi + lι,
(2)

i + I ι ) ).

It can be said that we consider interactions with an ultraviolet and space cutoff. We
assume V and hence H to be selfadjoint.

Let us define, for — oo < 5, t < GO, ε ̂  0, an evolution operator without adiabatic
cutoff

U(t,s) = eίtHoe~i(t~s)He~isHo,

and with adiabatic cutoff

U{% s) = ί-iλ] df V{ε\t')U{ε\t\ s).
s

It is well known that for finite t and s and ε ̂  0,

l/<e>(ί, 5) = 1 + Σ ( - ̂ )" ί dh ... ' 7 X Λ n 0 e >(ί0 ... V^\tn), (3)
n= 1 s s

and the series is norm convergent.
The integrand in (3) is the product of Wick monomials and can be represented

as the sum
V^(tί)...V^(tn) = ΣWG(tu...,tn) (4)

G

of the Wick monomials WG which are labeled by Friedrίchs diagrams G (see [2]).
So

^ G =(-i) π < G ) Π v^(kvΛ,...,kv^)+hj
v- 1

x Π α i g ^ ' " * ^ , (5)
ext

where the first product is over all vertices of the diagram G and we call kvi the
variable of the fth leg in the vertex v. The second product is over all internal lines
(vp9 v'q) of G contracting left (creation) legs vp and right (annihilation) legs (v'q). The
third product is over all external (noncontracted) lines (legs) and ± depends on
whether # = * or not.

Let us denote
(F(ί 1 ). . . V(tn))c - the sum over all connected diagrams in (4);
(...)oo - the sum over all connected diagrams without external lines in (4);
(...)L = ( ) C ~ ( )OO ~ over all connected diagrams with at least one external

line;
(.. .)CR - over all diagrams of class (.. .)L which external lines are creation lines.
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2. Results

Theorem 1. There exists λo>0 such that for \λ\<λ0 and either — oo <5, t< oo and
ε ̂  0 or — o o ^ s , ί ^ o o and ε > 0 the series

Σ (-iXrUh ...'TWKtJ... V^(tn))c=U^(t,s)c (6)
n— 1 s s

is norm convergent, λ0 does not depend on s, ί, ε. The same is true if instead (.. .)c one

takes (...)009 (...)L, (...)CΛ

We suppose further on V to be even (i.e. m£ + /j are even for all ϊ). Using
Theorem 1 one can prove nonformally

Theorem 2 (Linked cluster theorem, see Theorem 2.7 in [2]). Under the conditions
of Theorem ί,

l/(e)(ί,s)=:expE/(e)(ί,s)c:, (7)

where the series in the right-hand side is norm convergent.

Let us denote

where Ω is the vacuum in !F.

Theorem 3. // v ̂  3, then for both the massive and massless case there exists λ0 > 0
such that for \λ\<λ0 there exist

5-lim T0

(ε)

± o0 = T± (direct morphisms),

s-lim T ί ^ o = T± (inverse morphisms).
>0

Theorem 4. Lender the conditions of Theorem 3 wave function renormalisation

exp Σ (-λ)n(Γ(V...Γ(V)))CRΩ
2

(8)

where n is the number of FriedricKs operations Γ, is finite and γZT± are unitary
and provide unitary equivalence

= T±(Ho + ελ)9 (9)

where ελ is given by the convergent Goldstone series

ελ = (Ω,λVlT±Ω). (10)

(V1T is the left connected product, see [1,2].,)

Remark 1. Unitary equivalence of H and Ho + ελ was known for the massive case
(see [3,4]) and for the massless case without vacuum polarisation [3].
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3. Proof of Theorem 1: "Time-Mode Clusters"

The only difficulty is the number of the diagrams. We circumvent this difficulty by
making fermionic cancellations. These cancellations are made in the "time-mode"
clusters.

For the sake of concreteness we consider the case ε = 0, — oo < s, t < GO, V ̂  3. In
this case we shall prove

Lemma 1. The norm of the nth term of (6) has the bound \s — t\Cnλn, where C does not
depend on s, ί, n.

Time clusters are specified by the notion of the sector.

Partitions. Indices I,...,n are the vertices of the diagrams. Any subset
α = (α 1 ? ...,α f c), α 1 < . . . < α f c 5 of (l,...5w) defines the partit ion of ( l , . . . ,n) onto the
intervals

Sectors. Any a defines the subset 2Iα of

which we call a sector and which is uniquely defined by the following properties:
1. If ij belong to the same interval Aι of the partition α, then there exists an

integer M such that

2) If ij belong to different Am and Aι respectively, then ίί5 tj belong to different
(M,M + l) = 4 ( L , L + l) = 4 i . e . M φ L .

It is clear that [j 9Iα = 9I?5. Let us call Aι the /th group of the sector 9ϊα.
a

Subsectors. A subsector *Ha(Mu...,Mk+l) is defined by α and by integers
M1 > M2 > ... > Mk+ί. So this subsector is the set of all tί> ...> tn such that if
ieAj, then tίe(MpMj+1).

Modes. Let N = (AT1,..., JVV) e Z v, k-(k1,..., /cv) e R\ N-mode is the function on R

v 2πiNjkj

eN(k)= Π X# j)exp—~Λ ,
;=i A

where χ(k) is Q?-function, O^χ(fc)^ 1, χ(fe) = 1 for \k\^B and 0 for |/c|^B +1. We
choose 5 so that for any /

and choose Λ>B, for simplicity we assume l ^ e Q ^ 1 ^ ^ ) .
Let us fix subsector 5ία(M1? ...,M f c + 1). Any ίυe(M z,M / + 1) can be represented

as

Atv = Mt-tv.
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So for any leg p of the vertex v we can write

Qxp(itvω(kp)) = exp(iM^(/c^)) exp(iAtvω(hP)) (11)

We attribute the second factor in the right-hand side of (11) to Vί{v) in (5) and next
we come to

Expansion in Modes. For any v we use the expansion

) = Yl( Σ ^ ^ ( / c j V (12)
\NZ )
( Σ
\NeZv

Let us note that for any γ > 0 there exists a constant C(γ) such that uniformly in v, p,
\Atv\^l, constants cvPtN(Atv) satisfy the bound

K,N\ύ~, μv|=(ΣΛΓ'. (13)

This is proved by integration by parts. Further on we fix γ > v + 2.

Expansion in "Time-Mode" Clusters. Using the preceding definitions we can
represent nth term of the series (6) as follows

Σ Σ Σ ί I\d(Λtυ)ΣWG, (14)
9I« M i Λ ί k + i modes \Δtv\^l G

1. sum over sectors;
2. sum over subsectors of the given sector, i.e. sum over Mί9 ...,Mk + ί,
3. sum over modes, i.e. over Nvp9

4. integration inside subsector,
5. sum over admissible diagrams, where

WG = \\ δ(kvp - kv,q) exp(i(Mz - Mv)ω{kυp))cυPt Nvp
int

x Cv%Nv.qeNvftvp)eNv,£K>q)dkυpdkΌ,q]J a*(kvp)
ext

x exp( ± itMKP))cvp, NopeNJkυp)dkvp( - lf<G>. (15)

We shall obtain now cancellations of some diagrams. Let us fix for any group Aι

subsets At and Bι of left and correspondingly right legs of vertices of this group. Let
for the given sector α 33(α, {A J , {£z}) be the set of all admissible diagrams G such
that exactly creation legs from \J Aι are contracted with some annihilation legs (i.e.
creation legs not belonging to (J Ax are not contracted) and similarly for IJ Bv

Lemma 2. Let the sector, subsector and the set {Nυp} of modes be fixed. Then if for
some I there are either at least two equal modes in Ab i.e. if Nvp = Nv,q for some vp,
υ'q e Ab or at least two equal modes in Bι then

Σ wG=o.
GeSB(α,Mi},{fli})

The proof is evident: let us consider two legs in e.g. Aι with equal modes and two
diagrams in which these two modes are contracted with two other legs in two
different ways (all other contractions are the same). Then these two diagrams
exactly cancel.
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So further on we can assume that inside any Aι and inside any Bι all modes are
different and we use the bound

ψ^]^, (16)
where both products are over (v,p)eAιuBι.

Having made these cancellations we shall use the bound for (14)

Σ Σ Σ ί Ud(Λtv)Σ\\wG\\. (17)
9Iα M i , . . . , M k + 1 modes \Δtv\^ 1 G

Lemma 3. [5]

dkeN(k)eM(k)eiu°™ <ς C

where C does not depend on N and M.

This gives

C

v/2 :

where l(v,p) means that leg (v,p) belongs to the group Δv Sum over sectors and
integration in (17) give at most 2" and we shall obtain the bound of the following
expression uniform in α:

c(y) 1 y y π

 c

Again the second sum and £ 1 give Cn. Let us consider the factor-graph

with fe-hl vertices, i.e. we identify vertices of Ax for any /. Then the number of
graphs G with the given factor-graph Γ does not exceed C"ΠM/I l̂ zl

So we are left with the sum over M 1 ? ...,Mk+1 and over factorgraphs Γ.

Lemma 4. Let us fix Mv Then

/ C
^ Σ

where r =

This is the standard result in cluster expansion techniques [6]. This completes
the proof of Theorem 1, as summation over M1 gives the factor \s —1\.

4. Asymptotic Completeness

The formal proof of Theorem 2 is in [2]. As U(t9 s)c is the norm convergent series in
annihilation and creation operators then so is exp U(t, s)c. Wick ordering does not
change the upper bound of the norm and so Theorem 2 follows from Theorem 1.
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Remark 2. If v = 1,2 then Theorems 1 and 2 are also true but with a worse bound
than in Lemma 1. The proof repeats Sect. 3.

Proof of Theorem 3. We claim that

norm-lim Σ ( - iXf ] dt,...'"[' dtJV^t,)... V^\Q)Lψ (19)
ε^O π = i ±00 ±oo

exists where

Let us consider the nth term of (19). First we restrict ourselves to the class of
diagrams with the external annihilation line

a(kvp)exp(-itvω(hP)-ε\tv\)

with fixed v,p. We repeat the proof of Theorem 1 with the extra factor \MV\~V/2,
which we get from contracting a(kvp) with some a*(gi). With this extra factor we get
the convergence uniform in 0 S s ̂  oo for t = 0.

Next let us consider diagrams without annihilation external lines and having
some creation external lines

v,p

We represent

and integrate out tu

o \
linn f dtλ exp(ϊίi) Ύ ω(kvn) — εlί-, = — — τ , — r . (20)

In the massive case (20) belongs locally to L 2 and the remaining part of the proof
repeats Sect. 3.

Trouble in (20) can appear only if £ contains exactly one summand. But this is
v,p

possible only if the degree of some Vt is not even.
Under the same reasons there exist

T±ψ = norm-line :exp£/(ε)(0, +oo) L : .

It is easy to see from the proof that quite similarly one can prove existence of f±ψ,

f±T±ψ, T±T±ψ on #0(5) and also the fact that Z " 1 is finite. From the known

identities for U(ε\t,s) for ε > 0 (in particular unitarity, see [2]) it follows then that

]/ZT± conserve the norm on ^0(S), hence are unitary.
The formal identities which prove Theorem 4 are well known (see [2]). The fact

that they are convergent can be easily checked from the above considerations.

Remark 3. For v= 1,2 we cannot prove convergence of the series even for direct
morphisms, but the existence of direct morphisms can be easily proved by Cook's
method.
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Remark 4. The class of functions ω(k) for which Theorems 1-4 take place can be
described by two conditions: stationary phase estimate in Lemma 3 and local
square integrability of (20).
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